Lanaras, C.[Charis],
Bioucas-Dias, J.[José],
Galliani, S.[Silvano],
Baltsavias, E.[Emmanuel],
Schindler, K.[Konrad],
Super-resolution of Sentinel-2 images:
Learning a globally applicable deep neural network,
PandRS(146), 2018, pp. 305-319.
Elsevier DOI
1812
Sentinel-2, Super-resolution, Sharpening of bands,
Convolutional neural network, Deep learning
BibRef
Pouliot, D.[Darren],
Latifovic, R.[Rasim],
Pasher, J.[Jon],
Duffe, J.[Jason],
Landsat Super-Resolution Enhancement Using Convolution Neural
Networks and Sentinel-2 for Training,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Gargiulo, M.[Massimiliano],
Mazza, A.[Antonio],
Gaetano, R.[Raffaele],
Ruello, G.[Giuseppe],
Scarpa, G.[Giuseppe],
Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional
Neural Networks,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Masoud, K.M.[Khairiya Mudrik],
Persello, C.[Claudio],
Tolpekin, V.A.[Valentyn A.],
Delineation of Agricultural Field Boundaries from Sentinel-2 Images
Using a Novel Super-Resolution Contour Detector Based on Fully
Convolutional Networks,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Romero, L.S.[Luis Salgueiro],
Marcello, J.[Javier],
Vilaplaan, V.[Verónica],
Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial
Networks,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Lin, C.,
Bioucas-Dias, J.M.,
An Explicit and Scene-Adapted Definition of Convex Self-Similarity
Prior With Application to Unsupervised Sentinel-2 Super-Resolution,
GeoRS(58), No. 5, May 2020, pp. 3352-3365.
IEEE DOI
2005
Convex optimization, scene-adapted self-similarity,
self-similarity, Sentinel-2 satellite, super-resolution
BibRef
Galar, M.[Mikel],
Sesma, R.[Rubén],
Ayala, C.[Christian],
Albizua, L.[Lourdes],
Aranda, C.[Carlos],
Super-Resolution of Sentinel-2 Images Using Convolutional Neural
Networks and Real Ground Truth Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Latte, N.[Nicolas],
Lejeune, P.[Philippe],
PlanetScope Radiometric Normalization and Sentinel-2 Super-Resolution
(2.5 m): A Straightforward Spectral-Spatial Fusion of Multi-Satellite
Multi-Sensor Images Using Residual Convolutional Neural Networks,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Armannsson, S.E.[Sveinn E.],
Ulfarsson, M.O.[Magnus O.],
Sigurdsson, J.[Jakob],
Nguyen, H.V.[Han V.],
Sveinsson, J.R.[Johannes R.],
A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using
Wald's Protocol and Bayesian Optimization,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zabalza, M.[Maialen],
Bernardini, A.[Angela],
Super-Resolution of Sentinel-2 Images Using a Spectral Attention
Mechanism,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Wang, C.Y.[Chun-Yang],
Zhang, X.[Xian],
Yang, W.[Wei],
Wang, G.G.[Gai-Ge],
Zhao, Z.Z.[Zong-Ze],
Liu, X.[Xuan],
Lu, B.[Bibo],
Landsat-8 to Sentinel-2 Satellite Imagery Super-Resolution-Based
Multiscale Dilated Transformer Generative Adversarial Networks,
RS(15), No. 22, 2023, pp. 5272.
DOI Link
2311
BibRef
Panagiotopoulou, A.[Antigoni],
Grammatikopoulos, L.[Lazaros],
Kalousi, G.[Georgia],
Charou, E.[Eleni],
Sentinel-2 and Spot-7 Images in Machine Learning Frameworks for
Super-resolution,
PRAConBE20(462-476).
Springer DOI
2103
BibRef
Galar, M.,
Sesma, R.,
Ayala, C.,
Aranda, C.,
Super-resolution for Sentinel-2 Images,
PIA19(95-102).
DOI Link
1912
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Video Image Restoration and Enhancement .