Nishiya, T.[Takushi],
Position measuring method,
US_Patent4,825,393, Apr 25, 1989
WWW Link.
BibRef
8904
Fleck, M.M.,
A Topological Stereo Matcher,
IJCV(6), No. 3, August 1991, pp. 197-226.
Springer DOI Works for large angle and disparity
differences, but the local structure must be consistent.
See also Boundaries and Topological Algorithms.
BibRef
9108
Fleck, M.M.[Margaret M.],
Perspective Projection: The Wrong Imaging Model,
Univ. IowaCS TR 95-01, 1995.
PS File.
BibRef
9500
Cochran, S.D.,
Surface Description from Binocular Stereo,
USC_IRISTR-264, November 1990,
BibRef
9011
Ph.D.Thesis (Comp. Eng.).
BibRef
USC Computer VisionOther papers are preliminary to this one. Stereo analysis with
area based and feature based processing. Lots of results.
BibRef
Cochran, S.D., and
Medioni, G.G.,
3-D Surface Description from Binocular Stereo,
PAMI(14), No. 10, October 1992, pp. 981-994.
IEEE DOI
HTML Version.
BibRef
9210
USC Computer Vision
BibRef
Earlier:
Accurate Surface Description for Binocular Stereo,
DARPA89(857-869).
BibRef
And:
3DWS89(16-23).
The paper derived from the thesis work. A large variety of results.
Combining edge and area approaches to eliminate errors and improve
the results of reconstructions based on stereo.
BibRef
Cochran, S.D.,
Medioni, G.G., and
Nevatia, R.,
Correcting Matches and Inferring Surface Patches in Passive Stereo,
CVWS87(333-335).
BibRef
8700
USC Computer Vision
HTML Version.
BibRef
Earlier: A2, A3 Only:
Steps Toward Accurate Stereo Correspondence,
DARPA87(777-791).
HTML Version. Stereo matching taking lines and regions and getting surfaces.
BibRef
Hoff, W.[William], and
Ahuja, N.[Narendra],
Surfaces from Stereo: Integrating Feature Matching, Disparity
Estimation, and Contour Detection,
PAMI(11), No. 2, February 1989, pp. 121-136.
IEEE DOI
BibRef
8902
Earlier:
Extracting Surfaces from Stereo Images: an Integrated Approach,
ICCV87(284-294),
BibRef
Surfaces from Stereo,
ICPR86(516-518),
BibRef
And:
DARPA85(98-106).
BibRef
And:
Depth from Stereo,
CVPR85(NOT in the proceedings).
Integrate the 3D determined from stereo with the 3D
reconstructions and require them to agree.
BibRef
Hoff, W.A.,
Surfaces from Stereo: An Integrated Approach,
Ph.D.1987.
BibRef
8700
Illinoisat Urbana-Champaign.
BibRef
McKeown, D.M., and
Perlant, F.P.,
Refinement of Disparity Estimates Through the
Fusion of Monocular Image Segmentations,
CVPR92(486-492).
IEEE DOI
BibRef
9200
And:
DARPA92(839-855).
Stereo, Regions. Considerable improvement of the results using fusion.
BibRef
Hsieh, Y.C.[Yuan C.],
McKeown, Jr., D.M.[David M.],
Perlant, F.P.[Frederic P.],
Performance Evaluation of Scene Registration and
Stereo Matching for Cartographic Feature Extraction,
PAMI(14), No. 2, February 1992, pp. 214-238.
IEEE DOI
BibRef
9202
Earlier:
CMU-CS-TR-90-193, CMU CS Dept., November 1990.
BibRef
Earlier: A1, A3, A2:
Recovering 3D Information from Complex Aerial Imagery,
DARPA90(670-691).
BibRef
And:
ICPR90(I: 136-146).
IEEE DOI
Application, Cartography.
Stereo, Evaluation.
Matching, Evaluation. Stereo by merging line based processes and area based. Uses the earlier scene
registration work. Comparison with ground truth results.
BibRef
Mclauchlan, P.F.[Philip F.],
Mayhew, J.E.W.[John E.W.],
Frisby, J.P.[John P.],
Stereoscopic Recovery and Description of Smooth Textured Surfaces,
IVC(9), No. 1, February 1991, pp. 20-26.
Elsevier DOI
BibRef
9102
Earlier:
BMVC90(xx-yy).
PDF File.
9009
BibRef
Fua, P.V.,
A Parallel Stereo Algorithm That Produces Dense Depth Maps and
Preserves Image Features,
MVA(6), No. 1, Winter 1993, pp. 35-49.
BibRef
9300
And:
INRIAresearch report 1369.
BibRef
Huynh, D.Q.,
Owens, R.A.,
Line Labeling And Region-Segmentation In Stereo Image Pairs,
IVC(12), No. 4, May 1994, pp. 213-225.
Elsevier DOI
BibRef
9405
Pong, T.C.,
Haralick, R.M.,
Shapiro, L.G.,
Matching Topographic Structures in Stereo Vision,
PRL(9), 1989, pp. 127-136.
BibRef
8900
Super, B.J.,
Klarquist, W.N.,
Patch-Based Stereo in a General Binocular Viewing Geometry,
PAMI(19), No. 3, March 1997, pp. 247-253.
IEEE DOI
9704
BibRef
Earlier:
Patch Matching and Stereopsis in a General Stereo Viewing Geometry,
Univ. of TexasTR 94-006, November 1994, Revised February 1995.
Gets 3-D planar patches from image patch matches.
BibRef
Rojas, A.,
Calvo, A.,
Munoz, J.,
A Dense Disparity Map of Stereo Images,
PRL(18), No. 4, April 1997, pp. 385-393.
9708
BibRef
Wei, G.Q.[Guo-Qing],
Brauer, W.[Wilfried],
Hirzinger, G.[Gerd],
Intensity-Based and Gradient-Based Stereo Matching Using
Hierarchical Gaussian Basis Functions,
PAMI(20), No. 11, November 1998, pp. 1143-1160.
IEEE DOI
9811
Minimize intensity and gradient errors together.
Dense depth maps from stereo images.
BibRef
Valentinotti, F.,
Taraglio, S.,
A hybrid approach for stereo disparity computation,
MVA(11), No. 4, 1999, pp. 161-170.
Springer DOI
0001
BibRef
Boufama, B.S.[Boubakeur S.],
Using geometry towards stereo dense matching,
PR(33), No. 5, May 2000, pp. 871-873.
Elsevier DOI
0003
BibRef
Earlier:
The Use of Homographies for View Synthesis,
ICPR00(Vol I: 563-566).
IEEE DOI
0009
BibRef
Boufama, B.,
O'Connell, D.,
Region segmentation and matching in stereo images,
ICPR02(III: 631-634).
IEEE DOI
0211
BibRef
Amintabar, A.[Amirhasan],
Boufama, B.[Boubakeur],
The Distinction between Virtual and Physical Planes Using Homography,
ICIAR09(727-736).
Springer DOI
0907
BibRef
Earlier:
Homography-based plane identification and matching,
ICIP08(297-300).
IEEE DOI
0810
BibRef
Han, K.P.[Kyu-Phil],
Bae, T.M.[Tae-Min],
Ha, Y.H.[Yeong-Ho],
Hybrid stereo matching with a new relaxation scheme of preserving
disparity discontinuity,
PR(33), No. 5, May 2000, pp. 767-785.
Elsevier DOI
0003
Combined edge and region.
BibRef
López, A.[Angeles],
Pla, F.[Filiberto],
Dealing with segmentation errors in region-based stereo matching,
PR(33), No. 8, August 2000, pp. 1325-1338.
Elsevier DOI
0005
Segmentation errors in region-based approaches.
BibRef
Moravec, K.,
Harvey, R.W.,
Bangham, J.A.,
Scale trees for stereo vision,
VISP(147), No. 4, 2000, pp. 363-375.
0010
BibRef
Moravec, K.[Kimberly],
Harvey, R.W.[Richard W.],
Bangham, J.A.[J. Andrew],
Fisher, M.H.[Mark H.],
Using an Image Tree to Assist Stereo Matching,
ICIP99(I:26-30).
IEEE DOI
BibRef
9900
Bangham, J.A.,
Moravec, K.,
Harvey, R.W.,
Scale-Space Trees and Applications as Filters for Stereo Vision and
Image Retrieval,
BMVC99(Image Matching and Retrieval).
PDF File.
BibRef
9900
Moravec, K.,
Harvey, R.W.,
Bangham, J.A.,
Improving Stereo Performance in Regions of Low Texture,
BMVC98(xx-yy).
BibRef
9800
Boykov, Y.Y.[Yuri Y.],
Veksler, O.[Olga],
Zabih, R.[Ramin],
Fast Approximate Energy Minimization via Graph Cuts,
PAMI(23), No. 11, November 2001, pp. 1222-1239.
IEEE DOI
0112
BibRef
Earlier:
ICCV99(377-384).
IEEE DOI
Award, ICCV Test of Time.
BibRef
Earlier:
Disparity Component Matching for Visual Correspondence,
CVPR97(470-475).
IEEE DOI
9704
Dense correspondence, use connected disparity regions.
In assigning a disparity at every pixel the smoothness constraint and
sharp discontinuities collide. The exact solution is NPhard so find
an approximation.
See also What Energy Functions Can Be Minimized via Graph Cuts?.
See also Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images.
See also PALMS Image Partitioning: A New Parallel Algorithm for the Piecewise Affine-Linear Mumford-Shah Model.
BibRef
Veksler, O.[Olga],
Dense Features for Semi-Dense Stereo Correspondence,
IJCV(47), No. 1-3, April-June 2002, pp. 247-260.
DOI Link
0203
BibRef
Earlier:
Semi-Dense Stereo Correspondence with Dense Features,
CVPR01(II:490-497).
IEEE DOI
0110
BibRef
And:
SMBV01(xx-yy).
0110
Connected set of pixels whose boundary points are matched.
See also Stereo Correspondence with Compact Windows via Minimum Ratio Cycle.
BibRef
Veksler, O.[Olga],
Multi-label Moves for MRFs with Truncated Convex Priors,
IJCV(98), No. 1, May 2012, pp. 1-14.
WWW Link.
1204
BibRef
Earlier:
EMMCVPR09(1-13).
Springer DOI
0908
BibRef
Earlier:
Graph Cut Based Optimization for MRFs with Truncated Convex Priors,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Reducing Search Space for Stereo Correspondence with Graph Cuts,
BMVC06(II:709).
PDF File.
0609
BibRef
Earlier:
Extracting dense features for visual correspondence with graph cuts,
CVPR03(I: 689-694).
IEEE DOI
0307
BibRef
Veksler, O.[Olga],
Stereo Correspondence by Dynamic Programming on a Tree,
CVPR05(II: 384-390).
IEEE DOI
0507
BibRef
Veksler, O.[Olga],
Efficient Graph Cut Optimization for Full CRFs with Quantized Edges,
PAMI(42), No. 4, April 2020, pp. 1005-1012.
IEEE DOI
2003
Image edge detection, Labeling, Inference algorithms,
Computational modeling, Optimization methods,
fully connected CRFs
BibRef
Felzenszwalb, P.F.[Pedro F.],
Veksler, O.[Olga],
Tiered scene labeling with dynamic programming,
CVPR10(3097-3104).
IEEE DOI Video of talk:
WWW Link.
1006
Apply DP for pixel labeling with hierarchical structure.
BibRef
Felzenszwalb, P.F.[Pedro F.],
Pap, G.[Gyula],
Tardos, E.[Eva],
Zabih, R.[Ramin],
Globally optimal pixel labeling algorithms for tree metrics,
CVPR10(3153-3160).
IEEE DOI
1006
BibRef
Delong, A.[Andrew],
Boykov, Y.Y.[Yuri Y.],
A Scalable graph-cut algorithm for N-D grids,
CVPR08(1-8).
IEEE DOI
0806
BibRef
di Stefano, L.[Luigi],
Marchionni, M.[Massimiliano],
Mattoccia, S.[Stefano],
A Fast Area-Based Stereo Matching Algorithm,
IVC(22), No. 12, 1 October 2004, pp. 983-1005.
Elsevier DOI
0409
BibRef
Earlier:
Add A4:
Neri, G.[Giovanni],
VI02(146).
PDF File.
0208
Reject matches when more reliable matches are found.
BibRef
Mattoccia, S.[Stefano],
Accurate Dense Stereo by Constraining Local Consistency on Superpixels,
ICPR10(1832-1835).
IEEE DOI
1008
BibRef
di Stefano, L.[Luigi],
Marchionni, M.[Massimiliano],
Mattoccia, S.[Stefano],
Neri, O.,
Dense stereo based on the uniqueness constraint,
ICPR02(III: 657-661).
IEEE DOI
0211
BibRef
di Stefano, L.[Luigi],
Mattoccia, S.[Stefano],
Neri, G.,
Piccinni, D.,
Temporal filtering of disparity measurements,
CIAP01(145-150).
IEEE DOI
0210
BibRef
Tombari, F.[Federico],
Mattoccia, S.[Stefano],
di Stefano, L.[Luigi],
Addimanda, E.[Elisa],
Near real-time stereo based on effective cost aggregation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Classification and evaluation of cost aggregation methods for stereo
correspondence,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Tombari, F.[Federico],
di Stefano, L.[Luigi],
Mattoccia, S.[Stefano],
Mainetti, A.,
A 3D reconstruction system based on improved spacetime stereo,
ICARCV10(1886-1893).
IEEE DOI
1109
BibRef
Mattoccia, S.[Stefano],
Stereo Vision Algorithms for FPGAs,
ECVW13(636-641)
IEEE DOI
1309
3D; FPGA; dense stereo; matching; stereo vision
BibRef
Poggi, M.[Matteo],
Tosi, F.[Fabio],
Mattoccia, S.[Stefano],
Learning a confidence measure in the disparity domain from O(1)
features,
CVIU(193), 2020, pp. 102905.
Elsevier DOI
2003
BibRef
Earlier: A1, A3, Only:
Learning a General-Purpose Confidence Measure Based on O(1) Features
and a Smarter Aggregation Strategy for Semi Global Matching,
3DV16(509-518)
IEEE DOI
1701
Stereo matching, Confidence measure, Machine learning, Semi global matching
BibRef
Aleotti, F.[Filippo],
Tosi, F.[Fabio],
Ramirez, P.Z.[Pierluigi Zama],
Poggi, M.[Matteo],
Salti, S.[Samuele],
Mattoccia, S.[Stefano],
di Stefano, L.[Luigi],
Neural Disparity Refinement for Arbitrary Resolution Stereo,
3DV21(207-217)
IEEE DOI
2201
Performance evaluation, Image resolution, Refining,
Neural networks, Computer architecture
BibRef
Poggi, M.[Matteo],
Aleotti, F.[Filippo],
Tosi, F.[Fabio],
Zaccaroni, G.[Giulio],
Mattoccia, S.[Stefano],
Self-adapting Confidence Estimation for Stereo,
ECCV20(XXIV:715-733).
Springer DOI
2012
BibRef
Tombari, F.[Federico],
Mattoccia, S.[Stefano],
di Stefano, L.[Luigi],
Stereo for robots: Quantitative evaluation of efficient and low-memory
dense stereo algorithms,
ICARCV10(1231-1238).
IEEE DOI
1109
BibRef
Earlier:
Segmentation-Based Adaptive Support for Accurate Stereo Correspondence,
PSIVT07(427-438).
Springer DOI
0712
BibRef
Mattoccia, S.[Stefano],
Fast locally consistent dense stereo on multicore,
ECVW10(69-76).
IEEE DOI
1006
BibRef
Mattoccia, S.[Stefano],
A locally global approach to stereo correspondence,
3DIM09(1763-1770).
IEEE DOI
0910
BibRef
Mattoccia, S.[Stefano],
Giardino, S.[Simone],
Gambini, A.[Andrea],
Accurate and Efficient Cost Aggregation Strategy for Stereo
Correspondence Based on Approximated Joint Bilateral Filtering,
ACCV09(II: 371-380).
Springer DOI
0909
BibRef
Bleyer, M.[Michael],
Gelautz, M.[Margrit],
A layered stereo matching algorithm using image segmentation and global
visibility constraints,
PandRS(59), No. 3, May 2005, pp. 128-150.
Elsevier DOI
0509
Award, ISPRS.
BibRef
Earlier:
A layered stereo algorithm using image segmentation and global
visibility constraints,
ICIP04(V: 2997-3000).
IEEE DOI
0505
BibRef
Bleyer, M.[Michael],
Gelautz, M.[Margrit],
Graph-cut-based stereo matching using image segmentation with
symmetrical treatment of occlusions,
SP:IC(22), No. 2, February 2007, pp. 127-143.
Elsevier DOI
0704
Stereo matching; Segmentation-based matching; Graph-cuts; Occlusion problem
BibRef
Bleyer, M.[Michael],
Rhemann, C.[Christoph],
Gelautz, M.[Margrit],
Segmentation-Based Motion with Occlusions Using Graph-Cut Optimization,
DAGM06(465-474).
Springer DOI
0610
BibRef
Bleyer, M.[Michael],
Rother, C.[Carsten],
Kohli, P.[Pushmeet],
Scharstein, D.[Daniel],
Sinha, S.N.[Sudipta N.],
Object stereo: Joint stereo matching and object segmentation,
CVPR11(3081-3088).
IEEE DOI
1106
BibRef
Ogale, A.S.[Abhijit S.],
Aloimonos, Y.[Yiannis],
Shape and the Stereo Correspondence Problem,
IJCV(65), No. 3, December 2005, pp. 147-162.
Springer DOI or:
PDF File.
0601
Code, Stereo.
BibRef
Earlier:
Robust contrast invariant stereo correspondence,
CRA05(xx-yy).
PDF File.
BibRef
The influence of shape on image correspondence,
3DPVT04(945-952).
IEEE DOI
0412
BibRef
And:
Stereo Correspondence with Slanted Surfaces:
Critical Implications of Horizontal Slant,
CVPR04(I: 568-573).
IEEE DOI Or:
PDF File.
0408
Related code is also available:
HTML Version.
BibRef
Manizade, K.F.,
Spinhirne, J.D.,
Lancaster, R.S.,
Stereo Cloud Heights From Multispectral IR Imagery via
Region-of-Interest Segmentation,
GeoRS(44), No. 9, September 2006, pp. 2481-2491.
IEEE DOI
0609
BibRef
El Ansari, M.[Mohamed],
Masmoudi, L.[Lhoussaine],
Bensrhair, A.[Abdelaziz],
A new regions matching for color stereo images,
PRL(28), No. 13, 1 October 2007, pp. 1679-1687.
Elsevier DOI
0709
Stereo vision; Region matching; Color stereo images
BibRef
Wang, D.[Daolei],
Lim, K.B.[Kah Bin],
Obtaining depth map from segment-based stereo matching using graph cuts,
JVCIR(22), No. 4, May 2011, pp. 325-331.
Elsevier DOI
1104
Stereo matching; Color segmentation; Graph cuts; Disparity plane
fitting; Clustering; Optimization; Occlusion; Similarity measure
Segement the reference image and use these in matching.
BibRef
Haller, I.,
Nedevschi, S.,
Design of Interpolation Functions for Subpixel-Accuracy Stereo-Vision
Systems,
IP(21), No. 2, February 2012, pp. 889-898.
IEEE DOI
1201
BibRef
Qin, X.,
Shen, J.,
Mao, X.,
Li, X.,
Jia, Y.,
Structured-Patch Optimization for Dense Correspondence,
MultMed(17), No. 3, March 2015, pp. 295-306.
IEEE DOI
1502
Algorithm design and analysis
BibRef
Raghavendra, U.,
Makkithaya, K.[Krishnamoorthi],
Karunakar, A.K.,
Anchor-diagonal-based shape adaptive local support region for efficient
stereo matching,
SIViP(9), No. 4, May 2015, pp. 893-901.
Springer DOI
1504
BibRef
Li, L.,
Zhang, S.,
Yu, X.,
Zhang, L.,
PMSC: PatchMatch-Based Superpixel Cut for Accurate Stereo Matching,
CirSysVideo(28), No. 3, March 2018, pp. 679-692.
IEEE DOI
1804
computational complexity, graph theory,
image matching, image resolution, image segmentation, neural nets,
superpixel cut (SC)
BibRef
Lim, J.[Jaeseung],
Lee, S.[Sankeun],
Patchmatch-Based Robust Stereo Matching Under Radiometric Changes,
PAMI(41), No. 5, May 2019, pp. 1203-1212.
IEEE DOI
1904
Radiometry, Computed tomography, Image color analysis, Robustness,
Cost function, Transforms,
convex plane refinement
BibRef
Hanif, M.S.[Muhammad Shehzad],
Patch match networks: Improved two-channel and Siamese networks for
image patch matching,
PRL(120), 2019, pp. 54-61.
Elsevier DOI
1904
Convolutional neural networks, Similarity learning,
Local descriptors learning, Patch verification, Patch retrieval
BibRef
Pemasiri, A.[Akila],
Thanh, K.N.[Kien Nguyen],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Sparse over-complete patch matching,
PRL(122), 2019, pp. 1-6.
Elsevier DOI
1904
Image patch matching, Sparse coding, Neural network
BibRef
Tian, M.[Mao],
Yang, B.S.[Bi-Sheng],
Chen, C.[Chi],
Huang, R.G.[Rong-Gang],
Huo, L.[Liang],
HPM-TDP: An efficient hierarchical PatchMatch depth estimation
approach using tree dynamic programming,
PandRS(155), 2019, pp. 37-57.
Elsevier DOI
1908
Dense depth information from a pair of stereo images.
Depth estimation, Stereo matching,
Continuous energy optimization, Tree dynamic programming (TDP)
BibRef
Song, X.[Xiao],
Zhao, X.[Xu],
Fang, L.J.[Liang-Ji],
Hu, H.[Hanwen],
Yu, Y.Z.[Yi-Zhou],
EdgeStereo: An Effective Multi-task Learning Network for Stereo
Matching and Edge Detection,
IJCV(128), No. 4, April 2020, pp. 910-930.
Springer DOI
2004
Disparity issues with textureless regions and near boundaries.
Use features -- corners, edges, etc.
BibRef
Zhang, X.H.[Xiao-Hong],
Chen, Y.[Yi],
Zhang, H.F.[Hao-Feng],
Wang, S.H.[Shui-Hua],
Lu, J.F.[Jian-Feng],
Yang, J.Y.[Jing-Yu],
When Visual Disparity Generation Meets Semantic Segmentation:
A Mutual Encouragement Approach,
ITS(22), No. 3, March 2021, pp. 1853-1867.
IEEE DOI
2103
Semantics, Task analysis, Image segmentation, Estimation,
Image resolution, Visualization, Convolution, Scene parsing,
mutual encouragement network (MENet)
BibRef
Hua, S.Y.[Sheng-You],
Sun, Z.Y.[Zhi-Yong],
Song, B.[Bo],
Liang, P.P.[Peng-Peng],
Cheng, E.[Erkang],
Pseudo Segmentation for Semantic Information-Aware Stereo Matching,
SPLetters(29), 2022, pp. 837-841.
IEEE DOI
2204
Costs, Semantics, Feature extraction, Image segmentation,
Task analysis, Correlation, Deep learning, stereo matching,
pseudo segmenta- tion
BibRef
Rouabhia, D.[Djaber],
Djedi, N.E.[Nour Eddine],
A combination of 'feature mapping' and 'block' approaches to reduce the
matching area of stereoscopic algorithms,
IJCVR(13), No. 6, 2023, pp. 641-657.
DOI Link
2310
BibRef
Cheng, J.[Junda],
Yang, X.[Xin],
Pu, Y.[Yuechuan],
Guo, P.[Peng],
Region Separable Stereo Matching,
MultMed(25), 2023, pp. 4880-4893.
IEEE DOI
2311
BibRef
Ai, X.D.[Xin-Dong],
Yang, Z.[Zuliu],
Yang, W.[Weida],
Zhao, Y.[Yong],
Yu, Z.Z.[Zheng-Zhong],
Li, F.[Fuchi],
Suppressing Features That Contain Disparity Edge For Stereo Matching,
ICPR21(7985-7991)
IEEE DOI
2105
Convolution, Image edge detection, Aggregates, Feature extraction
BibRef
Gee, T.[Trevor],
Delmas, P.[Patrice],
Reconstruction with Guided PatchMatch Stereo,
MVA19(1-6)
DOI Link
1911
dynamic programming, image matching,
image reconstruction, stereo image processing,
Earth
BibRef
Khamis, S.[Sameh],
Fanello, S.[Sean],
Rhemann, C.[Christoph],
Kowdle, A.[Adarsh],
Valentin, J.[Julien],
Izadi, S.[Shahram],
StereoNet: Guided Hierarchical Refinement for Real-Time Edge-Aware
Depth Prediction,
ECCV18(XV: 596-613).
Springer DOI
1810
BibRef
Chabra, R.[Rohan],
Straub, J.[Julian],
Sweeney, C.[Christopher],
Newcombe, R.A.[Richard A.],
Fuchs, H.[Henry],
StereoDRNet: Dilated Residual StereoNet,
CVPR19(11778-11787).
IEEE DOI
2002
BibRef
Yang, G.R.[Guo-Run],
Zhao, H.S.[Heng-Shuang],
Shi, J.P.[Jian-Ping],
Deng, Z.D.[Zhi-Dong],
Jia, J.Y.[Jia-Ya],
SegStereo: Exploiting Semantic Information for Disparity Estimation,
ECCV18(VII: 660-676).
Springer DOI
1810
BibRef
Chen, B.,
Jung, C.,
Patch-Based Stereo Matching Using 3D Convolutional Neural Networks,
ICIP18(3633-3637)
IEEE DOI
1809
Color, Image edge detection,
Image color analysis, Training, Convolutional neural networks, patch-based
BibRef
Quenneville, D.,
Scharstein, D.[Daniel],
Mondrian stereo,
ICIP17(136-140)
IEEE DOI
1803
Cognition, Image color analysis, Image edge detection,
Image segmentation, Merging, Surface treatment,
untextured scenes
BibRef
Liu, J.L.[Jiao-Li],
Zhang, L.F.[Lin-Feng],
Tao, J.[Jia],
A joint stereo matching in the pixel and image level,
ICIVC17(138-144)
IEEE DOI
1708
Correlation, Image color analysis, Image segmentation,
Interpolation, Reliability, Surface fitting,
adaptive support, bundle constrains,
stereo matching, surface, interpolation
BibRef
Drouyer, S.[Sébastien],
Beucher, S.[Serge],
Bilodeau, M.[Michel],
Moreaud, M.[Maxime],
Sorbier, L.[Loďc],
Sparse Stereo Disparity Map Densification Using Hierarchical Image
Segmentation,
ISMM17(172-184).
Springer DOI
1706
BibRef
Li, A.[Ang],
Chen, D.P.[Da-Peng],
Liu, Y.L.[Yuan-Liu],
Yuan, Z.J.[Ze-Jian],
Coordinating Multiple Disparity Proposals for Stereo Computation,
CVPR16(4022-4030)
IEEE DOI
1612
Stereo, large textureless regions.
BibRef
Wu, W.,
Li, L.,
Jin, W.,
Disparity refinement based on segment-tree and fast weighted median
filter,
ICIP16(3449-3453)
IEEE DOI
1610
Decision support systems
BibRef
Veldandi, M.[Muninder],
Ukil, S.[Soumik],
Govindarao, K.[Krishna],
Robust segment-based Stereo using Cost Aggregation,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Ghosh, P.[Pallabi],
Venkatesh, K.S.,
Fast and efficient computation of stereo depth maps,
3DTV-CON13(1-4)
IEEE DOI
1309
DAISY;SIFT;Stereo vision;depth discontinuities;graph cuts
BibRef
Howard, J.[Joel],
Morse, B.S.[Bryan S.],
Cohen, S.[Scott],
Price, B.L.[Brian L.],
Depth-based patch scaling for content-aware stereo image completion,
WACV14(9-16)
IEEE DOI
1406
BibRef
Earlier: A2, A1, A3, A4:
PatchMatch-Based Content Completion of Stereo Image Pairs,
3DIMPVT12(555-562).
IEEE DOI
1212
Boolean functions
BibRef
Zheng, Y.[Ying],
Gu, S.[Steve],
Tomasi, C.[Carlo],
Fast Tiered Labeling with Topological Priors,
ECCV12(IV: 587-601).
Springer DOI
1210
Vertical order (sky ground)
BibRef
Klowsky, R.[Ronny],
Kuijper, A.[Arjan],
Goesele, M.[Michael],
Modulation transfer function of patch-based stereo systems,
CVPR12(1386-1393).
IEEE DOI
1208
BibRef
Brewer, N.,
Liu, N.,
Wang, L.,
Stereo disparity calculation in real-world scenes with Informative
Image Partitioning,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Sidhu, H.S.[Harkanwal Singh],
Kumar, S.[Satish],
Das, A.[Amitava],
Sardana, H.K.,
A robust area based disparity estimation technique for stereo vision
applications,
ICIIP11(1-4).
IEEE DOI
1112
BibRef
Dai, X.B.[Xian-Biao],
Wang, L.[Liang],
Cui, P.Y.[Ping-Yuan],
An improved region-growth algorithm for disparity estimation,
IASP10(411-414).
IEEE DOI
1004
BibRef
Wang, G.C.[Gui-Cai],
Wang, L.[Liang],
Cui, P.Y.[Ping-Yuan],
A Stereo Matching Algorithm Based on Image Segmentation and Features
Point,
CISP09(1-5).
IEEE DOI
0910
BibRef
Wang, Z.F.[Zeng-Fu],
Zheng, Z.G.[Zhi-Gang],
A region based stereo matching algorithm using cooperative optimization,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Zhou, X.Z.[Xiu-Zhi],
Wang, R.S.[Run-Sheng],
Symmetric Pixel-Group Based Stereo Matching for Occlusion Handling,
ICPR06(I: 47-50).
IEEE DOI
0609
Segement images on color and disparity and the regions in the other image.
BibRef
Sun, J.[Jian],
Li, Y.[Yin],
Kang, S.B.[Sing Bing],
Shum, H.Y.[Heung-Yeung],
Symmetric Stereo Matching for Occlusion Handling,
CVPR05(II: 399-406).
IEEE DOI
0507
Symmetry.
BibRef
Delponte, E.[Elisabetta],
Isgrň, F.[Francesco],
Odone, F.[Francesca],
Verri, A.[Alessandro],
Large Baseline Matching of Scale Invariant Features,
CIAP05(794-801).
Springer DOI
0509
BibRef
McKinnon, B.[Brian],
Baltes, J.[Jacky],
Fast Line-Segment Extraction for Semi-dense Stereo Matching,
RobVis08(59-71).
Springer DOI
0802
BibRef
McKinnon, B.[Brian],
Baltes, J.[Jacky],
Practical Region-Based Matching for Stereo Vision,
IWCIA04(726-738).
Springer DOI
0505
BibRef
Egnal, G.[Geoffrey],
Mintz, M.[Max],
Daniilidis, K.[Kostas],
Limiting the Search Range of Correlation Stereo Using Silhouettes,
VI02(170).
PDF File.
0208
BibRef
Zhang, Y.,
Kambhamettu, C.,
Stereo Matching with Segmentation-Based Cooperation,
ECCV02(II: 556 ff.).
Springer DOI
0205
BibRef
Tarel, J.P., and
Vezien, J.M.,
A generic approach for planar patches stereo reconstruction,
SCIA95(II: 1061-1070).
Regions are matched with distortions. Segment regions first.
BibRef
9500
Tao, H.[Hai],
Sawhney, H.S.[Harpreet S.],
Kumar, R.[Rakesh],
A Global Matching Framework for Stereo Computation,
ICCV01(I: 532-539).
IEEE DOI
0106
BibRef
Tao, H.[Hai],
Sawhney, H.S.[Harpreet S.],
Global Matching Criterion and Color Segmentation Based Stereo,
WACV00(246-253).
IEEE DOI
0010
Stereo analysis. Regions help the analysis.
Compute depth. Warp (re-render, view based rendering) according to
depth, copmare to iamge. Allow depth discontinuities at region
boundaries. Very clean results.
BibRef
Silva, C.,
Santos-Victor, J.,
Intrinsic Images for Dense Stereo Matching with Occlusions,
ECCV00(I: 100-114).
Springer DOI
0003
BibRef
Vestri, C.[Christoph],
Devernay, F.[Frederic],
Improving Correlation-based DEMs by Image Warping and Facade
Correlation,
CVPR00(I: 438-443).
IEEE DOI
0005
improve DEM by adding edge info
BibRef
Morris, D.D.[Daniel D.],
Kanade, T.[Takeo],
Image-Consistent Surface Triangulation,
CVPR00(I: 332-338).
IEEE DOI
0005
Refine stero model using surfaces
BibRef
Maas, R.[Robert],
ter Haar Romeny, B.M.[Bart M.],
Viergever, M.A.[Max A.],
Area-Based Computation of Stereo Disparity with Model-Based Window Size
Selection,
CVPR99(I: 106-112).
IEEE DOI
BibRef
9900
Wei, G.Q.[Guo-Qing], and
Hirzinger, G.[Gerd],
Intensity and Feature Based Stereo Matching by
Disparity Parametrization,
ICCV98(1035-1040).
IEEE DOI
BibRef
9800
Fusiello, A.,
Roberto, V.,
Trucco, E.,
Efficient Stereo with Multiple Windowing,
CVPR97(858-863).
IEEE Abstract.
IEEE DOI
9704
BibRef
And:
Experiments with a new area-based stereo algorithm,
CIAP97(I: 669-676).
Springer DOI
9709
To deal with occlusions.
BibRef
Sara, R.,
Bajcsy, R.,
On Occluding Contour Artifacts in Stereo Vision,
CVPR97(852-857).
IEEE Abstract.
IEEE DOI
9704
Step edges cause problems in stereo.
BibRef
Wiman, H.,
Automatic Generation of Digital Surface Models Through Matching
in Object Space,
SSAB97(Photogrammetry)
9703
BibRef
Liu, J., and
Huang, S.,
Using Topological Information of Images to Improve Stereo Matching,
CVPR93(653-654).
IEEE DOI
BibRef
9300
Chapter on Stereo: Three Dimensional Descriptions from Two or More Views, Binocular, Trinocular continues in
Stereo and Surface Models .