Max, J.,
Quantizing for Minimum Distortion,
IT(6), No. 1, March 1960, pp. 1-6. ??
BibRef
6003
Lippel, B.,
Kurland, M.,
Marsh, A.H.,
Ordered Dither Patterns for Coarse Quantization of Pictures,
PIEEE(59), No. 3, March 1971, pp. 429-431.
BibRef
7103
Carter, W.H.,
Brown, V.D.,
A Signal-Dependent Error Arising in Digitally Processed Images Due
to Quantization,
TC(21), No. 12, December 1972, pp. 1380-1384.
BibRef
7212
Mori, S.[Sumio],
Shaded picture signal processing system and method,
US_Patent4,366,507, Dec 28, 1982
WWW Link.
BibRef
8212
Schafer, R.,
Design of Adaptive and Nonadaptive Quantizers Using Subjective Criteria,
SP(5), 1983, pp. 333-345.
BibRef
8300
Kazakos, D.,
New Results on Robust Quantization,
Commun(31), 1983, pp. 965-974.
BibRef
8300
Kieffer, J.C.,
Uniqueness of Locally Optimal Quantizer for Log-Concave Density and
Convex Error Weighting Functions,
IT(29), 1983, pp. 42-47.
BibRef
8300
Cambanis, S.,
Gerr, N.L.,
A Simple Class of Asymptotically Optimal Quantizers,
IT(29), 1983, pp. 664-676.
BibRef
8300
Judell, N.,
Scharf, L.,
A Simple Derivation of Lloyd's Classical Result for the
Optimum Scalar Quantizer,
IT(32), 1986, pp. 326-328.
See also Least Squares Quantization in PCM.
BibRef
8600
Swaszek, P.F.,
Asymptotic Performance of Unrestricted Polar Quantizers,
IT(32), 1986, pp. 330-333.
BibRef
8600
Li, Q.[Qi],
Swaszek, P.F.,
One-pass vector quantizer design by sequential pruning of the training
data,
ICIP95(III: 105-108).
IEEE DOI
9510
BibRef
Werman, M.,
Peleg, S.,
Gray Level Requantization,
CVGIP(43), No. 1, July 1988, pp. 81-87.
Elsevier DOI
BibRef
8807
Peleg, S.,
Werman, M., and
Rom, H.,
A Unified Approach to the Change of Resolution: Space and Gray Level,
PAMI(11), No. 7, July 1989, pp. 739-742.
IEEE DOI
BibRef
8907
Ishida, S.[Shinichi],
Sakamoto, M.[Masahiro],
Shinada, Y.[Yasuyuki],
Ono, T.[Takeshi],
Image processing method and apparatus,
US_Patent4,969,052, Nov 6, 1990
WWW Link.
BibRef
9011
And:
Image processing method and apparatus with reduction
of granular noise, etc.,
US_Patent5,159,470, Oct 27, 1992
WWW Link.
BibRef
Tanioka, H.[Hiroshi],
Yamada, Y.[Yasuhiro],
Apparatus for performing gradation processing on image data,
US_Patent5,121,447, Jun 9, 1992
WWW Link.
BibRef
9206
Katayama, A.[Akihiro],
Ohsawa, H.[Hidefumi],
Fukuhara, A.[Akiko],
Image treatment method and apparatus with error dispersion
and controllable quantization,
US_Patent5,325,448, Jun 28, 1994
WWW Link.
BibRef
9406
Nguyen, T.B.,
Oommen, B.J.,
Moment-Preserving Piecewise-Linear Approximations of Signals and Images,
PAMI(19), No. 1, January 1997, pp. 84-91.
IEEE DOI
9702
BibRef
Ortega, A.,
Vetterli, M.,
Adaptive Scalar Quantization without Side Information,
IP(6), No. 5, May 1997, pp. 665-676.
IEEE DOI
HTML Version.
9705
BibRef
Earlier:
Adaptive quantization without side information,
ICIP94(III: 856-860).
IEEE DOI
9411
BibRef
Ortega, A.,
Optimization Techniques for Adaptive Quantization of
Image and Video under Delay Constraints,
Ph.D.Thesis, Dept. of Electrical Engineering,
Columbia University, June 1994.
HTML Version.
BibRef
9406
Sakazawa, S.[Shigeyuki],
Hamada, T.[Takahiro],
Matsumoto, S.[Shuichi],
Quantizer designed by using human visual sensitivity,
US_Patent5,557,276, Sep 17, 1996
WWW Link.
BibRef
9609
Chung, K.L.,
Hong, K.B.,
Level Compression-Based Image Representation and Its Applications,
PR(31), No. 3, March 1998, pp. 327-332.
Elsevier DOI
9802
BibRef
Hung, A.C.,
Meng, T.H.,
Multidimensional Rotations for Robust Quantization of Image Data,
IP(7), No. 1, January 1998, pp. 1-12.
IEEE DOI
9801
BibRef
Blasiak, D.,
Shen, J.,
Chan, W.Y.,
Generalized Scalar Quantizer Design Using Dynamic Programming,
SPLetters(6), No. 5, May 1999, pp. 103.
IEEE Top Reference.
BibRef
9905
Kämpke, T.[Thomas],
Kober, R.[Rudolf],
Discrete signal quantization,
PR(32), No. 4, April 1999, pp. 619-634.
Elsevier DOI
BibRef
9904
Wang, G.,
Li, Y.,
Axiomatic Approach for Quantification of Image Resolution,
SPLetters(6), No. 10, October 1999, pp. 257.
IEEE Top Reference.
BibRef
9910
Malo, J.,
Ferri, F.J.,
Albert, J.V.,
Soret, J.,
Artigas, J.M.,
The role of perceptual contrast non-linearities in image transform
quantization,
IVC(18), No. 3, February 2000, pp. 233-246.
Elsevier DOI
0001
BibRef
Malo, J.,
Ferri, F.J.,
Albert, J.V.,
Artigas, J.M.,
Adaptive motion estimation and video vector quantization based on
spatiotemporal non-linearities of human perception,
CIAP97(I: 454-461).
Springer DOI
9709
BibRef
Papamarkos, N.[Nikos],
Atsalakis, A.[Antonios],
Gray-Level Reduction Using Local Spatial Features,
CVIU(78), No. 3, June 2000, pp. 336-350.
DOI Link
0006
BibRef
Tsakalides, P.,
Reveliotis, P.,
Nikias, C.L.,
Scalar quantisation of heavy-tailed signals,
VISP(147), No. 5, October 2000, pp. 475-484.
0101
BibRef
Cihlar, J.,
Okouneva, G.,
Beaubien, J.,
Latifovic, R.,
A new histogram quantization algorithm for land cover mapping,
JRS(22), No. 11, July 2001, pp. 2151-2169.
0201
BibRef
Srivastava, A.[Anuj],
Liu, X.W.[Xiu-Wen],
Grenander, U.[Ulf],
Universal Analytical Forms for Modeling Image Probabilities,
PAMI(24), No. 9, September 2002, pp. 1200-1214.
IEEE Abstract.
0209
See also Probability Models for Clutter in Natural Images.
BibRef
Srivastava, A.,
Liu, X.,
Grenander, U.,
Analytical Image Models and Their Applications,
ECCV02(I: 37 ff.).
Springer DOI
0205
See also Spectral Probability Models for IR Images With Applications to IR Face Recognition.
BibRef
Srivastava, A.,
Liu, X.,
Grenander, U.,
Analytical Models for Reduced Spectral Representations of Images,
ICIP01(I: 153-156).
IEEE DOI
0108
BibRef
Shelley, P.[Paul],
Li, X.B.[Xiao-Bo],
Han, B.[Bin],
A hybrid quantization scheme for image compression,
IVC(22), No. 3, 1 March 2004, pp. 203-213.
Elsevier DOI
0402
BibRef
Ohshima, S.[Seiji],
Image processing apparatus and method to reduce gray levels of image,
US_Patent6,956,673, Oct 18, 2005
WWW Link.
BibRef
0510
Borodkin, S.M.,
Borodkin, A.M.,
Muchnik, I.B.,
Optimal Requantization of Deep Grayscale Images and Lloyd-Max
Quantization,
IP(15), No. 2, February 2006, pp. 445-448.
IEEE DOI
0602
See also Least Squares Quantization in PCM.
BibRef
Wong, A.[Alexander],
PECSI: A Practical Perceptually-enhanced Compression Framework for
Still Images,
IJIG(9), No. 4, October 2009, pp. 511-529.
DOI Link
0911
Downsampling, quantization. Improve perceptual quality of coding.
BibRef
Mai, Z.,
Mansour, H.,
Mantiuk, R.,
Nasiopoulos, P.,
Ward, R.K.,
Heidrich, W.,
Optimizing a Tone Curve for Backward-Compatible High Dynamic Range
Image and Video Compression,
IP(20), No. 6, June 2011, pp. 1558-1571.
IEEE DOI
1106
BibRef
Goyal, V.K.,
Scalar Quantization With Random Thresholds,
SPLetters(18), No. 9, September 2011, pp. 525-528.
IEEE DOI
1108
BibRef
Stern, A.[Adrian],
Zeltzer, Y.[Yigal],
Rivenson, Y.[Yair],
Quantization error and dynamic range considerations for compressive
imaging systems design,
JOSA-A(30), No. 6, June 2013, pp. 1069-1077.
DOI Link
1307
BibRef
Schwarz, S.,
Rupp, M.,
Predictive Quantization on the Stiefel Manifold,
SPLetters(22), No. 2, February 2015, pp. 234-238.
IEEE DOI
1410
MIMO
BibRef
Oh, B.T.[Byung Tae],
An adaptive quantization algorithm without side information for depth
map coding,
SP:IC(29), No. 9, 2014, pp. 962-970.
Elsevier DOI
1410
Depth map coding
BibRef
Oh, B.T.[Byung Tae],
Enhanced zonal search algorithm for motion estimation in depth-map
coding,
SIViP(12), No. 3, March 2018, pp. 523-530.
WWW Link.
1804
BibRef
Le Pendu, M.[Mikael],
Guillemot, C.[Christine],
Thoreau, D.[Dominique],
Local inverse tone curve learning for high dynamic range image
scalable compression,
IP(24), No. 12, December 2015, pp. 5753-5763.
IEEE DOI
1512
HEVC.
data compression.
BibRef
Le Pendu, M.[Mikael],
Guillemot, C.[Christine],
Thoreau, D.[Dominique],
Inter-Layer Prediction of Color in High Dynamic Range Image Scalable
Compression,
IP(25), No. 8, August 2016, pp. 3585-3596.
IEEE DOI
1608
BibRef
And:
Template based inter-layer prediction for high dynamic range scalable
compression,
ICIP15(2974-2978)
IEEE DOI
1512
data compression
BibRef
Yu, L.T.[Li-Tao],
Huang, Z.[Zi],
Shen, F.M.[Fu-Min],
Song, J.K.[Jing-Kuan],
Shen, H.T.[Heng Tao],
Zhou, X.F.[Xiao-Fang],
Bilinear Optimized Product Quantization for Scalable Visual Content
Analysis,
IP(26), No. 10, October 2017, pp. 5057-5069.
IEEE DOI
1708
Covariance matrices, Distortion, Encoding, Optimization,
Vector quantization, Visualization, Product quantization,
bilinear projection, visual content analysis
BibRef
Wu, H.H.[Hui-Hui],
Dumitrescu, S.[Sorina],
Design of Optimal Fixed-Rate Unrestricted Polar Quantizer for
Bivariate Circularly Symmetric Sources,
SPLetters(25), No. 5, May 2018, pp. 715-719.
IEEE DOI
1805
Distortion, Dynamic programming, Heuristic algorithms,
Linear programming, Minimization, Signal processing algorithms,
unrestricted polar quantization
BibRef
Song, X.Y.[Xiao-Ying],
Liu, B.[Bing],
Huang, Q.J.[Qi-Jun],
Hu, R.H.[Rui-Han],
Design of high-resolution quantization scheme with exp-Golomb code
applied to compression of special images,
JVCIR(65), 2019, pp. 102684.
Elsevier DOI
1912
High-resolution quantization scheme, Adaptive quantizer,
Exp-Golomb code, Medical image, Aerial image, Near-lossless compression
BibRef
Pérez-Delgado, M.L.[María-Luisa],
Gallego, J.Á.R.[Jesús-Ángel Román],
A two-stage method to improve the quality of quantized images,
RealTimeIP(17), No. 3, June 2020, pp. 581-605.
Springer DOI
2006
BibRef
Li, Z.Y.[Zhi-Yang],
Qu, W.Y.[Wen-Yu],
Cao, Y.[Yuan],
Qi, H.[Heng],
Stojmenovic, M.[Milos],
Hu, J.[Jia],
Scale balance for prototype-based binary quantization,
PR(106), 2020, pp. 107409.
Elsevier DOI
2006
Approximate nearest neighbor search, High-dimensional vectors,
Prototype-based binary quantization
BibRef
Yan, X.,
Fan, Y.,
Chen, K.,
Yu, X.,
Zeng, X.,
QNet: An Adaptive Quantization Table Generator Based on Convolutional
Neural Network,
IP(29), 2020, pp. 9654-9664.
IEEE DOI
2011
Quantization (signal), Image coding, Optimization,
Transform coding, Rate-distortion, Discrete cosine transforms,
structural similarity index measurement (SSIM)
BibRef
Wang, C.[Chen],
Yang, X.M.[Xiao-Mei],
Fei, S.M.[Shao-Min],
Zhou, K.[Kai],
Gong, X.F.[Xiao-Feng],
Du, M.[Miao],
Luo, R.S.[Rui-Sen],
Scalar Quantization as Sparse Least Square Optimization,
PAMI(43), No. 5, May 2021, pp. 1678-1690.
IEEE DOI
2104
Quantization (signal), Neural networks, Optimization,
Signal processing algorithms, Clustering algorithms,
approximation
BibRef
Doutsi, E.,
Fillatre, L.,
Antonini, M.,
Tsakalides, P.,
Dynamic Image Quantization Using Leaky Integrate-and-Fire Neurons,
IP(30), 2021, pp. 4305-4315.
IEEE DOI
2104
Quantization (signal), Image reconstruction, Neurons,
Visualization, Image coding, Transforms, Mathematical model,
time coding
BibRef
Doutsi, E.,
Fillatre, L.,
Antonini, M.,
Gaulmin, J.,
Neuro-Inspired Quantization,
ICIP18(689-693)
IEEE DOI
1809
Neurons, Delays, Quantization (signal), Image coding, Decoding, Nickel,
Image reconstruction, Visual system, Neuron,
Uniform Deadzone Quantization (UDQ)
BibRef
Paul, S.[Somdyuti],
Norkin, A.[Andrey],
Bovik, A.C.[Alan C.],
On visual masking estimation for adaptive quantization using
steerable filters,
SP:IC(96), 2021, pp. 116290.
Elsevier DOI
2106
Adaptive quantization, Steerable filtering, Visual masking, AV1
BibRef
Talebi, H.[Hossein],
Kelly, D.[Damien],
Luo, X.[Xiyang],
Dorado, I.G.[Ignacio Garcia],
Yang, F.[Feng],
Milanfar, P.[Peyman],
Elad, M.[Michael],
Better Compression With Deep Pre-Editing,
IP(30), 2021, pp. 6673-6685.
IEEE DOI
2108
Image coding, Transform coding, Training, Entropy,
Quantization (signal), Loss measurement, Image quality,
pre-filtering
BibRef
Swamy, A.S.A.[A. S. Anand],
Shylashree, N.,
HDR Image Compression by Multi-Scale down Sampling of Intensity Levels,
IJIG(21), No. 4, October 2021 2021, pp. 2150048.
DOI Link
2110
BibRef
Liu, Y.[Yi],
Sidaty, N.[Naty],
Hamidouche, W.[Wassim],
Déforges, O.[Olivier],
Jung, C.[Cheolkon],
Visual Attention-Aware High Dynamic Range Quantization for HEVC Video
Coding,
CirSysVideo(32), No. 7, July 2022, pp. 4296-4311.
IEEE DOI
2207
Quantization (signal), Visualization, Encoding, TV, Sensitivity,
Production, Mathematical models, High dynamic range (HDR), visual quality
BibRef
Dulek, B.[Berkan],
On the Optimality of Sufficient Statistics-Based Quantizers,
PAMI(45), No. 3, March 2023, pp. 3567-3573.
IEEE DOI
2302
Quantization (signal), Estimation, Random variables,
Parameter estimation, Distortion, Testing,
hypothesis testing
BibRef
Xu, W.X.[Wei-Xiang],
Li, F.R.[Fan-Rong],
Jiang, Y.Y.[Ying-Ying],
Yong, A.,
He, X.Y.[Xiang-Yu],
Wang, P.S.[Pei-Song],
Cheng, J.[Jian],
Improving Extreme Low-Bit Quantization With Soft Threshold,
CirSysVideo(33), No. 4, April 2023, pp. 1549-1563.
IEEE DOI
2304
Quantization (signal), Training, Neural networks, Convolution,
Optimization, Computational modeling, Pipelines,
ternary quantization
BibRef
Ma, L.[Li],
Peng, P.X.[Pei-Xi],
Chen, G.Y.[Guang-Yao],
Zhao, Y.[Yifan],
Dong, S.W.[Si-Wei],
Tian, Y.H.[Yong-Hong],
Picking Up Quantization Steps for Compressed Image Classification,
CirSysVideo(33), No. 4, April 2023, pp. 1884-1898.
IEEE DOI
2304
Quantization (signal), Image coding, Transform coding, Training,
Neural networks, Sensitivity, Deep learning, Compressed images,
image classification
BibRef
Zhu, X.S.[Xiao-Su],
Song, J.K.[Jing-Kuan],
Gao, L.L.[Lian-Li],
Gu, X.Y.[Xiao-Yan],
Shen, H.T.[Heng Tao],
Revisiting Multi-Codebook Quantization,
IP(32), 2023, pp. 2399-2412.
IEEE DOI
2305
Quantization (signal), Encoding, Training, Image coding,
Neural networks, Clustering algorithms, Approximation algorithms, retrieval
BibRef
Li, S.H.[Shao-Hui],
Li, H.[Han],
Dai, W.R.[Wen-Rui],
Li, C.L.[Cheng-Lin],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Learned Progressive Image Compression With Dead-Zone Quantizers,
CirSysVideo(33), No. 6, June 2023, pp. 2962-2978.
IEEE DOI
2306
Image coding, Quantization (signal), Transforms, Transform coding,
Neural networks, Rate-distortion, Optimization,
embedded quantization
BibRef
Qin, H.T.[Hao-Tong],
Ding, Y.[Yifu],
Zhang, X.G.[Xiang-Guo],
Wang, J.[Jiakai],
Liu, X.L.[Xiang-Long],
Lu, J.W.[Ji-Wen],
Diverse Sample Generation: Pushing the Limit of Generative Data-Free
Quantization,
PAMI(45), No. 10, October 2023, pp. 11689-11706.
IEEE DOI
2310
BibRef
Zhang, X.G.[Xiang-Guo],
Qin, H.T.[Hao-Tong],
Ding, Y.F.[Yi-Fu],
Gong, R.[Ruihao],
Yan, Q.H.[Qing-Hua],
Tao, R.S.[Ren-Shuai],
Li, Y.H.[Yu-Hang],
Yu, F.W.[Feng-Wei],
Liu, X.L.[Xiang-Long],
Diversifying Sample Generation for Accurate Data-Free Quantization,
CVPR21(15653-15662)
IEEE DOI
2111
Quantization (signal), Neural networks,
Training data, Network architecture, Data models, Pattern recognition
BibRef
Wang, M.[Min],
Zhou, W.G.[Wen-Gang],
Yao, X.[Xin],
Tian, Q.[Qi],
Li, H.Q.[Hou-Qiang],
Towards Codebook-Free Deep Probabilistic Quantization for Image
Retrieval,
PAMI(46), No. 1, January 2024, pp. 626-640.
IEEE DOI
2312
BibRef
Cheng, X.[Xin],
Wang, J.[Jinwei],
Wang, H.[Hao],
Luo, X.Y.[Xiang-Yang],
Ma, B.[Bin],
Quantization Step Estimation of Color Images Based on Res2Net-C With
Frequency Clustering Prior Knowledge,
CirSysVideo(34), No. 1, January 2024, pp. 632-646.
IEEE DOI
2401
BibRef
Du, Y.C.[Yong-Chao],
Wang, M.[Min],
Zhou, W.G.[Wen-Gang],
Li, H.Q.[Hou-Qiang],
Progressive Similarity Preservation Learning for Deep Scalable
Product Quantization,
MultMed(26), 2024, pp. 3034-3045.
IEEE DOI
2402
Codes, Quantization (signal), Feature extraction, Training,
Semantics, Visualization, Costs, Image retrieval, scalable code length
BibRef
Senozan, H.[Hatice],
Soylu, B.[Banu],
A flexible non-monotonic discretization method for pre-processing in
supervised learning,
PRL(181), 2024, pp. 77-85.
Elsevier DOI
2405
Machine learning, Pre-processing, Binarization, Monotonicity, Classification
BibRef
Colbert, I.[Ian],
Pappalardo, A.[Alessandro],
Petri-Koenig, J.[Jakoba],
A2Q: Accumulator-Aware Quantization with Guaranteed Overflow
Avoidance,
ICCV23(16943-16952)
IEEE DOI
2401
BibRef
Dong, P.[Peijie],
Li, L.[Lujun],
Wei, Z.[Zimian],
Niu, X.[Xin],
Tian, Z.L.[Zhi-Liang],
Pan, H.[Hengyue],
EMQ: Evolving Training-free Proxies for Automated Mixed Precision
Quantization,
ICCV23(17030-17040)
IEEE DOI
2401
BibRef
Jiang, S.Q.[Shi-Qi],
Yuan, H.[Hui],
Li, S.[Shuai],
Mao, X.L.[Xiao-Long],
Fourier Series and Laplacian Noise-Based Quantization Error
Compensation for End-to-End Learning-Based Image Compression,
ICIP23(2975-2979)
IEEE DOI
2312
BibRef
Ge, Z.Q.[Zi-Qing],
Jia, C.M.[Chuan-Min],
Ma, S.W.[Si-Wei],
Gao, W.[Wen],
NUCQ: Non-Uniform Conditional Quantization for Learned Image
Compression,
ICIP23(840-844)
IEEE DOI
2312
BibRef
Jeon, G.W.[Geun-Woo],
Yu, S.[SeungEun],
Lee, J.S.[Jong-Seok],
Integer Quantized Learned Image Compression,
ICIP23(2755-2759)
IEEE DOI
2312
BibRef
Qian, B.[Biao],
Wang, Y.[Yang],
Hong, R.C.[Ri-Chang],
Wang, M.[Meng],
Adaptive Data-Free Quantization,
CVPR23(7960-7968)
IEEE DOI
2309
BibRef
Yvinec, E.[Edouard],
Dapogny, A.[Arnaud],
Cord, M.[Matthieu],
Bailly, K.[Kevin],
SPIQ: Data-Free Per-Channel Static Input Quantization,
WACV23(3858-3867)
IEEE DOI
2302
Data privacy, Quantization (signal), Semantic segmentation,
Neural networks, Estimation, Object detection,
and un-supervised learning
BibRef
Goutham, R.[Rangu],
Afrabandpey, H.[Homayun],
Cricri, F.[Francesco],
Zhang, H.L.[Hong-Lei],
Aksu, E.[Emre],
Hannuksela, M.[Miska],
Tavakoli, H.R.[Hamed R.],
Stochastic Binary-Ternary Quantization for Communication Efficient
Federated Computation,
ICIP22(2097-2101)
IEEE DOI
2211
Quantization (signal), Image coding, Computational modeling,
Stochastic processes, Transform coding, Switches, quantization
BibRef
Sühring, K.[Karsten],
Schäfer, M.[Michael],
Pfaff, J.[Jonathan],
Schwarz, H.[Heiko],
Marpe, D.[Detlev],
Wiegand, T.[Thomas],
Trellis-Coded Quantization for End-to-End Learned Image Compression,
ICIP22(3306-3310)
IEEE DOI
2211
Training, Video coding, Visualization, Quantization (signal),
Image coding, Bit rate, Transform coding, Deep Learning,
Trellis-Coded Quantization
BibRef
Singh, P.[Praneet],
Delp, E.J.[Edward J.],
Reibman, A.R.[Amy R.],
Video-Analytics Task-Aware Quad-Tree Partitioning and Quantization
for HEVC,
ICIP22(2936-2940)
IEEE DOI
2211
Analytical models, Image coding, Quantization (signal),
Visual analytics, Computational modeling, Video compression, task-aware
BibRef
Wang, Z.[Zhe],
Lin, J.[Jie],
Geng, X.[Xue],
Aly, M.M.S.[Mohamed M. Sabry],
Chandrasekhar, V.[Vijay],
RDO-Q: Extremely Fine-Grained Channel-Wise Quantization via
Rate-Distortion Optimization,
ECCV22(XII:157-172).
Springer DOI
2211
BibRef
Park, S.[Sein],
Jang, Y.[Yeongsang],
Park, E.[Eunhyeok],
Symmetry Regularization and Saturating Nonlinearity for Robust
Quantization,
ECCV22(XI:206-222).
Springer DOI
2211
BibRef
van Baalen, M.[Mart],
Kahne, B.[Brian],
Mahurin, E.[Eric],
Kuzmin, A.[Andrey],
Skliar, A.[Andrii],
Nagel, M.[Markus],
Blankevoort, T.[Tijmen],
Simulated Quantization, Real Power Savings,
ECV22(2756-2760)
IEEE DOI
2210
Power demand, Quantization (signal), Neural networks,
Hardware, Pattern recognition
BibRef
Allenet, T.[Thibault],
Briand, D.[David],
Bichler, O.[Olivier],
Sentieys, O.[Olivier],
Disentangled Loss for Low-Bit Quantization-Aware Training,
ECV22(2787-2791)
IEEE DOI
2210
Training, Visualization, Quantization (signal), Entropy, Pattern recognition
BibRef
Liu, Z.C.[Ze-Chun],
Cheng, K.T.[Kwang-Ting],
Huang, D.[Dong],
Xing, E.[Eric],
Shen, Z.Q.[Zhi-Qiang],
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation,
CVPR22(4932-4942)
IEEE DOI
2210
Quantization (signal), Codes, Neural networks,
Stochastic processes, Estimation, Entropy, Recognition: detection,
Representation learning
BibRef
Yang, L.[Luwei],
Shrestha, R.[Rakesh],
Li, W.B.[Wen-Bo],
Liu, S.C.[Shuai-Cheng],
Zhang, G.F.[Guo-Feng],
Cui, Z.P.[Zhao-Peng],
Tan, P.[Ping],
SceneSqueezer: Learning to Compress Scene for Camera Relocalization,
CVPR22(8249-8258)
IEEE DOI
2210
Location awareness, Visualization, Solid modeling, Image coding,
Quantization (signal), Pose estimation, Robot vision
BibRef
Choi, K.[Kanghyun],
Lee, H.Y.[Hye Yoon],
Hong, D.[Deokki],
Yu, J.[Joonsang],
Park, N.[Noseong],
Kim, Y.[Youngsok],
Lee, J.H.[Jin-Ho],
It's All In the Teacher:
Zero-Shot Quantization Brought Closer to the Teacher,
CVPR22(8301-8311)
IEEE DOI
2210
Training, Deep learning, Data privacy, Quantization (signal), Machine vision,
Neural networks, Training data, Vision applications and systems
BibRef
Doan, K.D.[Khoa D.],
Yang, P.[Peng],
Li, P.[Ping],
One Loss for Quantization:
Deep Hashing with Discrete Wasserstein Distributional Matching,
CVPR22(9437-9447)
IEEE DOI
2210
Hash functions, Quantization (signal), Codes,
Computational modeling, Estimation, Encoding, retrieval
BibRef
Jeon, Y.[Yongkweon],
Lee, C.[Chungman],
Cho, E.[Eulrang],
Ro, Y.[Yeonju],
Mr.BiQ: Post-Training Non-Uniform Quantization based on Minimizing
the Reconstruction Error,
CVPR22(12319-12328)
IEEE DOI
2210
Quantization (signal), Computational modeling, Neural networks,
Transformers, Pattern recognition, Calibration
BibRef
Lee, J.H.[Jae-Han],
Jeon, S.[Seungmin],
Choi, K.P.[Kwang Pyo],
Park, Y.[Youngo],
Kim, C.S.[Chang-Su],
DPICT: Deep Progressive Image Compression Using Trit-Planes,
CVPR22(16092-16101)
IEEE DOI
2210
Representation learning, Tensors, Image coding, Codecs,
Quantization (signal), Scalability, Refining, Low-level vision
BibRef
Wang, Z.W.[Zi-Wei],
Xiao, H.[Han],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Generalizable Mixed-Precision Quantization via Attribution Rank
Preservation,
ICCV21(5271-5280)
IEEE DOI
2203
Degradation, Visualization, Quantization (signal), Costs, Codes,
Complexity theory, Efficient training and inference methods,
BibRef
Lee, D.H.[Dong-Hyun],
Cho, M.[Minkyoung],
Lee, S.W.[Seung-Won],
Song, J.[Joonho],
Choi, C.K.[Chang-Kyu],
A Novel Sensitivity Metric for Mixed-Precision Quantization With
Synthetic Data Generation,
ICIP21(1294-1298)
IEEE DOI
2201
Measurement, Degradation, Sensitivity, Quantization (signal),
Image coding, Perturbation methods, Neural networks, Deep Learning, Data Free
BibRef
Chen, P.[Peng],
Liu, J.[Jing],
Zhuang, B.[Bohan],
Tan, M.K.[Ming-Kui],
Shen, C.H.[Chun-Hua],
AQD: Towards Accurate Quantized Object Detection,
CVPR21(104-113)
IEEE DOI
2111
Performance evaluation, Degradation, Quantization (signal),
Image edge detection, Object detection, Detectors, Hardware
BibRef
Liu, Y.[Yuang],
Zhang, W.[Wei],
Wang, J.[Jun],
Zero-shot Adversarial Quantization,
CVPR21(1512-1521)
IEEE DOI
2111
Training, Performance evaluation, Quantization (signal),
Training data, Data models, Generators, Pattern recognition
BibRef
Song, L.Y.[Liu-Yihan],
Zhao, K.[Kang],
Pan, P.[Pan],
Liu, Y.[Yu],
Zhang, Y.Y.[Ying-Ya],
Xu, Y.H.[Ying-Hui],
Jin, R.[Rong],
Communication Efficient SGD via Gradient Sampling with Bayes Prior,
CVPR21(12060-12069)
IEEE DOI
2111
Training, Degradation, Image coding,
Quantization (signal), Object detection, Pattern recognition
BibRef
Idelbayev, Y.[Yerlan],
Molchanov, P.[Pavlo],
Shen, M.[Maying],
Yin, H.X.[Hong-Xu],
Carreira-Perpiñán, M.Á.[Miguel Á.],
Alvarez, J.M.[Jose M.],
Optimal Quantization using Scaled Codebook,
CVPR21(12090-12099)
IEEE DOI
2111
Quantization (signal), Image coding,
Laplace equations, Transform coding, Pattern recognition, Image storage
BibRef
Wu, Y.Y.[Yu-Yang],
Qi, Z.Y.[Zhi-Yang],
Zheng, H.M.[Hui-Ming],
Tao, L.F.[Lv-Fang],
Gao, W.[Wei],
Deep Image Compression with Latent Optimization and Piece-wise
Quantization Approximation,
CLIC21(1926-1930)
IEEE DOI
2109
Image coding, Quantization (signal),
Data compression, Pattern recognition, Task analysis
BibRef
Pan, S.[Shi],
Finlay, C.[Chris],
Besenbruch, C.[Chri],
Knottenbelt, W.[William],
Three Gaps for Quantisation in Learned Image Compression,
NTIRE21(720-726)
IEEE DOI
2109
Training, Visualization, Quantization (signal),
Image coding, Neural networks
BibRef
Sun, H.,
Cheng, Z.,
Takeuchi, M.,
Katto, J.,
End-To-End Learned Image Compression With Fixed Point Weight
Quantization,
ICIP20(3359-3363)
IEEE DOI
2011
Quantization (signal), Image coding, Encoding, Tuning,
Transform coding, Training, Gain, Image compression, neural networks,
fine-tuning
BibRef
Sözer, S.B.,
Koz, A.,
Akyüz, A.O.,
Zerman, E.,
Valenzise, G.,
Dufaux, F.,
Just Noticeable Quantization Levels For High Dynamic Range Images,
ICIP20(1201-1205)
IEEE DOI
2011
Quantization (signal), Dynamic range, Indexes,
Discrete cosine transforms, Rendering (computer graphics),
image rendering
BibRef
Giudice, O.,
Allegra, D.,
Guarnera, F.,
Stanco, F.,
Battiato, S.,
Animated GIF Optimization By Adaptive Color Local Table Management,
ICIP20(843-847)
IEEE DOI
2011
Image color analysis, Indexes, Optimization, Color, Encoding,
Image coding, Software, animated GIF, compression, optimization,
color table
BibRef
Christie, O.,
Rego, J.,
Jayasuriya, S.,
Analyzing Sensor Quantization of Raw Images For Visual SLAM,
ICIP20(246-250)
IEEE DOI
2011
Simultaneous localization and mapping, Quantization (signal),
Visualization, Pipelines, Cameras, Image sensors, Visual SLAM,
embedded computer vision
BibRef
Xu, S.K.[Shou-Kai],
Li, H.K.[Hao-Kun],
Zhuang, B.[Bohan],
Liu, J.[Jing],
Cao, J.Z.[Jie-Zhang],
Liang, C.R.[Chuang-Run],
Tan, M.K.[Ming-Kui],
Generative Low-Bitwidth Data Free Quantization,
ECCV20(XII: 1-17).
Springer DOI
2010
BibRef
Nagel, M.,
Baalen, M.V.,
Blankevoort, T.,
Welling, M.,
Data-Free Quantization Through Weight Equalization and Bias
Correction,
ICCV19(1325-1334)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
quantisation (signal), data-free quantization method, Adaptation models
BibRef
Choi, Y.,
El-Khamy, M.,
Lee, J.,
Variable Rate Deep Image Compression With a Conditional Autoencoder,
ICCV19(3146-3154)
IEEE DOI
2004
codecs, data compression, image coding,
learning (artificial intelligence), quantisation (signal), Codecs
BibRef
Pahuja, A.,
Lucey, S.,
Lossy GIF Compression Using Deep Intrinsic Parameterization,
Preregister19(4581-4583)
IEEE DOI
2004
convolutional neural nets, data compression, image coding,
image sequences, GIF hosting websites,
Video Compression
BibRef
Eghbali, S.[Sepehr],
Tahvildari, L.[Ladan],
Deep Spherical Quantization for Image Search,
CVPR19(11682-11691).
IEEE DOI
2002
BibRef
Wang, K.[Kuan],
Liu, Z.J.[Zhi-Jian],
Lin, Y.J.[Yu-Jun],
Lin, J.[Ji],
Han, S.[Song],
HAQ: Hardware-Aware Automated Quantization With Mixed Precision,
CVPR19(8604-8612).
IEEE DOI
2002
BibRef
Bandoh, Y.[Yukihiro],
Takamura, S.[Seishi],
Shimizu, A.[Atsushi],
Complexity Reduction of Multi-Level DP Quantization Through
Inter-Level Redundancy Elimination,
ICIP19(4075-4079)
IEEE DOI
1910
quantization, dynamic programming, bit-depth scalability,
multi-layered structure
BibRef
Cai, J.,
Zhang, L.,
Deep Image Compression with Iterative Non-Uniform Quantization,
ICIP18(451-455)
IEEE DOI
1809
Image coding, Quantization (signal), Training, Transform coding,
Compressors, Decoding, Image reconstruction,
Iterative Non-Uniform Quantization
BibRef
Wang, Y.L.[Yi-Lin],
Kum, S.U.[Sang-Uok],
Chen, C.[Chao],
Kokaram, A.[Anil],
A perceptual visibility metric for banding artifacts,
ICIP16(2067-2071)
IEEE DOI
1610
Coherence. Compressing low texture regions.
BibRef
Froehlich, J.,
Su, G.M.,
Daly, S.,
Schilling, A.,
Eberhardt, B.,
Content aware quantization: Requantization of high dynamic range
baseband signals based on visual masking by noise and texture,
ICIP16(884-888)
IEEE DOI
1610
Dynamic range
BibRef
Zhang, T.[Ting],
Qi, G.J.[Guo-Jun],
Tang, J.H.[Jin-Hui],
Wang, J.D.[Jing-Dong],
Sparse composite quantization,
CVPR15(4548-4556)
IEEE DOI
1510
BibRef
Babenko, A.[Artem],
Lempitsky, V.[Victor],
Additive Quantization for Extreme Vector Compression,
CVPR14(931-938)
IEEE DOI
1409
BibRef
Makar, M.[Mina],
Lakshman, H.[Haricharan],
Chandrasekhar, V.[Vijay],
Girod, B.[Bernd],
Gradient preserving quantization,
ICIP12(2505-2508).
IEEE DOI
1302
BibRef
Wang, Z.,
Simon, S.,
Klaiber, M.,
Ahmed, S.,
Richter, T.,
SSPQ: Spatial Domain Perceptual Image Codec Based on Subsampling and
Perceptual Quantization,
ICIP12(1061-1064).
IEEE DOI
1302
BibRef
Yang, K.[Kai],
Jiang, H.X.[Hong-Xu],
Optimized-SSIM Based Quantization in Optical Remote Sensing Image
Compression,
ICIG11(117-122).
IEEE DOI
1109
BibRef
Motra, A.[Ajit],
Thoma, H.[Herbert],
An adaptive LogLUV transform for High Dynamic Range video compression,
ICIP10(2061-2064).
IEEE DOI
1009
BibRef
Langton, J.T.[John T.],
Prinz, A.A.[Astrid A.],
Hickey, T.J.[Timothy J.],
Combining Pixelization and Dimensional Stacking,
ISVC06(II: 617-626).
Springer DOI
0611
BibRef
Sheinin, V.,
Jagmohan, A.,
Low Rate Uniform Scalar Quantization of Memoryless Gaussian Sources,
ICIP06(793-796).
IEEE DOI
0610
BibRef
Marques, O.,
Petljanski, B.,
A Novel Approach for Video Quantization Using the Spatiotemporal
Frequency Characteristics of the Human Visual System,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Stentiford, F.,
A visual attention estimator applied to image subject enhancement and
colour and grey level compression,
ICPR04(III: 638-641).
IEEE DOI
0409
BibRef
Imiya, A.,
Ito, A.,
Kenmochi, Y.,
Inverse quantization of digital binary images for resolution conversion,
ScaleSpace01(xx-yy).
0106
BibRef
Verscheure, O., and
van den Branden Lambrecht, C.J.,
Adaptive Quantization Using a Perceptual Visibility Predictor,
ICIP97(I: 298-301).
IEEE DOI
BibRef
9700
Tull, D.L.,
Safranek, R.J.,
Variable dimension quantization in the transform domain,
ICIP95(I: 302-305).
IEEE DOI
9510
BibRef
Adali, T.,
Wang, Y.[Yue],
Probabilistic neural networks for medical image quantification,
ICIP94(III: 889-892).
IEEE DOI
9411
BibRef
Valev, V.[Ventzeslav],
A model-based image quantization technique for supervised image
recognition,
CAIP93(128-132).
Springer DOI
9309
BibRef
Linnainmaa, S.,
New efficient representation of photographic images with restricted
number of gray levels,
ICPR88(I: 143-145).
IEEE DOI
8811
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Color Quantization of Images .