Memotion Dataset 7k,
2019.
WWW Link.
Dataset, Sentinment.
Memotion Dataset. Dataset for sentiment classification of memes.
Neviarouskaya, A.,
Prendinger, H.,
Ishizuka, M.,
SentiFul: A Lexicon for Sentiment Analysis,
AffCom(2), No. 1, 2011, pp. 22-36.
IEEE DOI
1202
BibRef
Clavel, C.,
Callejas, Z.,
Sentiment Analysis: From Opinion Mining to Human-Agent Interaction,
AffCom(7), No. 1, January 2016, pp. 74-93.
IEEE DOI
1603
Analytical models
BibRef
Zadeh, A.,
Zellers, R.,
Pincus, E.,
Morency, L.P.[Louis-Philippe],
Multimodal Sentiment Intensity Analysis in Videos:
Facial Gestures and Verbal Messages,
IEEE_Int_Sys(31), No. 6, November 2016, pp. 82-88.
IEEE DOI
1612
Feature extraction
BibRef
Choi, Y.,
Wiebe, J.,
Mihalcea, R.,
Coarse-Grained +/-Effect Word Sense Disambiguation for Implicit
Sentiment Analysis,
AffCom(8), No. 4, October 2017, pp. 471-479.
IEEE DOI
1712
Bridges, Gold, Knowledge based systems, Medical services,
Sentiment analysis, Standards, Training data, Sentiment analysis,
word sense disambiguation
BibRef
Dragoni, M.,
Petrucci, G.,
A Neural Word Embeddings Approach for Multi-Domain Sentiment Analysis,
AffCom(8), No. 4, October 2017, pp. 457-470.
IEEE DOI
1712
Analytical models, Buildings, Context,
Machine learning, Sentiment analysis, Social network services,
neural networks
BibRef
Soleymani, M.[Mohammad],
Garcia, D.[David],
Jou, B.[Brendan],
Schuller, B.[Björn],
Chang, S.F.[Shih-Fu],
Pantic, M.[Maja],
A survey of multimodal sentiment analysis,
IVC(65), No. 1, 2017, pp. 3-14.
Elsevier DOI
1709
Sentiment
BibRef
Campos, V.[Víctor],
Jou, B.[Brendan],
Giró-i-Nieto, X.[Xavier],
From pixels to sentiment: Fine-tuning CNNs for visual sentiment
prediction,
IVC(65), No. 1, 2017, pp. 15-22.
Elsevier DOI
1709
Sentiment
BibRef
Sharma, S.[Srishti],
Chakraverty, S.[Shampa],
Sharma, A.[Akhil],
Kaur, J.[Jasleen],
A context-based algorithm for sentiment analysis,
IJCVR(7), No. 5, 2017, pp. 558-573.
DOI Link
1709
BibRef
Weichselbraun, A.,
Gindl, S.,
Fischer, F.,
Vakulenko, S.,
Scharl, A.,
Aspect-Based Extraction and Analysis of Affective Knowledge from
Social Media Streams,
IEEE_Int_Sys(32), No. 3, May 2017, pp. 80-88.
IEEE DOI
1706
Automobiles, Companies, Data mining, Knowledge acquisition, Media,
Sentiment analysis, Social network services,
affective knowledge extraction, artificial intelligence,
aspect-based sentiment analysis, linked data, opinion targets,
social, media
BibRef
Pappas, N.[Nikolaos],
Redi, M.[Miriam],
Topkara, M.[Mercan],
Liu, H.Y.[Hong-Yi],
Jou, B.[Brendan],
Chen, T.[Tao],
Chang, S.F.[Shih-Fu],
Multilingual visual sentiment concept clustering and analysis,
MultInfoRetr(6), No. 1, March 2017, pp. 51-70.
Springer DOI
1704
BibRef
Dragoni, M.,
Poria, S.,
Cambria, E.,
OntoSenticNet: A Commonsense Ontology for Sentiment Analysis,
IEEE_Int_Sys(33), No. 3, May 2018, pp. 77-85.
IEEE DOI
1808
Ontologies, Sentiment analysis, Semantics, Task analysis,
Affective computing, Feature extraction, sentiment analysis,
artificial intelligence
BibRef
Liu, A.[Anan],
Shi, Y.D.[Ying-Di],
Jing, P.G.[Pei-Guang],
Liu, J.[Jing],
Su, Y.T.[Yu-Ting],
Low-rank regularized multi-view inverse-covariance estimation for
visual sentiment distribution prediction,
JVCIR(57), 2018, pp. 243-252.
Elsevier DOI
1812
Using images to express opinions and share experiences.
Image sentiment, Label distribution learning,
Structured sparsity, Low-rank
BibRef
Yang, J.,
She, D.,
Sun, M.,
Cheng, M.,
Rosin, P.L.,
Wang, L.,
Visual Sentiment Prediction Based on Automatic Discovery of Affective
Regions,
MultMed(20), No. 9, September 2018, pp. 2513-2525.
IEEE DOI
1809
image representation, learning (artificial intelligence),
neural nets, object tracking, automatic discovery,
visual sentiment analysis
BibRef
Ding, X.,
Chen, Z.,
Improving Saliency Detection Based on Modeling Photographer's
Intention,
MultMed(21), No. 1, January 2019, pp. 124-134.
IEEE DOI
1901
Saliency detection, Visualization, Psychology,
Image color analysis, Task analysis, Feature extraction,
intention rate
BibRef
Liu, X.[Xuan],
Li, N.[Na],
Xia, Y.[Yong],
Affective image classification by jointly using interpretable art
features and semantic annotations,
JVCIR(58), 2019, pp. 576-588.
Elsevier DOI
1901
Affective image classification, Discrete emotion space,
Deep convolutional neural network (DCNN), Feature extraction,
Support vector machine (SVM)
BibRef
Jin, X.[Xin],
Wu, L.[Le],
Li, X.D.[Xiao-Dong],
Zhang, X.K.[Xiao-Kun],
Chi, J.Y.[Jing-Ying],
Peng, S.W.[Si-Wei],
Ge, S.M.[Shi-Ming],
Zhao, G.[Geng],
Li, S.Y.[Shu-Ying],
ILGNet: inception modules with connected local and global features for
efficient image aesthetic quality classification using domain
adaptation,
IET-CV(13), No. 2, March 2019, pp. 206-212.
DOI Link
1902
BibRef
Pluta, M.[Magda],
Mitka, B.[Bartosz],
V-Factor Indicator in the Assessment of the Change in the
Attractiveness of View as a Result of the Implementation of a
Specific Planning Scenario,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhang, X.,
Li, Z.,
Constable, M.,
Chan, K.L.,
Tang, Z.,
Tang, G.,
Pose-Based Composition Improvement for Portrait Photographs,
CirSysVideo(29), No. 3, March 2019, pp. 653-668.
IEEE DOI
1903
Painting, Face, Pose estimation, Training, Databases,
Area measurement, Composition improvement, pose, portrait
BibRef
Cui, C.R.[Chao-Ran],
Liu, H.H.[Hui-Hui],
Lian, T.[Tao],
Nie, L.Q.[Li-Qiang],
Zhu, L.[Lei],
Yin, Y.L.[Yi-Long],
Distribution-Oriented Aesthetics Assessment With Semantic-Aware
Hybrid Network,
MultMed(21), No. 5, May 2019, pp. 1209-1220.
IEEE DOI
1905
convolutional neural nets, image representation,
object recognition, image aesthetics assessment,
semantic fusion
BibRef
Wang, M.[Meili],
Guo, S.H.[Shi-Hui],
Liao, M.H.[Ming-Hong],
He, D.J.[Dong-Jian],
Chang, J.[Jian],
Zhang, J.J.[Jian-Jun],
Action snapshot with single pose and viewpoint,
VC(35), No. 4, April 2019, pp. 507-520.
Springer DOI
1906
Select a meaningful representative moment from an action performance.
BibRef
Zhang, W.J.[Wen-Jie],
Yao, Y.Y.[Yi-Yang],
Wang, J.X.[Jin-Xiong],
Xiang, X.Y.[Xin-Yu],
Shu, P.[Peng],
RETRACTED:
Image quality tendency modeling by fusing multiple visual cues,
JVCIR(69), 2020, pp. 102841.
Elsevier DOI
2006
BibRef
And:
Original:
JVCIR(62), 2019, pp. 117-128.
1908
Machine learning, Multi-cue fusion, Aesthetic tendency, Flickr, Graph mining
BibRef
Zeng, H.,
Cao, Z.,
Zhang, L.,
Bovik, A.C.,
A Unified Probabilistic Formulation of Image Aesthetic Assessment,
IP(29), No. , 2020, pp. 1548-1561.
IEEE DOI
1911
Task analysis, Probabilistic logic, Computational modeling,
Measurement, Predictive models, Training, Explosives,
unified probabilistic formulation
BibRef
Zhang, X.,
Gao, X.,
Lu, W.,
He, L.,
A Gated Peripheral-Foveal Convolutional Neural Network for Unified
Image Aesthetic Prediction,
MultMed(21), No. 11, November 2019, pp. 2815-2826.
IEEE DOI
1911
Feature extraction, Logic gates, Visualization,
Convolutional neural networks, Task analysis, Deep learning,
deep learning
BibRef
Zhang, X.,
Gao, X.,
Lu, W.,
He, L.,
Li, J.,
Beyond Vision: A Multimodal Recurrent Attention Convolutional Neural
Network for Unified Image Aesthetic Prediction Tasks,
MultMed(23), 2021, pp. 611-623.
IEEE DOI
2102
convolutional neural nets, feature extraction,
image classification, image enhancement, image fusion,
deep learning
BibRef
Li, M.[Mao],
Lv, J.C.[Jian-Cheng],
Tang, C.W.[Chen-Wei],
Aesthetic assessment of paintings based on visual balance,
IET-IPR(13), No. 14, 12 December 2019, pp. 2821-2828.
DOI Link
1912
BibRef
Wang, W.S.[Wen-Shan],
Yang, S.[Su],
Zhang, W.S.[Wei-Shan],
Zhang, J.L.[Jiu-Long],
Neural aesthetic image reviewer,
IET-CV(13), No. 8, December 2019, pp. 749-758.
DOI Link
1912
BibRef
Cetinic, E.[Eva],
Lipic, T.[Tomislav],
Grgic, S.[Sonja],
Learning the Principles of Art History with convolutional neural
networks,
PRL(129), 2020, pp. 56-62.
Elsevier DOI
2001
Convolutional neural networks, Fine art,
High-level image features, Wölfflin
BibRef
Li, L.,
Zhu, H.,
Zhao, S.,
Ding, G.,
Lin, W.,
Personality-Assisted Multi-Task Learning for Generic and Personalized
Image Aesthetics Assessment,
IP(29), 2020, pp. 3898-3910.
IEEE DOI
2002
Image aesthetics assessment,
generic and personalized image aesthetics, personality traits,
Siamese network
BibRef
She, D.,
Yang, J.,
Cheng, M.,
Lai, Y.,
Rosin, P.L.,
Wang, L.,
WSCNet: Weakly Supervised Coupled Networks for Visual Sentiment
Classification and Detection,
MultMed(22), No. 5, May 2020, pp. 1358-1371.
IEEE DOI
2005
Visualization, Proposals, Task analysis, Feature extraction,
Sentiment analysis, Training, Convolutional neural networks,
convolutional neural networks
BibRef
Yang, J.,
She, D.,
Lai, Y.,
Rosin, P.L.,
Yang, M.,
Weakly Supervised Coupled Networks for Visual Sentiment Analysis,
CVPR18(7584-7592)
IEEE DOI
1812
Visualization, Proposals, Feature extraction, Sentiment analysis,
Task analysis, Training, Twitter
BibRef
Ortis, A.[Alessandro],
Farinella, G.M.[Giovanni Maria],
Battiato, S.[Sebastiano],
Survey on visual sentiment analysis,
IET-IPR(14), No. 8, 19 June 2020, pp. 1440-1456.
DOI Link
2005
BibRef
And:
Prediction of Social Image Popularity Dynamics,
CIAP19(II:572-582).
Springer DOI
1909
BibRef
Reddy, G.V.[Gajjala Viswanatha],
Mukherjee, S.[Snehasis],
Thakur, M.[Mainak],
Measuring photography aesthetics with deep CNNs,
IET-IPR(14), No. 8, 19 June 2020, pp. 1561-1570.
DOI Link
2005
BibRef
Huang, S.,
Cornelis, B.,
Devolder, B.,
Martens, M.,
Pizurica, A.,
Multimodal Target Detection by Sparse Coding:
Application to Paint Loss Detection in Paintings,
IP(29), 2020, pp. 7681-7696.
IEEE DOI
2007
Sparse representation, target detection, paint loss, kernel,
multiple imaging modalities
BibRef
Kim, W.,
Choi, J.,
Lee, J.,
Objectivity and Subjectivity in Aesthetic Quality Assessment of
Digital Photographs,
AffCom(11), No. 3, July 2020, pp. 493-506.
IEEE DOI
2008
Quality assessment, Photography, Databases, Visualization, Semantics,
Computational modeling, Image processing, Photograph, subjectivity,
user comment analysis
BibRef
Zhao, L.[Lin],
Shang, M.M.[Mei-Mei],
Gao, F.[Fei],
Li, R.S.[Rong-Sheng],
Huang, F.[Fei],
Yu, J.[Jun],
Representation learning of image composition for aesthetic prediction,
CVIU(199), 2020, pp. 103024.
Elsevier DOI
2009
Photo quality assessment, Image quality assessment,
Deep learning, Aesthetic, Representation learning
BibRef
Zhang, C.[Chao],
Liu, S.[Sitong],
Li, H.[Huizi],
Quality-guided video aesthetics assessment with social media context,
JVCIR(71), 2020, pp. 102643.
Elsevier DOI
2009
Video aesthetic assessment, Structure correlation, SVM
BibRef
Kuang, Q.,
Jin, X.,
Zhao, Q.,
Zhou, B.,
Deep Multimodality Learning for UAV Video Aesthetic Quality
Assessment,
MultMed(22), No. 10, October 2020, pp. 2623-2634.
IEEE DOI
2009
Quality assessment, Cameras, Feature extraction, Photography, Drones,
Streaming media, Aesthetic quality assessment,
deep multimodality learning
BibRef
Liu, J.,
Lv, J.,
Yuan, M.,
Zhang, J.,
Su, Y.,
ABSNet: Aesthetics-Based Saliency Network Using Multi-Task
Convolutional Network,
SPLetters(27), 2020, pp. 2014-2018.
IEEE DOI
2012
Visualization, Task analysis, Feature extraction,
Saliency detection, Signal processing algorithms,
visual saliency detection
BibRef
Li, K.[Ke],
Wu, Y.X.[Yu-Xia],
Xue, Y.[Yao],
Qian, X.M.[Xue-Ming],
Viewpoint Recommendation Based on Object-Oriented 3D Scene
Reconstruction,
MultMed(23), 2021, pp. 257-267.
IEEE DOI
2012
Viewpoints for taking aesthetic photographs of a place-of-interest (POI).
Object detection, Cameras, Feature extraction,
Image reconstruction, Social networking (online),
viewpoint recommendation
BibRef
Ragusa, E.[Edoardo],
Gianoglio, C.[Christian],
Zunino, R.[Rodolfo],
Gastaldo, P.[Paolo],
Image Polarity Detection on Resource-Constrained Devices,
IEEE_Int_Sys(35), No. 6, November 2020, pp. 50-57.
IEEE DOI
2012
Emotional content in the image.
Feature extraction, Intelligent systems,
Detectors, Object recognition, Computational modeling, Twitter
BibRef
Lotfian, M.[Maryam],
Ingensand, J.[Jens],
Brovelli, M.A.[Maria Antonia],
A Framework for Classifying Participant Motivation that Considers the
Typology of Citizen Science Projects,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wen, H.L.[Huang-Lu],
You, S.D.[Shao-Di],
Fu, Y.[Ying],
Cross-modal context-gated convolution for multi-modal sentiment
analysis,
PRL(146), 2021, pp. 252-259.
Elsevier DOI
2105
Artificial neural networks,
Affective behavior, Multi-modal temporal sequences
BibRef
Wen, H.L.[Huang-Lu],
You, S.D.[Shao-Di],
Fu, Y.[Ying],
Cross-modal dynamic convolution for multi-modal emotion recognition,
JVCIR(78), 2021, pp. 103178.
Elsevier DOI
2107
Artificial neural networks,
Affective behavior, Multi-modal temporal sequences.
BibRef
Yao, X.X.[Xing-Xu],
She, D.Y.[Dong-Yu],
Zhang, H.W.[Hai-Wei],
Yang, J.F.[Ju-Feng],
Cheng, M.M.[Ming-Ming],
Wang, L.[Liang],
Adaptive Deep Metric Learning for Affective Image Retrieval and
Classification,
MultMed(23), 2021, pp. 1640-1653.
IEEE DOI
2106
Measurement, Visualization, Semantics, Feature extraction,
Task analysis, Image analysis, Image retrieval,
visual sentiment analysis
BibRef
Miyata, M.[Mari],
Aizawa, K.[Kiyoharu],
Estimation of Semantic Impressions from Portraits,
IEICE(E104-D), No. 6, June 2021, pp. 863-872.
WWW Link.
2106
BibRef
He, J.X.[Jia-Xuan],
Mai, S.[Sijie],
Hu, H.F.[Hai-Feng],
A Unimodal Reinforced Transformer With Time Squeeze Fusion for
Multimodal Sentiment Analysis,
SPLetters(28), 2021, pp. 992-996.
IEEE DOI
2106
Sparse matrices, Sentiment analysis, Fuses, Convolution, Kernel,
Analytical models, Visualization, Time squeeze fusion,
multimodal sentiment analysis
BibRef
Peng, W.[Wei],
Hong, X.P.[Xiao-Peng],
Zhao, G.Y.[Guo-Ying],
Adaptive Modality Distillation for Separable Multimodal Sentiment
Analysis,
IEEE_Int_Sys(36), No. 3, May 2021, pp. 82-89.
IEEE DOI
2107
Tensors, Sentiment analysis, Task analysis, Intelligent systems,
Computational modeling, Affective computing, Training data
BibRef
Lin, F.Q.[Fu-Qiang],
Song, Y.P.[Yi-Ping],
Ma, X.K.[Xing-Kong],
Min, E.[Erxue],
Liu, B.[Bo],
Sentiment-Aware Emoji Insertion Via Sequence Tagging,
MultMedMag(28), No. 2, April 2021, pp. 40-48.
IEEE DOI
2107
Task analysis, Tagging, Social networking (online),
Sentiment analysis, Blogs, Semantics
BibRef
Wang, L.J.[Li-Juan],
Guo, W.[Wenya],
Yao, X.X.[Xing-Xu],
Zhang, Y.X.[Yu-Xiang],
Yang, J.F.[Ju-Feng],
Multimodal Event-Aware Network for Sentiment Analysis in Tourism,
MultMedMag(28), No. 2, April 2021, pp. 49-58.
IEEE DOI
2107
Feature extraction, Blogs, Sentiment analysis, Visualization,
Task analysis, Semantics, Delays
BibRef
Pilarczyk, J.[Joanna],
Janeczko, W.[Weronika],
Sterna, R.[Radoslaw],
Kuniecki, M.[Michal],
Are emotional objects visually salient? The Emotional Maps Database,
JVCIR(79), 2021, pp. 103221.
Elsevier DOI
2109
Meaning maps, Saliency, Emotion, Arousal, Natural scenes, Key objects
BibRef
Yang, M.[Min],
Yin, W.P.[Wen-Peng],
Qu, Q.[Qiang],
Tu, W.T.[Wen-Ting],
Shen, Y.[Ying],
Chen, X.J.[Xiao-Jun],
Neural Attentive Network for Cross-Domain Aspect-Level Sentiment
Classification,
AffCom(12), No. 3, July 2021, pp. 761-775.
IEEE DOI
2109
Adaptation models, Neural networks, Task analysis,
Computational modeling, Probabilistic logic,
multi-view attention
BibRef
Yamamoto, T.[Takahisa],
Takeuchi, S.[Shiki],
Nakazawa, A.[Atsushi],
Image Emotion Recognition Using Visual and Semantic Features Reflecting
Emotional and Similar Objects,
IEICE(E104-D), No. 10, October 2021, pp. 1691-1701.
WWW Link.
2110
BibRef
Thomas, C.[Christopher],
Kovashka, A.[Adriana],
Predicting Visual Political Bias Using Webly Supervised Data and an
Auxiliary Task,
IJCV(129), No. 11, November 2021, pp. 2978-3003.
Springer DOI
2110
BibRef
Thomas, C.[Christopher],
Kovashka, A.[Adriana],
Seeing Behind the Camera: Identifying the Authorship of a Photograph,
CVPR16(3494-3502)
IEEE DOI
1612
180,000 images from 41 well-known photographers.
BibRef
Yang, J.Y.[Jing-Yuan],
Gao, X.B.[Xin-Bo],
Li, L.[Leida],
Wang, X.M.[Xiu-Mei],
Ding, J.S.[Jin-Shan],
SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network,
IP(30), 2021, pp. 8686-8701.
IEEE DOI
2110
Visualization, Feature extraction, Psychology, Task analysis,
Deep learning, Convolutional neural networks, Semantics,
attention mechanism
BibRef
Wang, S.F.[Shang-Fei],
Wang, C.[Can],
Chen, T.F.[Tan-Fang],
Wang, Y.[Yaxin],
Shu, Y.Y.[Yang-Yang],
Ji, Q.[Qiang],
Video Affective Content Analysis by Exploring Domain Knowledge,
AffCom(12), No. 4, October 2021, pp. 1002-1017.
IEEE DOI
2112
Lighting, Image color analysis, Visualization, Emotion recognition,
Feature extraction, Grammar, Music, Content analysis,
visual/speech/music elements
BibRef
Qi, F.[Fan],
Yang, X.S.[Xiao-Shan],
Xu, C.S.[Chang-Sheng],
Emotion Knowledge Driven Video Highlight Detection,
MultMed(23), 2021, pp. 3999-4013.
IEEE DOI
2112
Visualization, Training data, Predictive models, Training, Semantics,
Emotion recognition, Computational modeling, Deep ranking,
video highlight detection
BibRef
Long, Y.F.[Yun-Fei],
Xiang, R.[Rong],
Lu, Q.[Qin],
Huang, C.R.[Chu-Ren],
Li, M.L.[Ming-Lei],
Improving Attention Model Based on Cognition Grounded Data for
Sentiment Analysis,
AffCom(12), No. 4, October 2021, pp. 900-912.
IEEE DOI
2112
Sentiment analysis, Analytical models, Cognition, Data models,
Context modeling, Deep learning, Affective lexicons,
attention model
BibRef
Yao, X.X.[Xing-Xu],
Zhao, S.C.[Si-Cheng],
Lai, Y.K.[Yu-Kun],
She, D.Y.[Dong-Yu],
Liang, J.[Jie],
Yang, J.F.[Ju-Feng],
APSE: Attention-Aware Polarity-Sensitive Embedding for Emotion-Based
Image Retrieval,
MultMed(23), 2021, pp. 4469-4482.
IEEE DOI
2112
BibRef
Earlier: A1, A4, A2, A5, A3, A6:
Attention-Aware Polarity Sensitive Embedding for Affective Image
Retrieval,
ICCV19(1140-1150)
IEEE DOI
2004
Visualization, Task analysis, Psychology, Image retrieval,
Feature extraction, Image color analysis, Emotion recognition,
visual sentiment analysis.
affective computing, content-based retrieval, data mining,
emotion recognition, image representation, Psychology
BibRef
Bisogni, C.[Carmen],
Cascone, L.[Lucia],
Castiglione, A.[Aniello],
Passero, I.[Ignazio],
Deep learning for emotion driven user experiences,
PRL(152), 2021, pp. 115-121.
Elsevier DOI
2112
Deep learning, User emotions, User experience
BibRef
Xu, N.[Nan],
Mao, W.J.[Wen-Ji],
Wei, P.H.[Peng-Hui],
Zeng, D.[Daniel],
MDA: Multimodal Data Augmentation Framework for Boosting Performance
on Sentiment/Emotion Classification Tasks,
IEEE_Int_Sys(36), No. 6, November 2021, pp. 3-12.
IEEE DOI
2112
Task analysis, Data analysis, Boosting, Social networking (online),
Annotations, Sentiment analysis, Automation, Data augmentation,
multimodal classification
BibRef
He, J.X.[Jia-Xuan],
Hu, H.F.[Hai-Feng],
MF-BERT: Multimodal Fusion in Pre-Trained BERT for Sentiment Analysis,
SPLetters(29), 2022, pp. 454-458.
IEEE DOI
2202
Bit error rate, Visualization, Acoustics, Sentiment analysis,
Analytical models, Fuses, Convolution, Internal updating,
multimodal fusion BERT
BibRef
Wang, H.L.[Han-Li],
Tang, P.J.[Peng-Jie],
Li, Q.Y.[Qin-Yu],
Cheng, M.[Meng],
Emotion Expression With Fact Transfer for Video Description,
MultMed(24), 2022, pp. 715-727.
IEEE DOI
2202
Visualization, Semantics, Sentiment analysis, Measurement, Training,
Databases, Video description, Convolutional neural network,
video description
BibRef
Xiong, X.[Xi],
Qiao, S.J.[Shao-Jie],
Han, N.[Nan],
Li, Y.Y.[Yuan-Yuan],
Xiong, F.[Fei],
He, L.[Ling],
Affective Impression: Sentiment-Awareness POI Suggestion via
Embedding in Heterogeneous LBSNs,
AffCom(13), No. 1, January 2022, pp. 272-284.
IEEE DOI
2203
Heterogeneous networks, Information technology,
Social networking (online), Probabilistic logic, Data integrity,
probabilistic graphical model
BibRef
de Paula, D.[Diandre],
Alexandre, L.A.[Luís A.],
Facial Emotion Recognition for Sentiment Analysis of Social Media Data,
IbPRIA22(207-217).
Springer DOI
2205
BibRef
Benini, S.[Sergio],
Savardi, M.[Mattia],
Bálint, K.[Katalin],
Kovács, A.B.[András Bálint],
Signoroni, A.[Alberto],
On the Influence of Shot Scale on Film Mood and Narrative Engagement
in Film Viewers,
AffCom(13), No. 2, April 2022, pp. 592-603.
IEEE DOI
2206
Mood, Motion pictures, Cameras, Convolutional neural networks,
Emotional responses, Barium, Complexity theory, Shot scale,
convolutional neural networks
BibRef
Yang, T.[Tao],
Yin, Q.[Qing],
Yang, L.[Lei],
Wu, O.[Ou],
Aspect-Based Sentiment Analysis with New Target Representation and
Dependency Attention,
AffCom(13), No. 2, April 2022, pp. 640-650.
IEEE DOI
2206
Sentiment analysis, Syntactics, Encoding, Deep learning, Grammar,
Recurrent neural networks, Learning systems, ABSA,
dependency attention
BibRef
Nazir, A.[Ambreen],
Rao, Y.[Yuan],
Wu, L.[Lianwei],
Sun, L.[Ling],
Issues and Challenges of Aspect-based Sentiment Analysis:
A Comprehensive Survey,
AffCom(13), No. 2, April 2022, pp. 845-863.
IEEE DOI
2206
Survey, Sentiment Analysis. Sentiment analysis, Social networking (online), Data mining,
Machine learning, Task analysis, Tools, Sun, Aspect,
social media
BibRef
Salminen, M.[Mikko],
Järvelä, S.[Simo],
Ruonala, A.[Antti],
Harjunen, V.J.[Ville J.],
Hamari, J.H.[Ju-Ho],
Jacucci, G.[Giulio],
Ravaja, N.[Niklas],
Evoking Physiological Synchrony and Empathy Using Social VR With
Biofeedback,
AffCom(13), No. 2, April 2022, pp. 746-755.
IEEE DOI
2206
Visualization, Biological control systems,
Electroencephalography, Physiology, Synchronization, virtual reality
BibRef
Shukla, A.[Abhinav],
Gullapuram, S.S.[Shruti Shriya],
Katti, H.[Harish],
Kankanhalli, M.[Mohan],
Winkler, S.[Stefan],
Subramanian, R.[Ramanathan],
Recognition of Advertisement Emotions With Application to
Computational Advertising,
AffCom(13), No. 2, April 2022, pp. 781-792.
IEEE DOI
2206
Streaming media, Advertising, Electroencephalography,
Motion pictures, Brain modeling, Emotion recognition, Encoding, ad insertion
BibRef
Mehbodniya, A.[Abolfazl],
Rao, M.V.[M. Varaprasad],
David, L.G.[Leo Gertrude],
Nigel, K.G.J.[K. Gerard Joe],
Vennam, P.[Preethi],
Online product sentiment analysis using random evolutionary whale
optimization algorithm and deep belief network,
PRL(159), 2022, pp. 1-8.
Elsevier DOI
2206
BibRef
Xu, J.[Jie],
Li, Z.[Zhoujun],
Huang, F.[Feiran],
Li, C.Z.[Chao-Zhuo],
Yu, P.S.[Philip S.],
Visual Sentiment Analysis With Social Relations-Guided Multiattention
Networks,
Cyber(52), No. 6, June 2022, pp. 4472-4484.
IEEE DOI
2207
Visualization, Feature extraction, Sentiment analysis, Correlation,
Semantics, Heterogeneous networks, Analytical models,
social image
BibRef
Zhang, T.[Tong],
Gong, X.R.[Xin-Rong],
Chen, C.L.P.[C. L. Philip],
BMT-Net: Broad Multitask Transformer Network for Sentiment Analysis,
Cyber(52), No. 7, July 2022, pp. 6232-6243.
IEEE DOI
2207
Task analysis, Sentiment analysis, Feature extraction,
Context modeling, Bit error rate, Analytical models, sentiment analysis
BibRef
Li, C.H.[Chen-Hui],
Zhang, P.Y.[Pei-Ying],
Wang, C.B.[Chang-Bo],
Harmonious Textual Layout Generation Over Natural Images via Deep
Aesthetics Learning,
MultMed(24), 2022, pp. 3416-3428.
IEEE DOI
2207
Layout, Visualization, Graphics, Saliency detection, Proposals,
Feature extraction, Task analysis, Textual layout, deep learning
BibRef
Nazir, A.[Ambreen],
Rao, Y.[Yuan],
Wu, L.[Lianwei],
Sun, L.[Ling],
IAF-LG: An Interactive Attention Fusion Network With Local and Global
Perspective for Aspect-Based Sentiment Analysis,
AffCom(13), No. 4, October 2022, pp. 1730-1742.
IEEE DOI
2212
Semantics, Task analysis, Neural networks, Sentiment analysis,
Logic gates, Context modeling, Computer architecture, semantics
BibRef
Thakkar, A.[Ankit],
Mungra, D.[Dhara],
Agrawal, A.[Anjali],
Chaudhari, K.[Kinjal],
Improving the Performance of Sentiment Analysis Using Enhanced
Preprocessing Technique and Artificial Neural Network,
AffCom(13), No. 4, October 2022, pp. 1771-1782.
IEEE DOI
2212
Social networking (online), Task analysis,
Support vector machines, Motion pictures, Feature extraction, neurosent
BibRef
Ren, H.P.[Hao-Peng],
Cai, Y.[Yi],
Zeng, Y.S.[Yu-Shi],
Ye, J.H.[Jing-Hui],
Leung, H.F.[Ho-Fung],
Li, Q.[Qing],
Aspect-Opinion Correlation Aware and Knowledge-Expansion Few Shot
Cross-Domain Sentiment Classification,
AffCom(13), No. 4, October 2022, pp. 1691-1704.
IEEE DOI
2212
Feature extraction, Task analysis, Semantics, Training,
Knowledge engineering, Syntactics, Sentiment analysis, few-shot learning
BibRef
Matsiiako, V.[Vladyslav],
Frasincar, F.[Flavius],
Boekestijn, D.[David],
Aspect-Based Sentiment Quantification,
AffCom(13), No. 4, October 2022, pp. 1718-1729.
IEEE DOI
2212
Task analysis, Training, Aggregates, Costs,
Classification algorithms, Support vector machines, Sociology,
sentiment quantification
BibRef
Chen, R.[Rongfei],
Zhou, W.J.[Wen-Ju],
Li, Y.[Yang],
Zhou, H.Y.[Hui-Yu],
Video-Based Cross-Modal Auxiliary Network for Multimodal Sentiment
Analysis,
CirSysVideo(32), No. 12, December 2022, pp. 8703-8716.
IEEE DOI
2212
Feature extraction, Acoustics, Emotion recognition,
Sentiment analysis, Spectrogram, Visualization, Speech recognition,
emotion recognition
BibRef
Wang, D.[Di],
Guo, X.T.[Xu-Tong],
Tian, Y.M.[Yu-Min],
Liu, J.H.[Jin-Hui],
He, L.H.[Li-Huo],
Luo, X.M.[Xue-Mei],
TETFN: A text enhanced transformer fusion network for multimodal
sentiment analysis,
PR(136), 2023, pp. 109259.
Elsevier DOI
2301
Multimodal sentiment analysis, Transformer,
Text-oriented pairwise cross-modal mappings
BibRef
Xu, Y.J.[Yu-Jun],
Yao, E.[Enguang],
Liu, C.Y.[Chao-Yue],
Liu, Q.D.[Qi-Dong],
Xu, M.L.[Ming-Liang], y
A novel ensemble model with two-stage learning for joint dialog act
recognition and sentiment classification,
PRL(165), 2023, pp. 77-83.
Elsevier DOI
2301
Dialog act recognition, Sentiment classification,
Two-stage learning, Joint model
BibRef
Nasfi, R.[Rim],
Bouguila, N.[Nizar],
Sentiment Analysis from User Reviews Using a Hybrid
Generative-Discriminative HMM-SVM Approach,
SSSPR22(74-83).
Springer DOI
2301
BibRef
Abdullah, T.[Tariq],
Ahmet, A.[Ahmed],
Deep Learning in Sentiment Analysis: Recent Architectures,
Surveys(55), No. 8, December 2022, pp. xx-yy.
DOI Link
2301
Survey, Sentiment Analysis. cross-domain sentiment analysis, transfer learning,
cross-lingual sentiment analysis, sentiment analysis
BibRef
Liu, A.A.[An-An],
Du, H.W.[Hong-Wei],
Xu, N.[Ning],
Zhang, Q.[Quan],
Zhang, S.Y.[Shen-Yuan],
Tang, Y.J.[Ye-Jun],
Li, X.Y.[Xuan-Ya],
Exploring visual relationship for social media popularity prediction,
JVCIR(90), 2023, pp. 103738.
Elsevier DOI
2301
Social media popularity prediction, Visual relationship,
Content-based filtering, Interpretability
BibRef
Park, E.H.[Eun Hee],
Storey, V.C.[Veda C.],
Emotion Ontology Studies: A Framework for Expressing Feelings
Digitally and Its Application to Sentiment Analysis,
Surveys(55), No. 9, January 2023, pp. xx-yy.
DOI Link
2302
Survey, Sentiment Analysis. sentiment analysis, dimensional emotion ontology, affect,
discrete emotion ontology, Framework of Emotion Ontologies, emotion
BibRef
Poria, S.[Soujanya],
Hazarika, D.[Devamanyu],
Majumder, N.[Navonil],
Mihalcea, R.[Rada],
Beneath the Tip of the Iceberg: Current Challenges and New Directions
in Sentiment Analysis Research,
AffCom(14), No. 1, January 2023, pp. 108-132.
IEEE DOI
2303
Sentiment analysis, Task analysis, Syntactics,
Cognition, Semantics, Context modeling,
bias in sentiment analysis systems
BibRef
Zhang, X.[Xing],
Xu, J.Y.[Jing-Yun],
Cai, Y.[Yi],
Tan, X.W.[Xing-Wei],
Zhu, C.X.[Chang-Xi],
Detecting Dependency-Related Sentiment Features for Aspect-Level
Sentiment Classification,
AffCom(14), No. 1, January 2023, pp. 196-210.
IEEE DOI
2303
Feature extraction, Task analysis, Syntactics, Batteries,
Sentiment analysis, Semantics,
bidirectional long short-term memory
BibRef
Liang, B.[Bin],
Yin, R.[Rongdi],
Du, J.C.[Jia-Chen],
Gui, L.[Lin],
He, Y.L.[Yu-Lan],
Yang, M.[Min],
Xu, R.F.[Rui-Feng],
Embedding Refinement Framework for Targeted Aspect-Based Sentiment
Analysis,
AffCom(14), No. 1, January 2023, pp. 279-293.
IEEE DOI
2303
Sentiment analysis, Task analysis, Feature extraction,
Context modeling, Data mining, Semantics, Computer science, affective knowledge
BibRef
Tang, J.J.[Jia-Jia],
Liu, D.J.[Dong-Jun],
Jin, X.Y.[Xuan-Yu],
Peng, Y.[Yong],
Zhao, Q.B.[Qi-Bin],
Ding, Y.[Yu],
Kong, W.Z.[Wan-Zeng],
BAFN: Bi-Direction Attention Based Fusion Network for Multimodal
Sentiment Analysis,
CirSysVideo(33), No. 4, April 2023, pp. 1966-1978.
IEEE DOI
2304
Bidirectional control, Sentiment analysis,
Termination of employment, Task analysis, Routing, Redundancy,
attention mechanism
BibRef
Su, Y.T.[Yu-Ting],
Zhao, W.[Wei],
Jing, P.G.[Pei-Guang],
Nie, L.Q.[Li-Qiang],
Exploiting Low-Rank Latent Gaussian Graphical Model Estimation for
Visual Sentiment Distributions,
MultMed(25), 2023, pp. 1243-1255.
IEEE DOI
2305
Correlation, Visualization, Graphical models, Covariance matrices,
Multivariate regression, Estimation, Sentiment analysis,
visual sentiment analysis
BibRef
Ye, M.[Mang],
Shi, Q.H.Y.[Qing-Hong-Ya],
Su, K.[Kehua],
Du, B.[Bo],
Cross-Modality Pyramid Alignment for Visual Intention Understanding,
IP(32), 2023, pp. 2190-2201.
IEEE DOI
2305
Exploring the potential and underlying meaning expressed in images.
Visualization, Task analysis, Semantics, Feature extraction,
Training, Image segmentation, Image color analysis,
hierarchical relation
BibRef
Zhang, H.M.[Hai-Min],
Xu, M.[Min],
Multiscale Emotion Representation Learning for Affective Image
Recognition,
MultMed(25), 2023, pp. 2203-2212.
IEEE DOI
2306
Feature extraction, Image recognition, Emotion recognition,
Task analysis, Representation learning, Face recognition,
multiscale representation learning
BibRef
Dudzik, B.[Bernd],
Hung, H.[Hayley],
Neerincx, M.[Mark],
Broekens, J.[Joost],
Collecting Mementos: A Multimodal Dataset for Context-Sensitive
Modeling of Affect and Memory Processing in Responses to Videos,
AffCom(14), No. 2, April 2023, pp. 1249-1266.
IEEE DOI
2306
Videos, Media, Computational modeling, Films, Particle measurements,
Mood, Atmospheric measurements, Multimodal dataset,
personalization
BibRef
Das, R.K.[Ring-Ki],
Singh, T.D.[Thoudam Doren],
Multimodal Sentiment Analysis: A Survey of Methods, Trends, and
Challenges,
Surveys(55), No. 13s, July 2023, pp. xx-yy.
DOI Link
2309
Survey, Sentiment. audio sentiment analysis, image sentiment analysis,
text sentiment analysis, Multimodal sentiment analysis, transfer learning
BibRef
Zhu, T.[Tong],
Li, L.[Leida],
Yang, J.F.[Ju-Feng],
Zhao, S.C.[Si-Cheng],
Liu, H.T.[Han-Tao],
Qian, J.S.[Jian-Sheng],
Multimodal Sentiment Analysis With Image-Text Interaction Network,
MultMed(25), 2023, pp. 3375-3385.
IEEE DOI
2309
BibRef
He, K.[Kai],
Mao, R.[Rui],
Gong, T.[Tieliang],
Li, C.[Chen],
Cambria, E.[Erik],
Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment
Analysis,
AffCom(14), No. 3, July 2023, pp. 1731-1742.
IEEE DOI
2310
BibRef
Lopes, C.R.[Cesar Rafael],
Minetto, R.[Rodrigo],
Delgado, M.R.[Myriam Regattieri],
Silva, T.H.[Thiago H],
PerceptSent: Exploring Subjectivity in a Novel Dataset for Visual
Sentiment Analysis,
AffCom(14), No. 3, July 2023, pp. 1817-1831.
IEEE DOI
2310
BibRef
Wang, K.[Ke],
Wan, X.J.[Xiao-Jun],
Counterfactual Representation Augmentation for Cross-Domain Sentiment
Analysis,
AffCom(14), No. 3, July 2023, pp. 1979-1990.
IEEE DOI
2310
BibRef
Yu, J.F.[Jian-Fei],
Chen, K.[Kai],
Xia, R.[Rui],
Hierarchical Interactive Multimodal Transformer for Aspect-Based
Multimodal Sentiment Analysis,
AffCom(14), No. 3, July 2023, pp. 1966-1978.
IEEE DOI
2310
BibRef
Mai, S.[Sijie],
Zeng, Y.[Ying],
Zheng, S.J.[Shuang-Jia],
Hu, H.F.[Hai-Feng],
Hybrid Contrastive Learning of Tri-Modal Representation for
Multimodal Sentiment Analysis,
AffCom(14), No. 3, July 2023, pp. 2276-2289.
IEEE DOI
2310
BibRef
Lin, R.H.[Rong-Hao],
Hu, H.F.[Hai-Feng],
Dynamically Shifting Multimodal Representations via Hybrid-Modal
Attention for Multimodal Sentiment Analysis,
MultMed(26), 2024, pp. 2740-2755.
IEEE DOI
2402
Transformers, Acoustics, Visualization, Feature extraction,
Task analysis, Logic gates, Sentiment analysis,
hybrid-modal attention
BibRef
Katada, S.[Shun],
Okada, S.[Shogo],
Komatani, K.[Kazunori],
Effects of Physiological Signals in Different Types of Multimodal
Sentiment Estimation,
AffCom(14), No. 3, July 2023, pp. 2443-2457.
IEEE DOI
2310
BibRef
Zhao, S.C.[Si-Cheng],
Hong, X.P.[Xiao-Peng],
Yang, J.F.[Ju-Feng],
Zhao, Y.Y.[Yan-Yan],
Ding, G.[Guiguang],
Toward Label-Efficient Emotion and Sentiment Analysis,
PIEEE(111), No. 10, October 2023, pp. 1159-1197.
IEEE DOI
2310
BibRef
Wang, J.Z.[James Z.],
Zhao, S.C.[Si-Cheng],
Wu, C.Y.[Chen-Yan],
Adams, R.B.[Reginald B.],
Newman, M.G.[Michelle G.],
Shafir, T.[Tal],
Tsachor, R.[Rachelle],
Unlocking the Emotional World of Visual Media: An Overview of the
Science, Research, and Impact of Understanding Emotion,
PIEEE(111), No. 10, October 2023, pp. 1236-1286.
IEEE DOI
2310
BibRef
Quan, X.J.[Xiao-Jun],
Min, Z.C.[Zheng-Cheng],
Li, K.[Kun],
Yang, Y.[Yunyi],
Compound Aspect Extraction by Augmentation and Constituency Lattice,
AffCom(14), No. 3, July 2023, pp. 2323-2335.
IEEE DOI
2310
BibRef
Lee, S.E.[Sang-Eun],
Ryu, C.[Chaeeun],
Park, E.[Eunil],
OSANet: Object Semantic Attention Network for Visual Sentiment
Analysis,
MultMed(25), 2023, pp. 7139-7148.
IEEE DOI
2311
BibRef
Zeng, J.D.[Jian-Dian],
Zhou, J.T.[Jian-Tao],
Liu, T.Y.[Tian-Yi],
Robust Multimodal Sentiment Analysis via Tag Encoding of Uncertain
Missing Modalities,
MultMed(25), 2023, pp. 6301-6314.
IEEE DOI
2311
BibRef
Wang, D.[Di],
Liu, S.[Shuai],
Wang, Q.[Quan],
Tian, Y.M.[Yu-Min],
He, L.[Lihuo],
Gao, X.B.[Xin-Bo],
Cross-Modal Enhancement Network for Multimodal Sentiment Analysis,
MultMed(25), 2023, pp. 4909-4921.
IEEE DOI
2311
BibRef
Li, M.C.[Ming-Cheng],
Yang, D.K.[Ding-Kang],
Zhang, L.H.[Li-Hua],
Towards Robust Multimodal Sentiment Analysis Under Uncertain Signal
Missing,
SPLetters(30), 2023, pp. 1497-1501.
IEEE DOI
2311
BibRef
Ibrohim, M.O.[Muhammad Okky],
Bosco, C.[Cristina],
Basile, V.[Valerio],
Sentiment Analysis for the Natural Environment: A Systematic Review,
Surveys(56), No. 4, November 2023, pp. xx-yy.
DOI Link
2312
Survey, Sentiment. sentiment analysis, Natural environment, data-driven policy,
natural language processing (NLP), systematic review
BibRef
Liu, H.[Huan],
Li, K.[Ke],
Fan, J.P.[Jian-Ping],
Yan, C.X.[Cai-Xia],
Qin, T.[Tao],
Zheng, Q.H.[Qing-Hua],
Social Image-Text Sentiment Classification With Cross-Modal
Consistency and Knowledge Distillation,
AffCom(14), No. 4, October 2023, pp. 3332-3344.
IEEE DOI
2312
BibRef
Cao, Y.K.[Yu-Kun],
Tang, Y.J.[Yi-Jia],
Du, H.Z.[Hai-Zhou],
Xu, F.F.[Fei-Fei],
Wei, Z.Y.[Zi-Yue],
Jin, C.[Chengkun],
Heterogeneous Reinforcement Learning Network for Aspect-Based
Sentiment Classification With External Knowledge,
AffCom(14), No. 4, October 2023, pp. 3362-3375.
IEEE DOI
2312
BibRef
Rathod, B.[Bhoomika],
Vanzara, R.[Rakeshkumar],
Pandya, D.[Devang],
A recent survey on perceived group sentiment analysis,
JVCIR(97), 2023, pp. 103988.
Elsevier DOI
2312
Group emotion recognition, Machine learning, Deep learning,
Fusion methods, Sentiment analysis
BibRef
Wang, X.H.[Xiao-Hua],
Yang, J.[Jie],
Hu, M.[Min],
Ren, F.[Fuji],
EERCA-ViT: Enhanced Effective Region and Context-Aware Vision
Transformers for image sentiment analysis,
JVCIR(97), 2023, pp. 103968.
Elsevier DOI
2312
Visual sentiment analysis, Enhanced Effective Region,
Context-aware, Vision transformer, Double branch
BibRef
Hu, M.T.[Meng-Ting],
Zhao, S.[Shiwan],
Guo, H.L.[Hong-Lei],
Su, Z.[Zhong],
Hybrid Regularizations for Multi-Aspect Category Sentiment Analysis,
AffCom(14), No. 4, October 2023, pp. 3294-3304.
IEEE DOI
2312
BibRef
Hu, M.T.[Meng-Ting],
Gao, H.[Hang],
Wu, Y.[Yike],
Su, Z.[Zhong],
Zhao, S.[Shiwan],
Fine-Grained Domain Adaptation for Aspect Category Level Sentiment
Analysis,
AffCom(14), No. 4, October 2023, pp. 2839-2850.
IEEE DOI
2312
BibRef
Wang, Y.[Yuan],
Huo, P.[Peng],
Tang, L.Y.[Ling-Yan],
Xiong, N.[Ning],
Hu, M.T.[Meng-Ting],
Yu, Q.[Qi],
Yang, J.[Jucheng],
Modeling Category Semantic and Sentiment Knowledge for Aspect-Level
Sentiment Analysis,
AffCom(15), No. 4, October 2024, pp. 1962-1969.
IEEE DOI
2412
Task analysis, Semantics, Sentiment analysis, Multitasking, Vectors,
Correlation, Convolution, Aspect-level sentiment analysis,
multi-task learning
BibRef
Zhao, X.B.[Xian-Bing],
Chen, Y.X.[Yin-Xin],
Liu, S.[Sicen],
Tang, B.[Buzhou],
Shared-Private Memory Networks For Multimodal Sentiment Analysis,
AffCom(14), No. 4, October 2023, pp. 2889-2900.
IEEE DOI Code:
WWW Link.
2312
BibRef
Zhang, B.[Bowen],
Fu, X.H.[Xiang-Hua],
Luo, C.[Chuyao],
Ye, Y.M.[Yun-Ming],
Li, X.[Xutao],
Jing, L.W.[Li-Wen],
Cross-Domain Aspect-Based Sentiment Classification by Exploiting
Domain- Invariant Semantic-Primary Feature,
AffCom(14), No. 4, October 2023, pp. 3106-3119.
IEEE DOI
2312
BibRef
Cheng, H.J.[Hong-Ju],
Yang, Z.Z.[Zi-Zhen],
Zhang, X.Q.[Xiao-Qi],
Yang, Y.[Yang],
Multimodal Sentiment Analysis Based on Attentional Temporal
Convolutional Network and Multi-Layer Feature Fusion,
AffCom(14), No. 4, October 2023, pp. 3149-3163.
IEEE DOI
2312
BibRef
Ji, X.Y.[Xiao-Yue],
Dong, Z.[Zhekang],
Han, Y.F.[Yi-Feng],
Lai, C.S.[Chun Sing],
Qi, D.L.[Dong-Lian],
A Brain-Inspired Hierarchical Interactive In-Memory Computing System
and Its Application in Video Sentiment Analysis,
CirSysVideo(33), No. 12, December 2023, pp. 7928-7942.
IEEE DOI
2312
BibRef
Liu, J.Y.[Jing-Yi],
Li, S.[Sheng],
A dependency-based hybrid deep learning framework for
target-dependent sentiment classification,
PRL(176), 2023, pp. 160-166.
Elsevier DOI
2312
Target-dependent sentiment classification, Dependency parsing,
Text filtering, Data preprocess
BibRef
He, L.J.[Li-Jun],
Wang, Z.Q.[Zi-Qing],
Wang, L.[Liejun],
Li, F.[Fan],
Multimodal Mutual Attention-Based Sentiment Analysis Framework
Adapted to Complicated Contexts,
CirSysVideo(33), No. 12, December 2023, pp. 7131-7143.
IEEE DOI Code:
WWW Link.
2312
BibRef
Wang, B.L.[Bing-Lu],
Yang, K.[Kang],
Zhao, Y.Q.[Yong-Qiang],
Long, T.[Teng],
Li, X.L.[Xue-Long],
Prototype-Based Intent Perception,
MultMed(25), 2023, pp. 8308-8319.
IEEE DOI
2312
understand the intention of images.
BibRef
Yuan, Z.Q.[Zi-Qi],
Liu, Y.[Yihe],
Xu, H.[Hua],
Gao, K.[Kai],
Noise Imitation Based Adversarial Training for Robust Multimodal
Sentiment Analysis,
MultMed(26), 2024, pp. 529-539.
IEEE DOI
2402
Training, Noise measurement, Visualization, Sentiment analysis,
Robustness, Feature extraction, Data models,
semantic reconstruction
BibRef
Wang, D.[Di],
Tian, C.[Changning],
Liang, X.[Xiao],
Zhao, L.[Lin],
He, L.[Lihuo],
Wang, Q.[Quan],
Dual-Perspective Fusion Network for Aspect-Based Multimodal Sentiment
Analysis,
MultMed(26), 2024, pp. 4028-4038.
IEEE DOI
2402
Sentiment analysis, Task analysis, Data mining, Semantics,
Syntactics, Feature extraction, Visualization, graph neural network
BibRef
Prakash, V.J.[V. Jothi],
Vijay, S.A.A.[S. Arul Antran],
A multi-aspect framework for explainable sentiment analysis,
PRL(178), 2024, pp. 122-129.
Elsevier DOI
2402
Explainable sentiment analysis, Multi-aspect framework,
Aspect extraction, Hierarchical neural networks, Natural language processing
BibRef
Qian, F.[Fan],
Han, J.Q.[Ji-Qing],
Guan, Y.D.[Ya-Dong],
Song, W.J.[Wen-Jie],
He, Y.J.[Yong-Jun],
Capturing High-Level Semantic Correlations via Graph for Multimodal
Sentiment Analysis,
SPLetters(31), 2024, pp. 561-565.
IEEE DOI
2402
Semantics, Routing, Correlation, Feature extraction, Visualization,
Self-supervised learning, Videos, Multimodal sentiment analysis,
high-level semantic correlations
BibRef
Luo, Y.T.[Yu-Tong],
Zhong, X.Y.[Xin-Yue],
Zeng, M.[Minchen],
Xie, J.L.[Jia-Lan],
Wang, S.Y.[Shi-Yuan],
Liu, G.Y.[Guang-Yuan],
CGLF-Net: Image Emotion Recognition Network by Combining Global
Self-Attention Features and Local Multiscale Features,
MultMed(26), 2024, pp. 1894-1908.
IEEE DOI
2402
Feature extraction, Emotion recognition, Transformers,
Visualization, Image recognition, Data mining,
self-attention
BibRef
Sun, L.[Licai],
Lian, Z.[Zheng],
Liu, B.[Bin],
Tao, J.H.[Jian-Hua],
Efficient Multimodal Transformer With Dual-Level Feature Restoration
for Robust Multimodal Sentiment Analysis,
AffCom(15), No. 1, January 2024, pp. 309-325.
IEEE DOI
2403
Transformers, Robustness, Semantics, Data models,
Computational modeling, Videos, Training, robustness
BibRef
Babanejad, N.[Nastaran],
Davoudi, H.[Heidar],
Agrawal, A.[Ameeta],
An, A.[Aijun],
Papagelis, M.[Manos],
The Role of Preprocessing for Word Representation Learning in
Affective Tasks,
AffCom(15), No. 1, January 2024, pp. 254-272.
IEEE DOI
2403
Task analysis, Sentiment analysis, Analytical models, Training,
Context modeling, Buildings, Syntactics, Affective tasks,
word representation
BibRef
Ruan, S.[Shulan],
Zhang, K.[Kun],
Wu, L.[Le],
Xu, T.[Tong],
Liu, Q.[Qi],
Chen, E.[Enhong],
Color Enhanced Cross Correlation Net for Image Sentiment Analysis,
MultMed(26), 2024, pp. 4097-4109.
IEEE DOI
2403
Image color analysis, Sentiment analysis, Feature extraction,
Correlation, Visualization, Brain modeling, Analytical models,
feature representation
BibRef
Kim, J.Y.[Jin-Young],
Ko, Y.J.[Young-Joong],
SPACE: Senti-Prompt As Classifying Embedding for sentiment analysis,
PRL(180), 2024, pp. 62-67.
Elsevier DOI
2404
Sentiment analysis, Prompt-tuning, Representation learning, Attention pattern
BibRef
Wang, Y.J.[Ya-Jie],
Chen, M.[Mulin],
Li, X.L.[Xue-Long],
Continuous Emotion-Based Image-to-Music Generation,
MultMed(26), 2024, pp. 5670-5679.
IEEE DOI
2404
Task analysis, Music, Distance measurement, Annotations,
Training, Standards, vicinagearth security
BibRef
Huan, R.H.[Ruo-Hong],
Zhong, G.W.[Guo-Wei],
Chen, P.[Peng],
Liang, R.H.[Rong-Hua],
UniMF: A Unified Multimodal Framework for Multimodal Sentiment
Analysis in Missing Modalities and Unaligned Multimodal Sequences,
MultMed(26), 2024, pp. 5753-5768.
IEEE DOI
2404
Transformers, Sentiment analysis, Fuses, Training, Task analysis,
Transformer cores, Semantics, Attention mechanism,
unaligned multimodal sequences
BibRef
Shi, Q.H.[Qing-HongYa],
Ye, M.[Mang],
Huang, W.K.[Wen-Ke],
Ruan, W.J.[Wei-Jian],
Du, B.[Bo],
Label-Aware Calibration and Relation-Preserving in Visual Intention
Understanding,
IP(33), 2024, pp. 2627-2638.
IEEE DOI Code:
WWW Link.
2404
Intention behind the images in social media.
Visualization, Task analysis, Calibration, Correlation,
Image classification, Data augmentation, intention relation
BibRef
Song, L.Y.[Ling-Yun],
Chen, S.[Siyu],
Meng, Z.Y.[Zi-Yang],
Sun, M.X.[Ming-Xuan],
Shang, X.[Xuequn],
FMSA-SC: A Fine-Grained Multimodal Sentiment Analysis Dataset Based
on Stock Comment Videos,
MultMed(26), 2024, pp. 7294-7306.
IEEE DOI
2405
Videos, Stock markets, Annotations, Task analysis, Acoustics,
Visualization, Web sites, Multimedia databases, neural networks,
video signal processing
BibRef
Yuan, Z.Q.[Zi-Qi],
Zhang, B.Z.[Bao-Zheng],
Xu, H.[Hua],
Gao, K.[Kai],
Meta Noise Adaption Framework for Multimodal Sentiment Analysis With
Feature Noise,
MultMed(26), 2024, pp. 7265-7277.
IEEE DOI
2405
Noise measurement, Task analysis, Training, Metalearning,
Sentiment analysis, Adaptation models, Visualization,
robust multimodal sentiment analysis
BibRef
Anas, M.[Mohammad],
Saiyeda, A.[Anam],
Sohail, S.S.[Shahab Saquib],
Cambria, E.[Erik],
Hussain, A.[Amir],
Can Generative AI Models Extract Deeper Sentiments as Compared to
Traditional Deep Learning Algorithms?,
IEEE_Int_Sys(39), No. 2, March 2024, pp. 5-10.
IEEE DOI
2405
Deep learning, Generative AI, Analytical models, Context modeling,
Chatbots, Sentiment analysis
BibRef
Singh, U.[Upendra],
Abhishek, K.[Kumar],
Azad, H.K.[Hiteshwar Kumar],
A Survey of Cutting-edge Multimodal Sentiment Analysis,
Surveys(56), No. 9, April 2024, pp. 227.
DOI Link
2405
Survey, Sentinment. Multimodal sentiment analysis, sentiment classifier,
machine learning, emotion detection, modelling techniques
BibRef
Tang, X.Y.[Xiang-Yun],
Liao, D.L.[Dong-Liang],
Shen, M.[Meng],
Zhu, L.H.[Lie-Huang],
Huang, S.[Shen],
Li, G.[Gongfu],
Man, H.[Hong],
Xu, J.[Jin],
Confidence-Aware Sentiment Quantification via Sentiment Perturbation
Modeling,
AffCom(15), No. 2, April 2024, pp. 736-750.
IEEE DOI
2406
Perturbation methods, Sentiment analysis, Task analysis, Fake news,
Semantics, Feature extraction, Analytical models,
sentiment quantification
BibRef
Yuan, L.[Li],
Wang, J.[Jin],
Yu, L.C.[Liang-Chih],
Zhang, X.J.[Xue-Jie],
Encoding Syntactic Information into Transformers for Aspect-Based
Sentiment Triplet Extraction,
AffCom(15), No. 2, April 2024, pp. 722-735.
IEEE DOI
2406
Task analysis, Syntactics, Data mining, Tagging, Pipelines,
Transformers, Sentiment analysis,
transformers
BibRef
Lin, R.H.[Rong-Hao],
Hu, H.F.[Hai-Feng],
Multi-Task Momentum Distillation for Multimodal Sentiment Analysis,
AffCom(15), No. 2, April 2024, pp. 549-565.
IEEE DOI
2406
Task analysis, Multitasking, Knowledge engineering,
Sentiment analysis, Feature extraction, Visualization, Acoustics,
multimodal sentiment analysis
BibRef
Zeng, Y.S.[Yu-Shi],
Wang, G.H.[Guo-Hua],
Ren, H.P.[Hao-Peng],
Cai, Y.[Yi],
Leung, H.F.[Ho-Fung],
Li, Q.[Qing],
Huang, Q.[Qingbao],
A Knowledge-Enhanced and Topic-Guided Domain Adaptation Model for
Aspect-Based Sentiment Analysis,
AffCom(15), No. 2, April 2024, pp. 709-721.
IEEE DOI
2406
Syntactics, Feature extraction, Task analysis, Sentiment analysis,
Adaptation models, Portable computers, Knowledge graphs,
cross-domain
BibRef
Wang, Y.[Yu],
Zhou, S.P.[Shun-Ping],
Guan, Q.F.[Qing-Feng],
Fang, F.[Fang],
Yang, N.[Ni],
Li, K.L.[Kang-Lin],
Liu, Y.Y.[Yuan-Yuan],
Enhancing Place Emotion Analysis with Multi-View Emotion Recognition
from Geo-Tagged Photos: A Global Tourist Attraction Perspective,
IJGI(13), No. 7, 2024, pp. 256.
DOI Link
2408
BibRef
Ji, X.Y.[Xiao-Yue],
Dong, Z.[Zhekang],
Zhou, G.[Guangdong],
Lai, C.S.[Chun Sing],
Qi, D.L.[Dong-Lian],
MLG-NCS: Multimodal Local-Global Neuromorphic Computing System for
Affective Video Content Analysis,
SMCS(54), No. 8, August 2024, pp. 5137-5149.
IEEE DOI
2408
Memristors, Iron, Electrodes, Training, Sputtering,
Neuromorphic engineering, Low latency communication,
neuromorphic computing system (NCS)
BibRef
Huang, J.[Jian],
Ji, Y.L.[Yan-Li],
Qin, Z.[Zhen],
Yang, Y.[Yang],
Shen, H.T.[Heng Tao],
Dominant SIngle-Modal SUpplementary Fusion (SIMSUF) for Multimodal
Sentiment Analysis,
MultMed(26), 2024, pp. 8383-8394.
IEEE DOI
2408
Transformers, Sentiment analysis, Semantics, Task analysis, Fuses,
Feature extraction, Representation learning, Multimodal fusion, transformer
BibRef
Xie, Z.Y.[Zhu-Yang],
Yang, Y.[Yan],
Wang, J.[Jie],
Liu, X.R.[Xiao-Rong],
Li, X.F.[Xiao-Fan],
Trustworthy Multimodal Fusion for Sentiment Analysis in Ordinal
Sentiment Space,
CirSysVideo(34), No. 8, August 2024, pp. 7657-7670.
IEEE DOI
2408
Uncertainty, Sentiment analysis, Estimation, Feature extraction,
Reliability, Task analysis, Data models, ordinal regression
BibRef
Li, M.[Meng],
Zhu, Z.F.[Zhen-Fang],
Li, K.[Kefeng],
Zhou, L.H.[Li-Hua],
Zhao, Z.[Zhen],
Pei, H.L.[Hong-Li],
Joint training strategy of unimodal and multimodal for multimodal
sentiment analysis,
IVC(149), 2024, pp. 105172.
Elsevier DOI
2408
Multimodal sentiment analysis, Multimodal fusion, Multimodal interaction
BibRef
Zijun, W.[Wang],
Naicheng, J.[Jiang],
Xinyue, C.[Chao],
Bin, S.[Sun],
Multi-task disagreement-reducing multimodal sentiment fusion network,
IVC(149), 2024, pp. 105158.
Elsevier DOI
2408
Multimodal sentiment analysis, Multimodal fusion,
Sentiment disagreement, Multi-task learning
BibRef
Liu, Z.J.[Zi-Jun],
Cai, L.[Li],
Yang, W.J.[Wen-Jie],
Liu, J.H.[Jun-Hui],
Sentiment analysis based on text information enhancement and
multimodal feature fusion,
PR(156), 2024, pp. 110847.
Elsevier DOI
2408
Sentiment analysis, Text information enhancement,
Multimodal data fusion, Cross-modal attention mechanism, Sentiment lexicons
BibRef
Diwali, A.[Arwa],
Saeedi, K.[Kawther],
Dashtipour, K.[Kia],
Gogate, M.[Mandar],
Cambria, E.[Erik],
Hussain, A.[Amir],
Sentiment Analysis Meets Explainable Artificial Intelligence:
A Survey on Explainable Sentiment Analysis,
AffCom(15), No. 3, July 2024, pp. 837-846.
IEEE DOI
2409
Sentiment analysis, Analytical models, Computational modeling,
Task analysis, Deep learning, Predictive models, interpretability
BibRef
Wang, Q.L.[Qian-Long],
Xu, H.L.[Hong-Ling],
Wen, Z.Y.[Zhi-Yuan],
Liang, B.[Bin],
Yang, M.[Min],
Qin, B.[Bing],
Xu, R.F.[Rui-Feng],
Image-to-Text Conversion and Aspect-Oriented Filtration for
Multimodal Aspect-Based Sentiment Analysis,
AffCom(15), No. 3, July 2024, pp. 1264-1278.
IEEE DOI
2409
Sentiment analysis, Visualization, Task analysis,
Social networking (online), Filtration, Analytical models,
pre-trained language model
BibRef
Cen, J.L.[Jing-Lun],
Qing, C.M.[Chun-Mei],
Ou, H.[Haochun],
Xu, X.M.[Xiang-Min],
Tan, J.P.[Jun-Peng],
MASANet: Multi-Aspect Semantic Auxiliary Network for Visual Sentiment
Analysis,
AffCom(15), No. 3, July 2024, pp. 1439-1450.
IEEE DOI
2409
Visualization, Semantics, Sentiment analysis, Task analysis,
Feature extraction, Affective computing,
semantic auxiliary
BibRef
Sharma, S.[Shivam],
Ramaneswaran, S.,
Akhtar, M.S.[Md. Shad],
Chakraborty, T.[Tanmoy],
Emotion-Aware Multimodal Fusion for Meme Emotion Detection,
AffCom(15), No. 3, July 2024, pp. 1800-1811.
IEEE DOI
2409
Task analysis, Emotion recognition, Social networking (online),
Visualization, Mood, Affective computing, Internet, Emotion analysis,
social media
BibRef
Watanabe, S.[Shuhei],
Horiuchi, T.[Takahiko],
Layered Modeling of Affective, Perception, and Visual Properties:
Optimizing Structure With Genetic Algorithm,
HMS(54), No. 5, October 2024, pp. 609-618.
IEEE DOI
2410
Mathematical models, Visualization, Genetic algorithms,
Correlation, Computational modeling, Numerical analysis, perception
BibRef
Zhang, B.Z.[Bao-Zheng],
Yuan, Z.Q.[Zi-Qi],
Xu, H.[Hua],
Gao, K.[Kai],
Crossmodal Translation Based Meta Weight Adaption for Robust
Image-Text Sentiment Analysis,
MultMed(26), 2024, pp. 9949-9961.
IEEE DOI
2410
Robustness, Task analysis, Sentiment analysis, Semantics,
Metalearning, Representation learning,
robustness and reliability
BibRef
Xie, S.F.[Shu-Fan],
Chen, Q.H.[Qiao-Hong],
Fang, X.[Xian],
Sun, Q.[Qi],
Global information regulation network for multimodal sentiment
analysis,
IVC(151), 2024, pp. 105297.
Elsevier DOI
2411
Multimodal sentiment analysis, Gate mechanism,
Unsupervised learning, Contrastive learning
BibRef
Liu, W.C.[Wu-Chao],
Li, W.G.[Wen-Gen],
Ruan, Y.P.[Yu-Ping],
Shu, Y.[Yulou],
Chen, J.T.[Jun-Tao],
Li, Y.[Yina],
Yu, C.[Caili],
Zhang, Y.C.[Yi-Chao],
Guan, J.H.[Ji-Hong],
Zhou, S.[Shuigeng],
Weakly Correlated Multimodal Sentiment Analysis:
New Dataset and Topic-Oriented Model,
AffCom(15), No. 4, October 2024, pp. 2070-2082.
IEEE DOI
2412
Sentiment analysis, Social networking (online), Reviews,
Analytical models, Correlation, Visualization, Blogs,
weak correlation
BibRef
Liu, L.[Lulin],
Qin, T.[Tao],
Zhou, Y.K.[Yuan-Kun],
Wang, C.X.[Chen-Xu],
Guan, X.H.[Xiao-Hong],
SynSem-ASTE: An Enhanced Multi-Encoder Network for Aspect Sentiment
Triplet Extraction With Syntax and Semantics,
AffCom(15), No. 4, October 2024, pp. 2097-2111.
IEEE DOI
2412
Syntactics, Semantics, Task analysis, Tagging, Feature extraction,
Sentiment analysis, Pipelines, Aspect-based sentiment analysis,
cross attention
BibRef
Zhang, T.[Ting],
Song, B.[Bin],
Zhang, Z.Y.[Zhi-Yong],
Zhang, Y.J.[Ya-Juan],
Multimodal sentiment analysis based on multi-stage graph fusion
networks under random missing modality conditions,
IET-IPR(19), No. 1, 2025, pp. e13310.
DOI Link
2501
missing modality, multimodal fusion,
multimodal sentiment analysis, transformer
BibRef
Gao, A.[Anqi],
Zhong, Y.[Yantao],
Product Color Design Concept that Considers Human Emotion Perception:
Based on Deep Learning and Cluster Analysis,
IET-Bio(2024), No. 1, 2024, pp. 5576927.
DOI Link
2501
clustering analysis, emotional color, style fusion, transfer learning
BibRef
Zhang, J.[Jing],
Zheng, L.[Liang],
Wang, M.[Meng],
Guo, D.[Dan],
Training A Small Emotional Vision Language Model for Visual Art
Comprehension,
ECCV24(LXVII: 397-413).
Springer DOI
2412
BibRef
Darraz, N.[Nossayba],
Karabila, I.[Ikram],
El-Ansari, A.[Anas],
Alami, N.[Nabil],
Chenouni, S.[Salma],
El Mallahi, M.[Mostafa],
Improving Hybrid Recommendations with VADER-Powered Sentiment
Analysis*,
ISCV24(1-7)
IEEE DOI
2408
Sentiment analysis, Reviews, Filtering, Computational modeling,
User-generated content, Transforms, Root mean square, Lasso
BibRef
Akallal, Y.[Yassine],
Hdioud, B.[Boutaina.],
Thami, R.O.H.[Rachid. Oulad Haj],
Content and link Analysis of a Moroccan entrepreneurs group,
ISCV24(1-8)
IEEE DOI
2408
Sentiment analysis, Analytical models,
Social networking (online), Intelligent systems
BibRef
Kojima, B.[Banri],
Komamizu, T.[Takahiro],
Kawanishi, Y.[Yasutomo],
Doman, K.[Keisuke],
Ide, I.[Ichiro],
Image Impression Estimation by Clustering People with Similar Tastes,
MVA23(1-5)
DOI Link
2403
Annotations, Machine vision, Estimation, Training data, Explosions
BibRef
Weng, S.[Shuchen],
Zhang, P.X.[Pei-Xuan],
Chang, Z.[Zheng],
Wang, X.L.[Xin-Long],
Li, S.[Si],
Shi, B.X.[Bo-Xin],
Affective Image Filter: Reflecting Emotions from Text to Images,
ICCV23(10776-10785)
IEEE DOI
2401
BibRef
Kim, S.[Seoyun],
An, C.[ChaeHee],
Cha, J.[Junyeop],
Kim, D.J.[Dong-Jae],
Park, E.[Eunil],
D-ViSA: A Dataset for Detecting Visual Sentiment from Art Images,
ASI23(3043-3051)
IEEE DOI Code:
WWW Link.
2401
BibRef
Tong, S.[Song],
Duan, J.Y.[Jing-Yi],
Liang, X.F.[Xue-Feng],
Kumada, T.[Takatsune],
Peng, K.[Kaiping],
Nakashima, R.[Ryoichi],
Inferring Affective Experience from the Big Picture Metaphor:
A Two-dimensional Visual Breadth Model,
ABAW23(5880-5888)
IEEE DOI
2309
BibRef
Feng, T.L.[Ting-Lei],
Liu, J.X.[Jia-Xuan],
Yang, J.F.[Ju-Feng],
Probing Sentiment-Oriented PreTraining Inspired by Human Sentiment
Perception Mechanism,
CVPR23(2850-2860)
IEEE DOI
2309
BibRef
Luo, W.[Wei],
Xu, M.[Mengying],
Lai, H.J.[Han-Jiang],
Multimodal Reconstruct and Align Net for Missing Modality Problem in
Sentiment Analysis,
MMMod23(II: 411-422).
Springer DOI
2304
BibRef
Lu, M.L.[Meng-Lin],
Zhao, T.Z.[Tong-Zhou],
Mao, C.B.[Cheng-Bo],
Wang, H.[Huibo],
Target-level Sentiment Analysis Based on Image and Text Fusion,
ICRVC22(305-309)
IEEE DOI
2301
Sentiment analysis, Visualization, Analytical models, Fuses,
Splicing, Bit error rate, Feature extraction, attention mechanism
BibRef
Wang, X.[Xue],
Liu, P.[Peiyu],
Zhu, Z.F.[Zhen-Fang],
Lu, R.[Ran],
Aspect-based Sentiment Analysis with Graph Convolutional Networks
over Dependency Awareness,
ICPR22(2238-2245)
IEEE DOI
2212
Sentiment analysis, Analytical models, Semantics,
Benchmark testing, Graph neural networks, Grammar
BibRef
Yuan, X.W.[Xiao-Wei],
Hu, J.Y.[Jing-Yuan],
Zhang, X.D.[Xiao-Dan],
Lv, H.L.[Hong-Lei],
Pay attention to emoji: Feature Fusion Network with EmoGraph2vec
Model for Sentiment Analysis,
ICPR22(1529-1535)
IEEE DOI
2212
Representation learning, Sentiment analysis, Analytical models,
Computational modeling, Semantics, Neural networks, Knowledge based systems
BibRef
Zhu, W.[Wei],
Zheng, Z.H.[Zi-He],
Zheng, H.[Haitian],
Lyu, H.[Hanjia],
Luo, J.B.[Jie-Bo],
Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis,
ICPR22(571-577)
IEEE DOI
2212
Training, Learning systems, Visualization, Sentiment analysis,
Aggregates, Neural networks, Prototypes
BibRef
Jin, L.[Lingbin],
Zhang, L.[Li],
Discriminant Variance Criterion for Sentiment Analysis,
ICPR22(3056-3062)
IEEE DOI
2212
Support vector machines, Sentiment analysis, Semantics,
Feature extraction, Information filters, Logistics
BibRef
Zhang, Q.G.[Qion-Gan],
Shi, L.[Lei],
Liu, P.[Peiyu],
Zhu, Z.F.[Zhen-Fang],
Xu, L.C.[Lian-Cheng],
IMCN: Identifying Modal Contribution Network for Multimodal Sentiment
Analysis,
ICPR22(4729-4735)
IEEE DOI
2212
Sentiment analysis, Visualization, Analytical models,
Noise reduction, Benchmark testing, Acoustics, modality contribution
BibRef
Trivedi, A.K.[Ashutosh Kumar],
Tiwari, A.[Abhishek],
Saha, S.[Sriparna],
Maitra, A.[Anutosh],
Ramnani, R.[Roshni],
Sengupta, S.[Shubhashis],
Towards Sentiment and Emotion aided Intent Detection,
ICPR22(2510-2516)
IEEE DOI
2212
Learning systems, Emotion recognition, Correlation, Semantics,
Tagging, Feature extraction, Multitasking
BibRef
Ye, Y.R.[Ying-Rui],
Moroto, Y.[Yuya],
Maeda, K.[Keisuke],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Visual Sentiment Prediction Using Cross-Way Few-Shot Learning Based
on Knowledge Distillation,
ICIP22(3838-3842)
IEEE DOI
2211
Training, Visualization, Training data, Predictive models,
Robustness, Task analysis, Visual sentiment prediction, sentiment theory
BibRef
Tliba, M.[Marouane],
Kerkouri, M.A.[Mohamed Amine],
Chetouani, A.[Aladine],
Bruno, A.[Alessandro],
Self Supervised Scanpath Prediction Framework for Painting Images,
Ego4D-EPIC22(1538-1547)
IEEE DOI
2210
Visualization, Self-supervised learning, Predictive models,
Observers, Quality assessment, Task analysis
BibRef
Aslan, S.[Sinem],
Castellano, G.[Giovanna],
Digeno, V.[Vincenzo],
Migailo, G.[Giuseppe],
Scaringi, R.[Raffaele],
Vessio, G.[Gennaro],
Recognizing the Emotions Evoked by Artworks Through Visual Features and
Knowledge Graph-Embeddings,
FAPER22(129-140).
Springer DOI
2208
BibRef
Bounab, Y.[Yazid],
Oussalah, M.[Mourad],
Beddiar, D.R.[Djamila Romaissa],
Impact of Quality Of Images On Users Behavior On Social Media,
IPTA20(1-6)
IEEE DOI
2206
Image quality, Correlation, Social networking (online),
Web services, Web 2.0, Tourism industry, Indeexes, social media,
sentiments
BibRef
Zhong, Q.[Qi],
Wang, Q.[Qian],
Liu, J.[Ji],
Combining Knowledge and Multi-modal Fusion for Meme Classification,
MMMod22(I:599-611).
Springer DOI
2203
Sentinment and offensive.
BibRef
Wang, B.Q.[Bin-Qiang],
Dong, G.[Gang],
Zhao, Y.Q.[Ya-Qian],
Li, R.G.[Ren-Gang],
Cao, Q.C.[Qi-Chun],
Chao, Y.Y.[Yin-Yin],
Non-Uniform Attention Network for Multi-modal Sentiment Analysis,
MMMod22(I:612-623).
Springer DOI
2203
BibRef
Bianconi, F.,
Filippucci, M.,
Seccaroni, M.,
Aquinardi, C.M.,
Urban Parametric Perception. the Case Study of the Historic Centre Of
Perugia,
ISPRS21(B2-2021: 839-846).
DOI Link
2201
Eye tracking, EEG analysis.
BibRef
Liang, Y.[Yun],
Maeda, K.[Keisuke],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Deep Metric Network Via Heterogeneous Semantics for Image Sentiment
Analysis,
ICIP21(1039-1043)
IEEE DOI
2201
Measurement, Sentiment analysis, Visualization, Correlation,
Design methodology, Semantics, Deep metric learning, heterogeneous semantics
BibRef
Can, O.[Ogul],
Gürbüz, Y.Z.[Yeti Z.],
Alatan, A.A.[A. Aydvn],
Deep Metric Learning With Alternating Projections Onto Feasible Sets,
ICIP21(1264-1268)
IEEE DOI
2201
Measurement, Systematics, Image processing, Image retrieval,
Training data, Benchmark testing, Metric learning, projections
BibRef
Karaman, K.[Kaan],
Alatan, A.A.[A. Aydin],
Metu Loss: Metric Learning With Entangled Triplet Unified Loss,
ICIP21(1279-1283)
IEEE DOI
2201
Measurement, Potential energy, Extraterrestrial phenomena,
Image processing, Semantics, Image retrieval, Deep metric learning,
image retrieval
BibRef
Maqbool, H.[Hira],
Masek, M.[Martin],
Image Aesthetics Classification using Deep Features and Image
Category,
IVCNZ21(1-5)
IEEE DOI
2201
Deep learning, Industries, Visualization, Automation, Lighting,
Manuals, Feature extraction, Image aesthetics,
deep learning
BibRef
Lian, T.[Tianpei],
Cao, Z.G.[Zhi-Guo],
Xian, K.[Ke],
Pan, Z.Y.[Zhi-Yu],
Zhong, W.C.[Wei-Cai],
Context-Aware Candidates for Image Cropping,
ICIP21(1479-1483)
IEEE DOI
2201
Convolution, Image processing, Manuals, Real-time systems,
Image cropping, fully convolution regression network,
aesthetic quality
BibRef
Yeo, Y.Y.[Yong-Yaw],
See, J.[John],
Wong, L.K.[Lai-Kuan],
Goh, H.N.[Hui-Ngo],
Generating Aesthetic Based Critique for Photographs,
ICIP21(2523-2527)
IEEE DOI
2201
Measurement, Deep learning, Image processing, Semantics, Decoding,
Task analysis, Image captioning, aesthetic quality assessment,
Word Mover's Distance
BibRef
Lian, T.[Tianpei],
Cao, Z.G.[Zhi-Guo],
Lu, H.[Hao],
Wu, Z.J.[Zi-Jin],
Zhong, W.C.[Wei-Cai],
Image Cropping Assisted By Modeling Inter-Patch Relations,
ICIP21(2573-2577)
IEEE DOI
2201
Convolution, Image edge detection, Logic gates, Feature extraction,
Task analysis, Faces, Image cropping, aesthetic quality, edge information
BibRef
Su, N.M.[Norman Makoto],
Crandall, D.J.[David J.],
The Affective Growth of Computer Vision,
CVPR21(9287-9296)
IEEE DOI
2111
Deep learning, Standards, Strain
BibRef
Singh, J.[Jaskirat],
Zheng, L.[Liang],
Combining Semantic Guidance and Deep Reinforcement Learning For
Generating Human Level Paintings,
CVPR21(16382-16391)
IEEE DOI
2111
Backpropagation, Training, Semantics, Pipelines,
Reinforcement learning, Stroke (medical condition)
BibRef
Hong, C.Y.[Chao-Yi],
Du, S.Y.[Shuai-Yuan],
Xian, K.[Ke],
Lu, H.[Hao],
Cao, Z.G.[Zhi-Guo],
Zhong, W.[Weicai],
Composing Photos Like a Photographer,
CVPR21(7053-7062)
IEEE DOI
2111
Photography, Computational modeling,
Benchmark testing
BibRef
Mittal, T.[Trisha],
Mathur, P.[Puneet],
Bera, A.[Aniket],
Manocha, D.[Dinesh],
Affect2MM:
Affective Analysis of Multimedia Content Using Emotion Causality,
CVPR21(5657-5667)
IEEE DOI
2111
Learning systems, Visualization,
Computational modeling, Motion pictures, Facial features
BibRef
Zhang, Y.M.[Yi-Meng],
Zhang, Y.[Yang],
Gao, J.J.[Jiao-Jiao],
The Influence of the Aesthetic Design of Taobao APP on Users' Emotional
Experience,
DHM21(II:403-414).
Springer DOI
2108
BibRef
Kayatani, Y.[Yuta],
Yang, Z.K.[Ze-Kun],
Otani, M.[Mayu],
Garcia, N.[Noa],
Chu, C.[Chenhui],
Nakashima, Y.[Yuta],
Takemura, H.[Haruo],
The Laughing Machine: Predicting Humor in Video,
WACV21(2072-2081)
IEEE DOI
2106
Visualization, TV, Computational modeling,
Face recognition, Predictive models
BibRef
Patro, B.N.[Badri N.],
Lunayach, M.[Mayank],
Srivastava, D.[Deepankar],
Sarvesh, S.[Sarvesh],
Singh, H.[Hunar],
Namboodiri, V.P.[Vinay P.],
Multimodal Humor Dataset: Predicting Laughter tracks for Sitcoms,
WACV21(576-585)
IEEE DOI
WWW Link.
2106
Dataset, Humor. Annotations, Semantics, Bit error rate,
Manuals, Task analysis
BibRef
Tashu, T.M.[Tsegaye Misikir],
Horváth, T.[Tomáš],
Attention-based Multi-Modal Emotion Recognition from Art,
FAPER20(604-612).
Springer DOI
2103
BibRef
Zhang, H.,
Zhang, M.,
Research on Cyberpunk Images in the Visual Digital Media,
CVIDL20(39-43)
IEEE DOI
2102
art, computer literacy, cultural aspects,
educational administrative data processing, human factors,
visual digital media
BibRef
Du, J.,
Li, T.,
The Establishment of Color Proportion and Color Schemes Database of
Shaanxi Fengxiang Wood Engraving New Year Painting,
CVIDL20(305-312)
IEEE DOI
2102
art, image colour analysis, image representation, image scanners,
wood, color schemes database, color value data,
color database
BibRef
Ching, J.H.,
See, J.,
Wong, L.K.,
Learning Image Aesthetics by Learning Inpainting,
ICIP20(2246-2250)
IEEE DOI
2011
Task analysis, Visualization, Loss measurement, Machine learning,
Generative adversarial networks, Generators, Feature extraction,
photographic rules
BibRef
Newman, A.[Anelise],
Fosco, C.[Camilo],
Casser, V.[Vincent],
Lee, A.[Allen],
McNamara, B.[Barry],
Oliva, A.[Aude],
Multimodal Memorability: Modeling Effects of Semantics and Decay on
Video Memorability,
ECCV20(XVI: 223-240).
Springer DOI
2010
BibRef
Yang, C.,
Kong, L.,
Research on Product Style Design Based on Genetic Algorithm,
ICIVC20(317-321)
IEEE DOI
2009
Product design, Genetic algorithms, Sociology, Statistics,
Feature extraction, Fatigue, stylized design, genetic algorithm,
co-evolution
BibRef
Pilli, S.,
Patwardhan, M.,
Pedanekar, N.,
Karande, S.,
Predicting Sentiments in Image Advertisements using Semantic
Relations among Sentiment Labels,
EmotioNet20(1640-1648)
IEEE DOI
2008
Semantics, Convolution, Measurement, Feature extraction,
Mathematical model, Neural networks, Visualization
BibRef
Polanía, L.F.,
Flores, M.,
Nokleby, M.,
Li, Y.,
Learning Furniture Compatibility with Graph Neural Networks,
WiCV20(1505-1513)
IEEE DOI
2008
Feature extraction, Computational modeling, Data models,
Neural networks, Logic gates, Task analysis
BibRef
Li, D.,
Zhang, J.,
Huang, K.,
Yang, M.,
Composing Good Shots by Exploiting Mutual Relations,
CVPR20(4212-4221)
IEEE DOI
2008
Feature extraction, Logic gates, Predictive models, Convolution,
Cognition, Task analysis, Correlation
BibRef
Chen, Q.,
Zhang, W.,
Zhou, N.,
Lei, P.,
Xu, Y.,
Zheng, Y.,
Fan, J.,
Adaptive Fractional Dilated Convolution Network for Image Aesthetics
Assessment,
CVPR20(14102-14111)
IEEE DOI
2008
Kernel, Convolution, Training, Machine learning, Interpolation,
Task analysis, Libraries
BibRef
Liu, D.,
Puri, R.,
Kamath, N.,
Bhattacharya, S.,
Composition-Aware Image Aesthetics Assessment,
WACV20(3558-3567)
IEEE DOI
2006
Visualization, Convolution, Computational modeling, Cognition,
Image edge detection, Task analysis, Integrated circuits
BibRef
Ghosal, K.,
Rana, A.,
Smolic, A.,
Aesthetic Image Captioning From Weakly-Labelled Photographs,
CroMoL19(4550-4560)
IEEE DOI
2004
convolutional neural nets, feature extraction, image annotation,
image filtering, Internet, photography, probability,
Noisy Data
BibRef
Kastner, M.A.[Marc A.],
Ide, I.[Ichiro],
Kawanishi, Y.[Yasutomo],
Hirayama, T.[Takatsugu],
Deguchi, D.[Daisuke],
Murase, H.[Hiroshi],
Browsing Visual Sentiment Datasets Using Psycholinguistic Groundings,
MMMod20(II:697-702).
Springer DOI
2003
BibRef
Li, Z.Q.[Zheng-Qing],
Zha, Z.J.[Zheng-Jun],
Cao, Y.[Yang],
Deep Palette-based Color Decomposition for Image Recoloring with
Aesthetic Suggestion,
MMMod20(I:127-138).
Springer DOI
2003
BibRef
Al-Halah, Z.,
Aitken, A.,
Shi, W.,
Caballero, J.,
Smile, Be Happy :) Emoji Embedding for Visual Sentiment Analysis,
CroMoL19(4491-4500)
IEEE DOI
2004
data analysis, data visualisation, image classification,
learning (artificial intelligence), neural nets,
transfer learning
BibRef
Shen, X.[Xi],
Efros, A.A.[Alexei A.],
Aubry, M.[Mathieu],
Discovering Visual Patterns in Art Collections With
Spatially-Consistent Feature Learning,
CVPR19(9270-9279).
IEEE DOI
2002
BibRef
Huang, C.[Chong],
Lin, C.E.[Chuan-En],
Yang, Z.Y.[Zhen-Yu],
Kong, Y.[Yan],
Chen, P.[Peng],
Yang, X.[Xin],
Cheng, K.T.[Kwang-Ting],
Learning to Film From Professional Human Motion Videos,
CVPR19(4239-4248).
IEEE DOI
2002
BibRef
Hosu, V.[Vlad],
Goldlucke, B.[Bastian],
Saupe, D.[Dietmar],
Effective Aesthetics Prediction With Multi-Level Spatially Pooled
Features,
CVPR19(9367-9375).
IEEE DOI
2002
BibRef
Ye, J.[Jin],
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Xing, H.[Hao],
Li, J.L.[Jun-Li],
Ji, R.R.[Rong-Rong],
Visual-Textual Sentiment Analysis in Product Reviews,
ICIP19(869-873)
IEEE DOI
1910
sentiment analysis, product reviews, tucker decomposition, DTF
BibRef
Wang, W.N.[Wei-Ning],
Su, J.J.[Jun-Jie],
Li, L.M.[Le-Min],
Xu, X.M.[Xiang-Min],
Luo, J.B.[Jie-Bo],
Meta-Learning Perspective for Personalized Image Aesthetics
Assessment,
ICIP19(1875-1879)
IEEE DOI
1910
Image Aesthetics, Personalized Preference, Meta-Learning,
Meta regularization, Deep Learning
BibRef
Zhang, W.,
Zhai, G.,
Yang, X.,
Yan, J.,
Hierarchical Features Fusion for Image Aesthetics Assessment,
ICIP19(3771-3775)
IEEE DOI
1910
Image Aesthetics Assessment, Low-rank Bilinear Pooling, Hierarchical Features
BibRef
Yu, J.,
Cui, C.,
Geng, L.,
Ma, Y.,
Yin, Y.,
Towards Unified Aesthetics and Emotion Prediction in Images,
ICIP19(2526-2530)
IEEE DOI
1910
Aesthetics assessment, emotion recognition, multi-task learning
BibRef
Wang, W.,
Deng, R.,
Modeling Human Perception for Image Aesthetic Assessment,
ICIP19(1029-1033)
IEEE DOI
1910
Image Aesthetic Assessment, Deep Neural Network,
Attractive Region, Adaptive Aggregation
BibRef
Rodríguez-Pardo, C.[Carlos],
Bilen, H.[Hakan],
Personalised Aesthetics with Residual Adapters,
IbPRIA19(I:508-520).
Springer DOI
1910
BibRef
Felicetti, A.[Andrea],
Martini, M.[Massimo],
Paolanti, M.[Marina],
Pierdicca, R.[Roberto],
Frontoni, E.[Emanuele],
Zingaretti, P.[Primo],
Visual and Textual Sentiment Analysis of Daily News Social Media Images
by Deep Learning,
CIAP19(I:477-487).
Springer DOI
1909
BibRef
Stefanini, M.[Matteo],
Cornia, M.[Marcella],
Baraldi, L.[Lorenzo],
Corsini, M.[Massimiliano],
Cucchiara, R.[Rita],
Artpedia: A New Visual-Semantic Dataset with Visual and Contextual
Sentences in the Artistic Domain,
CIAP19(II:729-740).
Springer DOI
1909
BibRef
Offert, F.[Fabian],
Images of Image Machines. Visual Interpretability in Computer Vision
for Art,
CVAA18(II:710-715).
Springer DOI
1905
BibRef
Garcia, N.[Noa],
Vogiatzis, G.[George],
How to Read Paintings: Semantic Art Understanding with Multi-modal
Retrieval,
CVAA18(II:676-691).
Springer DOI
1905
BibRef
Gonthier, N.[Nicolas],
Gousseau, Y.[Yann],
Ladjal, S.[Said],
Bonfait, O.[Olivier],
Weakly Supervised Object Detection in Artworks,
CVAA18(II:692-709).
Springer DOI
1905
BibRef
Cianci, M.G.,
Molinari, M.,
Information Modeling and Landscape: Intervention Methodology For
Reading Complex Systems,
3DARCH19(269-276).
DOI Link
1904
Aesthetics of landscapes.
BibRef
Ma, N.,
Volkov, A.,
Livshits, A.,
Pietrusinski, P.,
Hu, H.,
Bolin, M.,
An Universal Image Attractiveness Ranking Framework,
WACV19(657-665)
IEEE DOI
1904
image classification, image retrieval, indexing,
learning (artificial intelligence), neural nets, search engines,
Indexes
BibRef
Saito, J.[Junki],
Nakamura, S.[Satoshi],
Fontender: Interactive Japanese Text Design with Dynamic Font Fusion
Method for Comics,
MMMod19(II:554-559).
Springer DOI
1901
BibRef
Apostolidis, K.[Konstantinos],
Mezaris, V.[Vasileios],
Image Aesthetics Assessment Using Fully Convolutional Neural Networks,
MMMod19(I:361-373).
Springer DOI
1901
BibRef
Wei, Z.,
Zhang, J.,
Shen, X.,
Lin, Z.,
Mech, R.,
Hoai, M.,
Samaras, D.,
Good View Hunting: Learning Photo Composition from Dense View Pairs,
CVPR18(5437-5446)
IEEE DOI
1812
Proposals, Training, Agriculture, Task analysis, Knowledge transfer,
Protocols, Virtual private networks
BibRef
Liu, W.,
Fu, X.,
Introduce More Characteristics of Samples into Cross-domain Sentiment
Classification,
ICPR18(25-30)
IEEE DOI
1812
Training, Adaptation models, Neural networks, Task analysis,
Training data, Mathematical model, Data models
BibRef
Fan, S.,
Shen, Z.,
Jiang, M.,
Koenig, B.L.,
Xu, J.,
Kankanhalli, M.S.,
Zhao, Q.,
Emotional Attention: A Study of Image Sentiment and Visual Attention,
CVPR18(7521-7531)
IEEE DOI
1812
Semantics, Visualization, Computational modeling, Observers,
Neural networks, Benchmark testing, Image annotation
BibRef
Paolanti, M.[Marina],
Kaiser, C.[Carolin],
Schallner, R.[René],
Frontoni, E.[Emanuele],
Zingaretti, P.[Primo],
Visual and Textual Sentiment Analysis of Brand-Related Social Media
Pictures Using Deep Convolutional Neural Networks,
CIAP17(I:402-413).
Springer DOI
1711
BibRef
Ullah, M.A.,
Islam, M.M.,
Azman, N.B.,
Zaki, Z.M.,
An overview of Multimodal Sentiment Analysis research:
Opportunities and Difficulties,
IVPR17(1-6)
IEEE DOI
1704
Face
BibRef
Nemati, S.,
Naghsh-Nilchi, A.R.,
Exploiting evidential theory in the fusion of textual, audio, and
visual modalities for affective music video retrieval,
IPRIA17(222-228)
IEEE DOI
1712
emotion recognition, image fusion, inference mechanisms,
sentiment analysis, social networking (online),
Lexicon-based sentiment analysis
BibRef
Wu, L.,
Liu, S.,
Jian, M.,
Luo, J.,
Zhang, X.,
Qi, M.,
Reducing noisy labels in weakly labeled data for visual sentiment
analysis,
ICIP17(1322-1326)
IEEE DOI
1803
Indexes, Visual sentiment analysis, deep learning,
mislabeled images, sentiment conflict
BibRef
Chen, X.,
Wang, Y.,
Liu, Q.,
Visual and textual sentiment analysis using deep fusion convolutional
neural networks,
ICIP17(1557-1561)
IEEE DOI
1803
Convolutional neural networks, Feature extraction, Semantics,
Sentiment analysis, Social network services, Training,
visual sentiment
BibRef
Zheng, H.,
Chen, T.,
You, Q.,
Luo, J.,
When saliency meets sentiment: Understanding how image content
invokes emotion and sentiment,
ICIP17(630-634)
IEEE DOI
1803
Analytical models, Computational modeling, Correlation, Proposals,
Saliency detection, Sentiment analysis, Visualization, saliency,
sentiment perception
BibRef
Niu, T.[Teng],
Zhu, S.[Shiai],
Pang, L.[Lei],
El Saddik, A.[Abdulmotaleb],
Sentiment Analysis on Multi-View Social Data,
MMMod16(II: 15-27).
Springer DOI
1601
BibRef
Shin, A.[Andrew],
Ushiku, Y.[Yoshitaka],
Harada, T.[Tatsuya],
Image Captioning with Sentiment Terms via Weakly-Supervised Sentiment
Dataset,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Sartori, A.[Andreza],
Senyazar, B.[Berhan],
Salah, A.A.A.[Alkim Almila Akdag],
Salah, A.A.[Albert Ali],
Sebe, N.[Nicu],
Emotions in Abstract Art: Does Texture Matter?,
CIAP15(I:671-682).
Springer DOI
1511
BibRef
Kang, D.W.[Dong-Wann],
Shim, H.[Hyounoh],
Yoon, K.[Kyunghyun],
Mood from painting:
Estimating the mood of painting by using color image scale,
FCV15(1-4)
IEEE DOI
1506
art
BibRef
Gbèhounou, S.[Syntyche],
Lecellier, F.[François],
Can Salient Interest Regions Resume Emotional Impact of an Image?,
CAIP13(515-522).
Springer DOI
1308
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Rendering Specific Surfaces, Applied Rendering .