Jacobus, C.J.,
Chien, R.T.,
Intermediate-Level Vision:
Building Vertex-String-Surface (V-S-S) Graphs,
CGIP(15), No. 4, April 1981, pp. 339-363.
Elsevier DOI
BibRef
8104
Umeyama, S.,
An Eigen Decomposition Approach to Weighted Graph Matching Problems,
PAMI(10), No. 5, September 1988, pp. 695-703.
IEEE DOI
Matching, Eigen Values. Applied to transformations
See also Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. and articulated objects
See also Parameterized Point Pattern Matching and Its Application to Recognition of Object Families.
BibRef
8809
Yang, B.,
Snyder, W.E., and
Bilbro, G.L.,
Matching Oversegmented 3D Images to Models Using Association Graphs,
IVC(7), No. 2, May 1989, pp. 135-143.
Elsevier DOI Region matching. Find cliques in a depth first match.
BibRef
8905
Fan, T.J.,
Medioni, G.G., and
Nevatia, R.,
Recognizing 3-D Objects Using Surface Descriptions,
PAMI(11), No. 11, November 1989, pp. 1140-1157.
IEEE DOI
BibRef
8911
USC Computer Vision
BibRef
And:
ICCV88(474-481).
IEEE DOI
BibRef
Earlier:
3-D Object Recognition Using Surface Descriptions,
DARPA88(383-397).
Recognize Three-Dimensional Objects. Use the surface descriptions to recognize the objects. Find a
small set of possible matches to the image graph representation
and apply the complete matching program to these. Deals with
overlaps and predictions based on partial matches.
See also Segmented Description of 3-D Surfaces.
BibRef
Fan, T.J.,
Describing and Recognizing 3-D Objects Using Surface Properties,
Berlin:
Springer-Verlag1989.
BibRef
8900
BookThe report was:
BibRef
Ph.D.Thesis (CS), August 1988.
BibRef
USC_IRISTR-237.
BibRef
Shapiro, L.G.,
Moriarty, J.D.[John D.],
Haralick, R.M., and
Mulgaonkar, P.G.[Prasanna G.],
Matching Three-Dimensional Objects Using a Relational Paradigm,
PR(17), No. 4, 1984, pp. 385-405.
Elsevier DOI
BibRef
8400
And:
VPISUCS TR. 1983.
Distance Metric.
BibRef
And:
Matching Three-Dimensional Models,
PRIP81(534-541).
This paper discusses the problems of matching 3-d relational models
and input descriptions. A relational distance metric and a feature
attribute distance metric are used to divide the models into
possibly overlapping clusters. The input is matched only to the
models in those clusters that it is similar to.
BibRef
Mulgaonkar, P.G.[Prasanna G.],
Shapiro, L.G., and
Haralick, R.M.,
Matching 'Sticks, Plates, and Blobs' Objects Using
Geometric and Relational Constraints,
IVC(2), No. 2, May 1984, pp. 85-98.
Elsevier DOI
BibRef
8405
Earlier:
Recognizing Three-Dimensional Objects from Single Perspective Views
Using Geometric and Relational Reasoning,
PRIP82(479-484).
BibRef
And:
Identification of Man-Made Objects using Geometric
and Relational Constraints,
DraftThe model specifies the position of the plates, blobs, and sticks
with angles and connections. The actual results are based on what
the relations and angles can look like from different views.
Generate the guess at the camera position and predict how the
object will then look.
BibRef
Shapiro, L.G.[Linda G.],
Moriarty, J.D.[John D.],
Mulgaonkar, P.G.[Prasanna G.], and
Haralick, R.M.[Robert M.],
Sticks, Plates, and Blobs:
Three-Dimensional Object Representation for Scene Analysis,
AAAI-80(28-31).
BibRef
8000
Mulgaonkar, P.G.,
Shapiro, L.G., and
Haralick, R.M.,
Using Rough Relational Models for Geometric Reasoning,
CVWS82(116-124).
Represent objects with plates, sticks, and blobs. Use these for
matching the input view. Objects are put together with binary
relations and triples which specify connections and possibly
an angle in the connection.
BibRef
8200
Shapiro, L.G.,
Mulgaonkar, P.G.,
Moriarity, J.D.,
Haralick, R.M.,
A Generalized Blob Model for 3D Object Representation,
ConferenceWorkshop on Pictoral Data Description, 1980, pp. 106-116.
BibRef
8000
Shapiro, L.G.,
Haralick, R.M.,
A General Spatial Data Structure,
PRIP78(238-249).
BibRef
7800
Henikoff, J.[Jorja],
Shapiro, L.G.[Linda G.],
Representative Patterns for Model-Based Matching,
PR(26), No. 7, July 1993, pp. 1087-1098.
BibRef
9307
Earlier:
Elsevier DOI
Interesting Patterns for Model-Based Machine Vision,
ICCV90(535-538).
IEEE DOI
BibRef
Shapiro, L.G.,
View-Class Representation and Matching of 3D Objects,
VF91(479-493).
Determine the correspondence between features in the image and
features in a view class of a particular object. This gives
pose and identifies the object.
BibRef
9100
Shapiro, L.G.,
Structural Shape Description and Matching,
PRIP79(413-420).
BibRef
7900
Chen, C.H., and
Mulgaonkar, P.G.,
Automatic Vision Programming,
CVGIP(55), No. 2, March 1992, pp. 170-183.
Elsevier DOI Compute the utility of features to use in the matching and
generate recognition programs.
BibRef
9203
Chen, C.H.,
Mulgaonkar, P.G.,
CAD-Based Feature Utility Measures for Automatic Vision Programming,
CADBV91(106-114).
BibRef
9100
Chen, C.H., and
Mulgaonkar, P.G.,
Uncertainty Update and
Dynamic Search Window for Model-Based Object Recognition,
CVPR91(692-694).
IEEE DOI
BibRef
9100
Mulgaonkar, P.G.,
Haralick, R.M.,
Shapiro, L.G.,
A Computational Framework for Hypothesis Based Reasoning and Its
Applications to Perspective Analysis,
CAIA84(287-294).
BibRef
8400
Lee, H.J.[Hsi-Jian],
Lei, W.L.[Wen-Ling],
Region Matching and Depth Finding for 3D Objects in
Stereo Aerial Photographs,
PR(23), No. 1-2, 1990, pp. 81-94.
Elsevier DOI Geometric relations only.
BibRef
9000
Li, S.Z.,
Toward 3D Vision from Range Images:
An Optimization Framework and Parallel Networks,
CVGIP(55), No. 3, May 1992, pp. 231-260.
Elsevier DOI A unified approach based on optimization at all levels. Low-level
is estimating curvatures, segmenting these curvature images, match
graph structures.
BibRef
9205
Li, S.Z.,
Object Recognition from Range Data Prior to Segmentation,
IVC(10), No. 8, October 1992, pp. 566-576.
Elsevier DOI
BibRef
9210
Kao, C.Y.[Ching-Yao],
Kumara, S.R.T.[Soundar R.T.], and
Kasturi, R.[Rangachar],
Extraction of 3D Object Features from CAD Boundary Representation
Using the Super Relation Graph Method,
PAMI(17), No. 12, December 1995, pp. 1228-1233.
IEEE DOI
BibRef
9512
Cinque, L.,
Yasuda, D.,
Shapiro, L.G.,
Tanimoto, S.L.,
Allen, B.,
An Improved Algorithm for Relational Distance Graph Matching,
PR(29), No. 2, February 1996, pp. 349-359.
Elsevier DOI
BibRef
9602
Allen, R.[Robert],
Yasuda, D.[Dean],
Tanimoto, S.L.[Steven L.],
Shapiro, L.G.[Linda G.],
Cinque, L.[Luigi],
A Parallel Algorithm for Graph Matching and Its MASPAR Implementation,
CAMP93(13-18).
Parallel Algorithms.
BibRef
9300
Caelli, T.M.,
Osman, E.,
West, G.A.W.,
3D Shape Matching and Inspection Using Geometric Features and
Relational Learning,
CVIU(72), No. 3, December 1998, pp. 340-350.
DOI Link
BibRef
9812
Li, S.J.[San-Jiang],
Ying, M.S.[Ming-Sheng],
Region Connection Calculus: Its models and composition table,
AI(145), No. 1-2, April 2003, pp. 121-146.
Elsevier DOI
0306
BibRef
Anderson, M.[Michael],
McCartney, R.[Robert],
Diagram processing: Computing with diagrams,
AI(145), No. 1-2, April 2003, pp. 181-226.
Elsevier DOI
0306
BibRef
Serratosa, F.[Francesc],
Alquézar, R.[René],
Sanfeliu, A.[Alberto],
Function-described graphs for modelling objects represented by sets of
attributed graphs,
PR(36), No. 3, March 2003, pp. 781-798.
Elsevier DOI
0301
BibRef
Earlier: A1, A3, A2:
Modelling and recognising 3D-objects described by multiple views using
function-described graphs,
ICPR02(II: 140-143).
IEEE DOI
0211
BibRef
Earlier: A3, A1, A2:
Clustering of Attributed Graphs and Unsupervised Synthesis of
Function-described Graphs,
ICPR00(Vol II: 1022-1025).
IEEE DOI
0009
BibRef
Earlier: A1, A2, A3:
Efficient Algorithms for Matching Attributed Graphs and
Function-described Graphs,
ICPR00(Vol II: 867-872).
IEEE DOI
0009
See also new graph matching method for point-set correspondence using the EM algorithm and Softassign, A.
BibRef
Serratosa, F.[Francesc],
Sanfeliu, A.[Alberto],
Function-described graphs applied to 3D object representation,
CIAP97(I: 701-708).
Springer DOI
9709
BibRef
Todorovic, S.[Sinisa],
Nechyba, M.C.[Michael C.],
Dynamic Trees for Unsupervised Segmentation and Matching of Image
Regions,
PAMI(27), No. 11, November 2005, pp. 1762-1777.
IEEE DOI
0510
BibRef
Earlier:
Detection of artificial structures in natural-scene images using dynamic
trees,
ICPR04(I: 35-39).
IEEE DOI
0409
Segment the image for matching. Captures relations (components).
BibRef
Todorovic, S.[Sinisa],
Nechyba, M.C.[Michael C.],
Interpretation of complex scenes using dynamic tree-structure Bayesian
networks,
CVIU(106), No. 1, April 2007, pp. 71-84.
Elsevier DOI
0704
BibRef
And:
Interpretation of Complex Scenes Using Generative Dynamic-Structure
Models,
GenModel04(184).
IEEE DOI
0406
BibRef
Earlier:
Multiresolution linear discriminant analysis: efficient extraction of
geometrical structures in images,
ICIP03(I: 1029-1032).
IEEE DOI
0312
Generative models; Bayesian networks; Dynamic trees;
Variational inference; Image segmentation; Object recognition
BibRef
Todorovic, S.[Sinisa],
Ahuja, N.[Narendra],
Region-Based Hierarchical Image Matching,
IJCV(78), No. 1, June 2008, pp. 47-66.
Springer DOI
0803
BibRef
Earlier:
Extracting Subimages of an Unknown Category from a Set of Images,
CVPR06(I: 927-934).
IEEE DOI
0606
BibRef
And: A2, A1:
Learning the Taxonomy and Models of Categories Present in Arbitrary
Images,
ICCV07(1-8).
IEEE DOI
0710
Identify properties of the object, learn a model, segment.
BibRef
Payet, N.[Nadia],
Todorovic, S.[Sinisa],
Hough Forest Random Field for Object Recognition and Segmentation,
PAMI(35), No. 5, May 2013, pp. 1066-1079.
IEEE DOI
1304
BibRef
Earlier:
From contours to 3D object detection and pose estimation,
ICCV11(983-990).
IEEE DOI
1201
BibRef
And:
Scene shape from texture of objects,
CVPR11(2017-2024).
IEEE DOI
1106
BibRef
Earlier:
From a Set of Shapes to Object Discovery,
ECCV10(V: 57-70).
Springer DOI
1009
BibRef
And:
Matching Hierarchies of Deformable Shapes,
GbRPR09(1-10).
Springer DOI
0905
BibRef
Todorovic, S.[Sinisa],
Ahuja, N.[Narendra],
Scale-Invariant Region-Based Hierarchical Image Matching,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Ahuja, N.[Narendra],
Todorovic, S.[Sinisa],
Connected Segmentation Tree:
A joint representation of region layout and hierarchy,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Todorovic, S.[Sinisa],
Ahuja, N.[Narendra],
Unsupervised Category Modeling, Recognition, and Segmentation in Images,
PAMI(30), No. 12, December 2008, pp. 2158-2174.
IEEE DOI
0811
BibRef
Earlier:
Learning subcategory relevances for category recognition,
CVPR08(1-8).
IEEE DOI
0806
Solve the problem of finding the common objects in the set of images,
learning the structure of the objects, finding the objects in new images.
Tree-representation of the images.
BibRef
Huang, J.J.[Jih-Jeng],
Tzeng, G.H.[Gwo-Hshiung],
Ong, C.S.[Chorng-Shyong],
Multidimensional data in multidimensional scaling using the analytic
network process,
PRL(26), No. 6, 1 May 2005, pp. 755-767.
Elsevier DOI
0501
Low dimensional representations for relations.
BibRef
Tavares, J.M.R.S.[Joăo Manuel R. S.],
Bastos, L.F.[Luísa Ferreira],
Improvement of Modal Matching Image Objects in Dynamic Pedobarography
using Optimization Techniques,
ELCVIA(5), No. 3, 2005, pp. 1-20.
DOI Link
0505
BibRef
Earlier: A2, A1:
AMDO04(39-50).
Springer DOI
0505
Graph matching for deformable objects.
BibRef
Pinho, R.R.[Raquel Ramos],
Tavares, J.M.R.S.[Joăo Manuel R.S.],
Dynamic Pedobarography Transitional Objects by Lagrange's Equation with
FEM, Modal Matching and Optimization Techniques,
ICIAR04(II: 92-99).
Springer DOI
0409
BibRef
Pham, T.V.[Thang V.],
Smeulders, A.W.M.[Arnold W.M.],
Object recognition with uncertain geometry and uncertain part detection,
CVIU(99), No. 2, August 2005, pp. 241-258.
Elsevier DOI
0506
Given parts, recognize objects.
BibRef
Demirci, M.F.[M. Fatih],
Shokoufandeh, A.[Ali],
Keselman, Y.[Yakov],
Bretzner, L.[Lars],
Dickinson, S.J.[Sven J.],
Object Recognition as Many-to-Many Feature Matching,
IJCV(69), No. 2, August 2006, pp. 203-222.
Springer DOI
0606
BibRef
Earlier: A1, A2, A5, A3, A4:
Many-to-Many Feature Matching Using Spherical Coding of Directed Graphs,
ECCV04(Vol I: 322-335).
Springer DOI
0405
BibRef
Earlier: A1, A2, A3, A5, A4:
Many-to-Many Matching of Scale-Space Feature Hierarchies Using Metric
Embedding,
ScaleSpace03(17-32).
Springer DOI
0310
BibRef
Shokoufandeh, A.[Ali],
Keselman, Y.[Yakov],
Demirci, M.F.[M. Fatih],
Macrini, D.[Diego],
Dickinson, S.J.[Sven J.],
Many-to-many feature matching in object recognition:
a review of three approaches,
IET-CV(6), No. 6, 2012, pp. 500-513.
DOI Link
1301
BibRef
Earlier:
Many-to-Many Feature Matching in Object Recognition,
CogVis03(107-125).
Springer DOI
0310
BibRef
Dickinson, S.J.[Sven J.],
Shokoufandeh, A.[Ali],
Keselman, Y.[Yakov],
Demirci, M.F.[M. Fatih],
Macrini, D.[Diego],
Object Categorization and the Need for Many-to-Many Matching,
DAGM05(501).
Springer DOI
0509
BibRef
Keselman, Y.,
Shokoufandeh, A.,
Demirci, M.F.,
Dickinson, S.J.,
Many-to-many graph matching via metric embedding,
CVPR03(I: 850-857).
IEEE DOI
0307
BibRef
Shokoufandeh, A.[Ali],
Bretzner, L.[Lars],
Macrini, D.[Diego],
Demirci, M.F.[M. Fatih],
Jönsson, C.[Clas],
Dickinson, S.J.[Sven J.],
The representation and matching of categorical shape,
CVIU(103), No. 2, August 2006, pp. 139-154.
Elsevier DOI
0608
Generic object recognition; Shape categorization; Graph matching;
Scale-spaces; Spectral graph theory
BibRef
Kuo, C.T.[Chen-Tsung],
Cheng, S.C.[Shyi-Chyi],
3D model retrieval using principal plane analysis and dynamic
programming,
PR(40), No. 2, February 2007, pp. 742-755.
Elsevier DOI
0611
3D models; 3D model retrieval; Principal plane analysis;
Graph matching; Dynamic programming
BibRef
Merchán, P.[Pilar],
Adán, A.[Antonio],
Exploration trees on highly complex scenes:
A new approach for 3D segmentation,
PR(40), No. 7, July 2007, pp. 1879-1898.
Elsevier DOI
0704
3D segmentation; Object extraction; Occluded scenes; Scene analysis;
Unstructured 3D data
BibRef
Adan, A.[Antonio],
Merchan, P.[Pilar],
Salamanca, S.[Santiago],
Vazquez, A.S.,
Adan, M.,
Cerrada, C.,
Objects Layout Graph for 3D Complex Scenes,
ICIP05(III: 433-436).
IEEE DOI
0512
BibRef
Merchan, P.[Pilar],
Adan, A.[Antonio],
Salamanca, S.[Santiago],
Recognition of Free-Form Objects in Complex Scenes Using DGI-BS Models,
3DPVT06(970-977).
IEEE DOI
0606
BibRef
Adán, A.[Antonio],
Adán, M.[Miguel],
Consensus strategy for clustering using RC-images,
PR(47), No. 1, 2014, pp. 402-417.
Elsevier DOI
1310
BibRef
Earlier:
Extracting Understandable 3D Object Groups with Multiple Similarity
Metrics,
CIARP12(179-186).
Springer DOI
1209
3D shape representation
BibRef
Adán, A.[Antonio],
Adán, M.[Miguel],
Salamanca, S.[Santiago],
Merchán, P.[Pilar],
Using Non Local Features for 3D Shape Grouping,
SSPR08(644-653).
Springer DOI
0812
BibRef
Merchán, P.[Pilar],
Adán, A.[Antonio],
Analyzing DGI-BS: Properties and Performance Under Occlusion and Noise,
ACIVS07(60-71).
Springer DOI
0708
BibRef
Mustičre, S.[Sébastien],
Devogele, T.[Thomas],
Matching Networks with Different Levels of Detail,
GeoInfo(12), No. 4, December 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Emms, D.[David],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Graph matching using the interference of discrete-time quantum walks,
IVC(27), No. 7, 4 June 2009, pp. 934-949.
Elsevier DOI
0904
BibRef
And:
Erratum:
PR(42), No. 9, September 2009, pp. 2218.
Elsevier DOI
0905
BibRef
Earlier: A1, A3, A2:
Graph drawing using quantum commute time,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier: A1, A3, A2:
A Correspondence Measure for Graph Matching Using the Discrete Quantum
Walk,
GbRPR07(81-91).
Springer DOI
0706
BibRef
And: A1, A3, A2:
Graph Similarity Using Interfering Quantum Walks,
CAIP07(823-831).
Springer DOI
0708
BibRef
Earlier: A1, A3, A2:
Graph Matching using Interference of Coined Quantum Walks,
ICPR06(III: 133-136).
IEEE DOI
0609
Graph matching; Discrete time quantum walk; Auxiliary structure;
Interference amplitude; Probabilistic model
BibRef
Emms, D.[David],
Severini, S.[Simone],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Coined Quantum Walks Lift the Cospectrality of Graphs and Trees,
PR(42), No. 9, September 2009, pp. 1988-2002.
Elsevier DOI
0905
BibRef
And:
Corrigendum:
PR(48), No. 4, 2015, pp. 1574-1575.
Elsevier DOI
1502
BibRef
Earlier:
EMMCVPR05(332-345).
Springer DOI
0601
Graph spectra; Quantum walks; Unitary representations; Strongly
regular graphs; Graph matching; Cospectrality
BibRef
Agathos, A.[Alexander],
Pratikakis, I.E.[Ioannis E.],
Papadakis, P.[Panagiotis],
Perantonis, S.J.[Stavros J.],
Azariadis, P.[Philip],
Sapidis, N.S.[Nickolas S.],
3D articulated object retrieval using a graph-based representation,
VC(26), No. 10, October 2010, pp. 1301-1319.
WWW Link.
1101
BibRef
Earlier:
Retrieval of 3D Articulated Objects Using A Graph-Based Representation,
3DOR09(29-36)
PDF File.
DOI Link
1301
BibRef
Papadakis, P.[Panagiotis],
A Use-Case Study on Multi-view Hypothesis Fusion for 3D Object
Classification,
Multiview17(2446-2452)
IEEE DOI
1802
Feature extraction, Robot sensing systems, Semantics,
Shape,
BibRef
Xiao, B.[Bai],
Song, Y.Z.[Yi-Zhe],
Hall, P.M.[Peter M.],
Learning invariant structure for object identification by using graph
methods,
CVIU(115), No. 7, July 2011, pp. 1023-1031.
Elsevier DOI
1106
Graph structure; Object recognition; Structure learning; Spectral graph theory
BibRef
Wu, Q.[Qi],
Cai, H.P.[Hong-Ping],
Hall, P.M.[Peter M.],
Learning Graphs to Model Visual Objects across Different Depictive
Styles,
ECCV14(VII: 313-328).
Springer DOI
1408
BibRef
Mohamed, W.[Waleed],
Ben Hamza, A.,
Reeb graph path dissimilarity for 3D object matching and retrieval,
VC(27), No. 3, March 2011, pp. 305-318.
WWW Link.
1203
BibRef
Torresani, L.[Lorenzo],
Kolmogorov, V.[Vladimir],
Rother, C.[Carsten],
A Dual Decomposition Approach to Feature Correspondence,
PAMI(35), No. 2, February 2013, pp. 259-271.
IEEE DOI
1301
BibRef
Earlier:
Feature Correspondence Via Graph Matching:
Models and Global Optimization,
ECCV08(II: 596-609).
Springer DOI
PDF File.
0810
Code, Matching. Code:
WWW Link.
BibRef
Feng, W.[Wei],
Liu, Z.Q.A.[Zhi-Qi-Ang],
Wan, L.[Liang],
Pun, C.M.[Chi-Man],
Jiang, J.M.[Jian-Min],
A spectral-multiplicity-tolerant approach to robust graph matching,
PR(46), No. 10, October 2013, pp. 2819-2829.
Elsevier DOI
1306
Attributed graph matching; Spectral multiplicity; Spectrum
normalization; Graph warping; Shape retrieval
BibRef
Lu, K.[Ke],
Ji, R.R.[Rong-Rong],
Tang, J.H.[Jin-Hui],
Gao, Y.[Yue],
Learning-Based Bipartite Graph Matching for View-Based 3D Model
Retrieval,
IP(23), No. 10, October 2014, pp. 4553-4563.
IEEE DOI
1410
graph theory
BibRef
Liu, A.A.,
Nie, W.Z.,
Gao, Y.,
Su, Y.T.,
Multi-Modal Clique-Graph Matching for View-Based 3D Model Retrieval,
IP(25), No. 5, May 2016, pp. 2103-2116.
IEEE DOI
1604
computer graphics
BibRef
Liu, A.A.,
Nie, W.Z.,
Gao, Y.,
Su, Y.T.,
View-Based 3-D Model Retrieval: A Benchmark,
Cyber(48), No. 3, March 2018, pp. 916-928.
IEEE DOI
1802
Adaptation models, Computational modeling, Feature extraction,
Mathematical model, Shape, Solid modeling, Visualization,
graph matching
BibRef
Nie, W.Z.[Wei-Zhi],
Zhao, Y.[Yue],
Song, D.[Dan],
Gao, Y.[Yue],
DAN: Deep-Attention Network for 3D Shape Recognition,
IP(30), 2021, pp. 4371-4383.
IEEE DOI
2104
Shape, Task analysis,
Feature extraction, Correlation, Computer architecture, retrieval
BibRef
Xiao, J.W.[Jin-Wen],
Wei, H.[Hui],
Scale-invariant contour segment context in object detection,
IVC(32), No. 12, 2014, pp. 1055-1066.
Elsevier DOI
1412
Object detection. Hough framework for scale. Graph based matching.
Detect boundary of object.
BibRef
Serradell, E.[Eduard],
Pinheiro, M.A.,
Sznitman, R.,
Kybic, J.[Jan],
Moreno-Noguer, F.[Francesc],
Fua, P.,
Non-Rigid Graph Registration Using Active Testing Search,
PAMI(37), No. 3, March 2015, pp. 625-638.
IEEE DOI
1502
Gaussian processes
BibRef
Serradell, E.[Eduard],
Glowacki, P.[Przemyslaw],
Kybic, J.[Jan],
Moreno-Noguer, F.[Francesc],
Fua, P.[Pascal],
Robust non-rigid registration of 2D and 3D graphs,
CVPR12(996-1003).
IEEE DOI
1208
BibRef
Shang, H.L.[Hui-Liang],
Tao, Y.D.[Yu-Dong],
Gao, Y.[Yuan],
Zhang, C.[Chen],
Wang, X.L.[Xiao-Ling],
An Improved Invariant for Matching Molecular Graphs Based on VF2
Algorithm,
SMCS(45), No. 1, January 2015, pp. 122-128.
IEEE DOI
1502
bioinformatics
BibRef
Wang, C.[Chong],
Huang, K.Q.[Kai-Qi],
How to use Bag-of-Words model better for image classification,
IVC(38), No. 1, 2015, pp. 65-74.
Elsevier DOI
1506
Image classification
BibRef
Huang, Y.Z.[Yong-Zhen],
Huang, K.Q.[Kai-Qi],
Wang, C.[Chong],
Tan, T.N.[Tie-Niu],
Exploring relations of visual codes for image classification,
CVPR11(1649-1656).
IEEE DOI
1106
bag-of-features links (relations) between features.
BibRef
Zhao, X.[Xin],
Yu, Y.[Yinan],
Huang, Y.Z.[Yong-Zhen],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Feature coding via vector difference for image classification,
ICIP12(3121-3124).
IEEE DOI
1302
BibRef
Earlier: A3, A4, A2, A5, Only:
Salient coding for image classification,
CVPR11(1753-1760).
IEEE DOI
1106
BibRef
Yu, T.S.[Tian-Shu],
Wang, R.S.[Rui-Sheng],
Scene parsing using graph matching on street-view data,
CVIU(145), No. 1, 2016, pp. 70-80.
Elsevier DOI
1604
Scene parsing
BibRef
Komodakis, N.[Nikos],
Pawan Kumar, M.,
Paragios, N.[Nikos],
Hyper-Graphs Inference through Convex Relaxations and Move Making
Algorithms: Contributions and Applications in Artificial Vision,
FTCGV(10), No. 1, 2016, pp. 1-102.
DOI Link
1606
BibRef
Zhou, F.[Feng],
de la Torre, F.[Fernando],
Factorized Graph Matching,
PAMI(38), No. 9, September 2016, pp. 1774-1789.
IEEE DOI
1609
BibRef
Earlier:
CVPR12(127-134).
IEEE DOI
1208
Approximation algorithms
BibRef
Yang, M.Y.[Michael Ying],
Liao, W.T.[Wen-Tong],
Ackermann, H.[Hanno],
Rosenhahn, B.[Bodo],
On support relations and semantic scene graphs,
PandRS(131), No. 1, 2017, pp. 15-25.
Elsevier DOI
1709
Scene, understanding
BibRef
Cong, Y.[Yuren],
Ackermann, H.[Hanno],
Liao, W.T.[Wen-Tong],
Yang, M.Y.[Michael Ying],
Rosenhahn, B.[Bodo],
Nodis: Neural Ordinary Differential Scene Understanding,
ECCV20(XX:636-653).
Springer DOI
2011
BibRef
Zhu, J.[Jie],
Wu, S.F.[Shu-Fang],
Wang, X.Z.[Xi-Zhao],
Yang, G.Q.[Guo-Qing],
Ma, L.Y.[Li-Yan],
Multi-image matching for object recognition,
IET-CV(12), No. 3, April 2018, pp. 350-356.
DOI Link
1804
Image Graph representation.
BibRef
Chang, H.J.[Hyung Jin],
Demiris, Y.[Yiannis],
Highly Articulated Kinematic Structure Estimation Combining Motion
and Skeleton Information,
PAMI(40), No. 9, September 2018, pp. 2165-2179.
IEEE DOI
1808
Kinematics, Motion segmentation, Estimation, Skeleton,
Shape,
adaptive kernel selection
BibRef
Chang, H.J.[Hyung Jin],
Fischer, T.[Tobias],
Petit, M.[Maxime],
Zambelli, M.[Martina],
Demiris, Y.[Yiannis],
Learning Kinematic Structure Correspondences Using Multi-Order
Similarities,
PAMI(40), No. 12, December 2018, pp. 2920-2934.
IEEE DOI
1811
BibRef
Earlier:
Kinematic Structure Correspondences via Hypergraph Matching,
CVPR16(4216-4225)
IEEE DOI
1612
Kinematics, Robot sensing systems, Motion segmentation,
Image sequences, Humanoid robots,
humanoid robotics
BibRef
Hong, D.F.[Dan-Feng],
Yokoya, N.[Naoto],
Chanussot, J.[Jocelyn],
Xu, J.[Jian],
Zhu, X.X.[Xiao Xiang],
Learning to propagate labels on graphs: An iterative multitask
regression framework for semi-supervised hyperspectral dimensionality
reduction,
PandRS(158), 2019, pp. 35-49.
Elsevier DOI
1912
Dimensionality reduction, Graph learning, Hyperspectral image,
Iterative, Label propagation, Multitask regression, Semi-supervised
BibRef
Kuang, Z.Z.[Zhen-Zhong],
Yu, J.[Jun],
Zhu, S.G.[Su-Guo],
Li, Z.M.[Zong-Min],
Fan, J.P.[Jian-Ping],
Effective 3-D Shape Retrieval by Integrating Traditional Descriptors
and Pointwise Convolution,
MultMed(21), No. 12, December 2019, pp. 3164-3177.
IEEE DOI
1912
Shape, Deep learning, Heating systems,
Feature extraction, Strain, Kernel,
parallel knowledge transfer
BibRef
Chen, F.[Feng],
Li, B.[Bo],
Li, L.[Liang],
3D object retrieval with graph-based collaborative feature learning,
JVCIR(58), 2019, pp. 261-268.
Elsevier DOI
1901
3D Object retrieval, Collaborative feature learning,
Hypergraph learning, Bipartite graph matching
BibRef
Ma, Y.L.[Yu-Liang],
Yuan, Y.[Ye],
Liu, M.[Meng],
Wang, G.R.[Guo-Ren],
Wang, Y.S.[Yi-Shu],
Graph simulation on large scale temporal graphs,
GeoInfo(24), No. 1, January 2020, pp. 199-220.
Springer DOI
2002
BibRef
Kim, U.H.,
Park, J.M.,
Song, T.j.,
Kim, J.H.,
3-D Scene Graph: A Sparse and Semantic Representation of Physical
Environments for Intelligent Agents,
Cyber(50), No. 12, December 2020, pp. 4921-4933.
IEEE DOI
2012
Semantics, Intelligent agents, Task analysis, Visualization,
Usability, Scalability, Computational modeling, 3-D scene graph,
scene understanding
BibRef
Golec, K.,
Palierne, J.F.,
Zara, F.,
Nicolle, S.,
Damiand, G.,
Hybrid 3D mass-spring system for simulation of isotropic materials with
any Poisson's ratio,
VC(36), No. 4, April 2020, pp. 809-825.
Springer DOI
2004
BibRef
Bai, J.J.[Jun-Jie],
Gong, B.[Biao],
Zhao, Y.[Yining],
Lei, F.Q.[Fu-Qiang],
Yan, C.G.[Cheng-Gang],
Gao, Y.[Yue],
Multi-Scale Representation Learning on Hypergraph for 3D Shape
Retrieval and Recognition,
IP(30), 2021, pp. 5327-5338.
IEEE DOI
2106
Shape, Feature extraction, Correlation,
Convolution, Task analysis, Neural networks, 3D shape retrieval,
recognition
BibRef
Yu, Y.F.[Yu-Feng],
Xu, G.X.[Guo-Xia],
Huang, K.K.[Ke-Kun],
Zhu, H.[Hu],
Chen, L.[Long],
Wang, H.[Hao],
Dual Calibration Mechanism Based L2, p-Norm for Graph Matching,
CirSysVideo(31), No. 6, June 2021, pp. 2343-2358.
IEEE DOI
2106
Calibration, Robustness, Strain, Image edge detection,
Linear programming, Task analysis, Calibration mechanism,
similarity metric
BibRef
Liang, Q.[Qi],
Li, Q.[Qiang],
Zhang, L.[Lihu],
Mi, H.X.[Hai-Xiao],
Nie, W.Z.[Wei-Zhi],
Li, X.[Xuanya],
MHFP: Multi-view based hierarchical fusion pooling method for 3D
shape recognition,
PRL(150), 2021, pp. 214-220.
Elsevier DOI
2109
Retrieval, Classification, Recognition, Multi-view, 3D attention
BibRef
Yang, J.[Jing],
Yang, X.[Xu],
Zhou, Z.B.[Zhang-Bing],
Liu, Z.Y.[Zhi-Yong],
Graph matching based on fast normalized cut and multiplicative update
mapping,
PR(122), 2022, pp. 108228.
Elsevier DOI
2112
Graph matching, Fast normalized cut, Discrete constraint, Multiplicative update
BibRef
Sukurdeep, Y.[Yashil],
Bauer, M.[Martin],
Charon, N.[Nicolas],
A New Variational Model for Shape Graph Registration with Partial
Matching Constraints,
SIIMS(15), No. 1, 2022, pp. 261-292.
DOI Link
2204
BibRef
Chen, J.X.[Jia-Xuan],
Chen, S.[Shuang],
Chen, X.X.[Xiao-Xian],
Dai, Y.[Yuan],
Yang, Y.[Yang],
CSR-Net: Learning Adaptive Context Structure Representation for
Robust Feature Correspondence,
IP(31), 2022, pp. 3197-3210.
IEEE DOI
2205
Task analysis, Feature extraction, Deep learning,
Computer architecture, Visualization, Transforms, Image matching,
deep learning
BibRef
Fuchs, M.[Mathias],
Riesen, K.[Kaspar],
A novel way to formalize stable graph cores by using matching-graphs,
PR(131), 2022, pp. 108846.
Elsevier DOI
2208
Graph matching, Matching-graphs, Graph edit distance,
Structural pattern recognition
BibRef
Doi, K.[Kento],
Hamaguchi, R.[Ryuhei],
Iwasawa, Y.[Yusuke],
Onishi, M.[Masaki],
Matsuo, Y.[Yutaka],
Sakurada, K.[Ken],
Detecting Object-Level Scene Changes in Images with Viewpoint
Differences Using Graph Matching,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Cui, W.[Wei],
Hao, Y.J.[Yuan-Jie],
Xu, X.[Xing],
Feng, Z.Y.[Zhan-Yun],
Zhao, H.L.[Hui-Lin],
Xia, C.[Cong],
Wang, J.[Jin],
Remote Sensing Scene Graph and Knowledge Graph Matching with Parallel
Walking Algorithm,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wang, R.Z.[Run-Zhong],
Yan, J.C.[Jun-Chi],
Yang, X.K.[Xiao-Kang],
Combinatorial Learning of Robust Deep Graph Matching: An Embedding
Based Approach,
PAMI(45), No. 6, June 2023, pp. 6984-7000.
IEEE DOI
2305
BibRef
Earlier:
Learning Combinatorial Embedding Networks for Deep Graph Matching,
ICCV19(3056-3065)
IEEE DOI
2004
Mathematical model, Feature extraction, Peer-to-peer computing,
Training, Optimization, Tensors, Pattern matching, Graph matching,
combinatorial optimization.
computational complexity, graph theory, mathematics computing,
supervised learning, structure-wise affinity, matching procedure,
Pipelines
BibRef
Zhang, Y.X.[Yu-Xuan],
Li, Y.Y.X.[Yuan-Yan-Xiang],
Wei, X.[Xian],
Yang, Y.S.[Yong-Sheng],
Liu, L.[Lei],
Murphey, Y.L.[Yi Lu],
Graph matching for knowledge graph alignment using edge-coloring
propagation,
PR(144), 2023, pp. 109851.
Elsevier DOI
2310
Knowledge graph, Entity alignment, Relation alignment,
Quadratic assignment problem
BibRef
Gillioz, A.[Anthony],
Riesen, K.[Kaspar],
Graph-based pattern recognition on spectral reduced graphs,
PR(144), 2023, pp. 109859.
Elsevier DOI
2310
Graph matching, Graph classification, Graph reduction
BibRef
Chen, S.X.[Shun-Xing],
Xiao, G.B.[Guo-Bao],
Guo, J.W.[Jun-Wen],
Wu, Q.Q.[Qiang-Qiang],
Ma, J.Y.[Jia-Yi],
DHM-Net: Deep Hypergraph Modeling for Robust Feature Matching,
IP(33), 2024, pp. 6002-6015.
IEEE DOI Code:
WWW Link.
2411
Data models, Computational modeling, Representation learning,
Pattern matching, Feature extraction, Deep learning, Topology,
correspondence learning
BibRef
Eisenberger, M.[Marvin],
Toker, A.[Aysim],
Leal-Taixč, L.[Laura],
Cremers, D.[Daniel],
G-MSM: Unsupervised Multi-Shape Matching with Graph-Based Affinity
Priors,
CVPR23(22762-22772)
IEEE DOI
2309
WWW Link.
BibRef
Haller, S.[Stefan],
Feineis, L.[Lorenz],
Hutschenreiter, L.[Lisa],
Bernard, F.[Florian],
Rother, C.[Carsten],
Kainmüller, D.[Dagmar],
Swoboda, P.[Paul],
Savchynskyy, B.[Bogdan],
A Comparative Study of Graph Matching Algorithms in Computer Vision,
ECCV22(XXIII:636-653).
Springer DOI
2211
BibRef
Yadav, R.,
Dupé, F.X.,
Takerkart, S.,
Auzias, G.,
On The Relevance of Multi-Graph Matching for Sulcal Graphs,
ICIP22(2536-2540)
IEEE DOI
2211
Geometry, Pathology, Neuroscience, Scalability, Sociology, Benchmark testing
BibRef
Liu, C.[Chang],
Zhang, S.F.[Shao-Feng],
Yang, X.K.[Xiao-Kang],
Yan, J.C.[Jun-Chi],
Self-supervised Learning of Visual Graph Matching,
ECCV22(XXIII:370-388).
Springer DOI
2211
BibRef
Saleh, M.[Mahdi],
Wu, S.C.[Shun-Cheng],
Cosmo, L.[Luca],
Navab, N.[Nassir],
Busam, B.[Benjamin],
Tombari, F.[Federico],
Bending Graphs:
Hierarchical Shape Matching using Gated Optimal Transport,
CVPR22(11747-11757)
IEEE DOI
2210
Training, Representation learning, Shape, Pipelines, Pose estimation,
Logic gates, Segmentation, grouping and shape analysis, Representation learning
BibRef
Hutschenreiter, L.[Lisa],
Haller, S.[Stefan],
Feineis, L.[Lorenz],
Rother, C.[Carsten],
Kainmüller, D.[Dagmar],
Savchynskyy, B.[Bogdan],
Fusion Moves for Graph Matching,
ICCV21(6250-6259)
IEEE DOI
2203
Approximation algorithms, Markov random fields,
Optimization and learning methods
BibRef
Chen, Z.X.[Zi-Xuan],
Xie, Z.H.[Zhi-Hui],
Yan, J.C.[Jun-Chi],
Zheng, Y.Q.[Yin-Qiang],
Yang, X.K.[Xiao-Kang],
Layered Neighborhood Expansion for Incremental Multiple Graph Matching,
ECCV20(X:251-267).
Springer DOI
2011
BibRef
Xu, M.H.[Ming-Hao],
Wang, H.[Hang],
Ni, B.B.[Bing-Bing],
Tian, Q.[Qi],
Zhang, W.J.[Wen-Jun],
Cross-Domain Detection via Graph-Induced Prototype Alignment,
CVPR20(12352-12361)
IEEE DOI
2008
Code, Alignment.
WWW Link. Proposals, Prototypes, Task analysis, Detectors, Adaptation models,
Training, Merging
BibRef
Wang, T.,
Liu, H.,
Li, Y.,
Jin, Y.,
Hou, X.,
Ling, H.,
Learning Combinatorial Solver for Graph Matching,
CVPR20(7565-7574)
IEEE DOI
2008
Machine learning, Optimization, Labeling, Approximation algorithms,
Buildings, Training, Visualization
BibRef
Yu, T.S.[Tian-Shu],
Yan, J.C.[Jun-Chi],
Liu, W.[Wei],
Li, B.X.[Bao-Xin],
Incremental Multi-graph Matching via Diversity and Randomness Based
Graph Clustering,
ECCV18(XIII: 142-158).
Springer DOI
1810
BibRef
Sandi, G.[Giulia],
Vascon, S.[Sebastiano],
Pelillo, M.[Marcello],
On Association Graph Techniques for Hypergraph Matching,
SSSPR18(481-490).
Springer DOI
1810
BibRef
Lang, Y.K.[Yan-Kun],
Wu, H.Y.[Hai-Yuan],
Chen, Q.[Qian],
A rotation invariant 3D indoor scene labeling approach based on
conditional random fields,
ICIP17(600-604)
IEEE DOI
1803
Cameras, Color, Feature extraction, Histograms, Labeling,
Radio frequency, 3D point cloud, CRF, rotation invariance
BibRef
Carletti, V.[Vincenzo],
Foggia, P.[Pasquale],
Vento, M.[Mario],
VF2 Plus: An Improved version of VF2 for Biological Graphs,
GbRPR15(168-177).
Springer DOI
1511
BibRef
Huang, S.[Shao],
Wang, W.Q.[Wei-Qiang],
Retrieving images combining saliency detection with IRM,
ICIP15(517-521)
IEEE DOI
1512
Center-surround comparison
BibRef
Huang, S.[Shao],
Wang, W.Q.[Wei-Qiang],
Zhang, H.[Hui],
Retrieving images using saliency detection and graph matching,
ICIP14(3087-3091)
IEEE DOI
1502
Computer vision
BibRef
Wang, C.[Chao],
Wang, L.[Lei],
Liu, L.Q.[Ling-Qiao],
Progressive Mode-Seeking on Graphs for Sparse Feature Matching,
ECCV14(II: 788-802).
Springer DOI
1408
BibRef
Collins, T.[Toby],
Mesejo, P.[Pablo],
Bartoli, A.E.[Adrien E.],
An Analysis of Errors in Graph-Based Keypoint Matching and Proposed
Solutions,
ECCV14(VII: 138-153).
Springer DOI
1408
BibRef
Liu, F.[Fang],
Liu, Y.[Yang],
Zhou, G.Y.[Guang-You],
Liu, K.[Kang],
Zhao, J.[Jun],
Determining Relation Semantics by Mapping Relation Phrases to
Knowledge Base,
ACPR13(420-424)
IEEE DOI
1408
Web sites
BibRef
Wang, C.[Chao],
Wang, L.[Lei],
Liu, L.Q.[Ling-Qiao],
Improving Graph Matching via Density Maximization,
ICCV13(3424-3431)
IEEE DOI
1403
BibRef
Kapec, P.[Peter],
Paprcka, M.[Michal],
Paitnaj, A.[Adam],
Intelligent 3D Graph Exploration with Time-Travel Features,
ICCVG12(113-120).
Springer DOI
1210
BibRef
Cho, M.S.[Min-Su],
Lee, K.M.[Kyoung Mu],
Progressive graph matching:
Making a move of graphs via probabilistic voting,
CVPR12(398-405).
IEEE DOI
1208
BibRef
Bang, Y.[Yoonsik],
Ga, C.[Chillo],
Yu, K.[Kiyun],
An Iterative Process for Matching Network Data Sets with Different
Level of Detail,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Hashimoto, M.[Marcelo],
Cesar, R.M.[Roberto M.],
Object Detection by Keygraph Classification,
GbRPR09(223-232).
Springer DOI
0905
Variation on key-point detection.
BibRef
Knossow, D.[David],
Sharma, A.[Avinash],
Mateus, D.[Diana],
Horaud, R.[Radu],
Inexact Matching of Large and Sparse Graphs Using Laplacian
Eigenvectors,
GbRPR09(144-153).
Springer DOI
0905
BibRef
Zhang, W.[Wei],
Dietterich, T.G.[Thomas G.],
Learning visual dictionaries and decision lists for object recognition,
ICPR08(1-4).
IEEE DOI
0812
Dictionaries map unordered bags of features to know objects.
BibRef
Tsolakis, A.[Angelos],
Falelakis, M.[Manolis],
Delopoulos, A.[Anastasios],
A framework for efficient correspondence using feature interrelations,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Krüger, D.[Daniela],
Buschmann, C.[Carsten],
Fischer, S.[Stefan],
Location-Free Object Tracking on Graph Structures,
SSC08(99-111).
Springer DOI
0810
BibRef
Hedau, V.[Varsha],
Arora, H.[Himanshu],
Ahuja, N.[Narendra],
Matching images under unstable segmentations,
CVPR08(1-8).
IEEE DOI
0806
Region matching issues.
BibRef
Nwogu, I.[Ifeoma],
Corso, J.J.[Jason J.],
(BP)2: Beyond pairwise Belief Propagation labeling by approximating
Kikuchi free energies,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And:
Labeling Irregular Graphs with Belief Propagation,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Corso, J.J.[Jason J.],
Yuille, A.L.[Alan L.],
Tu, Z.W.[Zhuo-Wen],
Graph-shifts: Natural image labeling by dynamic hierarchical computing,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Earlier: A1, A3, A2:
MRF Labeling with a Graph-Shifts Algorithm,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Chen, A.Y.C.[Albert Y.C.],
Corso, J.J.[Jason J.],
On the Effects of Normalization in Adaptive MRF Hierarchies,
CompIMAGE10(275-286).
Springer DOI
1006
BibRef
Giro, X.,
Marques, F.,
Detection of Semantic Objects Using Description Graphs,
ICIP05(I: 1201-1204).
IEEE DOI
0512
BibRef
Li, Y.[Yan],
Tsin, Y.H.[Yang-Hai],
Genc, Y.[Yakup],
Kanade, T.[Takeo],
Flexible Edge Arrangement Templates for Object Detection,
WACV08(1-8).
IEEE DOI
0801
BibRef
Earlier:
Statistical Shape Models for Object Recognition and Part Localization,
BMVC06(II:699).
PDF File.
0609
BibRef
Earlier:
Object Detection Using 2D Spatial Ordering Constraints,
CVPR05(II: 711-718).
IEEE DOI
0507
BibRef
And:
CVPR05(II: 1188).
IEEE DOI
0507
Use features:
See also Distinctive Image Features from Scale-Invariant Keypoints. Find featrues, then groupings for match.
Part-based recognition.
BibRef
Conte, D.,
Foggia, P.,
Sansone, C.,
Vento, M.,
Graph matching applications in pattern recognition and image processing,
ICIP03(II: 21-24).
IEEE DOI
0312
BibRef
Basu, S.,
Gupta, A.,
Sarkar, N.,
Majumder, D.D.,
Knowledge representation for vision: an associative network for single
object representation and recognition,
ICPR90(I: 297-299).
IEEE DOI
9006
BibRef
Granlund, G.H.,
Knuttson, H.,
Compact associative representation of visual information,
ICPR90(II: 200-207).
IEEE DOI
9208
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Spatial Information and Features, Visual Relationships .