14.1.8.4 Unsupervised Domain Adaptation

Chapter Contents (Back)
Unsupervised Adaptation. Transfer Learning. Domain Adaptation.
See also Transfer Learning from Other Tasks, Other Classes.
See also Multi-Label Classification, Multilabel Classification.
See also Multi-Source Domain Adaptation.
See also Knowledge Distillation.

Gong, B.Q.[Bo-Qing], Grauman, K.[Kristen], Sha, F.[Fei],
Learning Kernels for Unsupervised Domain Adaptation with Applications to Visual Object Recognition,
IJCV(109), No. 1-2, August 2014, pp. 3-27.
Springer DOI 1407
Correct mismatch between source and target domain. BibRef

Gong, B.Q.[Bo-Qing], Shi, Y.[Yuan], Sha, F.[Fei], Grauman, K.[Kristen],
Geodesic flow kernel for unsupervised domain adaptation,
CVPR12(2066-2073).
IEEE DOI 1208
BibRef

Gopalan, R.[Raghuraman], Li, R.N.[Ruo-Nan], Chellappa, R.[Rama],
Unsupervised Adaptation Across Domain Shifts by Generating Intermediate Data Representations,
PAMI(36), No. 11, November 2014, pp. 2288-2302.
IEEE DOI 1410
BibRef
Earlier:
Domain adaptation for object recognition: An unsupervised approach,
ICCV11(999-1006).
IEEE DOI 1201
Adaptation models. Adapting based on training on different domain. BibRef

Li, R.N.[Ruo-Nan], Patel, V.M.[Vishal M.], Gopalan, R.[Raghuraman], Chellappa, R.[Rama],
Domain Adaptation for Visual Recognition,
FTCGV(8), No. 4, 2015, pp. 285-378.
DOI Link 1503
BibRef

Patel, V.M.[Vishal M.], Gopalan, R.[Raghuraman], Li, R.N.[Ruo-Nan], Chellappa, R.,
Visual Domain Adaptation: A survey of recent advances,
SPMag(32), No. 3, May 2015, pp. 53-69.
IEEE DOI 1504
Classification algorithms BibRef

Samanta, S., Das, S.,
Unsupervised domain adaptation using eigenanalysis in kernel space for categorisation tasks,
IET-IPR(9), No. 11, 2015, pp. 925-930.
DOI Link 1511
Hilbert spaces BibRef

Selvan, A.T., Samanta, S., Das, S.,
Domain adaptation using weighted sub-space sampling for object categorization,
ICAPR15(1-5)
IEEE DOI 1511
differential geometry BibRef

Fernando, B.[Basura], Tommasi, T.[Tatiana], Tuytelaars, T.[Tinne],
Joint cross-domain classification and subspace learning for unsupervised adaptation,
PRL(65), No. 1, 2015, pp. 60-66.
Elsevier DOI 1511
BibRef
Earlier: A2, A3, Only:
A Testbed for Cross-Dataset Analysis,
TASKCV14(18-31).
Springer DOI 1504
Unsupervised domain adaptation BibRef

Redko, I.[Ievgen], Bennani, Y.[Younès],
Non-negative embedding for fully unsupervised domain adaptation,
PRL(77), No. 1, 2016, pp. 35-41.
Elsevier DOI 1606
BibRef
And:
Kernel alignment for unsupervised transfer learning,
ICPR16(525-530)
IEEE DOI 1705
Bridges, Indexes, Kernel, Optimization, Partitioning algorithms, Standards, Symmetric matrices. Transfer learning BibRef

Zhu, L.[Lei], Ma, L.[Li],
Class centroid alignment based domain adaptation for classification of remote sensing images,
PRL(83, Part 2), No. 1, 2016, pp. 124-132.
Elsevier DOI 1609
Domain adaptation BibRef

Ma, L.[Li], Crawford, M.M.[Melba M.], Zhu, L.[Lei], Liu, Y.[Yong],
Centroid and Covariance Alignment-Based Domain Adaptation for Unsupervised Classification of Remote Sensing Images,
GeoRS(57), No. 4, April 2019, pp. 2305-2323.
IEEE DOI 1904
geophysical image processing, image classification, image filtering, remote sensing, spatial filters, remote sensing BibRef

Liu, Z.X.[Zi-Xu], Ma, L.[Li], Du, Q.[Qian],
Class-Wise Distribution Adaptation for Unsupervised Classification of Hyperspectral Remote Sensing Images,
GeoRS(59), No. 1, January 2021, pp. 508-521.
IEEE DOI 2012
Feature extraction, Hyperspectral imaging, Neural networks, Generative adversarial networks, remote sensing BibRef

Hou, C.A.[Cheng-An], Tsai, Y.H.H.[Yao-Hung Hubert], Yeh, Y.R.[Yi-Ren], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Unsupervised Domain Adaptation With Label and Structural Consistency,
IP(25), No. 12, December 2016, pp. 5552-5562.
IEEE DOI 1612
BibRef
Earlier: A2, A3, A4, Only:
Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation,
CVPR16(5081-5090)
IEEE DOI 1612
pattern classification BibRef

Chen, W.Y.[Wei-Yu], Hsu, T.M.H.[Tzu-Ming Harry], Tsai, Y.H.H.[Yao-Hung Hubert], Wang, Y.C.A.F.[Yu-Chi-Ang Frank], Chen, M.S.[Ming-Syan],
Transfer Neural Trees for Heterogeneous Domain Adaptation,
ECCV16(V: 399-414).
Springer DOI 1611
BibRef

Hsu, T.M.H.[Tzu-Ming Harry], Chen, W.Y.[Wei-Yu], Hou, C.A.[Cheng-An], Tsai, Y.H.H., Yeh, Y.R.[Yi-Ren], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data,
ICCV15(4121-4129)
IEEE DOI 1602
Computer vision BibRef

Chen, W.Y.[Wei-Yu], Hsu, T.M.H.[Tzu-Ming Harry], Hou, C.A.[Cheng-An], Yeh, Y.R.[Yi-Ren], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Connecting the dots without clues: Unsupervised domain adaptation for cross-domain visual classification,
ICIP15(3997-4001)
IEEE DOI 1512
BibRef
Earlier: A3, A4, A5, Only:
An unsupervised domain adaptation approach for cross-domain visual classification,
AVSS15(1-6)
IEEE DOI 1511
Unsupervised domain adaptation motion estimation BibRef

Chou, Y.C.[Yen-Cheng], Wei, C.P.[Chia-Po], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
A discriminative domain adaptation model for cross-domain image classification,
ICIP13(3083-3087)
IEEE DOI 1402
Domain adaptation; image classification; low-rank matrix decomposition BibRef

Li, C.G.[Chun-Guang], You, C., Vidal, R.[Rene],
Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework,
IP(26), No. 6, June 2017, pp. 2988-3001.
IEEE DOI 1705
BibRef
Earlier: A1, A3, Only:
Structured Sparse Subspace Clustering: A unified optimization framework,
CVPR15(277-286)
IEEE DOI 1510
Cancer, Face, Motion segmentation, Optimization, Sparse matrices, Videos, Structured sparse subspace clustering, cancer clustering, constrained subspace clustering, structured subspace clustering, subspace, structured, norm BibRef

Patel, V.M.[Vishal M.], Vidal, R.[Rene],
Kernel sparse subspace clustering,
ICIP14(2849-2853)
IEEE DOI 1502
Clustering algorithms BibRef

Shrivastava, A.[Ashish], Shekhar, S.[Sumit], Patel, V.M.[Vishal M.],
Unsupervised domain adaptation using parallel transport on Grassmann manifold,
WACV14(277-284)
IEEE DOI 1406
Clustering algorithms BibRef

Nayak, G.K.[Gaurav Kumar], Mopuri, K.R.[Konda Reddy], Jain, S.[Saksham], Chakraborty, A.[Anirban],
Mining Data Impressions From Deep Models as Substitute for the Unavailable Training Data,
PAMI(44), No. 11, November 2022, pp. 8465-8481.
IEEE DOI 2210
Data models, Adaptation models, Training data, Data mining, Training, Task analysis, Computational modeling, Data impressions, unsupervised domain adaptation BibRef

Ranganathan, H., Venkateswara, H.[Hemanth], Chakraborty, S.[Shayok], Panchanathan, S.[Sethuraman],
Deep active learning for image classification,
ICIP17(3934-3938)
IEEE DOI 1803
Computational modeling, Entropy, Labeling, Machine learning, Training, Uncertainty, entropy BibRef

Venkateswara, H.[Hemanth], Eusebio, J., Chakraborty, S.[Shayok], Panchanathan, S.[Sethuraman],
Deep Hashing Network for Unsupervised Domain Adaptation,
CVPR17(5385-5394)
IEEE DOI 1711
Adaptation models, Data models, Machine learning, Neural networks, Training BibRef

Paris, C., Bruzzone, L.,
A Novel Approach to the Unsupervised Extraction of Reliable Training Samples From Thematic Products,
GeoRS(59), No. 3, March 2021, pp. 1930-1948.
IEEE DOI 2103
Training, Reliability, Databases, Semantics, Data mining, Spatial resolution, Remote sensing, Land-cover map update, weak learning classification BibRef

Lu, H., Shen, C., Cao, Z., Xiao, Y., van den Hengel, A.,
An Embarrassingly Simple Approach to Visual Domain Adaptation,
IP(27), No. 7, July 2018, pp. 3403-3417.
IEEE DOI 1805
Adaptation models, Closed-form solutions, Iterative methods, Robustness, Training, Training data, Visualization, scene classification BibRef

Lu, H., Zhang, L., Cao, Z., Wei, W., Xian, K., Shen, C., van den Hengel, A.,
When Unsupervised Domain Adaptation Meets Tensor Representations,
ICCV17(599-608)
IEEE DOI 1802
image representation, learning (artificial intelligence), matrix algebra, tensors, Visualization BibRef

Yang, B.Y.[Bao-Yao], Ma, A.J.[Andy J.], Yuen, P.C.[Pong C.],
Learning domain-shared group-sparse representation for unsupervised domain adaptation,
PR(81), 2018, pp. 615-632.
Elsevier DOI 1806
Domain adaptation, Dictionary learning BibRef

Yang, B.Y.[Bao-Yao], Yuen, P.C.[Pong C.],
Learning adaptive geometry for unsupervised domain adaptation,
PR(110), 2021, pp. 107638.
Elsevier DOI 2011
Domain adaptation, Manifold structure, Distribution alignment BibRef

Chen, Y.[Yu], Yang, C.L.[Chun-Ling], Zhang, Y.[Yan],
Deep domain similarity Adaptation Networks for across domain classification,
PRL(112), 2018, pp. 270-276.
Elsevier DOI 1809
Deep learning, Domain adaptation, Domain similarity, Image classification BibRef

Chen, Y.[Yu], Yang, C.L.[Chun-Ling], Zhang, Y.[Yan], Li, Y.Z.[Yu-Ze],
Deep conditional adaptation networks and label correlation transfer for unsupervised domain adaptation,
PR(98), 2020, pp. 107072.
Elsevier DOI 1911
Conditional domain adaptation, Deep learning, Unsupervised learning, Label transfer BibRef

Huang, J.[Junchu], Zhou, Z.H.[Zhi-Heng],
Transfer metric learning for unsupervised domain adaptation,
IET-IPR(13), No. 5, 18 April 2019, pp. 804-810.
DOI Link 1904
BibRef

Zhang, L., Wang, P., Wei, W., Lu, H., Shen, C., van den Hengel, A., Zhang, Y.,
Unsupervised Domain Adaptation Using Robust Class-Wise Matching,
CirSysVideo(29), No. 5, May 2019, pp. 1339-1349.
IEEE DOI 1905
Robustness, Image color analysis, Visualization, Data models, Computer science, Australia, Adaptation models, unsupervised domain adaptation BibRef

Le, T.N.[Tien-Nam], Habrard, A.[Amaury], Sebban, M.[Marc],
Deep multi-Wasserstein unsupervised domain adaptation,
PRL(125), 2019, pp. 249-255.
Elsevier DOI 1909
Domain adaptation, Deep learning, Wasserstein metric, Optimal transport BibRef

Liang, J.[Jian], He, R.[Ran], Sun, Z.A.[Zhen-An], Tan, T.N.[Tie-Niu],
Exploring uncertainty in pseudo-label guided unsupervised domain adaptation,
PR(96), 2019, pp. 106996.
Elsevier DOI 1909
Unsupervised domain adaptation, Pseudo labeling, Feature transformation, Progressive learning, Transfer learning BibRef

Damodaran, B.B.[Bharath Bhushan], Flamary, R.[Rémi], Seguy, V.[Vivien], Courty, N.[Nicolas],
An Entropic Optimal Transport loss for learning deep neural networks under label noise in remote sensing images,
CVIU(191), 2020, pp. 102863.
Elsevier DOI 2002
Optimal transport, Entropic Optimal Transport, Robust deep learning, Noisy labels, Remote sensing BibRef

Fatras, K.[Kilian], Damodaran, B.B.[Bharath Bhushan], Lobry, S.[Sylvain], Flamary, R.[Rémi], Tuia, D.[Devis], Courty, N.[Nicolas],
Wasserstein Adversarial Regularization for Learning With Label Noise,
PAMI(44), No. 10, October 2022, pp. 7296-7306.
IEEE DOI 2209
Noise measurement, Training, Entropy, Neural networks, Task analysis, Smoothing methods, Semantics, Label noise, optimal transport, adversarial regularization BibRef

Damodaran, B.B.[Bharath Bhushan], Kellenberger, B.[Benjamin], Flamary, R.[Rémi], Tuia, D.[Devis], Courty, N.[Nicolas],
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation,
ECCV18(II: 467-483).
Springer DOI 1810
BibRef

Li, R., Cao, W., Wu, S., Wong, H.,
Generating Target Image-Label Pairs for Unsupervised Domain Adaptation,
IP(29), 2020, pp. 7997-8011.
IEEE DOI 2008
Semantics, Adaptation models, Task analysis, Image segmentation, Data models, Feature extraction, image generation BibRef

Yan, H.L.[Hong-Liang], Li, Z.T.[Zhe-Tao], Wang, Q.L.[Qi-Long], Li, P.H.[Pei-Hua], Xu, Y.[Yong], Zuo, W.M.[Wang-Meng],
Weighted and Class-Specific Maximum Mean Discrepancy for Unsupervised Domain Adaptation,
MultMed(22), No. 9, September 2020, pp. 2420-2433.
IEEE DOI 2008
Measurement, Adaptation models, Airplanes, Task analysis, Generative adversarial networks, Degradation, expectation-maximization algorithms BibRef

Yan, H.L.[Hong-Liang], Ding, Y.K.[Yu-Kang], Li, P.H.[Pei-Hua], Wang, Q.L.[Qi-Long], Xu, Y.[Yong], Zuo, W.M.[Wang-Meng],
Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation,
CVPR17(945-954)
IEEE DOI 1711
Adaptation models, Computational modeling, Kernel, Manganese, Measurement, Training BibRef

Luo, L., Chen, L., Hu, S., Lu, Y., Wang, X.,
Discriminative and Geometry-Aware Unsupervised Domain Adaptation,
Cyber(50), No. 9, September 2020, pp. 3914-3927.
IEEE DOI 2008
Data models, Manifolds, Task analysis, Training, Benchmark testing, Analytical models, Labeling, Data distribution matching, visual classification BibRef

Zuo, L.[Lin], Jing, M.M.[Meng-Meng], Li, J.J.[Jing-Jing], Zhu, L.[Lei], Lu, K.[Ke], Yang, Y.[Yang],
Challenging tough samples in unsupervised domain adaptation,
PR(110), 2021, pp. 107540.
Elsevier DOI 2011
Domain adaptation, transfer learning, adversarial learning BibRef

Xu, X., He, H., Zhang, H., Xu, Y., He, S.,
Unsupervised Domain Adaptation via Importance Sampling,
CirSysVideo(30), No. 12, December 2020, pp. 4688-4699.
IEEE DOI 2012
Feature extraction, Entropy, Tuning, Estimation, Monte Carlo methods, Adaptation models, Noise measurement, Domain adaptation, distribution sampling BibRef

Wang, X.M.[Xing-Mei], Sun, B.X.[Bo-Xuan], Dong, H.B.[Hong-Bin],
Domain-invariant adversarial learning with conditional distribution alignment for unsupervised domain adaptation,
IET-CV(14), No. 8, December 2020, pp. 642-649.
DOI Link 2012
BibRef

Madadi, Y.[Yeganeh], Seydi, V.[Vahid], Nasrollahi, K.[Kamal], Hosseini, R.[Reshad], Moeslund, T.B.[Thomas B.],
Deep visual unsupervised domain adaptation for classification tasks: A survey,
IET-IPR(14), No. 14, December 2020, pp. 3283-3299.
DOI Link 2012
Survey, Domain Adaption. BibRef

Mancini, M.[Massimiliano], Porzi, L.[Lorenzo], Buló, S.R.[Samuel Rota], Caputo, B.[Barbara], Ricci, E.[Elisa],
Inferring Latent Domains for Unsupervised Deep Domain Adaptation,
PAMI(43), No. 2, February 2021, pp. 485-498.
IEEE DOI 2101
BibRef
Earlier:
Boosting Domain Adaptation by Discovering Latent Domains,
CVPR18(3771-3780)
IEEE DOI 1812
Adaptation models, Data models, Neural networks, Training, Visualization, Training data, object recognition. Data models, Training BibRef

Mancini, M.[Massimiliano], Porzi, L.[Lorenzo], Cermelli, F.[Fabio], Caputo, B.[Barbara],
Discovering Latent Domains for Unsupervised Domain Adaptation Through Consistency,
CIAP19(II:390-401).
Springer DOI 1909
BibRef

Li, H.L.[Hao-Liang], Wan, R.J.[Ren-Jie], Wang, S.Q.[Shi-Qi], Kot, A.C.[Alex C.],
Unsupervised Domain Adaptation in the Wild via Disentangling Representation Learning,
IJCV(129), No. 2, February 2021, pp. 267-283.
Springer DOI 2102
BibRef

Han, C.[Chao], Zhou, D.[Deyun], Xie, Y.[Yu], Gong, M.[Maoguo], Lei, Y.[Yu], Shi, J.[Jiao],
Collaborative representation with curriculum classifier boosting for unsupervised domain adaptation,
PR(113), 2021, pp. 107802.
Elsevier DOI 2103
Domain adaptation, Collaborative representation, Curriculum learning, Classifier boosting BibRef

Zhou, Q.[Qiang], Zhou, W.[Wen'an], Wang, S.R.[Shi-Rui],
Cluster adaptation networks for unsupervised domain adaptation,
IVC(108), 2021, pp. 104137.
Elsevier DOI 2104
Domain adaptation, Deep networks, Image classification BibRef

Chen, C.[Chao], Fu, Z.H.[Zhi-Hang], Chen, Z.H.[Zhi-Hong], Cheng, Z.W.[Zhao-Wei], Jin, X.Y.[Xin-Yu],
Towards self-similarity consistency and feature discrimination for unsupervised domain adaptation,
SP:IC(94), 2021, pp. 116232.
Elsevier DOI 2104
Domain adaptation, Self-similarity consistency, Feature discrimination, Intra-class compactness, Inter-class separability BibRef

Tang, H.[Hui], Jia, K.[Kui],
Vicinal and categorical domain adaptation,
PR(115), 2021, pp. 107907.
Elsevier DOI 2104
Unsupervised domain adaptation, Categorical domain adaptation, Vicinal domain adaptation, Cross-domain weighting, Domain augmentation BibRef

Tang, H.[Hui], Jia, K.[Kui],
A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation,
CVPR23(15954-15964)
IEEE DOI 2309
BibRef

Wang, J.[Jing], Chen, J.H.[Jia-Hong], Lin, J.Z.[Jian-Zhe], Sigal, L.[Leonid], de Silva, C.W.[Clarence W.],
Discriminative feature alignment: Improving transferability of unsupervised domain adaptation by Gaussian-guided latent alignment,
PR(116), 2021, pp. 107943.
Elsevier DOI 2106
Domain adaptation, Information theory BibRef

Zhang, K.[Kuangen], Chen, J.H.[Jia-Hong], Wang, J.[Jing], Leng, Y.[Yuquan], de Silva, C.W.[Clarence W.], Fu, C.L.[Cheng-Long],
Gaussian-guided feature alignment for unsupervised cross-subject adaptation,
PR(122), 2022, pp. 108332.
Elsevier DOI 2112
Domain adaptation, Feature alignment, Human activity recognition, Human intent recognition, Sensor fusion BibRef

Li, S.[Shuang], Liu, C.H.[Chi Harold], Lin, Q.X.[Qiu-Xia], Wen, Q.[Qi], Su, L.M.[Li-Min], Huang, G.[Gao], Ding, Z.M.[Zheng-Ming],
Deep Residual Correction Network for Partial Domain Adaptation,
PAMI(43), No. 7, July 2021, pp. 2329-2344.
IEEE DOI 2106
Task analysis, Deep learning, Visualization, Learning systems, Training, Probability distribution, Measurement, fine-grained visual recognition BibRef

Ding, Z.M.[Zheng-Ming], Li, S.[Sheng], Shao, M.[Ming], Fu, Y.[Yun],
Graph Adaptive Knowledge Transfer for Unsupervised Domain Adaptation,
ECCV18(II: 36-52).
Springer DOI 1810
BibRef

Deng, W.X.[Wan-Xia], Liao, Q.[Qing], Zhao, L.J.[Ling-Jun], Guo, D.[Deke], Kuang, G.Y.[Gang-Yao], Hu, D.[Dewen], Liu, L.[Li],
Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation,
IP(30), 2021, pp. 7842-7855.
IEEE DOI 2109
BibRef
And: A3, A1, A5, A6, A7, Only:
Transferable Discriminative Feature Mining for Unsupervised Domain Adaptation,
ICIP21(1259-1263)
IEEE DOI 2201
Feature extraction, Task analysis, Image reconstruction, Training, Image coding, Deep learning, Data mining, Domain adaptation, semisupervised learning. Adaptation models, Minimization, unsupervised learning, image classification BibRef

Deng, W.X.[Wan-Xia], Su, Z.[Zhuo], Qiu, Q.[Qiang], Zhao, L.J.[Ling-Jun], Kuang, G.Y.[Gang-Yao], Pietikäinen, M.[Matti], Xiao, H.X.[Hua-Xin], Liu, L.[Li],
Deep ladder reconstruction-classification network for unsupervised domain adaptation,
PRL(152), 2021, pp. 398-405.
Elsevier DOI 2112
Domain adaptation, Deep learning, Deep convolutional neural network, Autoencoder, Unsupervised learning BibRef

Dai, P.Y.[Ping-Yang], Chen, P.X.[Pei-Xian], Wu, Q.[Qiong], Hong, X.P.[Xiao-Peng], Ye, Q.X.[Qi-Xiang], Tian, Q.[Qi], Lin, C.W.[Chia-Wen], Ji, R.R.[Rong-Rong],
Disentangling Task-Oriented Representations for Unsupervised Domain Adaptation,
IP(31), 2022, pp. 1012-1026.
IEEE DOI 2201
Task analysis, Adaptation models, Image color analysis, Vehicle dynamics, Linear programming, Image retrieval, Semantics, person re-identification BibRef

Luo, Y.W.[You-Wei], Ren, C.X.[Chuan-Xian], Dai, D.Q.[Dao-Qing], Yan, H.[Hong],
Unsupervised Domain Adaptation via Discriminative Manifold Propagation,
PAMI(44), No. 3, March 2022, pp. 1653-1669.
IEEE DOI 2202
Manifolds, Machine learning, Measurement, Training, Prototypes, Task analysis, Dictionaries, Unsupervised domain adaptation, manifold alignment BibRef

Kang, G.L.[Guo-Liang], Jiang, L.[Lu], Wei, Y.C.[Yun-Chao], Yang, Y.[Yi], Hauptmann, A.G.[Alexander G.],
Contrastive Adaptation Network for Single- and Multi-Source Domain Adaptation,
PAMI(44), No. 4, April 2022, pp. 1793-1804.
IEEE DOI 2203
BibRef
Earlier: A1, A2, A4, A5, Only:
Contrastive Adaptation Network for Unsupervised Domain Adaptation,
CVPR19(4888-4897).
IEEE DOI 2002
Training, Neural networks, Adaptation models, Benchmark testing, Measurement, Manuals, Estimation, Contrastive, domain adaptation, multi-source BibRef

Ren, C.X.[Chuan-Xian], Liu, Y.H.[Yong-Hui], Zhang, X.W.[Xi-Wen], Huang, K.K.[Ke-Kun],
Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain,
IP(31), 2022, pp. 2122-2135.
IEEE DOI 2203
Task analysis, Training, Feature extraction, Adaptation models, Neural networks, Manganese, Predictive models, matching normalization layer BibRef

Ge, P.F.[Peng-Fei], Ren, C.X.[Chuan-Xian], Xu, X.L.[Xiao-Lin], Yan, H.[Hong],
Unsupervised Domain Adaptation via Deep Conditional Adaptation Network,
PR(134), 2023, pp. 109088.
Elsevier DOI 2212
Deep learning, Domain adaptation, Feature extraction, Conditional maximum mean discrepancy, Kernel method BibRef

Xu, X.L.[Xiao-Lin], Xu, G.X.[Geng-Xin], Ren, C.X.[Chuan-Xian], Dai, D.Q.[Dao-Qing], Yan, H.[Hong],
Conditional Independence Induced Unsupervised Domain Adaptation,
PR(143), 2023, pp. 109787.
Elsevier DOI 2310
Domain Adaptation, Discriminant Analysis, Feature Learning, Conditional Independence, Classification BibRef

Chen, T.[Tao], Wang, S.H.[Shui-Hua], Wang, Q.[Qiong], Zhang, Z.[Zheng], Xie, G.S.[Guo-Sen], Tang, Z.[Zhenmin],
Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation,
MultMed(24), 2022, pp. 1042-1054.
IEEE DOI 2203
Training, Charge coupled devices, Convolutional codes, Semantics, Feature extraction, Distortion, Adversarial machine learning, semantic segmentation BibRef

Lu, Y.[Yuwu], Li, D.[Desheng], Wang, W.J.[Wen-Jing], Lai, Z.H.[Zhi-Hui], Zhou, J.[Jie], Li, X.L.[Xue-Long],
Discriminative Invariant Alignment for Unsupervised Domain Adaptation,
MultMed(24), No. 2022, pp. 1871-1882.
IEEE DOI 2204
Task analysis, Feature extraction, Manifolds, Degradation, Neural networks, Kernel, Data structures, Domain adaptation, maximum margin criterion BibRef

Deng, W.[Wanxia], Zhao, L.[Lingjun], Liao, Q.[Qing], Guo, D.[Deke], Kuang, G.Y.[Gang-Yao], Hu, D.[Dewen], Pietikäinen, M.[Matti], Liu, L.[Li],
Informative Feature Disentanglement for Unsupervised Domain Adaptation,
MultMed(24), 2022, pp. 2407-2421.
IEEE DOI 2205
Task analysis, Measurement, Feature extraction, Wheels, Image reconstruction, Image color analysis, Adaptation models, unsupervised learning BibRef

Guan, D.[Dayan], Huang, J.X.[Jia-Xing], Xiao, A.[Aoran], Lu, S.J.[Shi-Jian], Cao, Y.P.[Yan-Peng],
Uncertainty-Aware Unsupervised Domain Adaptation in Object Detection,
MultMed(24), 2022, pp. 2502-2514.
IEEE DOI 2205
Proposals, Uncertainty, Object detection, Entropy, Feature extraction, Detectors, Convolutional neural networks, curriculum learning BibRef

Zhang, C.[Chong], Li, Z.X.[Zong-Xian], Liu, J.J.[Jing-Jing], Peng, P.X.[Pei-Xi], Ye, Q.X.[Qi-Xiang], Lu, S.J.[Shi-Jian], Huang, T.J.[Tie-Jun], Tian, Y.H.[Yong-Hong],
Self-Guided Adaptation: Progressive Representation Alignment for Domain Adaptive Object Detection,
MultMed(24), 2022, pp. 2246-2258.
IEEE DOI 2205
Adaptation models, Object detection, Feature extraction, Detectors, Proposals, Kernel, Hilbert space, Self-Guided Adaptation, Domain Adaptive Object Detection BibRef

Xu, Y.[Yayun], Yan, H.[Hua],
Cycle-reconstructive subspace learning with class discriminability for unsupervised domain adaptation,
PR(129), 2022, pp. 108700.
Elsevier DOI 2206
Domain adaptation, Subspace learning, Transfer learning, Knowledge transfer BibRef

Moon, J.[Jihoon], Das, D.[Debasmit], Lee, C.S.G.[C. S. George],
A Multistage Framework With Mean Subspace Computation and Recursive Feedback for Online Unsupervised Domain Adaptation,
IP(31), 2022, pp. 4622-4636.
IEEE DOI 2207
Manifolds, Task analysis, Adaptation models, Data models, Computational modeling, Transforms, Sun, Mean subspace, unsupervised domain adaptation BibRef

Zhang, J.M.[Jia-Ming], Ma, C.X.[Chao-Xiang], Yang, K.L.[Kai-Lun], Roitberg, A.[Alina], Peng, K.Y.[Kun-Yu], Stiefelhagen, R.[Rainer],
Transfer Beyond the Field of View: Dense Panoramic Semantic Segmentation via Unsupervised Domain Adaptation,
ITS(23), No. 7, July 2022, pp. 9478-9491.
IEEE DOI 2207
Image segmentation, Semantics, Cameras, Adaptation models, Training data, Task analysis, Standards, Semantic segmentation, intelligent vehicles BibRef

Tao, X.F.[Xue-Feng], Kong, J.[Jun], Jiang, M.[Min], Liu, T.S.[Tian-Shan],
Unsupervised Domain Adaptation by Multi-Loss Gap Minimization Learning for Person Re-Identification,
CirSysVideo(32), No. 7, July 2022, pp. 4404-4416.
IEEE DOI 2207
Cameras, Adaptation models, Minimization, Training, Task analysis, Semantics, Data models, Unsupervised domain adaptation, minimum camera discrepancy loss BibRef

Jin, X.[Xin], Lan, C.L.[Cui-Ling], Zeng, W.J.[Wen-Jun], Chen, Z.B.[Zhi-Bo],
Style Normalization and Restitution for Domain Generalization and Adaptation,
MultMed(24), 2022, pp. 3636-3651.
IEEE DOI 2207
Task analysis, Signal to noise ratio, Training, Feature extraction, Entropy, Testing, Lighting, unsupervised domain adaptation BibRef

Lu, J.[Jiang], Li, L.[Lei], Zhang, C.S.[Chang-Shui],
Self-Reinforcing Unsupervised Matching,
PAMI(44), No. 8, August 2022, pp. 4404-4418.
IEEE DOI 2207
Visualization, Task analysis, Heuristic algorithms, Dynamic programming, Manuals, Tensors, Pattern analysis BibRef

Meng, M.[Min], Wu, Z.H.[Zhuang-Hui], Liang, T.Y.[Tian-You], Yu, J.[Jun], Wu, J.G.[Ji-Gang],
Exploring Fine-Grained Cluster Structure Knowledge for Unsupervised Domain Adaptation,
CirSysVideo(32), No. 8, August 2022, pp. 5481-5494.
IEEE DOI 2208
Representation learning, Adaptation models, Predictive models, Measurement, Feature extraction, Data models, Data visualization, structural centroid-based label prediction BibRef

Bucci, S.[Silvia], d'Innocente, A.[Antonio], Liao, Y.J.[Yu-Jun], Carlucci, F.M.[Fabio M.], Caputo, B.[Barbara], Tommasi, T.[Tatiana],
Self-Supervised Learning Across Domains,
PAMI(44), No. 9, September 2022, pp. 5516-5528.
IEEE DOI 2208
Task analysis, Visualization, Indexes, Adaptation models, Data models, Training, Image recognition, Self-supervision, multi-task learning BibRef

Xu, M.Q.[Meng-Qiu], Wu, M.[Ming], Chen, K.X.[Kai-Xin], Zhang, C.[Chuang], Guo, J.[Jun],
The Eyes of the Gods: A Survey of Unsupervised Domain Adaptation Methods Based on Remote Sensing Data,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
Survey, Domain Adaptation. BibRef

Li, W.K.[Wei-Kai], Chen, S.C.[Song-Can],
Unsupervised domain adaptation with progressive adaptation of subspaces,
PR(132), 2022, pp. 108918.
Elsevier DOI 2209
Unsupervised domain adaptation, Partial domain adaptation, Subspace learning, Pseudo label BibRef

Kwak, G.H.[Geun-Ho], Park, N.W.[No-Wook],
Unsupervised Domain Adaptation with Adversarial Self-Training for Crop Classification Using Remote Sensing Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Liang, J.[Jian], Hu, D.P.[Da-Peng], Wang, Y.[Yunbo], He, R.[Ran], Feng, J.S.[Jia-Shi],
Source Data-Absent Unsupervised Domain Adaptation Through Hypothesis Transfer and Labeling Transfer,
PAMI(44), No. 11, November 2022, pp. 8602-8617.
IEEE DOI 2210
Task analysis, Labeling, Adaptation models, Encoding, Image reconstruction, Feature extraction, Data models, model reuse BibRef

Han, Z.Y.[Zhong-Yi], Sun, H.L.[Hao-Liang], Yin, Y.L.[Yi-Long],
Learning Transferable Parameters for Unsupervised Domain Adaptation,
IP(31), 2022, pp. 6424-6439.
IEEE DOI 2211
Feature extraction, Training, Task analysis, Linear programming, Estimation, Data mining, Supervised learning, keypoint detection BibRef

Qin, C.[Can], Wang, L.C.[Li-Chen], Ma, Q.Q.[Qian-Qian], Yin, Y.[Yu], Wang, H.[Huan], Fu, Y.[Yun],
Semi-Supervised Domain Adaptive Structure Learning,
IP(31), 2022, pp. 7179-7190.
IEEE DOI 2212
Training, Generators, Feature extraction, Correlation, Adversarial machine learning, Minimization, Entropy, adaptive structure learning BibRef

Lu, Y.[Yuwu], Luo, X.P.[Xing-Ping], Wen, J.J.[Jia-Jun], Lai, Z.H.[Zhi-Hui], Li, X.L.[Xue-Long],
Cross-domain structure learning for visual data recognition,
PR(134), 2023, pp. 109127.
Elsevier DOI 2212
Domain adaptation, Cross-domain, Classwise structure learning, Sample reweighting BibRef

Zhang, W.W.[Wen-Wen], Wang, J.G.[Jian-Gong], Wang, Y.T.[Yu-Tong], Wang, F.Y.[Fei-Yue],
ParaUDA: Invariant Feature Learning With Auxiliary Synthetic Samples for Unsupervised Domain Adaptation,
ITS(23), No. 11, November 2022, pp. 20217-20229.
IEEE DOI 2212
Adaptation models, Representation learning, Feature extraction, Task analysis, Semantics, Generative adversarial networks, domain-invariant representation BibRef

Du, Y.J.[Yong-Jie], Zhou, D.[Deyun], Xie, Y.[Yu], Lei, Y.[Yu], Shi, J.[Jiao],
Prototype-Guided Feature Learning for Unsupervised Domain Adaptation,
PR(135), 2023, pp. 109154.
Elsevier DOI 2212
Unsupervised domain adaptation, Class prototype, Pseudo labeling, Label filtering BibRef

Tian, Q.[Qing], Zhu, Y.[Yanan], Sun, H.[Heyang], Chen, S.C.[Song-Can], Yin, H.J.[Hu-Jun],
Unsupervised Domain Adaptation Through Dynamically Aligning Both the Feature and Label Spaces,
CirSysVideo(32), No. 12, December 2022, pp. 8562-8573.
IEEE DOI 2212
Feature extraction, Adaptation models, Generators, Weight measurement, Task analysis, Heuristic algorithms, Training, adversarial discrimination adaptation BibRef

Wang, W.X.[Wen-Xu], Shen, Z.C.[Zhen-Cai], Li, D.L.[Dao-Liang], Zhong, P.[Ping], Chen, Y.Y.[Ying-Yi],
Probability-Based Graph Embedding Cross-Domain and Class Discriminative Feature Learning for Domain Adaptation,
IP(32), 2023, pp. 72-87.
IEEE DOI 2301
Representation learning, Aquaculture, Adaptation models, Technological innovation, Benchmark testing, Manifolds, Kernel, unsupervised domain adaptation BibRef

Xia, H.F.[Hai-Feng], Jing, T.[Taotao], Ding, Z.M.[Zheng-Ming],
Maximum Structural Generation Discrepancy for Unsupervised Domain Adaptation,
PAMI(45), No. 3, March 2023, pp. 3434-3445.
IEEE DOI 2302
Feature extraction, Collaboration, Training, Semantics, Task analysis, Bridges, Annotations, collaborative translation BibRef

Wang, M.Z.[Meng-Zhu], Wang, S.S.[Shan-Shan], Wang, W.[Wei], Shen, L.[Li], Zhang, X.[Xiang], Lan, L.[Long], Luo, Z.G.[Zhi-Gang],
Reducing bi-level feature redundancy for unsupervised domain adaptation,
PR(137), 2023, pp. 109319.
Elsevier DOI 2302
Feature redundancy, Unsupervised domain adaptation, Whitening, Orthogonality BibRef

Wang, J.[Jie], Zhang, X.L.[Xiao-Lei],
Improving pseudo labels with intra-class similarity for unsupervised domain adaptation,
PR(138), 2023, pp. 109379.
Elsevier DOI 2303
Unsupervised domain adaptation, Intra-class similarity, Spanning trees, Pseudo labels BibRef

Pei, J.B.[Jiang-Bo], Jiang, Z.Q.[Zhu-Qing], Men, A.[Aidong], Chen, L.[Liang], Liu, Y.[Yang], Chen, Q.C.[Qing-Chao],
Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation,
IP(32), 2023, pp. 2033-2048.
IEEE DOI 2304
Data models, Adaptation models, Semantics, Uncertainty, Training, Calibration, Measurement uncertainty, adaptive machine learning BibRef

Pei, J.B.[Jiang-Bo], Men, A.[Aidong], Liu, Y.[Yang], Zhuang, X.[Xiahai], Chen, Q.C.[Qing-Chao],
Evidential Multi-Source-Free Unsupervised Domain Adaptation,
PAMI(46), No. 8, August 2024, pp. 5288-5305.
IEEE DOI 2407
Uncertainty, Adaptation models, Semantics, Data models, Predictive models, Estimation, Data science, uncertainty BibRef

Tan, A.D.[An-Dong], Hanselmann, N.[Niklas], Ding, S.[Shuxiao], Tombari, F.[Federico], Cordts, M.[Marius],
Unsupervised Domain Adaptive Object Detection with Class Label Shift Weighted Local Features,
LLID22(118-133).
Springer DOI 2304
BibRef

Rawat, A.[Abhay], Dua, I.[Isha], Gupta, S.[Saurav], Tallamraju, R.[Rahul],
Semi-supervised Domain Adaptation by Similarity Based Pseudo-label Injection,
LLID22(150-166).
Springer DOI 2304
BibRef

Mahapatra, D.[Dwarikanath], Korevaar, S.[Steven], Bozorgtabar, B.[Behzad], Tennakoon, R.[Ruwan],
Unsupervised Domain Adaptation Using Feature Disentanglement and Gcns for Medical Image Classification,
MIA-COVID19D22(735-748).
Springer DOI 2304
BibRef

Wang, Y.M.[Yu-Miao], Feng, L.[Luwei], Zhang, Z.[Zhou], Tian, F.[Feng],
An unsupervised domain adaptation deep learning method for spatial and temporal transferable crop type mapping using Sentinel-2 imagery,
PandRS(199), 2023, pp. 102-117.
Elsevier DOI 2305
Crop type mapping, Unsupervised domain adaptation, Time-series imagery, Transfer learning BibRef

Mao, H.Q.[Hai-Quan], Hong, F.[Feng], Mak, M.W.[Man-Wai],
Cluster-Guided Unsupervised Domain Adaptation for Deep Speaker Embedding,
SPLetters(30), 2023, pp. 643-647.
IEEE DOI 2306
Training, Training data, Data models, Noise measurement, Self-supervised learning, Tuning, Supervised learning, contrastive center loss BibRef

Wang, R.[Rui], Wu, Z.[Zuxuan], Weng, Z.[Zejia], Chen, J.J.[Jing-Jing], Qi, G.J.[Guo-Jun], Jiang, Y.G.[Yu-Gang],
Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation,
MultMed(25), 2023, pp. 1665-1673.
IEEE DOI 2306
Training, Task analysis, Standards, Semantics, Prototypes, Data models, Adaptation models, Contrastive learning, source data-free BibRef

Gilo, O.[Obsa], Mathew, J.[Jimson], Mondal, S.[Samrat], Kumar-Sanodiya, R.[Rakesh],
Unsupervised sub-domain adaptation using optimal transport,
JVCIR(94), 2023, pp. 103857.
Elsevier DOI 2306
Domain adaptation, Subdomain adaptation, Sliced wasserstein metric, Optimal transport BibRef

Zou, B.[Bin], Qin, J.[Jiang], Zhang, L.M.[La-Mei],
Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images,
PandRS(200), 2023, pp. 173-190.
Elsevier DOI 2306
Synthetic aperture radar (SAR), Cross-scene target detection, Unsupervised domain adaptation (UDA), Self-training, Uncertainty estimation BibRef

Piva, F.J.[Fabrizio J.], Dubbelman, G.[Gijs],
Exploiting image translations via ensemble self-supervised learning for Unsupervised Domain Adaptation,
CVIU(234), 2023, pp. 103745.
Elsevier DOI 2307
Ensemble learning, Self-supervised learning, Unsupervised domain adaptation, Image translations BibRef

Yu, Z.Q.[Zhi-Qi], Li, J.J.[Jing-Jing], Zhu, L.[Lei], Lu, K.[Ke], Shen, H.T.[Heng Tao],
Classification Certainty Maximization for Unsupervised Domain Adaptation,
CirSysVideo(33), No. 8, August 2023, pp. 4232-4243.
IEEE DOI 2308
Feature extraction, Adaptation models, Optimization, Adversarial machine learning, Predictive models, Task analysis, adversarial learning BibRef

Li, Y.[Yanan], Liu, Y.F.[Yi-Fei], Zheng, D.[Dingrun], Huang, Y.H.[Yu-Han], Tang, Y.L.[Yu-Ling],
Discriminable feature enhancement for unsupervised domain adaptation,
IVC(137), 2023, pp. 104755.
Elsevier DOI 2309
Unsupervised domain adaptation, Convolutional neural networks, Discriminable feature, Adversarial learning BibRef

Mei, Z.[Zhen], Ye, P.[Peng], Ye, H.C.[Han-Cheng], Li, B.[Baopu], Guo, J.Y.[Jin-Yang], Chen, T.[Tao], Ouyang, W.L.[Wan-Li],
Automatic Loss Function Search for Adversarial Unsupervised Domain Adaptation,
CirSysVideo(33), No. 10, October 2023, pp. 5868-5881.
IEEE DOI 2310
BibRef

Zhou, L.H.[Li-Hua], Xiao, S.Y.[Si-Ying], Ye, M.[Mao], Zhu, X.T.[Xia-Tian], Li, S.[Shuaifeng],
Adaptive Mutual Learning for Unsupervised Domain Adaptation,
CirSysVideo(33), No. 11, November 2023, pp. 6622-6634.
IEEE DOI 2311
BibRef

Wang, P.[Pei], Yang, Y.[Yun], Xia, Y.[Yuelong], Wang, K.[Kun], Zhang, X.Y.[Xing-Yi], Wang, S.[Song],
Information Maximizing Adaptation Network With Label Distribution Priors for Unsupervised Domain Adaptation,
MultMed(25), 2023, pp. 6026-6039.
IEEE DOI 2311
BibRef

Liu, P.F.[Peng-Fei], Guo, L.[Lishu], Zhao, H.[Hang], Shang, P.[Peng], Chu, Z.Y.[Zi-Yue], Lu, X.C.[Xiao-Chun],
A Long Time Span-Specific Emitter Identification Method Based on Unsupervised Domain Adaptation,
RS(15), No. 21, 2023, pp. 5214.
DOI Link 2311
BibRef

Shu, X.Y.[Xin-Yao], Yan, S.Y.[Shi-Yang], Lu, Z.Y.[Zhen-Yu], Wang, X.S.[Xin-Shao], Xie, Y.[Yuan],
AdaTriplet-RA: Domain matching via adaptive triplet and reinforced attention for unsupervised domain adaptation,
SP:IC(120), 2024, pp. 117024.
Elsevier DOI Code:
WWW Link. 2312
Unsupervised domain adaptation, Domain matching, Triplet loss, Reinforced learning BibRef

Zhang, H.[Hui], Tang, J.[Junkun], Cao, Y.H.[Yi-Hong], Chen, Y.R.[Yu-Rong], Wang, Y.[Yaonan], Wu, Q.M.J.[Q. M. Jonathan],
Cycle Consistency Based Pseudo Label and Fine Alignment for Unsupervised Domain Adaptation,
MultMed(25), 2023, pp. 8051-8063.
IEEE DOI 2312
BibRef

Dong, J.H.[Jia-Hua], Cong, Y.[Yang], Sun, G.[Gan], Fang, Z.[Zhen], Ding, Z.M.[Zheng-Ming],
Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation,
PAMI(46), No. 3, March 2024, pp. 1664-1681.
IEEE DOI 2402
Semantics, Visualization, Prototypes, Adaptation models, Task analysis, Knowledge engineering, Uncertainty, medical lesions diagnosis BibRef

Ji, W.[Wen], Chung, A.C.S.[Albert C. S.],
Unsupervised Domain Adaptation for Medical Image Segmentation Using Transformer With Meta Attention,
MedImg(43), No. 2, February 2024, pp. 820-831.
IEEE DOI 2402
Transformers, Image segmentation, Image analysis, Task analysis, Medical diagnostic imaging, Semantics, Computed tomography, unsupervised domain adaptation BibRef

Ding, F.F.[Fei-Fei], Li, J.J.[Jian-Jun], Tian, W.Y.[Wan-Yong], Zhang, S.Q.[Shan-Qing], Yuan, W.Q.[Wen-Qiang],
Unsupervised Domain Adaptation via Risk-Consistent Estimators,
MultMed(26), 2024, pp. 1179-1187.
IEEE DOI Code:
WWW Link. 2402
Noise measurement, Training, Adaptation models, Estimation, Feature extraction, Entropy, Data models, Noise transition matrix, unsupervised domain adaptation BibRef

Lu, Y.[Yuwu], Wong, W.K.[Wai Keung], Yuan, C.[Chun], Lai, Z.H.[Zhi-Hui], Li, X.L.[Xue-Long],
Low-Rank Correlation Learning for Unsupervised Domain Adaptation,
MultMed(26), 2024, pp. 4153-4167.
IEEE DOI 2403
Feature extraction, Task analysis, Correlation, Training data, Noise measurement, Image color analysis, Correlation, transfer learning BibRef

Zhao, X.[Xian], Huang, L.[Lei], Nie, J.[Jie], Wei, Z.Q.[Zhi-Qiang],
Towards Adaptive Multi-Scale Intermediate Domain via Progressive Training for Unsupervised Domain Adaptation,
MultMed(26), 2024, pp. 5054-5064.
IEEE DOI 2404
Training, Adaptation models, Task analysis, Measurement, Computational modeling, Bridges, Semisupervised learning, unsupervised domain adaptation BibRef

Cheng, Z.M.[Zhi-Ming], Wang, S.[Shuai], Yang, D.[Defu], Qi, J.[Jie], Xiao, M.[Mang], Yan, C.G.[Cheng-Gang],
Deep Joint Semantic Adaptation Network for Multi-source Unsupervised Domain Adaptation,
PR(151), 2024, pp. 110409.
Elsevier DOI 2404
Multi-source unsupervised domain adaptation, Maximum mean discrepancy, Domain shift, Data augmentation, Distribution alignment BibRef

Li, H.[Heng], Lin, Z.Q.[Zi-Qin], Qiu, Z.X.[Zhong-Xi], Li, Z.[Zinan], Niu, K.[Ke], Guo, N.[Na], Fu, H.Z.[Hua-Zhu], Hu, Y.[Yan], Liu, J.[Jiang],
Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement,
MedImg(43), No. 4, April 2024, pp. 1323-1336.
IEEE DOI Code:
WWW Link. 2404
Biomedical imaging, Data models, Adaptation models, Medical diagnostic imaging, Image enhancement, Training, pseudo-label selection BibRef

Wang, J.X.[Jing-Xuan], Wu, C.[Chen],
SFDA-CD: A Source-Free Unsupervised Domain Adaptation for VHR Image Change Detection,
RS(16), No. 7, 2024, pp. 1274.
DOI Link 2404
BibRef

Yuan, J.[Jin], Hou, F.[Feng], Yang, Y.[Ying], Zhang, Y.[Yang], Shi, Z.C.[Zhong-Chao], Geng, X.[Xin], Fan, J.P.[Jian-Ping], He, Z.Q.[Zhi-Qiang], Rui, Y.[Yong],
Domain-Aware Graph Network for Bridging Multi-Source Domain Adaptation,
MultMed(26), 2024, pp. 7210-7224.
IEEE DOI 2405
Task analysis, Feature extraction, Graph neural networks, Adaptation models, Self-supervised learning, Multitasking, real-world applications BibRef

Oza, P.[Poojan], Sindagi, V.A.[Vishwanath A.], Vibashan, V.S., Patel, V.M.[Vishal M.],
Unsupervised Domain Adaptation of Object Detectors: A Survey,
PAMI(46), No. 6, June 2024, pp. 4018-4040.
IEEE DOI 2405
Object detection, Computational modeling, Detectors, Training, Adaptation models, Task analysis, Proposals, Deep learning, unsupervised learning BibRef

Xiao, Y.Z.[Yu-Zhe], Xiao, G.Y.[Guang-Yi], Chen, H.[Hao],
Unified multi-level neighbor clustering for Source-Free Unsupervised Domain Adaptation,
PR(153), 2024, pp. 110533.
Elsevier DOI 2405
Pattern recognition, Computer vision, Unsupervised Domain Adaptation BibRef

Xu, R.[Ren], Samat, A.[Alim], Zhu, E.[Enzhao], Li, E.[Erzhu], Li, W.[Wei],
Unsupervised Domain Adaptation with Contrastive Learning-Based Discriminative Feature Augmentation for RS Image Classification,
RS(16), No. 11, 2024, pp. 1974.
DOI Link 2406
BibRef

Tian, Q.[Qing], Sun, H.[Heyang], Peng, S.[Shun], Zheng, Y.H.[Yu-Hui], Wan, J.[Jun], Lei, Z.[Zhen],
DCL: Dipolar Confidence Learning for Source-Free Unsupervised Domain Adaptation,
CirSysVideo(34), No. 6, June 2024, pp. 4342-4353.
IEEE DOI 2406
Adaptation models, Data models, Task analysis, Predictive models, Generators, Feature extraction, Training, rotation-based self-supervised learning BibRef

Peng, L.[Lin], He, Y.H.[Yu-Hang], Wang, S.[Shaokun], Song, X.[Xiang], Dong, S.[Songlin], Wei, X.[Xing], Gong, Y.H.[Yi-Hong],
Global self-sustaining and local inheritance for source-free unsupervised domain adaptation,
PR(155), 2024, pp. 110679.
Elsevier DOI 2408
Source-free, Domain adaptation, Global consistency, Local topology BibRef

Peng, D.[Duo], Ke, Q.H.[Qiu-Hong], Ambikapathi, A.[ArulMurugan], Yazici, Y.[Yasin], Lei, Y.J.[Yig-Jie], Liu, J.[Jun],
Unsupervised Domain Adaptation via Domain-Adaptive Diffusion,
IP(33), 2024, pp. 4245-4260.
IEEE DOI 2408
Semantics, Diffusion models, Adaptation models, Data models, Training, Task analysis, Unsupervised domain adaptation, image classification BibRef

Jin, X.[Xin], Lan, C.L.[Cui-Ling], Zeng, W.J.[Wen-Jun], Chen, Z.B.[Zhi-Bo],
Domain Prompt Tuning via Meta Relabeling for Unsupervised Adversarial Adaptation,
MultMed(26), 2024, pp. 8333-8347.
IEEE DOI 2408
Feature extraction, Training, Task analysis, Optimization, Entropy, Adaptation models, Tuning, Domain Relabeling, meta-optimization, unsupervised domain adaptation BibRef

Li, Q.[Qing], Yan, C.[Chuan], Hao, Q.[Qi], Peng, X.J.[Xiao-Jiang], Liu, L.[Li],
Graph Attentive Dual Ensemble learning for Unsupervised Domain Adaptation on point clouds,
PR(155), 2024, pp. 110690.
Elsevier DOI 2408
Point clouds, Unsupervised Domain Adaptation, Dual ensemble learning, Graph attentive module, Pseudo labels BibRef

Ma, Q.K.[Qian-Kun], Zeng, J.[Jie], Zhang, J.J.[Jian-Jia], Zu, C.[Chen], Wu, X.[Xi], Zhou, J.[Jiliu], Chen, J.[Jie], Wang, Y.[Yan],
Source-free domain adaptation via dynamic pseudo labeling and Self-supervision,
PR(156), 2024, pp. 110793.
Elsevier DOI Code:
WWW Link. 2408
Source-free domain adaptation, Self-supervised learning, Image classification BibRef

Zhang, L.[Lin], Wang, Y.F.[Yi-Fan], Song, R.[Ran], Zhang, M.X.[Ming-Xin], Li, X.L.[Xiao-Lei], Zhang, W.[Wei],
Neighborhood-Aware Mutual Information Maximization for Source-Free Domain Adaptation,
MultMed(26), 2024, pp. 9564-9574.
IEEE DOI 2410
Mutual information, Noise measurement, Feature extraction, Noise, Adaptation models, Training, Self-supervised learning, unsupervised learning BibRef


Kapil, R.[Rudraksh], Marvasti-Zadeh, S.M.[Seyed Mojtaba], Erbilgin, N.[Nadir], Ray, N.[Nilanjan],
ShadowSense: Unsupervised Domain Adaptation and Feature Fusion for Shadow-Agnostic Tree Crown Detection from RGB-Thermal Drone Imagery,
WACV24(8251-8261)
IEEE DOI Code:
WWW Link. 2404
Training, Annotations, Lighting, Vegetation, Detectors, Forestry, Feature extraction, Applications, Remote Sensing, Algorithms, Image recognition and understanding BibRef

Haslum, J.F.[Johan Fredin], Matsoukas, C.[Christos], Leuchowius, K.J.[Karl-Johan], Smith, K.[Kevin],
Bridging Generalization Gaps in High Content Imaging Through Online Self-Supervised Domain Adaptation,
WACV24(7723-7732)
IEEE DOI 2404
Drugs, Adaptation models, Soft sensors, Microscopy, Pipelines, Machine learning, Feature extraction, Applications, and algorithms BibRef

Zhao, X.C.[Xing-Chen], Mithun, N.C.[Niluthpol Chowdhury], Rajvanshi, A.[Abhinav], Chiu, H.P.[Han-Pang], Samarasekera, S.[Supun],
Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo Label Self-Refinement,
WACV24(2388-2398)
IEEE DOI 2404
Training, Adaptation models, Semantic segmentation, Refining, Noise, Self-supervised learning, Benchmark testing, Algorithms, Image recognition and understanding BibRef

Jang, J.[Joonhyeok], Lee, S.[Sunhyeok], Kim, S.[Seonghak], Kim, J.U.[Jung-Un], Kim, S.[Seonghyun], Kim, D.[Daeshik],
Robust Unsupervised Domain Adaptation through Negative-View Regularization,
WACV24(2450-2459)
IEEE DOI 2404
Adaptation models, Target recognition, Benchmark testing, Transformers, Robustness, Convolutional neural networks, Image recognition and understanding BibRef

Westfechtel, T.[Thomas], Yeh, H.W.[Hao-Wei], Zhang, D.[Dexuan], Harada, T.[Tatsuya],
Gradual Source Domain Expansion for Unsupervised Domain Adaptation,
WACV24(1935-1944)
IEEE DOI 2404
Training, Benchmark testing, Task analysis, Algorithms, Machine learning architectures, formulations, and algorithms BibRef

Zhu, Y.[Yanan], Qi, Y.Y.[Yang-Yang],
Domain Adaptation based on Attention-Weighted Optimal Transport and Cluster Alignment,
CVIDL23(514-517)
IEEE DOI 2403
Measure differences in distributions. Training, Deep learning, Adaptation models, Clustering algorithms, Cost function, Robustness, clustering alignment BibRef

Gao, Z.Q.[Zhi-Qiang], Huang, K.[Kaizhu], Zhang, R.[Rui], Liu, D.W.[Da-Wei], Ma, J.[Jieming],
Towards Better Robustness against Common Corruptions for Unsupervised Domain Adaptation,
ICCV23(18836-18847)
IEEE DOI 2401
BibRef

Zhou, W.Z.[Wen-Zhang], Fan, H.[Heng], Luo, T.J.[Tie-Jian], Zhang, L.[Libo],
Unsupervised Domain Adaptive Detection with Network Stability Analysis,
ICCV23(6963-6972)
IEEE DOI Code:
WWW Link. 2401
BibRef

Xiong, Y.Z.[Yi-Zhe], Chen, H.[Hui], Lin, Z.[Zijia], Zhao, S.C.[Si-Cheng], Ding, G.[Guiguang],
Confidence-based Visual Dispersal for Few-shot Unsupervised Domain Adaptation,
ICCV23(11587-11597)
IEEE DOI Code:
WWW Link. 2401
BibRef

Herath, S.[Samitha], Fernando, B.[Basura], Abbasnejad, E.[Ehsan], Hayat, M.[Munawar], Khadivi, S.[Shahram], Harandi, M.[Mehrtash], Rezatofighi, H.[Hamid], Haffari, G.[Gholamreza],
Energy-based Self-Training and Normalization for Unsupervised Domain Adaptation,
ICCV23(11619-11628)
IEEE DOI 2401
BibRef

Zhang, J.Y.[Jing-Yi], Huang, J.X.[Jia-Xing], Jiang, X.Y.[Xue-Ying], Lu, S.J.[Shi-Jian],
Black-box Unsupervised Domain Adaptation with Bi-directional Atkinson-Shiffrin Memory,
ICCV23(11737-11748)
IEEE DOI 2401
BibRef

Zhang, T.[Travis], Luo, K.[Katie], Phoo, C.P.[Cheng Perng], You, Y.R.[Yu-Rong], Chao, W.L.[Wei-Lun], Hariharan, B.[Bharath], Campbell, M.[Mark], Weinberger, K.Q.[Kilian Q.],
Unsupervised Domain Adaptation for Self-Driving from Past Traversal Features,
BRAVO23(4042-4048)
IEEE DOI Code:
WWW Link. 2401
BibRef

Zhang, Y.X.[Yi-Xin], Wang, Z.[Zilei], Li, J.J.[Jun-Jie], Zhuang, J.F.[Jia-Fan], Lin, Z.H.[Zi-Han],
Towards Effective Instance Discrimination Contrastive Loss for Unsupervised Domain Adaptation,
ICCV23(11354-11365)
IEEE DOI 2401
BibRef

Li, Z.Y.[Zi-Yu], Guo, J.M.[Jing-Ming], Cao, T.T.[Tong-Tong], Bingbing, L.[Liu], Yang, W.K.[Wan-Kou],
GPA-3D: Geometry-aware Prototype Alignment for Unsupervised Domain Adaptive 3D Object Detection from Point Clouds,
ICCV23(6371-6380)
IEEE DOI Code:
WWW Link. 2401
BibRef

Lai, Z.F.[Zheng-Feng], Vesdapunt, N.[Noranart], Zhou, N.[Ning], Wu, J.[Jun], Huynh, C.P.[Cong Phuoc], Li, X.[Xuelu], Fu, K.K.[Kah Kuen], Chuah, C.N.[Chen-Nee],
PADCLIP: Pseudo-labeling with Adaptive Debiasing in CLIP for Unsupervised Domain Adaptation,
ICCV23(16109-16119)
IEEE DOI 2401
BibRef

Zhou, L.H.[Li-Hua], Ye, M.[Mao], Zhu, X.T.[Xia-Tian], Xiao, S.Y.[Si-Ying], Fan, X.Q.[Xu-Qian], Neri, F.[Ferrante],
Homeomorphism Alignment for Unsupervised Domain Adaptation,
ICCV23(18653-18664)
IEEE DOI Code:
WWW Link. 2401
BibRef

Jian, D.[Dayuan], Rostami, M.[Mohammad],
Unsupervised Domain Adaptation for Training Event-Based Networks Using Contrastive Learning and Uncorrelated Conditioning,
ICCV23(18675-18685)
IEEE DOI 2401
BibRef

Ngo, B.H.[Ba Hung], Chae, Y.J.[Yeon Jeong], Kwon, J.E.[Jung Eun], Park, J.H.[Jae Hyeon], Cho, S.I.[Sung In],
Improved Knowledge Transfer for Semi-supervised Domain Adaptation via Trico Training Strategy,
ICCV23(19157-19166)
IEEE DOI 2401
BibRef

Zheng, A.[Aotian], Mei, J.[Jie], Wallace, F.[Farron], Rose, C.[Craig], Hussein, R.[Rania], Hwang, J.N.[Jenq-Neng],
Progressive Mixup Augmented Teacher-Student Learning for Unsupervised Domain Adaptation,
ICIP23(3030-3034)
IEEE DOI 2312
BibRef

Tang, Y.S.[Yu-Shun], Guo, Q.H.[Qing-Hai], He, Z.H.[Zhi-Hai],
Cross-Inferential Networks for Source-Free Unsupervised Domain Adaptation,
ICIP23(96-100)
IEEE DOI 2312
BibRef

Sinha, A.[Ashish], Choi, J.H.[Jong-Hyun],
MEnsA: Mix-up Ensemble Average for Unsupervised Multi Target Domain Adaptation on 3D Point Clouds,
L3D-IVU23(4767-4777)
IEEE DOI 2309
BibRef

Marsocci, V.[Valerio], Gonthier, N.[Nicolas], Garioud, A.[Anatol], Scardapane, S.[Simone], Mallet, C.[Clément],
GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates,
EarthVision23(2075-2085)
IEEE DOI 2309
BibRef

Jain, S.K.[Saurabh Kumar], Das, S.[Sukhendu],
MARRS: Modern Backbones Assisted Co-training for Rapid and Robust Semi-Supervised Domain Adaptation,
ECV23(4580-4589)
IEEE DOI 2309
BibRef

Benigmim, Y.[Yasser], Roy, S.[Subhankar], Essid, S.[Slim], Kalogeiton, V.[Vicky], Lathuilière, S.[Stéphane],
One-shot Unsupervised Domain Adaptation with Personalized Diffusion Models,
GCV23(698-708)
IEEE DOI 2309
BibRef

Yu, Y.C.[Yu-Chu], Lin, H.T.[Hsuan-Tien],
Semi-Supervised Domain Adaptation with Source Label Adaptation,
CVPR23(24100-24109)
IEEE DOI 2309
BibRef

Liu, Y.[Yang], Zhou, Z.P.[Zhi-Peng], Sun, B.[Baigui],
COT: Unsupervised Domain Adaptation with Clustering and Optimal Transport,
CVPR23(19998-20007)
IEEE DOI 2309
BibRef

Hu, Q.J.[Qian-Jiang], Liu, D.[Daizong], Hu, W.[Wei],
Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection,
CVPR23(17556-17566)
IEEE DOI 2309
BibRef

Nejjar, I.[Ismail], Wang, Q.[Qin], Fink, O.[Olga],
DARE-GRAM: Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices,
CVPR23(11744-11754)
IEEE DOI 2309
BibRef

Litrico, M.[Mattia], del Bue, A.[Alessio], Morerio, P.[Pietro],
Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation,
CVPR23(7640-7650)
IEEE DOI 2309
BibRef

Zhu, J.J.[Jin-Jing], Bai, H.T.[Hao-Tian], Wang, L.[Lin],
Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective,
CVPR23(3561-3571)
IEEE DOI 2309
BibRef

Lo, S.Y.[Shao-Yuan], Patel, V.M.[Vishal M.],
Exploring Adversarially Robust Training for Unsupervised Domain Adaptation,
ACCV22(VI:561-577).
Springer DOI 2307
BibRef

Wang, X.D.[Xiao-Dong], Zhuo, J.[Junbao], Zhang, M.[Mengru], Wang, S.H.[Shu-Hui], Fang, Y.J.[Yue-Jian],
Revisiting Unsupervised Domain Adaptation Models: A Smoothness Perspective,
ACCV22(VI:338-356).
Springer DOI 2307
BibRef

Pérez-Villar, J.I.B.[Juan Ignacio Bravo], García-Martín, Á.[Álvaro], Bescós, J.[Jesús],
Spacecraft Pose Estimation Based on Unsupervised Domain Adaptation and on a 3D-Guided Loss Combination,
AI4Space22(37-52).
Springer DOI 2304
BibRef

Ouyang, J.J.[Jia-Jun], Lv, Q.X.[Qing-Xuan], Zhang, S.[Shu], Dong, J.Y.[Jun-Yu],
Energy Transfer Contrast Network for Unsupervised Domain Adaption,
MMMod23(II: 115-126).
Springer DOI 2304
BibRef

Yang, Y.[Yiju], Kim, T.[Taejoon], Wang, G.H.[Guang-Hui],
Multiple Classifiers Based Adversarial Training for Unsupervised Domain Adaptation,
CRV22(40-47)
IEEE DOI 2301
Training, Codes, Computational efficiency, Classification algorithms, Task analysis, Time complexity, Robots, maximum classifier discrepancy BibRef

Tomaszewska, P.[Paulina], Lampert, C.H.[Christoph H.],
Lightweight Conditional Model Extrapolation for Streaming Data under Class-Prior Shift,
ICPR22(2128-2134)
IEEE DOI 2212
Training, Measurement, Extrapolation, Adaptation models, Social networking (online), Computational modeling, Blogs, class-prior shift BibRef

Choi, J.[Jinwoo], Huang, J.B.[Jia-Bin], Sharma, G.[Gaurav],
Self-Supervised Cross-Video Temporal Learning for Unsupervised Video Domain Adaptation,
ICPR22(3464-3470)
IEEE DOI 2212
Training, Adaptation models, Self-supervised learning, Benchmark testing, Cognition, Task analysis BibRef

Lee, H.[Hyogun], Bae, K.[Kyungho], Ha, S.J.[Seong Jong], Ko, Y.M.[Yu-Min], Park, G.M.[Gyeong-Moon], Choi, J.[Jinwoo],
GLAD: Global-Local View Alignment and Background Debiasing for Unsupervised Video Domain Adaptation with Large Domain Gap,
WACV24(6802-6811)
IEEE DOI Code:
WWW Link. 2404
Codes, Target recognition, Focusing, Benchmark testing, Algorithms, Video recognition and understanding, Algorithms, and algorithms BibRef

Truong, T.D.[Thanh-Dat], Chappa, R.T.N.[Ravi Teja Nvs], Nguyen, X.B.[Xuan-Bac], Le, N.[Ngan], Dowling, A.P.G.[Ashley P.G.], Luu, K.[Khoa],
OTAdapt: Optimal Transport-based Approach For Unsupervised Domain Adaptation,
ICPR22(2850-2856)
IEEE DOI 2212
Measurement, Webcams, Insects, Topology, Proposals BibRef

Lin, W.[Wei], Kukleva, A.[Anna], Sun, K.Y.[Kun-Yang], Possegger, H.[Horst], Kuehne, H.[Hilde], Bischof, H.[Horst],
CycDA: Unsupervised Cycle Domain Adaptation to Learn from Image to Video,
ECCV22(III:698-715).
Springer DOI 2211
BibRef

Hu, C.H.[Cong-Hui], Zhang, C.[Can], Lee, G.H.[Gim Hee],
Unsupervised Feature Representation Learning for Domain-generalized Cross-domain Image Retrieval,
ICCV23(10982-10991)
IEEE DOI Code:
WWW Link. 2401
BibRef
Earlier: A1, A3, Only:
Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval,
ECCV22(XXXVII:529-544).
Springer DOI 2211
BibRef

Sun, T.[Tao], Lu, C.[Cheng], Ling, H.B.[Hai-Bin],
Prior Knowledge Guided Unsupervised Domain Adaptation,
ECCV22(XXXIII:639-655).
Springer DOI 2211
BibRef

Na, J.[Jaemin], Han, D.Y.[Dong-Yoon], Chang, H.J.[Hyung Jin], Hwang, W.J.[Won-Jun],
Contrastive Vicinal Space for Unsupervised Domain Adaptation,
ECCV22(XXXIV:92-110).
Springer DOI 2211
BibRef

Lee, E.S.[Eun Sun], Kim, J.[Junho], Park, S.[SangWon], Kim, Y.M.[Young Min],
MoDA: Map Style Transfer for Self-supervised Domain Adaptation of Embodied Agents,
ECCV22(XXIX:338-354).
Springer DOI 2211
BibRef

Lu, X.[Xiaohu], Radha, H.[Hayder],
Strong-Weak Integrated Semi-Supervision for Unsupervised Domain Adaptation,
ICIP22(2226-2230)
IEEE DOI 2211
Training, Benchmark testing, Semisupervised learning, Domain adaptation, Semi-supervised, Adversarial logit, Intra-class divergence BibRef

Lin, H.B.[Hong-Bin], Zhang, Y.F.[Yi-Fan], Qiu, Z.[Zhen], Niu, S.C.[Shuai-Cheng], Gan, C.[Chuang], Liu, Y.X.[Yan-Xia], Tan, M.K.[Ming-Kui],
Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation,
ECCV22(XXXIII:351-368).
Springer DOI 2211
BibRef

Wu, C.E.[Cheng-En], Lai, F.[Farley], Hu, Y.H.[Yu Hen], Kadav, A.[Asim],
Self-supervised Video Representation Learning with Cascade Positive Retrieval,
L3D-IVU22(4069-4078)
IEEE DOI 2210
Representation learning, Training, Visualization, Upper bound, Scalability, Transfer learning, Self-supervised learning BibRef

Lu, C.J.[Chang-Jie], Zheng, S.[Shen], Gupta, G.[Gaurav],
Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization,
Precognition22(2587-2596)
IEEE DOI 2210
Image segmentation, Adaptation models, Estimation, Benchmark testing, Pattern recognition, Task analysis BibRef

Zhang, J.Y.[Jing-Yi], Huang, J.X.[Jia-Xing], Tian, Z.C.[Zi-Chen], Lu, S.J.[Shi-Jian],
Spectral Unsupervised Domain Adaptation for Visual Recognition,
CVPR22(9819-9830)
IEEE DOI 2210
Visualization, Image segmentation, Semantics, Object detection, Transformers, Pattern recognition, Self- semi- meta- Transfer/low-shot/long-tail learning BibRef

Ye, J.J.[Jun-Jie], Fu, C.H.[Chang-Hong], Zheng, G.Z.[Guang-Ze], Paudel, D.P.[Danda Pani], Chen, G.[Guang],
Unsupervised Domain Adaptation for Nighttime Aerial Tracking,
CVPR22(8886-8895)
IEEE DOI 2210
Training, Adaptation models, Target tracking, Benchmark testing, Transformers, Feature extraction, Robustness, Motion and tracking, Transfer/low-shot/long-tail learning BibRef

Fan, H.[Hehe], Chang, X.J.[Xiao-Jun], Zhang, W.[Wanyue], Cheng, Y.[Yi], Sun, Y.[Ying], Kankanhalli, M.S.[Mohan S.],
Self-Supervised Global-Local Structure Modeling for Point Cloud Domain Adaptation with Reliable Voted Pseudo Labels,
CVPR22(6367-6376)
IEEE DOI 2210
Point cloud compression, Training, Representation learning, Adaptation models, Self-supervised learning, Predictive models, Transfer/low-shot/long-tail learning BibRef

Huang, J.X.[Jia-Xing], Guan, D.[Dayan], Xiao, A.[Aoran], Lu, S.J.[Shi-Jian], Shao, L.[Ling],
Category Contrast for Unsupervised Domain Adaptation in Visual Tasks,
CVPR22(1193-1204)
IEEE DOI 2210
Representation learning, Visualization, Adaptation models, Dictionaries, Computational modeling, Semantics, Segmentation, Transfer/low-shot/long-tail learning BibRef

Saito, K.[Kuniaki], Kim, D.H.[Dong-Hyun], Teterwak, P.[Piotr], Sclaroff, S.[Stan], Darrell, T.J.[Trevor J.], Saenko, K.[Kate],
Tune it the Right Way: Unsupervised Validation of Domain Adaptation via Soft Neighborhood Density,
ICCV21(9164-9173)
IEEE DOI 2203
Training, Image segmentation, Codes, Density measurement, Computational modeling, Semantics, Recognition and classification BibRef

Gu, Q.Q.[Qi-Qi], Zhou, Q.Y.[Qian-Yu], Xu, M.H.[Ming-Hao], Feng, Z.Y.[Zheng-Yang], Cheng, G.L.[Guang-Liang], Lu, X.Q.[Xue-Quan], Shi, J.P.[Jian-Ping], Ma, L.Z.[Li-Zhuang],
PIT: Position-Invariant Transform for Cross-FoV Domain Adaptation,
ICCV21(8741-8750)
IEEE DOI 2203
Training, Image segmentation, Codes, Semantics, Lighting, Transforms, Transfer/Low-shot/Semi/Unsupervised Learning, Vision for robotics and autonomous vehicles BibRef

Yang, J.[Jinyu], Li, C.Y.[Chun-Yuan], An, W.Z.[Wei-Zhi], Ma, H.H.[He-Huan], Guo, Y.Z.[Yu-Zhi], Rong, Y.[Yu], Zhao, P.L.[Pei-Lin], Huang, J.Z.[Jun-Zhou],
Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation,
ICCV21(9174-9183)
IEEE DOI 2203
Resistance, Deep learning, Image segmentation, Perturbation methods, Semantics, Neural networks, grouping and shape BibRef

Liu, X.F.[Xiao-Feng], Li, S.[Site], Ge, Y.[Yubin], Ye, P.Y.[Peng-Yi], You, J.[Jane], Lu, J.[Jun],
Recursively Conditional Gaussian for Ordinal Unsupervised Domain Adaptation,
ICCV21(744-753)
IEEE DOI 2203
Adaptation models, Pathology, Scalability, Estimation, Aerospace electronics, Noise measurement, Representation learning BibRef

Lee, E.S.[Eun Sun], Kim, J.[Junho], Kim, Y.M.[Young Min],
Self-Supervised Domain Adaptation for Visual Navigation with Global Map Consistency,
WACV22(1868-1877)
IEEE DOI 2202
Training, Location awareness, Visualization, Navigation, Graphics processing units, Data models, Trajectory, Vision for Robotics BibRef

Yoon, J.[Jeongbeen], Kang, D.[Dahyun], Cho, M.[Minsu],
Semi-supervised Domain Adaptation via Sample-to-Sample Self-Distillation,
WACV22(1686-1695)
IEEE DOI 2202
Training, Bridges, Adaptation models, Benchmark testing, Standards, Transfer, Scene Understanding BibRef

Agarwal, P.[Peshal], Paudel, D.P.[Danda Pani], Zaech, J.N.[Jan-Nico], Van Gool, L.J.[Luc J.],
Unsupervised Robust Domain Adaptation without Source Data,
WACV22(2805-2814)
IEEE DOI 2202
Representation learning, Adaptation models, Computational modeling, Perturbation methods, Predictive models, Semi- and Un- supervised Learning BibRef

Ahmed, W.[Waqar], Morerio, P.[Pietro], Murino, V.[Vittorio],
Continual Source-free Unsupervised Domain Adaptation,
CIAP23(I:14-25).
Springer DOI 2312
BibRef
Earlier:
Cleaning Noisy Labels by Negative Ensemble Learning for Source-Free Unsupervised Domain Adaptation,
WACV22(356-365)
IEEE DOI 2202
Training, Data privacy, Filtering, Stochastic processes, Benchmark testing, Cleaning, Transfer, Semi- and Un- supervised Learning Deep Learning -> Efficient Training and Inference Methods for Networks BibRef

Robbiano, L.[Luca], Rahman, M.R.U.[Muhammad Rameez Ur], Galasso, F.[Fabio], Caputo, B.[Barbara], Carlucci, F.M.[Fabio Maria],
Adversarial Branch Architecture Search for Unsupervised Domain Adaptation,
WACV22(1008-1018)
IEEE DOI 2202
Bridges, Visualization, Adaptation models, Object Detection/Recognition/Categorization BibRef

Yue, Z.Q.[Zhong-Qi], Sun, Q.[Qianru], Hua, X.S.[Xian-Sheng], Zhang, H.W.[Han-Wang],
Transporting Causal Mechanisms for Unsupervised Domain Adaptation,
ICCV21(8579-8588)
IEEE DOI 2203
Adaptation models, Codes, Semantics, Benchmark testing, Transfer/Low-shot/Semi/Unsupervised Learning, Recognition and classification BibRef

Wang, J.[Jie], Zhong, C.L.[Chao-Liang], Feng, C.[Cheng], Sun, J.[Jun], Ide, M.[Masaru], Yokota, Y.[Yasuto],
Dual-Consistency Self-Training for Unsupervised Domain Adaptation,
ICIP21(1529-1533)
IEEE DOI 2201
Image processing, Prototypes, Benchmark testing, Task analysis, Standards, Consistency, Self-training, Unsupervised Domain Adaptation BibRef

Zhang, Y.[Youshan], Davison, B.D.[Brian D.],
Enhanced Separable Disentanglement for Unsupervised Domain Adaptation,
ICIP21(784-788)
IEEE DOI 2201
Training, Adaptation models, Benchmark testing, Electrostatic discharges, Task analysis, Image reconstruction, Domain discriminator BibRef

Hou, Y.Z.[Yun-Zhong], Zheng, L.[Liang],
Visualizing Adapted Knowledge in Domain Transfer,
CVPR21(13819-13828)
IEEE DOI 2111
Adaptation models, Computational modeling, Force, Data visualization, Data models, Pattern recognition BibRef

Melas-Kyriazi, L.[Luke], Manrai, A.K.[Arjun K.],
PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency Training,
CVPR21(12430-12440)
IEEE DOI 2111
Training, Adaptation models, Image segmentation, Perturbation methods, Computational modeling, Semantics BibRef

Xiao, N.[Ni], Zhang, L.[Lei],
Dynamic Weighted Learning for Unsupervised Domain Adaptation,
CVPR21(15237-15246)
IEEE DOI 2111
Training, Adaptation models, Codes, Benchmark testing, Pattern recognition, Task analysis BibRef

Wei, G.Q.[Guo-Qiang], Lan, C.L.[Cui-Ling], Zeng, W.J.[Wen-Jun], Chen, Z.B.[Zhi-Bo],
MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation,
CVPR21(16638-16648)
IEEE DOI 2111
Training, Object detection, Adversarial machine learning, Pattern recognition, Task analysis, Optimization BibRef

Saha, S.[Suman], Obukhov, A.[Anton], Paudel, D.P.[Danda Pani], Kanakis, M.[Menelaos], Chen, Y.H.[Yu-Hua], Georgoulis, S.[Stamatios], Van Gool, L.J.[Luc J.],
Learning to Relate Depth and Semantics for Unsupervised Domain Adaptation,
CVPR21(8193-8203)
IEEE DOI 2111
Training, Visualization, Correlation, Semantics, Neural networks, Estimation, Predictive models BibRef

Sharma, A.[Astuti], Kalluri, T.[Tarun], Chandraker, M.[Manmohan],
Instance Level Affinity-Based Transfer for Unsupervised Domain Adaptation,
CVPR21(5357-5367)
IEEE DOI 2111
Training, Adaptation models, Benchmark testing, Drives, Data models, Numerical models BibRef

Du, Z.[Zhekai], Li, J.J.[Jing-Jing], Su, H.Z.[Hong-Zu], Zhu, L.[Lei], Lu, K.[Ke],
Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation,
CVPR21(3936-3945)
IEEE DOI 2111
Semantics, Minimization, Adversarial machine learning, Pattern recognition, Reliability BibRef

Na, J.[Jaemin], Jung, H.[Heechul], Chang, H.J.[Hyung Jin], Hwang, W.J.[Won-Jun],
FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation,
CVPR21(1094-1103)
IEEE DOI 2111
Adaptation models, Benchmark testing, Predictive models, Pattern recognition, Standards BibRef

Singh, A.[Anurag], Doraiswamy, N.[Naren], Takamuku, S.[Sawa], Bhalerao, M.[Megh], Dutta, T.[Titir], Biswas, S.[Soma], Chepuri, A.[Aditya], Vengatesan, B.[Balasubramanian], Natori, N.[Naotake],
Improving Semi-Supervised Domain Adaptation Using Effective Target Selection and Semantics,
LLID21(2703-2712)
IEEE DOI 2109
Uncertainty, Computational modeling, Semantics, Prototypes, Manuals BibRef

Chao, C.H.[Chen-Hao], Cheng, B.W.[Bo-Wun], Lee, C.Y.[Chun-Yi],
Rethinking Ensemble-Distillation for Semantic Segmentation Based Unsupervised Domain Adaption,
LLID21(2610-2620)
IEEE DOI 2109
Learning systems, Semantics, Benchmark testing, Robustness, Pattern recognition BibRef

Barbato, F.[Francesco], Toldo, M.[Marco], Michieli, U.[Umberto], Zanuttigh, P.[Pietro],
Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation,
WAD21(2829-2839)
IEEE DOI 2109
Training, Roads, Semantics, Employment, Training data, Benchmark testing, Particle measurements BibRef

Zhang, Y.[Youshan], Davison, B.D.[Brian D.],
Deep Spherical Manifold Gaussian Kernel for Unsupervised Domain Adaptation,
Diff-CVML21(4438-4447)
IEEE DOI 2109
Manifolds, Adaptation models, Feature extraction, Pattern recognition, Noise measurement BibRef

Jing, T.T.[Tao-Tao], Ding, Z.M.[Zheng-Ming],
Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation,
WACV21(605-614)
IEEE DOI 2106
Visualization, Adaptation models, Target recognition, Benchmark testing, Feature extraction BibRef

Ringwald, T.[Tobias], Stiefelhagen, R.[Rainer],
Adaptiope: A Modern Benchmark for Unsupervised Domain Adaptation,
WACV21(101-110)
IEEE DOI 2106
Systematics, Annotations, Training data, Benchmark testing, Cleaning BibRef

Azzam, M.[Mohamed], Gnanha, A.T.[Aurele Tohokantche], Wong, H.S.[Hau-San], Wu, S.[Si],
Adversarially Constrained Interpolation for Unsupervised Domain Adaptation,
ICPR21(2375-2381)
IEEE DOI 2105
Manifolds, Training, Interpolation, Adaptation models, Smoothing methods, Data models, Pattern recognition BibRef

Tran, H.H.[Hai H.], Ahn, S.[Sumyeong], Lee, T.[Taeyoung], Yi, Y.[Yung],
Enlarging Discriminative Power by Adding an Extra Class in Unsupervised Domain Adaptation,
ICPR21(1812-1819)
IEEE DOI 2105
Training, Adaptation models, Clustering algorithms, Predictive models, Feature extraction, Data models, Data mining BibRef

Liu, X.F.[Xiao-Feng], Hu, B.[Bo], Liu, X.C.[Xiong-Chang], Lu, J.[Jun], You, J.[Jane], Kong, L.[Lingsheng],
Energy-constrained Self-training for Unsupervised Domain Adaptation,
ICPR21(7515-7520)
IEEE DOI 2105
Training, Adaptation models, Image segmentation, Semantics, Supervised learning, Minimization, Pattern recognition BibRef

Xiao, R.X.[Rui-Xin], Liu, Z.L.[Zhi-Lei], Wu, B.Y.[Bao-Yuan],
Teacher-Student Competition for Unsupervised Domain Adaptation,
ICPR21(8291-8298)
IEEE DOI 2105
Training, Adaptation models, Benchmark testing, Feature extraction, Pattern recognition BibRef

Dai, S.Y.[Shu-Yang], Cheng, Y.[Yu], Zhang, Y.Z.[Yi-Zhe], Gan, Z.[Zhe], Liu, J.J.[Jing-Jing], Carin, L.[Lawrence],
Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation,
ACCV20(IV:268-283).
Springer DOI 2103
BibRef

Cicek, S.[Safa], Xu, N.[Ning], Wang, Z.W.[Zhao-Wen], Jin, H.L.[Hai-Lin], Soatto, S.[Stefano],
Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue,
ACCV20(III:623-638).
Springer DOI 2103
BibRef

Li, C.C.[Cong-Cong], Du, D.W.[Da-Wei], Zhang, L.[Libo], Wen, L.Y.[Long-Yin], Luo, T.J.[Tie-Jian], Wu, Y.J.[Yan-Jun], Zhu, P.F.[Peng-Fei],
Spatial Attention Pyramid Network for Unsupervised Domain Adaptation,
ECCV20(XIII:481-497).
Springer DOI 2011
BibRef

Lee, J., Lee, G.,
Model Uncertainty for Unsupervised Domain Adaptation,
ICIP20(1841-1845)
IEEE DOI 2011
Uncertainty, Adaptation models, Feature extraction, Task analysis, Bayes methods, Mathematical model, Monte Carlo methods, image classification BibRef

Mei, K.[Ke], Zhu, C.[Chuang], Zou, J.Q.[Jia-Qi], Zhang, S.H.[Shang-Hang],
Instance Adaptive Self-training for Unsupervised Domain Adaptation,
ECCV20(XXVI:415-430).
Springer DOI 2011
BibRef

Peng, X.C.[Xing-Chao], Li, Y.C.[Yi-Chen], Saenko, K.[Kate],
Domain2vec: Domain Embedding for Unsupervised Domain Adaptation,
ECCV20(VI:756-774).
Springer DOI 2011
BibRef

Dong, J.H.[Jia-Hua], Cong, Y.[Yang], Sun, G.[Gan], Liu, Y.Y.[Yu-Yang], Xu, X.W.[Xiao-Wei],
CSCL: Critical Semantic-consistent Learning for Unsupervised Domain Adaptation,
ECCV20(VIII:745-762).
Springer DOI 2011
BibRef

Li, M., Zhai, Y., Luo, Y., Ge, P., Ren, C.,
Enhanced Transport Distance for Unsupervised Domain Adaptation,
CVPR20(13933-13941)
IEEE DOI 2008
Feature extraction, Training, Measurement, Adaptation models, Task analysis, Image reconstruction, Neural networks BibRef

Ye, S., Wu, K., Zhou, M., Yang, Y., Tan, S.H., Xu, K., Song, J., Bao, C., Ma, K.,
Light-weight Calibrator: A Separable Component for Unsupervised Domain Adaptation,
CVPR20(13733-13742)
IEEE DOI 2008
Adaptation models, Training, Feature extraction, Neural networks, Data models, Performance evaluation BibRef

Lu, Z., Yang, Y., Zhu, X., Liu, C., Song, Y., Xiang, T.,
Stochastic Classifiers for Unsupervised Domain Adaptation,
CVPR20(9108-9117)
IEEE DOI 2008
Training, Stochastic processes, Task analysis, Semantics, Neural networks, Data models, Adaptation models BibRef

Xu, R., Liu, P., Wang, L., Chen, C., Wang, J.,
Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation,
CVPR20(4393-4402)
IEEE DOI 2008
Reliability, Kernel, Training, Generators, Task analysis, Measurement uncertainty BibRef

Hu, L., Kan, M., Shan, S., Chen, X.,
Unsupervised Domain Adaptation With Hierarchical Gradient Synchronization,
CVPR20(4042-4051)
IEEE DOI 2008
Feature extraction, Synchronization, Entropy, Task analysis, Training, Adaptation models BibRef

Cohen, T.[Tomer], Wolf, L.B.[Lior B.],
Bidirectional One-Shot Unsupervised Domain Mapping,
ICCV19(1784-1792)
IEEE DOI 2004
Code, Learning.
WWW Link. image processing, unsupervised learning, single sample domain, bidirectional one-shot unsupervised domain mapping, Unsupervised learning BibRef

Lee, S., Kim, D., Kim, N., Jeong, S.,
Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation,
ICCV19(91-100)
IEEE DOI 2004
Code, Domain Adaption.
WWW Link. feature extraction, image classification, image representation, image segmentation, unsupervised learning, Neurons BibRef

Hou, J., Ding, X., Deng, J.D., Cranefield, S.,
Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks,
TASKCV19(3257-3264)
IEEE DOI 2004
feature extraction, image representation, learning (artificial intelligence), neural nets, Cross grafted Stacks BibRef

Gholami, B., Sahu, P., Kim, M., Pavlovic, V.,
Task-Discriminative Domain Alignment for Unsupervised Domain Adaptation,
MDALC19(1327-1336)
IEEE DOI 2004
data structures, pattern clustering, unsupervised learning, data structure, unsupervised domain adaptation, Stochastic embedding BibRef

Deng, Z., Luo, Y., Zhu, J.,
Cluster Alignment With a Teacher for Unsupervised Domain Adaptation,
ICCV19(9943-9952)
IEEE DOI 2004
pattern classification, pattern clustering, unsupervised learning, cluster alignment, labeled source domain, Labeling BibRef

Kim, S., Choi, J., Kim, T., Kim, C.,
Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection,
ICCV19(6091-6100)
IEEE DOI 2004
feature extraction, object detection, unsupervised learning, BSR, target backgrounds, domain shift, foregrounds, Semantics BibRef

Xu, R., Li, G., Yang, J., Lin, L.,
Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation,
ICCV19(1426-1435)
IEEE DOI 2004
Code, Domain Adaption.
WWW Link. learning (artificial intelligence), task-specific features, standard domain adaptation, partial domain adaptation, Neural networks BibRef

Binkowski, M., Hjelm, D., Courville, A.,
Batch Weight for Domain Adaptation With Mass Shift,
ICCV19(1844-1853)
IEEE DOI 2004
Bayes methods, language translation, probability, unsupervised learning, transfer networks, Task analysis BibRef

Kim, M.Y.[Min-Young], Sahu, P.[Pritish], Gholami, B.[Behnam], Pavlovic, V.[Vladimir],
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach,
CVPR19(4375-4385).
IEEE DOI 2002
BibRef

Chen, C.Q.[Chao-Qi], Xie, W.P.[Wei-Ping], Huang, W.B.[Wen-Bing], Rong, Y.[Yu], Ding, X.H.[Xing-Hao], Huang, Y.[Yue], Xu, T.Y.[Ting-Yang], Huang, J.Z.[Jun-Zhou],
Progressive Feature Alignment for Unsupervised Domain Adaptation,
CVPR19(627-636).
IEEE DOI 2002
BibRef

Pan, Y.W.[Ying-Wei], Yao, T.[Ting], Li, Y.[Yehao], Wang, Y.[Yu], Ngo, C.W.[Chong-Wah], Mei, T.[Tao],
Transferrable Prototypical Networks for Unsupervised Domain Adaptation,
CVPR19(2234-2242).
IEEE DOI 2002
BibRef

Lee, C.Y.[Chen-Yu], Batra, T.[Tanmay], Baig, M.H.[Mohammad Haris], Ulbricht, D.[Daniel],
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation,
CVPR19(10277-10287).
IEEE DOI 2002
BibRef

Chang, W.G.[Woong-Gi], You, T.[Tackgeun], Seo, S.[Seonguk], Kwak, S.[Suha], Han, B.H.[Bo-Hyung],
Domain-Specific Batch Normalization for Unsupervised Domain Adaptation,
CVPR19(7346-7354).
IEEE DOI 2002
BibRef

Roy, S.[Subhankar], Siarohin, A.[Aliaksandr], Sangineto, E.[Enver], Bulo, S.R.[Samuel Rota], Sebe, N.[Nicu], Ricci, E.[Elisa],
Unsupervised Domain Adaptation Using Feature-Whitening and Consensus Loss,
CVPR19(9463-9472).
IEEE DOI 2002
BibRef

Roy, S.[Subhankar], Siarohin, A.[Aliaksandr], Sebe, N.[Nicu],
Unsupervised Domain Adaptation Using Full-Feature Whitening and Colouring,
CIAP19(II:225-236).
Springer DOI 1909
BibRef

Jamal, A.[Arshad], Namboodiri, V.P.[Vinay P.], Deodhare, D.[Dipti], Venkatesh, K.S.,
U-DADA: Unsupervised Deep Action Domain Adaptation,
ACCV18(III:444-459).
Springer DOI 1906
BibRef

Park, H.[Hyoungwoo], Ju, M.J.[Min-Jeong], Moon, S.K.[Sang-Keun], Yoo, C.D.[Chang D.],
Unsupervised Domain Adaptation for Object Detection Using Distribution Matching in Various Feature Level,
IWDW18(363-372).
Springer DOI 1905
BibRef

Saito, K., Watanabe, K., Ushiku, Y., Harada, T.,
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation,
CVPR18(3723-3732)
IEEE DOI 1812
Generators, Task analysis, Training, Neural networks, Semantics, Feature extraction, Learning systems BibRef

Pinheiro, P.O.,
Unsupervised Domain Adaptation with Similarity Learning,
CVPR18(8004-8013)
IEEE DOI 1812
Prototypes, Adaptation models, Training, Pollution measurement, Standards BibRef

Yang, Z., Chen, W., Wang, F., Xu, B.,
Unsupervised Domain Adaptation for Neural Machine Translation,
ICPR18(338-343)
IEEE DOI 1812
Training, Adaptation models, Generators, Data models, Task analysis, Transforms, Feature extraction BibRef

Gui, C., Hu, J.,
Unsupervised Domain Adaptation by regularizing Softmax Activation,
ICPR18(397-402)
IEEE DOI 1812
Standards, Training, Entropy, Bridges, Feature extraction, Benchmark testing, Kernel BibRef

Xiao, P., Du, B., Yun, S., Lit, X., Zhang, Y., Wu, J.,
Probabilistic Graph Embedding for Unsupervised Domain Adaptation,
ICPR18(1283-1288)
IEEE DOI 1812
graph theory, matrix algebra, pattern classification, probability, unsupervised learning, unlabeled target domain data, Computational modeling BibRef

Das, D., Lee, C.S.G.[C. S. George],
Unsupervised Domain Adaptation Using Regularized Hyper-Graph Matching,
ICIP18(3758-3762)
IEEE DOI 1809
Principal component analysis, Optimization, Object recognition, Cats, Dogs, Tensile stress, Indexes, Domain Adaptation, Object Recognition BibRef

Zhu, L., Zhang, X., Zhang, W., Huang, X., Guan, N., Luo, Z.,
Unsupervised domain adaptation with joint supervised sparse coding and discriminative regularization term,
ICIP17(3066-3070)
IEEE DOI 1803
Encoding, Image reconstruction, Kernel, Learning systems, Optimization, Sparse matrices, Task analysis, Transfer learning, subspace learning BibRef

Csurka, G., Baradel, F., Chidlovskii, B., Clinchant, S.,
Discrepancy-Based Networks for Unsupervised Domain Adaptation: A Comparative Study,
TASKCV17(2630-2636)
IEEE DOI 1802
Adaptation models, Data models, Feature extraction, Kernel, Painting, Training BibRef

Gholami, B., Rudovic, O., Pavlovic, V.,
PUnDA: Probabilistic Unsupervised Domain Adaptation for Knowledge Transfer Across Visual Categories,
ICCV17(3601-3610)
IEEE DOI 1802
Bayes methods, image classification, unsupervised learning, PUnDA, classifier discriminative power, domain disparity, Visualization BibRef

Aljundi, R.[Rahaf], Tuytelaars, T.[Tinne],
Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction,
TASKCV16(III: 508-515).
Springer DOI 1611
BibRef

Csurka, G.[Gabriela], Chidlowskii, B.[Boris], Clinchant, S.[Stéphane], Michel, S.[Sophia],
Unsupervised Domain Adaptation with Regularized Domain Instance Denoising,
TASKCV16(III: 458-466).
Springer DOI 1611
BibRef

Khan, M.N.A., Heisterkamp, D.R.,
Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning,
ICPR16(1560-1565)
IEEE DOI 1705
BibRef
And:
Domain adaptation by iterative improvement of soft-labeling and maximization of non-parametric mutual information,
ICIP16(4458-4462)
IEEE DOI 1610
Adaptation models, Data models, Iterative methods, Kernel, Labeling, Mutual information, Training. BibRef

Xu, M.W.[Ming-Wei], Wu, S.S.[Song-Song], Jing, X.Y.[Xiao-Yuan], Yang, J.Y.[Jing-Yu],
Kernel subspace alignment for unsupervised domain adaptation,
ICIP15(2880-2884)
IEEE DOI 1512
domain adaptation; kernel subspace alignment; object recognition BibRef

Caseiro, R.[Rui], Henriques, J.F.[Joao F.], Martins, P.[Pedro], Batista, J.P.[Jorge P.],
Beyond the shortest path: Unsupervised domain adaptation by Sampling Subspaces along the Spline Flow,
CVPR15(3846-3854)
IEEE DOI 1510
BibRef

Long, M.S.[Ming-Sheng], Wang, J.M.[Jian-Min], Ding, G.G.[Gui-Guang], Sun, J.G.[Jia-Guang], Yu, P.S.[Philip S.],
Transfer Joint Matching for Unsupervised Domain Adaptation,
CVPR14(1410-1417)
IEEE DOI 1409
BibRef
Earlier:
Transfer Feature Learning with Joint Distribution Adaptation,
ICCV13(2200-2207)
IEEE DOI 1403
distribution matching. Transfer learning; feature learning; joint distribution adaptation BibRef

Mirrashed, F.[Fatemeh], Morariu, V.I.[Vlad I.], Davis, L.S.[Larry S.],
Sampling for unsupervised domain adaptive object detection,
ICIP13(3288-3292)
IEEE DOI 1402
Domain Adaptation;Object Detection;Semi-supervised Learning BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Domain Generalization .


Last update:Sep 28, 2024 at 17:47:54