Zhang, X.,
Convex Discriminative Multitask Clustering,
PAMI(37), No. 1, January 2015, pp. 28-40.
IEEE DOI
1412
Bismuth
BibRef
Huang, P.P.[Pi-Pei],
Wang, G.[Gang],
Qin, S.Y.[Shi-Yin],
A novel learning approach to multiple tasks based on boosting
methodology,
PRL(31), No. 12, 1 September 2010, pp. 1693-1700.
Elsevier DOI
1008
Boosting; Multi-task learning; Inductive transfer learning; Multiple
tasks; Text classification
BibRef
Huang, P.P.[Pi-Pei],
Wang, G.[Gang],
Qin, S.Y.[Shi-Yin],
Boosting for transfer learning from multiple data sources,
PRL(33), No. 5, 1 April 2012, pp. 568-579.
Elsevier DOI
1202
Opinion mining; Sentimental classification; Boosting; Transfer
learning; Transfer learning with multiple sources; Multiple source
domains
BibRef
Zhang, Z.H.[Zhi-Hao],
Zhou, J.[Jie],
Multi-task clustering via domain adaptation,
PR(45), No. 1, 2012, pp. 465-473.
Elsevier DOI
1410
Multi-task clustering
BibRef
Chen, J.H.[Jian-Hui],
Tang, L.[Lei],
Liu, J.[Jun],
Ye, J.P.[Jie-Ping],
A Convex Formulation for Learning a Shared Predictive Structure from
Multiple Tasks,
PAMI(35), No. 5, May 2013, pp. 1025-1038.
IEEE DOI
1304
BibRef
Li, W.[Wen],
Duan, L.X.[Li-Xin],
Xu, D.[Dong],
Tsang, I.W.H.[Ivor Wai-Hung],
Learning With Augmented Features for Supervised and Semi-Supervised
Heterogeneous Domain Adaptation,
PAMI(36), No. 6, June 2014, pp. 1134-1148.
IEEE DOI
1406
BibRef
Earlier: A1, A2, A4, A3:
Batch mode Adaptive Multiple Instance Learning for computer vision
tasks,
CVPR12(2368-2375).
IEEE DOI
1208
Convergence
BibRef
Xu, X.X.[Xin-Xing],
Li, W.[Wen],
Xu, D.[Dong],
Tsang, I.W.H.[Ivor Wai-Hung],
Co-Labeling for Multi-View Weakly Labeled Learning,
PAMI(38), No. 6, June 2016, pp. 1113-1125.
IEEE DOI
1605
Kernel.
See also Image Classification With Densely Sampled Image Windows and Generalized Adaptive Multiple Kernel Learning.
BibRef
Chen, X.[Xu],
Chen, S.[Siheng],
Yao, J.C.[Jiang-Chao],
Zheng, H.J.[Huang-Jie],
Zhang, Y.[Ya],
Tsang, I.W.[Ivor W.],
Learning on Attribute-Missing Graphs,
PAMI(44), No. 2, February 2022, pp. 740-757.
IEEE DOI
2201
Task analysis, Generative adversarial networks,
Convolution, Recurrent neural networks, Linear programming,
link prediction
BibRef
Wang, D.H.[Dong-Hui],
Kong, S.[Shu],
A classification-oriented dictionary learning model:
Explicitly learning the particularity and commonality across categories,
PR(47), No. 2, 2014, pp. 885-898.
Elsevier DOI
1311
BibRef
Earlier: A2, A1:
Transfer heterogeneous unlabeled data for unsupervised clustering,
ICPR12(1193-1196).
WWW Link.
1302
BibRef
Earlier: A2, A1:
A multi-task learning strategy for unsupervised clustering via
explicitly separating the commonality,
ICPR12(771-774).
WWW Link.
1302
Dictionary learning
BibRef
Abdulnabi, A.H.,
Wang, G.,
Lu, J.,
Jia, K.,
Multi-Task CNN Model for Attribute Prediction,
MultMed(17), No. 11, November 2015, pp. 1949-1959.
IEEE DOI
1511
Clothing
BibRef
Fan, J.P.[Jian-Ping],
Zhao, T.Y.[Tian-Yi],
Kuang, Z.Z.[Zhen-Zhong],
Zheng, Y.[Yu],
Zhang, J.[Ji],
Yu, J.[Jun],
Peng, J.Y.[Jin-Ye],
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual
Recognition,
IP(26), No. 4, April 2017, pp. 1923-1938.
IEEE DOI
1704
Atomic layer deposition. Large-scale.
BibRef
Liu, T.,
Tao, D.,
Song, M.,
Maybank, S.J.,
Algorithm-Dependent Generalization Bounds for Multi-Task Learning,
PAMI(39), No. 2, February 2017, pp. 227-241.
IEEE DOI
1702
Algorithm design and analysis
BibRef
Zhang, Y.X.[Yu-Xiang],
Wu, K.[Ke],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Hu, X.Y.[Xiang-Yun],
Hyperspectral Target Detection via Adaptive Joint Sparse
Representation and Multi-Task Learning with Locality Information,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
See also Joint Sparse Representation and Multitask Learning for Hyperspectral Target Detection.
BibRef
Dong, Y.N.[Yan-Ni],
Zhang, L.P.[Liang-Pei],
Zhang, L.F.[Le-Fei],
Du, B.[Bo],
Maximum Margin Metric Learning Based Target Detection for
Hyperspectral Images,
PandRS(108), No. 1, 2015, pp. 138-150.
Elsevier DOI
1511
Target detection
BibRef
Dong, Y.N.[Yan-Ni],
Shi, W.Z.[Wen-Zhong],
Du, B.[Bo],
Hu, X.Y.[Xiang-Yun],
Zhang, L.P.[Liang-Pei],
Asymmetric Weighted Logistic Metric Learning for Hyperspectral Target
Detection,
Cyber(52), No. 10, October 2022, pp. 11093-11106.
IEEE DOI
2209
Object detection, Measurement, Hyperspectral imaging, Training,
Logistics, Task analysis, Linear programming,
target detection
BibRef
Dong, Y.N.[Yan-Ni],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Hu, X.Y.[Xiang-Yun],
Hyperspectral Target Detection via Adaptive Information-Theoretic
Metric Learning with Local Constraints,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Ghifary, M.[Muhammad],
Balduzzi, D.[David],
Kleijn, W.B.[W. Bastiaan],
Zhang, M.J.[Meng-Jie],
Scatter Component Analysis: A Unified Framework for Domain Adaptation
and Domain Generalization,
PAMI(39), No. 7, July 2017, pp. 1414-1430.
IEEE DOI
1706
BibRef
Earlier: A1, A3, A2, A4:
Domain Generalization for Object Recognition with Multi-task
Autoencoders,
ICCV15(2551-2559)
IEEE DOI
1602
Algorithm design and analysis, Kernel, Object recognition,
Optimization, Standards, Training, Visualization, Domain adaptation,
domain generalization, feature learning, kernel methods,
object recognition, scatter
BibRef
Ghifary, M.[Muhammad],
Kleijn, W.B.[W. Bastiaan],
Zhang, M.J.[Meng-Jie],
Balduzzi, D.[David],
Li, W.[Wen],
Deep Reconstruction-Classification Networks for Unsupervised Domain
Adaptation,
ECCV16(IV: 597-613).
Springer DOI
1611
Feature extraction
BibRef
Kuang, Z.Z.[Zhen-Zhong],
Yu, J.[Jun],
Li, Z.M.[Zong-Min],
Zhang, B.P.[Bao-Peng],
Fan, J.P.[Jian-Ping],
Integrating multi-level deep learning and concept ontology for
large-scale visual recognition,
PR(78), 2018, pp. 198 - 214.
Elsevier DOI
1804
Large-scale visual recognition, Multi-level deep learning,
Multiple deep networks, Concept ontology, Multi-task learning, Tree classifier
BibRef
Li, P.[Ping],
Chen, S.C.[Song-Can],
Hierarchical Gaussian Processes model for multi-task learning,
PR(74), No. 1, 2018, pp. 134-144.
Elsevier DOI
1711
GP-LVM
BibRef
Li, P.[Ping],
Chen, S.C.[Song-Can],
Gaussian process approach for metric learning,
PR(87), 2019, pp. 17-28.
Elsevier DOI
1812
Metric learning, Gaussian process, Bilinear similarity, Non-parametric metric
BibRef
Xu, W.[Wei],
Liu, W.[Wei],
Chi, H.Y.[Hao-Yuan],
Huang, X.L.[Xiao-Lin],
Yang, J.[Jie],
Multi-task classification with sequential instances and tasks,
SP:IC(64), 2018, pp. 59-67.
Elsevier DOI
1804
Classification, Multi-task learning, Curriculum learning, Self-paced learning
BibRef
Sarafianos, N.[Nikolaos],
Giannakopoulos, T.[Theodoros],
Nikou, C.[Christophoros],
Kakadiaris, I.A.[Ioannis A.],
Curriculum learning of visual attribute clusters for multi-task
classification,
PR(80), 2018, pp. 94-108.
Elsevier DOI
1805
BibRef
Earlier:
Curriculum Learning for Multi-task Classification of Visual
Attributes,
TASKCV17(2608-2615)
IEEE DOI
1802
Curriculum learning, Multi-task classification.
Visual attribute classification. Learn individual groups of tasks.
Correlation, Feature extraction, Machine learning,
Training, Visualization
BibRef
Cao, W.M.[Wen-Ming],
Qian, S.[Sheng],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Unsupervised Multi-task Learning with Hierarchical Data Structure,
PR(86), 2019, pp. 248-264.
Elsevier DOI
1811
Multi-task learning, hierarchical structure,
unsupervised learning, structural similarity,
BibRef
Mejjati, Y.A.,
Cosker, D.,
Kim, K.I.,
Multi-task Learning by Maximizing Statistical Dependence,
CVPR18(3465-3473)
IEEE DOI
1812
Task analysis, Random variables, Kernel, Mutual information,
Gaussian processes, Probability distribution, Classification algorithms
BibRef
Li, X.H.[Xu-Hong],
Grandvalet, Y.[Yves],
Davoine, F.[Franck],
Cheng, J.C.[Jing-Chun],
Cui, Y.[Yin],
Zhang, H.[Hang],
Belongie, S.[Serge],
Tsai, Y.H.[Yi-Hsuan],
Yang, M.H.[Ming-Hsuan],
Transfer learning in computer vision tasks:
Remember where you come from,
IVC(93), 2020, pp. 103853.
Elsevier DOI
2001
Transfer learning, Parameter regularization
BibRef
Liu, D.[Deyin],
Liu, L.C.[Liang-Chen],
Tie, Y.[Yun],
Qi, L.[Lin],
Multi-task image set classification via joint representation with
class-level sparsity and intra-task low-rankness,
PRL(132), 2020, pp. 99-105.
Elsevier DOI
2005
Multi-task recognition, Image set classification,
Class-level sparsity, Low-rankness
BibRef
He, H.X.[Han-Xian],
Khoshelham, K.[Kourosh],
Fraser, C.[Clive],
A multiclass TrAdaBoost transfer learning algorithm for the
classification of mobile lidar data,
PandRS(166), 2020, pp. 118-127.
Elsevier DOI
2007
To apply deep learnign to LiDAR data. Not enough training data.
VoxNet, TrAdaBoost, Multiclass classification, Point Cloud,
3DCNN, Deep learning, Transfer learning
BibRef
Adiyeke, E.[Esra],
Baydogan, M.G.[Mustafa Gökçe],
The benefits of target relations: A comparison of multitask
extensions and classifier chains,
PR(107), 2020, pp. 107507.
Elsevier DOI
2008
Multitask learning, Multi-objective trees, Stacking,
Classifier chains, Ensemble learning
BibRef
Yang, P.[Pei],
Tan, Q.[Qi],
He, J.R.[Jing-Rui],
Complex heterogeneity learning: A theoretical and empirical study,
PR(107), 2020, pp. 107519.
Elsevier DOI
2008
Heterogeneous learning, Multi-task learning,
Multi-view learning, Multi-instance learning
BibRef
Yang, H.W.[Hong-Wei],
He, H.[Hui],
Li, T.[Tao],
Bai, Y.W.[Ya-Wen],
Zhang, W.Z.[Wei-Zhe],
Multi-metric domain adaptation for unsupervised transfer learning,
IET-IPR(14), No. 12, October 2020, pp. 2780-2790.
DOI Link
2010
BibRef
Zhao, Z.C.[Zhi-Cheng],
Luo, Z.[Ze],
Li, J.[Jian],
Chen, C.[Can],
Piao, Y.C.[Ying-Chao],
When Self-Supervised Learning Meets Scene Classification: Remote
Sensing Scene Classification Based on a Multitask Learning Framework,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Sun, X.W.[Xin-Wei],
Xu, Y.L.[Yi-Lun],
Cao, P.[Peng],
Kong, Y.Q.[Yu-Qing],
Hu, L.J.[Ling-Jing],
Zhang, S.H.[Shang-Hang],
Wang, Y.Z.[Yi-Zhou],
TCGM: An Information-theoretic Framework for Semi-supervised
Multi-modality Learning,
ECCV20(III:171-188).
Springer DOI
2012
BibRef
Alvar, S.R.,
Bajic, I.V.,
Pareto-Optimal Bit Allocation for Collaborative Intelligence,
IP(30), 2021, pp. 3348-3361.
IEEE DOI
2103
BibRef
Earlier:
Multi-Task Learning with Compressible Features for Collaborative
Intelligence,
ICIP19(1705-1709)
IEEE DOI
1910
Tensors, Task analysis, Image coding, Bit rate, Nonlinear distortion,
Distortion measurement, Optimization, Bit allocation,
multi-task learning.
collaborative intelligence, deep feature compression
BibRef
Zhang, R.[Rui],
Zhang, H.Y.[Hong-Yuan],
Li, X.L.[Xue-Long],
Robust Multi-Task Learning With Flexible Manifold Constraint,
PAMI(43), No. 6, June 2021, pp. 2150-2157.
IEEE DOI
2106
Task analysis, Manifolds, Adaptation models, Robustness, Training,
Computational modeling, Predictive models, Multi-task learning,
regression
BibRef
Chang, W.[Wei],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Elaborate multi-task subspace learning with discrete group constraint,
PR(139), 2023, pp. 109515.
Elsevier DOI
2304
Multi-task learning, Negative transfer, Subspace learning, Re-weighted method
BibRef
Li, J.[Jie],
Huang, L.[Lei],
Wei, Z.Q.[Zhi-Qiang],
Zhang, W.F.[Wen-Feng],
Qin, Q.B.[Qi-Bing],
Multi-task learning with deformable convolution,
JVCIR(77), 2021, pp. 103109.
Elsevier DOI
2106
Multi-task learning, Deformable convolution, Recognition
BibRef
Tomar, D.[Devavrat],
Lortkipanidze, M.[Manana],
Vray, G.[Guillaume],
Bozorgtabar, B.[Behzad],
Thiran, J.P.[Jean-Philippe],
Self-Attentive Spatial Adaptive Normalization for Cross-Modality
Domain Adaptation,
MedImg(40), No. 10, October 2021, pp. 2926-2938.
IEEE DOI
2110
Image segmentation, Biomedical imaging, Computed tomography,
Magnetic resonance imaging, Semantics, Anatomical structure,
self-attention
BibRef
Yang, Z.Y.[Zhi-Yong],
Xu, Q.Q.[Qian-Qian],
Cao, X.C.[Xiao-Chun],
Huang, Q.M.[Qing-Ming],
Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction,
PAMI(43), No. 11, November 2021, pp. 4094-4110.
IEEE DOI
2110
Task analysis, Convergence, Predictive models, Diseases,
Collaborative work, Optimization, Training, global convergence
BibRef
Adiyeke, E.[Esra],
Baydogan, M.G.[Mustafa Gökçe],
Semi-supervised extensions of multi-task tree ensembles,
PR(123), 2022, pp. 108393.
Elsevier DOI
2112
Semi-supervised learning, Multi-task learning,
Multi-objective trees, Ensemble learning, Totally randomized trees
BibRef
Neogi, S.[Satyajit],
Dauwels, J.[Justin],
Factored Latent-Dynamic Conditional Random Fields for single and
multi-label sequence modeling,
PR(122), 2022, pp. 108236.
Elsevier DOI
2112
Conditional Random Fields, Sequence labeling,
Multi-task learning, Latent-Dynamic models, Probabilistic graphical models
BibRef
Liang, J.[Jian],
Liu, Z.Q.[Zi-Qi],
Zhou, J.Y.[Jia-Yu],
Jiang, X.Q.[Xiao-Qian],
Zhang, C.S.[Chang-Shui],
Wang, F.[Fei],
Model-Protected Multi-Task Learning,
PAMI(44), No. 2, February 2022, pp. 1002-1019.
IEEE DOI
2201
Task analysis, Covariance matrices, Privacy, Security, Data models,
Resource management, Multi-task learning, model protection,
low-rank subspace learning
BibRef
Zhou, Y.[Yu],
Li, X.[Xiaoni],
Zhou, Y.[Yucan],
Wang, Y.[Yu],
Hu, Q.H.[Qing-Hua],
Wang, W.P.[Wei-Ping],
Deep Collaborative Multi-Task Network: A Human Decision Process
Inspired Model for Hierarchical Image Classification,
PR(124), 2022, pp. 108449.
Elsevier DOI
2203
Hierarchical image classification, Deep multi-task network,
Collaborative learning, Decision uncertainty evaluation
BibRef
Cui, C.R.[Chao-Ran],
Shen, Z.[Zhen],
Huang, J.[Jin],
Chen, M.[Meng],
Xu, M.L.[Ming-Liang],
Wang, M.[Meng],
Yin, Y.L.[Yi-Long],
Adaptive Feature Aggregation in Deep Multi-Task Convolutional Neural
Networks,
CirSysVideo(32), No. 4, April 2022, pp. 2133-2144.
IEEE DOI
2204
Task analysis, Training, Visualization, Convolution,
Residual neural networks, Feature extraction, attention mechanism
BibRef
Liu, J.B.[Jia-Bin],
Qi, Z.Q.[Zhi-Quan],
Wang, B.[Bo],
Tian, Y.J.[Ying-Jie],
Shi, Y.[Yong],
SELF-LLP: Self-supervised learning from label proportions with
self-ensemble,
PR(129), 2022, pp. 108767.
Elsevier DOI
2206
Learning from label proportion, Self-supervised learning,
Self-ensemble strategy, Multi-task learning
BibRef
Zhu, Y.[Yi],
Wu, X.D.[Xin-Dong],
Qiang, J.P.[Ji-Peng],
Hu, X.G.[Xue-Gang],
Zhang, Y.H.[Yu-Hong],
Li, P.P.[Pei-Pei],
Representation learning with deep sparse auto-encoder for multi-task
learning,
PR(129), 2022, pp. 108742.
Elsevier DOI
2206
Deep sparse auto-encoder, Multi-task learning, RICA, Labeled and unlabeled data
BibRef
Vandenhende, S.[Simon],
Georgoulis, S.[Stamatios],
van Gansbeke, W.[Wouter],
Proesmans, M.[Marc],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Multi-Task Learning for Dense Prediction Tasks: A Survey,
PAMI(44), No. 7, July 2022, pp. 3614-3633.
IEEE DOI
2206
Survey, Multi-Task Learning. Task analysis, Deep learning, Optimization, Neural networks,
Taxonomy, Multi-task learning,
convolutional neural networks
BibRef
Lu, Y.[Yuwu],
Zhu, Q.[Qi],
Zhang, B.[Bob],
Lai, Z.H.[Zhi-Hui],
Li, X.L.[Xue-Long],
Weighted Correlation Embedding Learning for Domain Adaptation,
IP(31), 2022, pp. 5303-5316.
IEEE DOI
2208
Task analysis, Correlation, Transfer learning,
Image classification, Feature extraction, Measurement,
image classification
BibRef
Zhang, H.[Hong],
Li, Y.[Yang],
Yang, H.Q.[Han-Qing],
He, B.[Bin],
Zhang, Y.[Yu],
Isomorphic model-based initialization for convolutional neural
networks,
JVCIR(89), 2022, pp. 103677.
Elsevier DOI
2212
Model family: collection of related networks.
Convolutional neural networks, Weight initialization,
Isomorphic model, Structural weight transformation
BibRef
Strezoski, G.[Gjorgji],
van Noord, N.[Nanne],
Worring, M.[Marcel],
MATTE: Multi-task multi-scale attention,
CVIU(228), 2023, pp. 103622.
Elsevier DOI
2302
BibRef
Earlier:
Many Task Learning With Task Routing,
ICCV19(1375-1384)
IEEE DOI
2004
Multi-task learning, Matting, Visual Decathlon, Ubernet.
learning (artificial intelligence), pattern classification,
conditional feature-wise transformation, classification tasks,
Adaptation models
BibRef
Zhang, R.[Rui],
Yang, Y.X.[Yi-Xin],
Li, Y.[Yang],
Wang, J.[Jiabao],
Li, H.[Hang],
Miao, Z.[Zhuang],
Multi-task few-shot learning with composed data augmentation for
image classification,
IET-CV(17), No. 2, 2023, pp. 211-221.
DOI Link
2304
data augmentation, few-shot learning, multi-task learning,
non-maximum suppression, self-supervised learning
BibRef
Aghajanzadeh, E.[Emad],
Bahraini, T.[Tahereh],
Mehrizi, A.H.[Amir Hossein],
Yazdi, H.S.[Hadi Sadoghi],
Task weighting based on particle filter in deep multi-task learning
with a view to uncertainty and performance,
PR(140), 2023, pp. 109587.
Elsevier DOI
2305
Multi task learning, Uncertainty, Hyper-parameter tuning,
Deep learning, Particle filter, Bayesian estimation
BibRef
Meng, M.[Min],
Lan, M.C.[Meng-Cheng],
Yu, J.[Jun],
Wu, J.G.[Ji-Gang],
Liu, L.G.[Li-Gang],
Dual-Level Adaptive and Discriminative Knowledge Transfer for
Cross-Domain Recognition,
MultMed(25), 2023, pp. 2266-2279.
IEEE DOI
2306
Kernel, Adaptation models, Risk management, Task analysis,
Knowledge transfer, Visualization, Transforms,
structural risk minimization
BibRef
Zhang, X.Y.[Xiao-Ya],
Zhang, S.M.[Shu-Min],
Cui, Z.[Zhen],
Li, Z.C.[Ze-Chao],
Xie, J.[Jin],
Yang, J.[Jian],
Tube-Embedded Transformer for Pixel Prediction,
MultMed(25), 2023, pp. 2503-2514.
IEEE DOI
2307
Task analysis, Multitasking, Estimation, Electron tubes, Decoding,
Semantics, Learning systems, Depth estimation,
tube-embedded transforme
BibRef
Guo, T.[Tan],
Luo, F.[Fulin],
Duan, Y.[Yule],
Huang, X.J.[Xin-Jian],
Shi, G.Y.[Guang-Yao],
Rethinking Representation Learning-Based Hyperspectral Target
Detection: A Hierarchical Representation Residual Feature-Based
Method,
RS(15), No. 14, 2023, pp. 3608.
DOI Link
2307
Learning-based hyperspectral target detection.
BibRef
Fang, Y.C.[Yu-Chun],
Cai, S.[Sirui],
Cao, Y.T.[Yi-Ting],
Li, Z.C.[Zheng-Chen],
Zhang, Z.X.[Zhao-Xiang],
Adversarial Learning Guided Task Relatedness Refinement for
Multi-Task Deep Learning,
MultMed(25), 2023, pp. 6946-6957.
IEEE DOI
2311
BibRef
Yan, X.Q.[Xiao-Qiang],
Mao, Y.Q.[Yi-Qiao],
Li, M.Y.[Ming-Yuan],
Ye, Y.D.[Yang-Dong],
Yu, H.[Hui],
Multitask Image Clustering via Deep Information Bottleneck,
Cyber(54), No. 3, March 2024, pp. 1868-1881.
IEEE DOI
2402
Task analysis, Correlation, Feature extraction, Optimization,
Mutual information, Cybernetics, Training, Image clustering,
mutual information (MI)
BibRef
Mao, Y.Q.[Yi-Qiao],
Yan, X.Q.[Xiao-Qiang],
Liu, J.[JiaMing],
Ye, Y.D.[Yang-Dong],
ConGMC: Consistency-Guided Multimodal Clustering via Mutual
Information Maximin,
MultMed(26), 2024, pp. 5131-5146.
IEEE DOI
2404
Mutual information, Task analysis, Clustering methods, Head,
Representation learning, Kernel, Correlation,
superfluous information
BibRef
Yu, H.H.[Hui-Hui],
Dai, Q.[Qun],
Self-supervised multi-task learning for medical image analysis,
PR(150), 2024, pp. 110327.
Elsevier DOI
2403
Medical image analysis, Self-supervised multi-task learning,
Uniformity regularization, Chest X-ray image
BibRef
Lu, Y.Y.[Yuan-Yuan],
Zhu, Y.H.[Yan-Hui],
Feng, H.[Hao],
Liu, Y.[Yang],
Remote Sensing Scene Classification Using Multi-Domain Sematic
High-Order Network,
IVC(143), 2024, pp. 104948.
Elsevier DOI
2403
Remote sensing, Scene classification,
Convolutional neural networks, Deep semantic feature, Second-order
BibRef
Li, W.H.[Wei-Hong],
Liu, X.L.[Xia-Lei],
Bilen, H.[Hakan],
Universal Representations: A Unified Look at Multiple Task and Domain
Learning,
IJCV(132), No. 5, May 2024, pp. 1521-1545.
Springer DOI
2405
BibRef
Xin, Z.W.[Ze-Wei],
Sirejiding, S.[Shalayiding],
Lu, Y.X.[Yu-Xiang],
Ding, Y.[Yue],
Wang, C.L.[Chun-Lin],
Alsarhan, T.[Tamam],
Lu, H.T.[Hong-Tao],
TFUT: Task fusion upward transformer model for multi-task learning on
dense prediction,
CVIU(244), 2024, pp. 104014.
Elsevier DOI
2405
Vision transformer, Multi-task learning, Dense prediction
BibRef
Nie, X.[Xing],
Ni, B.[Bolin],
Chang, J.L.[Jian-Long],
Meng, G.F.[Gao-Feng],
Huo, C.L.[Chun-Lei],
Xiang, S.M.[Shi-Ming],
Tian, Q.[Qi],
Pro-Tuning: Unified Prompt Tuning for Vision Tasks,
CirSysVideo(34), No. 6, June 2024, pp. 4653-4667.
IEEE DOI
2406
Task analysis, Adaptation models, Tuning, Computational modeling, Transformers,
Visualization, Training, Prompt-based learning, transfer learning
BibRef
Fontana, M.[Maxime],
Spratling, M.[Michael],
Shi, M.J.[Miao-Jing],
When Multitask Learning Meets Partial Supervision:
A Computer Vision Review,
PIEEE(112), No. 6, June 2024, pp. 516-543.
IEEE DOI Code:
WWW Link.
2409
Reviews, Optimization methods, Sparse matrices,
Natural language processing, Computational modeling,
visual understanding
BibRef
Wu, G.J.[Gao-Jie],
Zeng, L.A.[Ling-An],
Meng, J.K.[Jing-Ke],
Zheng, W.S.[Wei-Shi],
Adaptive Weight Generator for Multi-Task Image Recognition by Task
Grouping Prompt,
MultMed(26), 2024, pp. 9906-9919.
IEEE DOI
2410
Task analysis, Multitasking, Adaptation models, Generators, Image recognition,
Feature extraction, Computational modeling, weight generator
BibRef
Xie, T.[Tao],
Dai, K.[Kun],
Sun, Q.H.[Qi-Hao],
Jiang, Z.Q.[Zhi-Qiang],
Cao, C.Q.[Chu-Qing],
Zhao, L.J.[Li-Jun],
Wang, K.[Ke],
Li, R.F.[Rui-Feng],
CO-Net++: A Cohesive Network for Multiple Point Cloud Tasks at Once
With Two-Stage Feature Rectification,
PAMI(46), No. 12, December 2024, pp. 10911-10928.
IEEE DOI
2411
Task analysis, Point cloud compression, Optimization,
Feature extraction, Sun, Surgery, Deep learning, multi-task learning,
two-stage feature rectification
BibRef
Xie, T.[Tao],
Wang, K.[Ke],
Lu, S.[Siyi],
Zhang, Y.K.[Yu-Kun],
Dai, K.[Kun],
Li, X.Y.[Xiao-Yu],
Xu, J.[Jie],
Wang, L.[Li],
Zhao, L.J.[Li-Jun],
Zhang, X.Y.[Xin-Yu],
Li, R.F.[Rui-Feng],
CO-Net: Learning Multiple Point Cloud Tasks at Once with A Cohesive
Network,
ICCV23(3500-3510)
IEEE DOI
2401
BibRef
Ye, H.R.[Han-Rong],
Xu, D.[Dan],
InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
Understanding,
PAMI(46), No. 12, December 2024, pp. 7493-7508.
IEEE DOI
2411
BibRef
Earlier:
Inverted Pyramid Multi-task Transformer for Dense Scene Understanding,
ECCV22(XXVII:514-530).
Springer DOI
2211
Task analysis, Multitasking, Transformers, Decoding,
Computational modeling, Visualization, Context modeling, transformer
BibRef
Sirejiding, S.[Shalayiding],
Bayramli, B.[Bayram],
Lu, Y.X.[Yu-Xiang],
Huang, S.[Suizhi],
Lu, H.T.[Hong-Tao],
Ding, Y.[Yue],
Adaptive Task-Wise Message Passing for Multi-Task Learning:
A Spatial Interaction Perspective,
CirSysVideo(34), No. 10, October 2024, pp. 9499-9514.
IEEE DOI
2411
Task analysis, Decoding, Multitasking, Message passing,
Adaptation models, Feature extraction, Estimation, graph neural network
BibRef
Li, M.X.[Mei-Xuan],
Li, T.Y.[Tian-Yu],
Wang, G.Q.[Guo-Qing],
Wang, P.[Peng],
Yang, Y.[Yang],
Zou, J.[Jie],
Region-aware Distribution Contrast: A Novel Approach to Multi-task
Partially Supervised Learning,
ECCV24(LI: 234-251).
Springer DOI
2412
BibRef
Zhang, R.Y.[Rui-Yuan],
Chen, Y.[Yuyao],
Liu, J.X.[Jia-Xiang],
Xi, D.B.[Dian-Bing],
Huo, Y.[Yuchi],
Liu, J.[Jie],
Wu, C.[Chao],
SGW-Based Multi-task Learning in Vision Tasks,
ACCV24(IV: 124-141).
Springer DOI
2412
BibRef
Li, W.[Wenyi],
Gao, H.A.[Huan-Ang],
Gao, M.J.[Ming-Ju],
Tian, B.[Beiwen],
Zhi, R.[Rong],
Zhao, H.[Hao],
Training-free Model Merging for Multi-target Domain Adaptation,
ECCV24(XLVII: 419-438).
Springer DOI
2412
BibRef
Srivastava, S.[Siddharth],
Sharma, G.[Gaurav],
OmniVec2: A Novel Transformer Based Network for Large Scale
Multimodal and Multitask Learning,
CVPR24(27402-27414)
IEEE DOI
2410
Training, Point cloud compression, Knowledge engineering, Head,
Time series analysis, Computer architecture, Switches
BibRef
Yang, Y.Q.[Yu-Qi],
Jiang, P.T.[Peng-Tao],
Hou, Q.[Qibin],
Zhang, H.[Hao],
Chen, J.[Jinwei],
Li, B.[Bo],
Multi-Task Dense Prediction via Mixture of Low-Rank Experts,
CVPR24(27927-27937)
IEEE DOI Code:
WWW Link.
2410
Measurement, Learning systems, Convolution, Computational modeling,
Predictive models, Multitasking, Multi-task learning, Low-rank structure
BibRef
Huang, H.M.[Hui-Min],
Huang, Y.W.[Ya-Wen],
Lin, L.[Lanfen],
Tong, R.F.[Ruo-Feng],
Chen, Y.W.[Yen-Wei],
Zheng, H.[Hao],
Yue-Xiang, L.,
Zheng, Y.F.[Ye-Feng],
Going Beyond Multi-Task Dense Prediction with Synergy Embedding
Models,
CVPR24(28181-28190)
IEEE DOI
2410
Visualization, Adaptation models, Predictive models,
Benchmark testing, Multitasking, Transformers, Prediction algorithms
BibRef
Marza, P.[Pierre],
Matignon, L.[Laetitia],
Simonin, O.[Olivier],
Wolf, C.[Christian],
Task-Conditioned Adaptation of Visual Features in Multi-Task Policy
Learning,
CVPR24(17847-17856)
IEEE DOI
2410
Training, Visualization, Decision making, Visual systems,
Benchmark testing, Multitasking, Embodied AI, Adaptation, Few-shot learning
BibRef
Nishi, K.[Kento],
Kim, J.[Junsik],
Li, W.[Wanhua],
Pfister, H.[Hanspeter],
Joint-Task Regularization for Partially Labeled Multi-Task Learning,
CVPR24(16152-16162)
IEEE DOI
2410
Training, Learning systems, Machine learning, Benchmark testing,
Multitasking, Multi-Task Learning,
Cross-Task Regularization
BibRef
Xu, Z.Q.[Zheng-Qi],
Yuan, K.[Ke],
Wang, H.Q.[Hui-Qiong],
Wang, Y.[Yong],
Song, M.L.[Ming-Li],
Song, J.[Jie],
Training-Free Pretrained Model Merging,
CVPR24(5915-5925)
IEEE DOI Code:
WWW Link.
2410
Training, Adaptation models, Visualization, Computational modeling,
Merging, Computer architecture, Multitasking, model merging, multi-task
BibRef
Singh, I.P.[Inder Pal],
Ghorbel, E.[Enjie],
Kacem, A.[Anis],
Rathinam, A.[Arunkumar],
Aouada, D.[Djamila],
Discriminator-free Unsupervised Domain Adaptation for Multi-label
Image Classification,
WACV24(3924-3933)
IEEE DOI
2404
Training, Codes, Fitting, Gaussian distribution, Task analysis,
Gaussian mixture model, Algorithms, Adversarial learning,
Image recognition and understanding
BibRef
Bhattacharjee, D.[Deblina],
Süsstrunk, S.[Sabine],
Salzmann, M.[Mathieu],
Vision Transformer Adapters for Generalizable Multitask Learning,
ICCV23(18969-18980)
IEEE DOI Code:
WWW Link.
2401
BibRef
Shi, H.[Haosen],
Ren, S.[Shen],
Zhang, T.W.[Tian-Wei],
Pan, S.J.L.[Sinno Jia-Lin],
Deep Multitask Learning with Progressive Parameter Sharing,
ICCV23(19867-19878)
IEEE DOI
2401
BibRef
Zhang, J.[Ji],
Gao, L.L.[Lian-Li],
Luo, X.[Xu],
Shen, H.T.[Heng-Tao],
Song, J.K.[Jing-Kuan],
DETA: Denoised Task Adaptation for Few-Shot Learning,
ICCV23(11507-11517)
IEEE DOI Code:
WWW Link.
2401
BibRef
Huang, Z.J.[Zhi-Jian],
Lin, S.[Sihao],
Liu, G.Y.[Gui-Yu],
Luo, M.[Mukun],
Ye, C.Q.[Chao-Qiang],
Xu, H.[Hang],
Chang, X.J.[Xiao-Jun],
Liang, X.D.[Xiao-Dan],
FULLER: Unified Multi-modality Multi-task 3D Perception via
Multi-level Gradient Calibration,
ICCV23(3479-3488)
IEEE DOI
2401
BibRef
Aich, A.[Abhishek],
Schulter, S.[Samuel],
Roy-Chowdhury, A.K.[Amit K.],
Chandraker, M.[Manmohan],
Suh, Y.M.[Yu-Min],
Efficient Controllable Multi-Task Architectures,
ICCV23(5717-5728)
IEEE DOI
2401
BibRef
Yun, H.Y.[Ha-Young],
Cho, H.[Hanjoo],
Achievement-based Training Progress Balancing for Multi-Task Learning,
ICCV23(16889-16898)
IEEE DOI Code:
WWW Link.
2401
BibRef
Shoouri, S.[Sara],
Yang, M.Y.[Ming-Yu],
Fan, Z.C.[Zi-Chen],
Kim, H.S.[Hun-Seok],
Efficient Computation Sharing for Multi-Task Visual Scene
Understanding,
ICCV23(17084-17095)
IEEE DOI Code:
WWW Link.
2401
BibRef
Lę, H.Â.[Hoŕng-Ân],
Pham, M.T.[Minh-Tan],
Self-training and multi-task learning for limited data:
Evaluation study on object detection,
LIMIT23(1003-1009)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sarker, N.H.[Najibul Haque],
Rahman, M.S.[M. Sohel],
Forward Diffusion Guided Reconstruction as a Multi-Modal Multi-Task
Learning Scheme,
ICIP23(3180-3184)
IEEE DOI
2312
BibRef
Srivastava, S.[Siddharth],
Bhugra, S.[Swati],
Kaushik, V.[Vinay],
Lall, B.[Brejesh],
Hierarchical Multi-task Learning via Task Affinity Groupings,
ICIP23(3289-3293)
IEEE DOI
2312
BibRef
Chen, S.W.[Si-Wei],
Ma, X.[Xiao],
Xu, Z.W.[Zhong-Wen],
Imitation Learning as State Matching via Differentiable Physics,
CVPR23(7846-7855)
IEEE DOI
2309
BibRef
Fostiropoulos, I.[Iordanis],
Zhu, J.[Jiaye],
Itti, L.[Laurent],
Batch Model Consolidation: A Multi-Task Model Consolidation Framework,
CVPR23(3664-3676)
IEEE DOI
2309
BibRef
Choi, W.[Wonhyeok],
Im, S.H.[Sung-Hoon],
Dynamic Neural Network for Multi-Task Learning Searching across
Diverse Network Topologies,
CVPR23(3779-3788)
IEEE DOI
2309
BibRef
Liu, Y.J.[Ya-Jing],
Lu, Y.N.[Yu-Ning],
Liu, H.[Hao],
An, Y.Z.[Yao-Zu],
Xu, Z.R.[Zhuo-Ran],
Yao, Z.K.[Zhuo-Kun],
Zhang, B.F.[Bao-Feng],
Xiong, Z.W.[Zhi-Wei],
Gui, C.G.[Chen-Guang],
Hierarchical Prompt Learning for Multi-Task Learning,
CVPR23(10888-10898)
IEEE DOI
2309
BibRef
Chen, Z.[Zitian],
Shen, Y.[Yikang],
Ding, M.Y.[Ming-Yu],
Chen, Z.F.[Zhen-Fang],
Zhao, H.S.[Heng-Shuang],
Learned-Miller, E.[Erik],
Gan, C.[Chuang],
Mod-Squad: Designing Mixtures of Experts As Modular Multi-Task
Learners,
CVPR23(11828-11837)
IEEE DOI
2309
BibRef
Senushkin, D.[Dmitry],
Patakin, N.[Nikolay],
Kuznetsov, A.[Arseny],
Konushin, A.[Anton],
Independent Component Alignment for Multi-Task Learning,
CVPR23(20083-20093)
IEEE DOI
2309
BibRef
Rahimian, E.[Elahe],
Javadi, G.[Golara],
Tung, F.[Frederick],
Oliveira, G.[Gabriel],
DynaShare: Task and Instance Conditioned Parameter Sharing for
Multi-Task Learning,
ECV23(4535-4543)
IEEE DOI
2309
BibRef
Neseem, M.[Marina],
Agiza, A.[Ahmed],
Reda, S.[Sherief],
AdaMTL: Adaptive Input-dependent Inference for Efficient Multi-Task
Learning,
ECV23(4730-4739)
IEEE DOI
2309
BibRef
Ding, C.T.[Chun-Tao],
Lu, Z.C.[Zhi-Chao],
Wang, S.G.[Shang-Guang],
Cheng, R.[Ran],
Boddeti, V.N.[Vishnu N.],
Mitigating Task Interference in Multi-Task Learning via Explicit Task
Routing with Non-Learnable Primitives,
CVPR23(7756-7765)
IEEE DOI
2309
BibRef
Oh, C.[Changdae],
Hwang, H.[Hyeji],
Lee, H.Y.[Hee-Young],
Lim, Y.T.[Yong-Taek],
Jung, G.[Geunyoung],
Jung, J.Y.[Ji-Young],
Choi, H.[Hosik],
Song, K.[Kyungwoo],
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning,
CVPR23(24224-24235)
IEEE DOI
2309
BibRef
Sohn, K.[Kihyuk],
Chang, H.[Huiwen],
Lezama, J.[José],
Polania, L.[Luisa],
Zhang, H.[Han],
Hao, Y.[Yuan],
Essa, I.[Irfan],
Jiang, L.[Lu],
Visual Prompt Tuning for Generative Transfer Learning,
CVPR23(19840-19851)
IEEE DOI
2309
BibRef
Lin, S.[Shen],
Zhang, X.Y.[Xiao-Yu],
Chen, C.Y.[Chen-Yang],
Chen, X.F.[Xiao-Feng],
Susilo, W.[Willy],
ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer,
CVPR23(20147-20155)
IEEE DOI
2309
BibRef
Fan, C.Y.[Cao-Yun],
Chen, W.Q.[Wen-Qing],
Tian, J.[Jidong],
Li, Y.T.[Yi-Tian],
He, H.[Hao],
Jin, Y.[Yaohui],
MAXGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-noise
Ratio for Multi-Task Learning,
ACCV22(I:523-538).
Springer DOI
2307
BibRef
Su, S.[Stephen],
Kwong, S.[Samuel],
Zhao, Q.Y.[Qing-Yu],
Huang, D.A.[De-An],
Niebles, J.C.[Juan Carlos],
Adeli, E.[Ehsan],
Identifying Auxiliary or Adversarial Tasks Using Necessary Condition
Analysis for Adversarial Multi-task Video Understanding,
DSC22(317-333).
Springer DOI
2304
BibRef
Berlier, A.J.[Adam J.],
Bhatt, A.[Anjali],
Matuszek, C.[Cynthia],
Augmenting Simulation Data with Sensor Effects for Improved Domain
Transfer,
ACVR22(765-779).
Springer DOI
2304
BibRef
Susladkar, O.[Onkar],
Deshmukh, G.[Gayatri],
Makwana, D.[Dhruv],
Mittal, S.[Sparsh],
Teja, R.S.C.[R. Sai Chandra],
Singhal, R.[Rekha],
GAFNet: A Global Fourier Self Attention Based Novel Network for
multi-modal downstream tasks,
WACV23(5231-5240)
IEEE DOI
2302
Deep learning, Visualization, Image synthesis, Grounding, Semantics,
Bidirectional control, visual reasoning
BibRef
Heidemann, L.[Lena],
Monnet, M.[Maureen],
Roscher, K.[Karsten],
Concept Correlation and Its Effects on Concept-Based Models,
WACV23(4769-4777)
IEEE DOI
2302
Location awareness, Correlation, Shape, Computational modeling,
Predictive models, Robustness, Algorithms: Explainable, fair, visual reasoning
BibRef
Lopes, I.[Ivan],
Vu, T.H.[Tuan-Hung],
de Charette, R.[Raoul],
Cross-task Attention Mechanism for Dense Multi-task Learning,
WACV23(2328-2337)
IEEE DOI
2302
Representation learning, Geometry, Semantic segmentation,
Semantics, Estimation, visual reasoning
BibRef
Fu, Q.S.[Qing-Shun],
Dong, X.[Xuan],
Semi-Supervised Depth Estimation by Multi-Task Learning,
ICPR22(3765-3771)
IEEE DOI
2212
Semantic segmentation, Estimation,
Predictive models, Multitasking, Natural language processing, Decoding
BibRef
Sinodinos, D.[Dimitrios],
Armanfard, N.[Narges],
Attentive Task Interaction Network for Multi-Task Learning,
ICPR22(2885-2891)
IEEE DOI
2212
Knowledge engineering, Measurement, Learning systems,
Semantic segmentation, Estimation, Feature extraction, Multitasking
BibRef
Pranavan, T.[Theivendiram],
Sim, T.[Terence],
Li, J.S.[Jian-Shu],
Virtual Tasks but Real Gains: Improving Multi-Task Learning,
ICPR22(4829-4836)
IEEE DOI
2212
Machine learning, Performance gain, Gain measurement, Multitasking,
Task analysis
BibRef
Zhu, H.Y.[Hao-Yi],
Wang, C.T.[Chu-Ting],
Wang, Y.X.[Yuan-Xin],
Fan, Z.X.[Zhao-Xin],
Uddin, M.R.[Mostofa Rafid],
Gao, X.[Xin],
Zhang, J.[Jing],
Zeng, X.[Xiangrui],
Xu, M.[Min],
Unsupervised Multi-Task Learning for 3D Subtomogram Image Alignment,
Clustering and Segmentation,
ICIP22(2751-2755)
IEEE DOI
2211
Training, Image segmentation, Image recognition, Benchmark testing,
Tomography, Network architecture,
subtomogram segmentation
BibRef
Xu, X.G.[Xiao-Gang],
Zhao, H.S.[Heng-Shuang],
Vineet, V.[Vibhav],
Lim, S.N.[Ser-Nam],
Torralba, A.[Antonio],
MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning,
ECCV22(XXVII:304-321).
Springer DOI
2211
BibRef
Bouniot, Q.[Quentin],
Loesch, A.[Angélique],
Habrard, A.[Amaury],
Audigier, R.[Romaric],
Towards Few-Annotation Learning for Object Detection:
Are Transformer-based Models More Efficient?,
WACV23(75-84)
IEEE DOI
2302
Deformable models, Adaptation models, Education, Object detection,
Detectors, Predictive models, Transformers,
visual reasoning
BibRef
Bouniot, Q.[Quentin],
Redko, I.[Ievgen],
Audigier, R.[Romaric],
Loesch, A.[Angélique],
Habrard, A.[Amaury],
Improving Few-Shot Learning Through Multi-task Representation Learning
Theory,
ECCV22(XX:435-452).
Springer DOI
2211
BibRef
Li, W.[Wanhua],
Cao, Z.[Zhexuan],
Feng, J.J.[Jian-Jiang],
Zhou, J.[Jie],
Lu, J.W.[Ji-Wen],
Label2Label: A Language Modeling Framework for Multi-attribute Learning,
ECCV22(XII:562-579).
Springer DOI
2211
BibRef
Kim, S.[Sunkyung],
Choi, H.[Hyesong],
Min, D.B.[Dong-Bo],
Sequential Cross Attention Based Multi-Task Learning,
ICIP22(2311-2315)
IEEE DOI
2211
Visualization, Image segmentation, Codes, Aggregates, Estimation,
Multitasking, Feature extraction, Multi-task learning,
monocular depth estimation
BibRef
Rivera, C.G.[Corban G.],
Handelman, D.A.[David A.],
Ratto, C.R.[Christopher R.],
Patrone, D.[David],
Paulhamus, B.L.[Bart L.],
Visual Goal-Directed Meta-Imitation Learning,
CLVision22(3766-3772)
IEEE DOI
2210
Visualization, Benchmark testing, Manipulators, Trajectory, Planning
BibRef
Spencer, J.[Jaime],
Bowden, R.[Richard],
Hadfield, S.[Simon],
Medusa: Universal Feature Learning via Attentional Multitasking,
CLVision22(3799-3808)
IEEE DOI
2210
Representation learning, Couplings, Multitasking,
Decoding
BibRef
Li, W.H.[Wei-Hong],
Liu, X.L.[Xia-Lei],
Bilen, H.[Hakan],
Learning Multiple Dense Prediction Tasks from Partially Annotated
Data,
CVPR22(18857-18867)
IEEE DOI
2210
Training, Semisupervised learning, Benchmark testing, Multitasking,
Computational efficiency,
Self- semi- meta- Scene analysis and understanding
BibRef
Yang, L.[Li],
Rakin, A.S.[Adnan Siraj],
Fan, D.L.[De-Liang],
DA3: Dynamic Additive Attention Adaption for Memory-Efficient
On-Device Multi-Domain Learning,
ECV22(2618-2626)
IEEE DOI
2210
Training, Performance evaluation, Adaptation models, Visualization,
Costs, Additives, Computational modeling
BibRef
Rebut, J.[Julien],
Ouaknine, A.[Arthur],
Malik, W.[Waqas],
Pérez, P.[Patrick],
Raw High-Definition Radar for Multi-Task Learning,
CVPR22(17000-17009)
IEEE DOI
2210
Laser radar, Computational modeling, Urban areas, Radar,
Radar imaging, Laser modes, Cameras,
Deep learning architectures and techniques
BibRef
Doshi, K.[Keval],
Yilmaz, Y.[Yasin],
Multi-Task Learning for Video Surveillance with Limited Data,
CLVision22(3888-3898)
IEEE DOI
2210
Training, Measurement, Transfer learning, Semantics, Training data,
Multitasking, Video surveillance
BibRef
Wallingford, M.[Matthew],
Li, H.[Hao],
Achille, A.[Alessandro],
Ravichandran, A.[Avinash],
Fowlkes, C.[Charless],
Bhotika, R.[Rahul],
Soatto, S.[Stefano],
Task Adaptive Parameter Sharing for Multi-Task Learning,
CVPR22(7551-7560)
IEEE DOI
2210
Training, Adaptation models, Costs,
Multitasking, Task analysis,
Transfer/low-shot/long-tail learning
BibRef
Sun, T.[Tao],
Segu, M.[Mattia],
Postels, J.[Janis],
Wang, Y.X.[Yu-Xuan],
Van Gool, L.J.[Luc J.],
Schiele, B.[Bernt],
Tombari, F.[Federico],
Yu, F.[Fisher],
SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation,
CVPR22(21339-21350)
IEEE DOI
2210
Adaptation models, Uncertainty, Rain, Annotations,
System performance, Data collection, Multitasking,
Transfer/low-shot/long-tail learning
BibRef
Wang, Z.Y.[Zhen-Yi],
Shen, L.[Li],
Duan, T.[Tiehang],
Zhan, D.L.[Dong-Lin],
Fang, L.[Le],
Gao, M.C.[Ming-Chen],
Learning to Learn and Remember Super Long Multi-Domain Task Sequence,
CVPR22(7972-7982)
IEEE DOI
2210
Training, Benchmark testing, Task analysis,
Transfer/low-shot/long-tail learning
BibRef
Chen, L.[Lin],
Chen, H.[Huaian],
Wei, Z.X.[Zhi-Xiang],
Jin, X.[Xin],
Tan, X.[Xiao],
Jin, Y.[Yi],
Chen, E.[Enhong],
Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation,
CVPR22(7171-7180)
IEEE DOI
2210
Codes, Games, Predictive models, Feature extraction,
Adversarial machine learning, Generators,
Self- semi- meta- unsupervised learning
BibRef
Ghiasi, G.[Golnaz],
Zoph, B.[Barret],
Cubuk, E.D.[Ekin D.],
Le, Q.V.[Quoc V.],
Lin, T.Y.[Tsung-Yi],
Multi-Task Self-Training for Learning General Representations,
ICCV21(8836-8845)
IEEE DOI
2203
Training, Geometry, Visualization, Image recognition,
Computational modeling, grouping and shape
BibRef
Lee, J.H.[Jae-Han],
Lee, C.[Chul],
Kim, C.S.[Chang-Su],
Learning Multiple Pixelwise Tasks Based on Loss Scale Balancing,
ICCV21(5087-5096)
IEEE DOI
2203
Training, Codes, Heuristic algorithms,
Predictive models, Prediction algorithms,
3D from a single image and shape-from-x
BibRef
Kong, Y.J.[Ya-Jing],
Liu, L.[Liu],
Wang, J.[Jun],
Tao, D.C.[Da-Cheng],
Adaptive Curriculum Learning,
ICCV21(5047-5056)
IEEE DOI
2203
Learning systems, Adaptation models, Analytical models,
Nonuniform sampling, Classification algorithms, Task analysis,
Representation learning
BibRef
Wang, Y.F.[Yu-Feng],
Tsai, Y.H.[Yi-Hsuan],
Hung, W.C.[Wei-Chih],
Ding, W.R.[Wen-Rui],
Liu, S.[Shuo],
Yang, M.H.[Ming-Hsuan],
Semi-supervised Multi-task Learning for Semantics and Depth,
WACV22(2663-2672)
IEEE DOI
2202
Training, Annotations, Semantics, Estimation, Benchmark testing,
Predictive models, Multitasking, Semi- and Un- supervised Learning
BibRef
Levi, H.[Hila],
Ullman, S.[Shimon],
Multi-Task Learning By A Top-Down Control Network,
ICIP21(2553-2557)
IEEE DOI
2201
Image recognition, Machine vision, Modulation,
Task analysis, Multi-task learning, Deep learning
BibRef
Choi, H.[Hyomin],
Bajic, I.V.[Ivan V.],
Latent-Space Scalability for Multi-Task Collaborative Intelligence,
ICIP21(3562-3566)
IEEE DOI
2201
Training, Image coding, Scalability, System performance,
Object detection, Benchmark testing, Deep feature compression,
video coding for machines
BibRef
Kim, D.H.[Dong-Hyun],
Lan, T.[Tian],
Zou, C.H.[Chu-Hang],
Xu, N.[Ning],
Plummer, B.A.[Bryan A.],
Sclaroff, S.[Stan],
Eledath, J.[Jayan],
Medioni, G.[Gérard],
MILA: Multi-Task Learning from Videos via Efficient Inter-Frame
Attention,
DeepMTL21(2219-2229)
IEEE DOI
2112
Computational modeling,
Benchmark testing, Feature extraction
BibRef
Tan, Y.[Yang],
Li, Y.[Yang],
Huang, S.L.[Shao-Lun],
OTCE: A Transferability Metric for Cross-Domain Cross-Task
Representations,
CVPR21(15774-15783)
IEEE DOI
2111
Measurement, Training, Knowledge engineering, Uncertainty,
Transfer learning, Neural networks, Estimation
BibRef
Djolonga, J.[Josip],
Yung, J.[Jessica],
Tschannen, M.[Michael],
Romijnders, R.[Rob],
Beyer, L.[Lucas],
Kolesnikov, A.[Alexander],
Puigcerver, J.[Joan],
Minderer, M.[Matthias],
d'Amour, A.[Alexander],
Moldovan, D.[Dan],
Gelly, S.[Sylvain],
Houlsby, N.[Neil],
Zhai, X.H.[Xiao-Hua],
Lucic, M.[Mario],
On Robustness and Transferability of Convolutional Neural Networks,
CVPR21(16453-16463)
IEEE DOI
2111
Training, Visualization, Systematics, Image resolution,
Transfer learning, Pipelines, Robustness
BibRef
Cai, J.[John],
Cai, B.[Bill],
Mei, S.S.[Shen Sheng],
DAMSL: Domain Agnostic Meta Score-based Learning,
LLID21(2591-2595)
IEEE DOI
2109
Computational modeling, Performance gain, Benchmark testing, Boosting
BibRef
Khattar, A.[Apoorv],
Hegde, S.[Srinidhi],
Hebbalaguppe, R.[Ramya],
Cross-Domain Multi-task Learning for Object Detection and Saliency
Estimation,
OmniCV21(3634-3643)
IEEE DOI
2109
Training, Neural networks, Estimation,
Object detection
BibRef
Wang, Q.F.[Qi-Fei],
Ke, J.J.[Jun-Jie],
Greaves, J.[Joshua],
Chu, G.[Grace],
Bender, G.[Gabriel],
Sbaiz, L.[Luciano],
Go, A.[Alec],
Howard, A.[Andrew],
Yang, M.H.[Ming-Hsuan],
Gilbert, J.[Jeff],
Milanfar, P.[Peyman],
Yang, F.[Feng],
Multi-path Neural Networks for On-device Multi-domain Visual
Classification,
WACV21(3018-3027)
IEEE DOI
2106
Training, Visualization, Adaptation models, Computational modeling,
Scalability, Interference, Reinforcement learning
BibRef
Li, Z.Z.[Zhi-Zhong],
Luo, L.J.[Lin-Jie],
Tulyakov, S.[Sergey],
Dai, Q.[Qieyun],
Hoiem, D.[Derek],
Task-Assisted Domain Adaptation with Anchor Tasks,
WACV21(2988-2997)
IEEE DOI
2106
Training, Image segmentation, Shape, Annotations, Semantics
BibRef
Frecon, J.[Jordan],
Salzo, S.[Saverio],
Pontil, M.[Massimiliano],
Unveiling Groups of Related Tasks in Multi-Task Learning,
ICPR21(7134-7141)
IEEE DOI
2105
Benchmark testing, Approximation algorithms,
Computational efficiency, Task analysis, Optimization, Standards
BibRef
Yang, S.M.[Shih-Min],
Yeh, M.C.[Mei-Chen],
Unsupervised Multi-Task Domain Adaptation,
ICPR21(1679-1685)
IEEE DOI
2105
Adaptation models, Image recognition, Target recognition,
Annotations, Training data, Image representation
BibRef
Spadotto, T.[Teo],
Toldo, M.[Marco],
Michieli, U.[Umberto],
Zanuttigh, P.[Pietro],
Unsupervised Domain Adaptation with Multiple Domain Discriminators
and Adaptive Self-Training,
ICPR21(2845-2852)
IEEE DOI
2105
Adaptation models, Roads, Semantics, Neural networks,
Reliability engineering, Robustness, Data models
BibRef
Senhaji, A.[Ali],
Raitoharju, J.[Jenni],
Gabbouj, M.[Moncef],
Iosifidis, A.[Alexandros],
Not all domains are equally complex: Adaptive Multi-Domain Learning,
ICPR21(8663-8670)
IEEE DOI
2105
Training, Deep learning, Adaptation models, Adaptive systems,
Neural networks, Complexity theory
BibRef
Takeda, M.[Mana],
Benitez, G.[Gibran],
Yanai, K.[Keiji],
Training of Multiple and Mixed Tasks with a Single Network Using
Feature Modulation,
DLPR20(719-735).
Springer DOI
2103
BibRef
Zhu, R.,
Yan, L.,
Neighbour-based Domain Adaptation for Investigation of Transferable
Ability of Previously Labeled Data for Land-cover Classification Of
Aerial Images,
ISPRS20(B2:1329-1335).
DOI Link
2012
BibRef
Jain, H.[Himalaya],
Gidaris, S.[Spyros],
Komodakis, N.[Nikos],
Pérez, P.[Patrick],
Cord, M.[Matthieu],
Quest: Quantized Embedding Space for Transferring Knowledge,
ECCV20(XXI:173-189).
Springer DOI
2011
BibRef
Brüggemann, D.[David],
Kanakis, M.[Menelaos],
Obukhov, A.[Anton],
Georgoulis, S.[Stamatios],
Van Gool, L.J.[Luc J.],
Exploring Relational Context for Multi-Task Dense Prediction,
ICCV21(15849-15858)
IEEE DOI
2203
Computational modeling, Benchmark testing,
Multitasking, Prediction algorithms, Task analysis, grouping and shape
BibRef
Kanakis, M.[Menelaos],
Bruggemann, D.[David],
Saha, S.[Suman],
Georgoulis, S.[Stamatios],
Obukhov, A.[Anton],
Van Gool, L.J.[Luc J.],
Reparameterizing Convolutions for Incremental Multi-Task Learning
Without Task Interference,
ECCV20(XX:689-707).
Springer DOI
2011
BibRef
Huang, Z.Y.[Ze-Yi],
Wang, H.H.[Hao-Han],
Xing, E.P.[Eric P.],
Huang, D.[Dong],
Self-challenging Improves Cross-domain Generalization,
ECCV20(II:124-140).
Springer DOI
2011
BibRef
Katzir, O.[Oren],
Lischinski, D.[Dani],
Cohen-Or, D.[Daniel],
Cross-domain Cascaded Deep Translation,
ECCV20(II:673-689).
Springer DOI
2011
BibRef
Sun, G.[Guolei],
Probst, T.[Thomas],
Paudel, D.P.[Danda Pani],
Popovic, N.[Nikola],
Kanakis, M.[Menelaos],
Patel, J.[Jagruti],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Task Switching Network for Multi-task Learning,
ICCV21(8271-8280)
IEEE DOI
2203
Switches, Benchmark testing, Multitasking,
Decoding, Task analysis,
Representation learning
BibRef
Vandenhende, S.[Simon],
Georgoulis, S.[Stamatios],
Van Gool, L.J.[Luc J.],
Mti-net: Multi-scale Task Interaction Networks for Multi-task Learning,
ECCV20(IV:527-543).
Springer DOI
2011
BibRef
Tschannen, M.[Michael],
Djolonga, J.[Josip],
Ritter, M.[Marvin],
Mahendran, A.[Aravindh],
Houlsby, N.[Neil],
Gelly, S.[Sylvain],
Lucic, M.[Mario],
Self-Supervised Learning of Video-Induced Visual Invariances,
CVPR20(13803-13812)
IEEE DOI
2008
Videos, Task analysis, Visualization, Adaptation models, Data models,
Benchmark testing, Image representation
BibRef
Zhou, L.,
Cui, Z.,
Xu, C.,
Zhang, Z.,
Wang, C.,
Zhang, T.,
Yang, J.,
Pattern-Structure Diffusion for Multi-Task Learning,
CVPR20(4513-4522)
IEEE DOI
2008
Task analysis, Estimation, Image segmentation, Correlation,
Semantics, Decoding, Sparse matrices
BibRef
Lu, J.,
Goswami, V.,
Rohrbach, M.,
Parikh, D.,
Lee, S.,
12-in-1: Multi-Task Vision and Language Representation Learning,
CVPR20(10434-10443)
IEEE DOI
2008
Task analysis, Training, Visualization, Grounding, Image retrieval,
Predictive models, Knowledge discovery
BibRef
Wang, W.,
Tran, D.,
Feiszli, M.,
What Makes Training Multi-Modal Classification Networks Hard?,
CVPR20(12692-12702)
IEEE DOI
2008
Training, Task analysis, Kinetic theory, Optimization, Visualization,
Benchmark testing
BibRef
Jha, A.,
Kumar, A.,
Banerjee, B.,
Chaudhuri, S.,
AdaMT-Net: An Adaptive Weight Learning Based Multi-Task Learning
Model For Scene Understanding,
EDLCV20(3027-3035)
IEEE DOI
2008
Task analysis, Decoding, Training, Adaptation models, Estimation,
Semantics, Image segmentation
BibRef
Choi, S.,
Hong, S.,
Lee, K.,
Lim, S.,
Task Agnostic Robust Learning on Corrupt Outputs by
Correlation-Guided Mixture Density Networks,
CVPR20(3871-3880)
IEEE DOI
2008
Training, Robustness, Correlation, Task analysis, Noise measurement,
Training data, Neural networks
BibRef
Xia, Y.,
Liu, F.,
Yang, D.,
Cai, J.,
Yu, L.,
Zhu, Z.,
Xu, D.,
Yuille, A.L.,
Roth, H.,
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View
Co-Training,
WACV20(3635-3644)
IEEE DOI
2006
Training,
Biomedical imaging, Task analysis, Uncertainty, Solid modeling
BibRef
Al-Rawi, M.,
Valveny, E.,
Compact and Efficient Multitask Learning in Vision, Language and
Speech,
CEFRL19(2933-2942)
IEEE DOI
2004
image classification,
learning (artificial intelligence), speech recognition,
image classification
BibRef
Song, B.C.,
Kim, D.H.,
Lee, S.h.,
Metric-Based Regularization and Temporal Ensemble for Multi-Task
Learning using Heterogeneous Unsupervised Tasks,
CEFRL19(2903-2912)
IEEE DOI
2004
learning (artificial intelligence),
heterogeneous unsupervised tasks, target task,
temporal task ensemble
BibRef
Ni, F.,
Yao, Y.,
Multi-Task Learning via Scale Aware Feature Pyramid Networks and
Effective Joint Head,
AutoNUE19(4265-4272)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image segmentation, learning (artificial intelligence),
instance segmentation
BibRef
Bragman, F.[Felix],
Tanno, R.[Ryutaro],
Ourselin, S.[Sebastien],
Alexander, D.[Daniel],
Cardoso, J.[Jorge],
Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and
Generalist Convolution Kernels,
ICCV19(1385-1394)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
probability, stochastic processes, stochastic filter groups,
Cats
BibRef
Ahn, C.,
Kim, E.,
Oh, S.,
Deep Elastic Networks With Model Selection for Multi-Task Learning,
ICCV19(6528-6537)
IEEE DOI
2004
feature selection, image classification,
learning (artificial intelligence), neural net architecture,
Computer architecture
BibRef
Hassani, K.,
Haley, M.,
Unsupervised Multi-Task Feature Learning on Point Clouds,
ICCV19(8159-8170)
IEEE DOI
2004
feature extraction, graph theory, image classification,
image reconstruction, image segmentation, pattern clustering,
Convolution
BibRef
Qin, C.,
Wang, L.,
Zhang, Y.,
Fu, Y.,
Generatively Inferential Co-Training for Unsupervised Domain
Adaptation,
RLQ19(1055-1064)
IEEE DOI
2004
image classification, neural nets,
unsupervised learning, Inferential
BibRef
Maninis, K.K.[Kevis-Kokitsi],
Radosavovic, I.[Ilija],
Kokkinos, I.[Iasonas],
Attentive Single-Tasking of Multiple Tasks,
CVPR19(1851-1860).
IEEE DOI
2002
Network is trained on multiple tasks, but performs one task at a time.
BibRef
Liu, S.K.[Shi-Kun],
Johns, E.[Edward],
Davison, A.J.[Andrew J.],
End-To-End Multi-Task Learning With Attention,
CVPR19(1871-1880).
IEEE DOI
2002
BibRef
Kawakami, R.[Rei],
Yoshihashi, R.[Ryota],
Fukuda, S.[Seiichiro],
You, S.[Shaodi],
Iida, M.[Makoto],
Naemura, T.[Takeshi],
Cross-Connected Networks for Multi-Task Learning of Detection and
Segmentation,
ICIP19(3636-3640)
IEEE DOI
1910
Multi-task Learning, Pedestrian Detection, Bird Detection, Semantic Segmentation
BibRef
Javed, K.[Khurram],
Shafait, F.[Faisal],
Revisiting Distillation and Incremental Classifier Learning,
ACCV18(VI:3-17).
Springer DOI
1906
Learn tasks incrementally
BibRef
Mancini, M.[Massimiliano],
Ricci, E.[Elisa],
Caputo, B.[Barbara],
Bulň, S.R.[Samuel Rota],
Adding New Tasks to a Single Network with Weight Transformations Using
Binary Masks,
TASKCV18(II:180-189).
Springer DOI
1905
BibRef
Mallya, A.[Arun],
Lazebnik, S.[Svetlana],
PackNet: Adding Multiple Tasks to a Single Network by Iterative
Pruning,
CVPR18(7765-7773)
IEEE DOI
1812
Task analysis, Training, Neural networks,
Network architecture, Robustness, Training data
BibRef
Kim, D.J.,
Choi, J.,
Oh, T.H.,
Yoon, Y.,
Kweon, I.S.,
Disjoint Multi-task Learning Between Heterogeneous Human-Centric
Tasks,
WACV18(1699-1708)
IEEE DOI
1806
learning (artificial intelligence), optimisation,
alternating directional optimization method,
Visualization
BibRef
Mallya, A.[Arun],
Davis, D.[Dillon],
Lazebnik, S.[Svetlana],
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to
Mask Weights,
ECCV18(II: 72-88).
Springer DOI
1810
BibRef
Novotny, D.[David],
Larlus, D.[Diane],
Vedaldi, A.[Andrea],
AnchorNet: A Weakly Supervised Network to Learn Geometry-Sensitive
Features for Semantic Matching,
CVPR17(2867-2876)
IEEE DOI
1711
Apply across tasks.
Geometry, Proposals, Reliability, Semantics, Visualization.
BibRef
Kuga, R.[Ryohei],
Kanezaki, A.[Asako],
Samejima, M.[Masaki],
Sugano, Y.[Yusuke],
Matsushita, Y.[Yasuyuki],
Multi-task Learning Using Multi-modal Encoder-Decoder Networks with
Shared Skip Connections,
MSF17(403-411)
IEEE DOI
1802
Decoding, Feature extraction, Image segmentation, Neural networks,
Semantics, Training
BibRef
Ciliberto, C.[Carlo],
Rosasco, L.[Lorenzo],
Villa, S.[Silvia],
Learning multiple visual tasks while discovering their structure,
CVPR15(131-139)
IEEE DOI
1510
BibRef
Pentina, A.[Anastasia],
Sharmanska, V.[Viktoriia],
Lampert, C.H.[Christoph H.],
Curriculum learning of multiple tasks,
CVPR15(5492-5500)
IEEE DOI
1510
BibRef
Lapin, M.[Maksim],
Schiele, B.[Bernt],
Hein, M.[Matthias],
Scalable Multitask Representation Learning for Scene Classification,
CVPR14(1434-1441)
IEEE DOI
1409
BibRef
Tommasi, T.[Tatiana],
Quadrianto, N.[Novi],
Caputo, B.[Barbara],
Lampert, C.H.[Christoph H.],
Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer,
ACCV12(I:1-15).
Springer DOI
1304
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Networks for Transfer Learning, Domain Adaption .