5.6.3.1 Low Light Enhancement

Chapter Contents (Back)
Low Light. Enhancement.
See also Night Time Processing.

Kang, B.H.[Bong-Hyup], Jeon, C.W.[Chang-Won], Han, D.K.[David K.], Ko, H.S.[Han-Seok],
Adaptive height-modified histogram equalization and chroma correction in YCbCr color space for fast backlight image compensation,
IVC(29), No. 8, July 2011, pp. 557-568.
Elsevier DOI 1108
Backlight compensation; Image enhancement; Contrast enhancement; Histogram equalization; Saturation BibRef

Park, D.[Dubok], Kim, M.J.[Min-Jae], Ku, B.[Bonhwa], Yoon, S.[Sangmin], Han, D.K.[David K.],
Image enhancement for extremely low light conditions,
AVSS14(307-312)
IEEE DOI 1411
Dynamic range BibRef

Jung, C.[Cheolkon], Yang, Q.[Qi], Sun, T.T.[Ting-Ting], Fu, Q.T.[Qing-Tao], Song, H.[Hyoseob],
Low light image enhancement with dual-tree complex wavelet transform,
JVCIR(42), No. 1, 2017, pp. 28-36.
Elsevier DOI 1701
Contrast enhancement BibRef

Su, H.[Haonan], Yu, L.[Long], Jung, C.[Cheolkon],
Joint Contrast Enhancement and Noise Reduction of Low Light Images Via JND Transform,
MultMed(24), 2022, pp. 17-32.
IEEE DOI 2202
Visualization, Noise reduction, Transforms, Image color analysis, Colored noise, Adaptation models, Lighting, Contrast enhancement, Weber's law BibRef

Mei, L.[Lin], Jung, C.[Cheolkon],
Low Light Image Enhancement by Multispectral Fusion and Convolutional Neural Networks,
ICPR22(203-209)
IEEE DOI 2212
Training, Smoothing methods, Image color analysis, Noise reduction, Feature extraction, Pattern recognition, Convolutional neural networks BibRef

Ji, Z.[Zhe], Jung, C.[Cheolkon],
Subband Adaptive Enhancement of Low Light Images Using Wavelet-Based Convolutional Neural Networks,
ICIP21(1669-1673)
IEEE DOI 2201
Visualization, Adaptive systems, Noise reduction, Redundancy, Discrete wavelet transforms, Convolutional neural networks, wavelet. BibRef

Lore, K.G.[Kin Gwn], Akintayo, A.[Adedotun], Sarkar, S.[Soumik],
LLNet: A deep autoencoder approach to natural low-light image enhancement,
PR(61), No. 1, 2017, pp. 650-662.
Elsevier DOI 1705
Image enhancement BibRef

Lim, J.[Jaemoon], Heo, M.[Minhyeok], Lee, C.[Chul], Kim, C.S.[Chang-Su],
Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition,
JVCIR(45), No. 1, 2017, pp. 107-121.
Elsevier DOI 1704
Image enhancement BibRef

Park, J.[Jaemin], Vien, A.G.[An Gia], Cha, M.[Minhee], Pham, T.T.[Thuy Thi], Kim, H.[Hanul], Lee, C.[Chul],
Multiple transformation function estimation for image enhancement,
JVCIR(95), 2023, pp. 103863.
Elsevier DOI 2309
Image enhancement, Multiple transformation functions, Color representation, Histogram representation BibRef

Park, J.[Jaemin], Vien, A.G.[An Gia], Kim, J.H.[Jin-Hwan], Lee, C.[Chul],
Histogram-Based Transformation Function Estimation for Low-Light Image Enhancement,
ICIP22(1-5)
IEEE DOI 2211
Image quality, Histograms, Estimation, Feature extraction, Data mining, Image enhancement, Low-light image enhancement, histogram equalization BibRef

Lim, J.[Jaemoon], Kim, J.H.[Jin-Hwan], Sim, J.Y.[Jae-Young], Kim, C.S.[Chang-Su],
Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion,
ICIP15(4131-4135)
IEEE DOI 1512
Low-light image enhancement BibRef

Kim, J.H.[Jin-Hwan], Jang, W.D.[Won-Dong], Park, Y.[Yongsup], Lee, D.H.[Dong-Hahk], Sim, J.Y.[Jae-Young], Kim, C.S.[Chang-Su],
Temporally x real-time video dehazing,
ICIP12(969-972).
IEEE DOI 1302
BibRef

Kim, J.H.[Jin-Hwan], Jang, W.D.[Won-Dong], Sim, J.Y.[Jae-Young], Kim, C.S.[Chang-Su],
Optimized contrast enhancement for real-time image and video dehazing,
JVCIR(24), No. 3, April 2013, pp. 410-425.
Elsevier DOI 1303
Image dehazing; Video dehazing; Image restoration; Contrast enhancement; Temporal coherence; Image enhancement; Optimized dehazing; Atmospheric light estimation BibRef

Ko, S.Y.[Seung-Yong], Yu, S.[Soohwan], Park, S.[Seonhee], Moon, B.[Byeongho], Kang, W.[Wonseok], Paik, J.[Joonki],
Variational framework for low-light image enhancement using optimal transmission map and combined and -minimization,
SP:IC(58), No. 1, 2017, pp. 99-110.
Elsevier DOI 1710
Low-light, image, enhancement BibRef

Anaya, J.[Josue], Barbu, A.[Adrian],
RENOIR-A dataset for real low-light image noise reduction,
JVCIR(51), 2018, pp. 144-154.
Elsevier DOI 1802
Dataset, Noise Reduction. Image denoising, Denoising dataset, Low light noise, Poisson-Gaussian noise model BibRef

Guo, X., Li, Y., Ling, H.,
LIME: Low-Light Image Enhancement via Illumination Map Estimation,
IP(26), No. 2, February 2017, pp. 982-993.
IEEE DOI 1702
estimation theory BibRef

Li, C.Y.[Chong-Yi], Guo, J.C.[Ji-Chang], Porikli, F.M.[Fatih M.], Pang, Y.W.[Yan-Wei],
LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement,
PRL(104), 2018, pp. 15-22.
Elsevier DOI 1804
Low light image enhancement, Weak illumination image enhancement, Image degradation, CNNs BibRef

Yu, S., Zhu, H.,
Low-Illumination Image Enhancement Algorithm Based on a Physical Lighting Model,
CirSysVideo(29), No. 1, January 2019, pp. 28-37.
IEEE DOI 1901
Lighting, Attenuation, Image restoration, Image color analysis, Degradation, Scattering, Atmospheric modeling, Image enhancement, weighted guide filter BibRef

Tang, C.Y.[Chao-Ying], Wang, Y.[Yeru], Feng, H.J.[Hua-Jun], Xu, Z.H.[Zhi-Hai], Li, Q.[Qi], Chen, Y.T.[Yue-Ting],
Low-light image enhancement with strong light weakening and bright halo suppressing,
IET-IPR(13), No. 3, February 2019, pp. 537-542.
DOI Link 1903
BibRef

Ren, Y.R.[Yu-Rui], Ying, Z.Q.[Zhen-Qiang], Li, T.H., Li, G.[Ge],
LECARM: Low-Light Image Enhancement Using the Camera Response Model,
CirSysVideo(29), No. 4, April 2019, pp. 968-981.
IEEE DOI 1904
Cameras, Lighting, Image enhancement, Image color analysis, Nonlinear distortion, Histograms, Camera response function, contrast enhancement BibRef

Ying, Z.Q.[Zhen-Qiang], Li, G.[Ge], Ren, Y.R.[Yu-Rui], Wang, R.G.[Rong-Gang], Wang, W.M.[Wen-Min],
A New Low-Light Image Enhancement Algorithm Using Camera Response Model,
CVPV17(3015-3022)
IEEE DOI 1802
BibRef
And:
A New Image Contrast Enhancement Algorithm Using Exposure Fusion Framework,
CAIP17(II: 36-46).
Springer DOI 1708
Cameras, Distortion, Estimation, Image color analysis, Image enhancement, Lighting, Mathematical model BibRef

Loh, Y.P.[Yuen Peng], Liang, X.F.[Xue-Feng], Chan, C.S.[Chee Seng],
Low-light image enhancement using Gaussian Process for features retrieval,
SP:IC(74), 2019, pp. 175-190.
Elsevier DOI 1904
Low-light, Image enhancement, Gaussian Process, Convolutional neural network BibRef

Ren, W.Q.[Wen-Qi], Liu, S.F.[Si-Fei], Ma, L.[Lin], Xu, Q.Q.[Qian-Qian], Xu, X.Y.[Xiang-Yu], Cao, X.C.[Xiao-Chun], Du, J.P.[Jun-Ping], Yang, M.H.[Ming-Hsuan],
Low-Light Image Enhancement via a Deep Hybrid Network,
IP(28), No. 9, Sep. 2019, pp. 4364-4375.
IEEE DOI 1908
image enhancement, recurrent neural nets, content stream, encoder-decoder network, edge stream, edge details, auto-encoder, recurrent neural network BibRef

Jiang, Q.P.[Qiu-Ping], Mao, Y.D.[Yu-Dong], Cong, R.[Runmin], Ren, W.Q.[Wen-Qi], Huang, C.[Chao], Shao, F.[Feng],
Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement,
ITS(23), No. 10, October 2022, pp. 19440-19455.
IEEE DOI 2210
Lighting, Training, Image enhancement, Visualization, Computational modeling, Training data, Task analysis, Retinex model BibRef

Yue, G.H.[Guang-Hui], Gao, J.[Jie], Cong, R.[Runmin], Zhou, T.W.[Tian-Wei], Li, L.[Leida], Wang, T.F.[Tian-Fu],
Deep Pyramid Network for Low-Light Endoscopic Image Enhancement,
CirSysVideo(34), No. 5, May 2024, pp. 3834-3845.
IEEE DOI 2405
Lighting, Feature extraction, Task analysis, Reflection, Image enhancement, Reflectivity, Random access memory, image quality BibRef

Wang, Y.F.[Yun-Fei], Liu, H.M.[He-Ming], Fu, Z.W.[Zhao-Wang],
Low-Light Image Enhancement via the Absorption Light Scattering Model,
IP(28), No. 11, November 2019, pp. 5679-5690.
IEEE DOI 1909
Lighting, Atmospheric modeling, Imaging, Image color analysis, Mathematical model, Image enhancement, Absorption, minimal channel BibRef

Fu, G., Duan, L., Xiao, C.,
A Hybrid L2 -LP Variational Model For Single Low-Light Image Enhancement With Bright Channel Prior,
ICIP19(1925-1929)
IEEE DOI 1910
Retinex, reflectance, illumination, alternating minimization BibRef

Wu, Y.H.[Ya-Hong], Zheng, J.Y.[Jie-Ying], Song, W.[Wanru], Liu, F.[Feng],
Low light image enhancement based on non-uniform illumination prior model,
IET-IPR(13), No. 13, November 2019, pp. 2448-2456.
DOI Link 1911
BibRef

Wu, Y.H.[Ya-Hong], Song, W.[Wanru], Zheng, J.Y.[Jie-Ying], Liu, F.[Feng],
Non-uniform low-light image enhancement via non-local similarity decomposition model,
SP:IC(93), 2021, pp. 116141.
Elsevier DOI 2103
Non-uniform low-light image enhancement, Similarity measure, Non-local similarity decomposition, Edge information, Reflectance and illumination BibRef

Liu, X.L.[Xia-Lin], Sun, Y.W.[Yi-Wei], Shi, J.H.[Jian-Hong], Zeng, G.H.[Gui-Hua],
Photon efficiency of computational ghost imaging with single-photon detection,
JOSA-A(35), No. 10, October 2018, pp. 1741-1748.
DOI Link 1912
Computational imaging, Digital micromirror devices, Image quality, Imaging systems, Low light level techniques, Low light levels BibRef

Lee, H., Sohn, K., Min, D.,
Unsupervised Low-Light Image Enhancement Using Bright Channel Prior,
SPLetters(27), 2020, pp. 251-255.
IEEE DOI 2002
Unsupervised learning, low-light image enhancement, bright channel prior BibRef

Srinivas, K.[Kankanala], Bhandari, A.K.[Ashish Kumar],
Low light image enhancement with adaptive sigmoid transfer function,
IET-IPR(14), No. 4, 27 March 2020, pp. 668-678.
DOI Link 2003
BibRef

Hsieh, P.W.[Po-Wen], Shao, P.C.A.[Pei-Chi-Ang], Yang, S.Y.[Suh-Yuh],
Adaptive Variational Model for Contrast Enhancement of Low-Light Images,
SIIMS(13), No. 1, 2020, pp. 1-28.
DOI Link 2004
BibRef

Li, M.D.[Ma-Ding], Liu, J.Y.[Jia-Ying], Yang, W.H.[Wen-Han], Sun, X.Y.[Xiao-Yan], Guo, Z.M.[Zong-Ming],
Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model,
IP(27), No. 6, June 2018, pp. 2828-2841.
IEEE DOI 1804
image enhancement, optimisation, augmented Lagrange multiplier based alternating direction minimization algorithm, structure-revealing. BibRef

Ren, X., Yang, W., Cheng, W., Liu, J.,
LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model,
IP(29), 2020, pp. 5862-5876.
IEEE DOI 2005
Lighting, Robustness, Noise reduction, Histograms, Minimization, Visualization, Estimation, Low-light enhancement, denoising, low-rank decomposition BibRef

Yang, W.H.[Wen-Han], Yuan, Y.[Ye], Ren, W.Q.[Wen-Qi], Liu, J.Y.[Jia-Ying], Scheirer, W.J.[Walter J.], Wang, Z.Y.[Zhang-Yang], Zhang, T.H.[Tai-Heng], Zhong, Q.Y.[Qiao-Yong], Xie, D.[Di], Pu, S.L.[Shi-Liang], Zheng, Y.Q.[Yu-Qiang], Qu, Y.Y.[Yan-Yun], Xie, Y.H.[Yu-Hong], Chen, L.[Liang], Li, Z.H.[Zhong-Hao], Hong, C.[Chen], Jiang, H.[Hao], Yang, S.Y.[Si-Yuan], Liu, Y.[Yan], Qu, X.C.[Xiao-Chao], Wan, P.F.[Peng-Fei], Zheng, S.[Shuai], Zhong, M.H.[Min-Hui], Su, T.Y.[Tai-Yi], He, L.Z.[Ling-Zhi], Guo, Y.D.[Yan-Dong], Zhao, Y.[Yao], Zhu, Z.F.[Zhen-Feng], Liang, J.X.[Jin-Xiu], Wang, J.W.[Jing-Wen], Chen, T.Y.[Tian-Yi], Quan, Y.H.[Yu-Hui], Xu, Y.[Yong], Liu, B.[Bo], Liu, X.[Xin], Sun, Q.[Qi], Lin, T.Y.[Ting-Yu], Li, X.C.[Xiao-Chuan], Lu, F.[Feng], Gu, L.[Lin], Zhou, S.D.[Sheng-Di], Cao, C.[Cong], Zhang, S.F.[Shi-Feng], Chi, C.[Cheng], Zhuang, C.B.[Chu-Bing], Lei, Z.[Zhen], Li, S.Z.[Stan Z.], Wang, S.Z.[Shi-Zheng], Liu, R.Z.[Rui-Zhe], Yi, D.[Dong], Zuo, Z.M.[Zhe-Ming], Chi, J.N.[Jian-Ning], Wang, H.[Huan], Wang, K.[Kai], Liu, Y.X.[Yi-Xiu], Gao, X.Y.[Xing-Yu], Chen, Z.Y.[Zhen-Yu], Guo, C.[Chang], Li, Y.Z.[Yong-Zhou], Zhong, H.C.[Hui-Cai], Huang, J.[Jing], Guo, H.[Heng], Yang, J.F.[Jian-Fei], Liao, W.J.[Wen-Juan], Yang, J.G.[Jian-Gang], Zhou, L.G.[Li-Guo], Feng, M.Y.[Ming-Yue], Qin, L.K.[Li-Kun],
Advancing Image Understanding in Poor Visibility Environments: A Collective Benchmark Study,
IP(29), 2020, pp. 5737-5752.
IEEE DOI 2005
Poor visibility environment, object detection, face detection, haze, rain, low-light conditions BibRef

Saha, R.[Rappy], Banik, P.P.[Partha Pratim], Gupta, S.S.[Shantanu Sen], Kim, K.D.[Ki-Doo],
Combining highlight removal and low-light image enhancement technique for HDR-like image generation,
IET-IPR(14), No. 9, 20 July 2020, pp. 1851-1861.
DOI Link 2007
BibRef

Wang, L., Liu, Z., Siu, W., Lun, D.P.K.,
Lightening Network for Low-Light Image Enhancement,
IP(29), 2020, pp. 7984-7996.
IEEE DOI 2007
Feature extraction, Task analysis, Lighting, Image resolution, Reflectivity, Image enhancement, Data mining, deep learning BibRef

Kim, J.W.[Jae-Woo], Ryu, J.H.[Je-Ho], Kim, J.O.[Jong-Ok],
Deep gradual flash fusion for low-light enhancement,
JVCIR(72), 2020, pp. 102903.
Elsevier DOI 1806
Image fusion, Flash fusion, Pseudo multi-exposure, Auto-encoder, GAN, Low light enhancement BibRef

Xie, J.[Junyi], Bian, H.[Hao], Wu, Y.[Yuanhang], Zhao, Y.[Yu], Shan, L.[Linmin], Hao, S.J.[Shi-Jie],
Semantically-guided low-light image enhancement,
PRL(138), 2020, pp. 308-314.
Elsevier DOI 2010
Image enhancement, Low light, Semantic information, Simplified retinex model BibRef

Hao, S.J.[Shi-Jie], Han, X.[Xu], Guo, Y.R.[Yan-Rong], Xu, X.[Xin], Wang, M.[Meng],
Low-Light Image Enhancement With Semi-Decoupled Decomposition,
MultMed(22), No. 12, December 2020, pp. 3025-3038.
IEEE DOI 2011
Lighting, Task analysis, Imaging, Image edge detection, Image enhancement, Visualization, Optimization, Low-light images, Retinex model BibRef

Fu, Q.X.[Qing-Xu], Di, X.G.[Xiao-Guang], Zhang, Y.[Yu],
Learning an adaptive model for extreme low-light raw image processing,
IET-IPR(14), No. 14, December 2020, pp. 3433-3443.
DOI Link 2012
BibRef

Lamba, M., Rachavarapu, K.K., Mitra, K.,
Harnessing Multi-View Perspective of Light Fields for Low-Light Imaging,
IP(30), 2021, pp. 1501-1513.
IEEE DOI 2101
Image restoration, Cameras, Light fields, Noise reduction, Estimation, ISO, Visualization, Low-light, light field enhancement, light field dataset BibRef

Hu, L.S.[Lin-Shu], Qin, M.J.[Meng-Jiao], Zhang, F.[Feng], Du, Z.H.[Zhen-Hong], Liu, R.Y.[Ren-Yi],
RSCNN: A CNN-Based Method to Enhance Low-Light Remote-Sensing Images,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.,
Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement,
IP(30), 2021, pp. 2072-2086.
IEEE DOI 2101
Lighting, Image restoration, Image enhancement, Image coding, Noise reduction, Atmospheric modeling, Minimization, denoising BibRef

Niu, J.X.[Jin-Xing], Jiang, Y.J.[Ya-Jie], Fu, Y.Y.[Ya-Yun],
Special Issue Retraction: Research on image sharpening algorithm in weak illumination environment,
IET-IPR(17), No. 1, January 2023, pp. 301.
DOI Link 2301
BibRef
And: IET-IPR(14), No. 15, 15 December 2020, pp. 3635-3638.
DOI Link 2103
BibRef

Yang, W.H.[Wen-Han], Wang, S.Q.[Shi-Qi], Fang, Y.M.[Yu-Ming], Wang, Y.[Yue], Liu, J.Y.[Jia-Ying],
Band Representation-Based Semi-Supervised Low-Light Image Enhancement: Bridging the Gap Between Signal Fidelity and Perceptual Quality,
IP(30), 2021, pp. 3461-3473.
IEEE DOI 2103
BibRef
Earlier:
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement,
CVPR20(3060-3069)
IEEE DOI 2008
Visualization, Lighting, Neural networks, Image enhancement, Image color analysis, Degradation, Visual perception, Low light, perceptual quality. Lighting, Estimation, Image restoration, Colored noise BibRef

Chen, B.L.[Bao-Liang], Zhu, L.Y.[Ling-Yu], Zhu, H.W.[Han-Wei], Yang, W.H.[Wen-Han], Song, L.Q.[Lin-Qi], Wang, S.Q.[Shi-Qi],
Gap-Closing Matters: Perceptual Quality Evaluation and Optimization of Low-Light Image Enhancement,
MultMed(26), 2024, pp. 3430-3443.
IEEE DOI 2402
Databases, Distortion, Image enhancement, Optimization, Visualization, Lighting, Quality assessment, optimization BibRef

Zhang, Y.H.[Yong-Hua], Guo, X.J.[Xiao-Jie], Ma, J.Y.[Jia-Yi], Liu, W.[Wei], Zhang, J.W.[Jia-Wan],
Beyond Brightening Low-light Images,
IJCV(129), No. 4, April 2021, pp. 1013-1037.
Springer DOI 2104
BibRef

Liu, J.Y.[Jia-Ying], Xu, D.J.[De-Jia], Yang, W.H.[Wen-Han], Fan, M.H.[Min-Hao], Huang, H.F.[Hao-Feng],
Benchmarking Low-Light Image Enhancement and Beyond,
IJCV(129), No. 4, April 2021, pp. 1153-1184.
Springer DOI 2104
BibRef

Huang, H.F.[Hao-Feng], Yang, W.H.[Wen-Han], Hu, Y.Y.[Yue-Yu], Liu, J.Y.[Jia-Ying],
Raw-guided Enhancing Reprocess of Low-light Image via Deep Exposure Adjustment,
ACCV20(II:118-133).
Springer DOI 2103
BibRef

Wang, J.S.[Jun-Shu], Yang, Y.[Yue], Chen, Y.[Yuan], Han, Y.X.[Yu-Xing],
LighterGAN: An Illumination Enhancement Method for Urban UAV Imagery,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Lv, F.F.[Fei-Fan], Li, Y.[Yu], Lu, F.[Feng],
Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset,
IJCV(129), No. 7, July 2021, pp. 2175-2193.
Springer DOI 2106
BibRef

Miller, S.[Sarah], Zhang, C.[Chen], Hirakawa, K.[Keigo],
Multi-Resolution Aitchison Geometry Image Denoising for Low-Light Photography,
IP(30), 2021, pp. 5724-5738.
IEEE DOI 2106
Noise reduction, Wavelet transforms, Lighting, Geometry, Estimation, Image denoising, Image edge detection, Image denoising, Poisson, Aitchison geometry BibRef

Li, M.[Miao], Zhou, D.M.[Dong-Ming], Nie, R.C.[Ren-Can], Xie, S.D.[Shi-Dong], Liu, Y.Y.[Yan-Yu],
AMBCR: Low-Light Image Enhancement via Attention Guided Multi-Branch Construction and Retinex Theory,
IET-IPR(15), No. 9, 2021, pp. 2020-2038.
DOI Link 2106
attention networks, low-light image enhancement, multi-branch construction, Retinex theory BibRef

Sandoub, G.[Ghada], Atta, R.[Randa], Ali, H.A.[Hesham Arafat], Abdel-Kader, R.F.[Rabab Farouk],
A low-light image enhancement method based on bright channel prior and maximum colour channel,
IET-IPR(15), No. 8, 2021, pp. 1759-1772.
DOI Link 2106
BibRef

Parihar, A.S.[Anil Singh], Singh, K.[Kavinder], Rohilla, H.[Hrithik], Asnani, G.[Gul],
Fusion-based simultaneous estimation of reflectance and illumination for low-light image enhancement,
IET-IPR(15), No. 7, 2021, pp. 1410-1423.
DOI Link 2106
BibRef

Li, F.[Fei], Zheng, J.B.[Jiang-Bin], Zhang, Y.F.[Yuan-Fang],
Generative Adversarial Network for Low-Light Image Enhancement,
IET-IPR(15), No. 7, 2021, pp. 1542-1552.
DOI Link 2106
BibRef

Yang, J.Y.[Jing-Yu], Xu, Y.W.[Yu-Wei], Yue, H.J.[Huan-Jing], Jiang, Z.Y.[Zhong-Yu], Li, K.[Kun],
Low-light image enhancement based on Retinex decomposition and adaptive gamma correction,
IET-IPR(15), No. 5, 2021, pp. 1189-1202.
DOI Link 2106
BibRef

Ma, C.X.[Cheng-Xu], Li, D.H.[Dai-Hui], Zeng, S.Y.[Shang-You], Zhao, J.[Junbo], Chen, H.Y.[Hong-Yang],
An efficient framework for deep learning-based light-defect image enhancement,
IET-IPR(15), No. 7, 2021, pp. 1553-1566.
DOI Link 2106
BibRef

Khan, R.[Rizwan], Yang, Y.[You], Liu, Q.[Qiong], Qaisar, Z.H.[Zahid Hussain],
A ghostfree contrast enhancement method for multiview images without depth information,
JVCIR(78), 2021, pp. 103175.
Elsevier DOI 2107
Multi-view low-light images, Feature matching, Exposure fusion BibRef

Kong, X.Y.[Xiang-Yu], Liu, L.[Lei], Qian, Y.S.[Yun-Sheng],
Low-Light Image Enhancement via Poisson Noise Aware Retinex Model,
SPLetters(28), 2021, pp. 1540-1544.
IEEE DOI 2108
Lighting, Reflectivity, Kernel, Image enhancement, Noise reduction, Photonics, Standards, Image denoising, low-light image enhancement, Retinex model BibRef

Chen, X.Y.[Xin-Yu], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
Low-light image enhancement based on exponential Retinex variational model,
IET-IPR(15), No. 12, 2021, pp. 3003-3019.
DOI Link 2109
BibRef

Xu, X.T.[Xin-Tao], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-Based Multi-Channel Feature Fusion Enhancement Network to Process Low-Light Images,
IET-IPR(16), No. 12, 2022, pp. 3374-3393.
DOI Link 2209
BibRef

Huang, Z.X.[Zhi-Xiong], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-based dual-color space fusion network for low-light image enhancement,
SP:IC(119), 2023, pp. 117060.
Elsevier DOI 2310
Low-light image enhancement, Dual-color space, Adaptive large-kernel attention, Deep learning BibRef

Yu, N.[Nana], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
LBP-based progressive feature aggregation network for low-light image enhancement,
IET-IPR(16), No. 2, 2022, pp. 535-553.
DOI Link 2201
BibRef

Huang, Z.X.[Zhi-Xiong], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
Underwater image enhancement via LBP-based attention residual network,
IET-IPR(16), No. 1, 2022, pp. 158-175.
DOI Link 2112
BibRef

Li, J.Q.[Jia-Qian], Li, J.C.[Jun-Cheng], Fang, F.M.[Fa-Ming], Li, F.[Fang], Zhang, G.X.[Gui-Xu],
Luminance-Aware Pyramid Network for Low-Light Image Enhancement,
MultMed(23), 2021, pp. 3153-3165.
IEEE DOI 2109
Feature extraction, Image enhancement, Lighting, Task analysis, Image color analysis, pyramid structure BibRef

Feng, X.M.[Xiao-Mei], Li, J.J.[Jin-Jiang], Fan, H.[Hui],
Hierarchical guided network for low-light image enhancement,
IET-IPR(15), No. 13, 2021, pp. 3254-3266.
DOI Link 2110
BibRef

Lv, X.Q.[Xiao-Qian], Sun, Y.J.[Yu-Jing], Zhang, J.[Jun], Jiang, F.[Feng], Zhang, S.P.[Sheng-Ping],
Low-light image enhancement via deep Retinex decomposition and bilateral learning,
SP:IC(99), 2021, pp. 116466.
Elsevier DOI 2111
Low-light image enhancement, Image decomposition, Deep neural network, Attention, Illumination adjustment BibRef

Malik, S.[Sameer], Soundararajan, R.[Rajiv],
A low light natural image statistical model for joint contrast enhancement and denoising,
SP:IC(99), 2021, pp. 116433.
Elsevier DOI 2111
Gaussian scale mixture models, Natural scene statistics, Contrast enhancement, Low light enhancement, Denoising BibRef

Lu, K.[Kun], Zhang, L.H.[Li-Hong],
TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement,
MultMed(23), 2021, pp. 4093-4105.
IEEE DOI 2112
Lighting, Noise reduction, Image enhancement, Estimation, Image reconstruction, Image color analysis, Visualization, transfer function estimation BibRef

Lim, S.[Seokjae], Kim, W.J.[Won-Jun],
DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement,
MultMed(23), 2021, pp. 4272-4284.
IEEE DOI 2112
Laplace equations, Image restoration, Lighting, Image enhancement, Visualization, Image color analysis, Histograms, decomposition-based scheme BibRef

Qiu, Y.S.[Yan-Sheng], Chen, J.[Jun], Wang, Z.[Zheng], Wang, X.[Xiao], Lin, C.W.[Chia-Wen],
Spatio-Spectral Feature Fusion for Low-Light Image Enhancement,
SPLetters(28), 2021, pp. 2157-2161.
IEEE DOI 2112
Frequency-domain analysis, Convolution, Image enhancement, Discrete wavelet transforms, Training, Image color analysis, spatio-spectral fusion BibRef

Li, J.J.[Jin-Jiang], Feng, X.M.[Xiao-Mei], Hua, Z.[Zhen],
Low-Light Image Enhancement via Progressive-Recursive Network,
CirSysVideo(31), No. 11, November 2021, pp. 4227-4240.
IEEE DOI 2112
Image enhancement, Lighting, Training, Feature extraction, Brightness, Task analysis, Image color analysis, attention model BibRef

Kim, W.J.[Won-Jun],
Low-light image enhancement by diffusion pyramid with residuals,
JVCIR(81), 2021, pp. 103364.
Elsevier DOI 2112
Low-light image enhancement, Scene illumination, Diffusion pyramid with residuals BibRef

Al Sobbahi, R.[Rayan], Tekli, J.[Joe],
Low-Light Homomorphic Filtering Network for integrating image enhancement and classification,
SP:IC(100), 2022, pp. 116527.
Elsevier DOI 2112
Image enhancement, Low-light conditions, Deep learning, Object classification, Homomorphic filtering BibRef

Al Sobbahi, R.[Rayan], Tekli, J.[Joe],
Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges,
SP:IC(109), 2022, pp. 116848.
Elsevier DOI 2210
BibRef
Earlier:
Low-Light Image Enhancement Using Image-to-Frequency Filter Learning,
CIAP22(II:693-705).
Springer DOI 2205
Image enhancement, Low-light conditions, Deep learning models, Object detection and classification, Empirical comparison BibRef

Zhang, Y.[Yu], Di, X.G.[Xiao-Guang], Zhang, B.[Bin], Ji, R.H.[Rui-Hang], Wang, C.H.[Chun-Hui],
Better Than Reference in Low-Light Image Enhancement: Conditional Re-Enhancement Network,
IP(31), 2022, pp. 759-772.
IEEE DOI 2201
Image color analysis, Brightness, Colored noise, Image enhancement, Training, Distortion, Noise reduction, Low-light image, color correction BibRef

Zhang, N.[Ning], Nex, F.[Francesco], Kerle, N.[Norman], Vosselman, G.[George],
LISU: Low-light indoor scene understanding with joint learning of reflectance restoration,
PandRS(183), 2022, pp. 470-481.
Elsevier DOI 2201
BibRef
Earlier:
Towards Learning Low-light Indoor Semantic Segmentation With Illumination-invariant Features,
ISPRS21(B2-2021: 427-432).
DOI Link 2201
Semantic segmentation, Deep learning, Intrinsic image decomposition, Low-light BibRef

Ko, S.[Seonggwan], Park, J.[Jinsun], Chae, B.[Byungjoo], Cho, D.[Donghyeon],
Learning Lightweight Low-Light Enhancement Network Using Pseudo Well-Exposed Images,
SPLetters(29), 2022, pp. 289-293.
IEEE DOI 2202
Training, Feature extraction, Knowledge engineering, Image enhancement, Lighting, Dynamic range, Computational modeling, knowledge distillation BibRef

Huang, H.F.[Hao-Feng], Yang, W.H.[Wen-Han], Hu, Y.Y.[Yue-Yu], Liu, J.Y.[Jia-Ying], Duan, L.Y.[Ling-Yu],
Towards Low Light Enhancement With RAW Images,
IP(31), 2022, pp. 1391-1405.
IEEE DOI 2202
Benchmark testing, Training, Pipelines, Image processing, Lighting, Image enhancement, Histograms, Low-light enhancement, benchmark, factorized enhancement model BibRef

Chang, M.[Meng], Feng, H.J.[Hua-Jun], Xu, Z.H.[Zhi-Hai], Li, Q.[Qi],
Low-Light Image Restoration With Short- and Long-Exposure Raw Pairs,
MultMed(24), 2022, pp. 702-714.
IEEE DOI 2202
Imaging, Image color analysis, Colored noise, Task analysis, Pipelines, Noise reduction, Mobile handsets, Deblurring, denoising, low-light imaging BibRef

Zhao, Z.J.[Zun-Jin], Xiong, B.S.[Bang-Shu], Wang, L.[Lei], Ou, Q.F.[Qiao-Feng], Yu, L.[Lei], Kuang, F.[Fa],
RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement,
CirSysVideo(32), No. 3, March 2022, pp. 1076-1088.
IEEE DOI 2203
Lighting, Couplings, Electronics packaging, Image enhancement, Task analysis, Histograms, Cameras, Low-light image enhancement, zero-reference BibRef

Lu, B.[Bibo], Pang, Z.[Zebang], Gu, Y.[Yanan], Zheng, Y.[Yanmei],
Channel splitting attention network for low-light image enhancement,
IET-IPR(16), No. 5, 2022, pp. 1403-1414.
DOI Link 2203
BibRef

Lu, Y.C.[Yu-Cheng], Jung, S.W.[Seung-Won],
Progressive Joint Low-Light Enhancement and Noise Removal for Raw Images,
IP(31), 2022, pp. 2390-2404.
IEEE DOI 2203
Noise reduction, Image color analysis, Colored noise, Cameras, Lighting, Estimation, Task analysis, Convolutional neural network, low-light image enhancement BibRef

Chen, L.L.[Liang-Liang], Guo, L.[Lin], Cheng, D.Q.[De-Qiang], Kou, Q.Q.[Qi-Qi],
Structure-Preserving and Color-Restoring Up-Sampling for Single Low-Light Image,
CirSysVideo(32), No. 4, April 2022, pp. 1889-1902.
IEEE DOI 2204
Lighting, Image reconstruction, Image color analysis, Training, Reflectivity, Learning systems, Task analysis, Low-light, color-restoring BibRef

Shen, L.[Liran], Ma, Z.Y.[Zhi-Yuan], Er, M.J.[Meng Joo], Fan, Y.S.[Yun-Sheng], Yin, Q.B.[Qing-Bo],
Blind Adaptive Structure-Preserving Imaging Enhancement for Low-Light Condition,
SPLetters(29), 2022, pp. 917-921.
IEEE DOI 2205
Lighting, Reflectivity, Adaptation models, Low-pass filters, Image enhancement, Computational complexity, Estimation, retinex model BibRef

Shi, Y.M.[Yang-Ming], Wang, B.Q.[Bin-Quan], Wu, X.[Xiaopo], Zhu, M.[Ming],
Unsupervised Low-Light Image Enhancement by Extracting Structural Similarity and Color Consistency,
SPLetters(29), 2022, pp. 997-1001.
IEEE DOI 2205
Image color analysis, Feature extraction, Training, Optimization, Signal processing algorithms, Brightness, Lighting, unsupervised learning BibRef

Yang, S.L.[Shao-Liang], Zhou, D.M.[Dong-Ming], Cao, J.[Jinde], Guo, Y.[Yanbu],
Rethinking Low-Light Enhancement via Transformer-GAN,
SPLetters(29), 2022, pp. 1082-1086.
IEEE DOI 2205
Transformers, Feature extraction, Generators, Training, Task analysis, Lighting, Image reconstruction, Vision transformer, low light enhancement BibRef

Zhao, J.[Junbo], Chen, H.Y.[Hong-Yang], Zeng, S.[Shangyou], Ma, C.X.[Cheng-Xu],
RISSNet: Retain low-light image details and improve the structural similarity net,
IET-IPR(16), No. 7, 2022, pp. 1793-1806.
DOI Link 2205
BibRef

Lu, Y.X.[Yu-Xu], Guo, Y.[Yu], Liu, R.W.[Ryan Wen], Ren, W.Q.[Wen-Qi],
MTRBNet: Multi-Branch Topology Residual Block-Based Network for Low-Light Enhancement,
SPLetters(29), 2022, pp. 1127-1131.
IEEE DOI 2205
Topology, Network topology, Convolution, Visualization, Image enhancement, Brightness, Lighting, Image enhancement, multi-branch topology BibRef

Dhara, S.K.[Sobhan Kanti], Sen, D.[Debashis],
Exposedness-Based Noise-Suppressing Low-Light Image Enhancement,
CirSysVideo(32), No. 6, June 2022, pp. 3438-3451.
IEEE DOI 2206
Lighting, Image enhancement, Estimation, Computational modeling, Atmospheric modeling, Noise reduction, Light scattering, noise suppression BibRef

Wang, W.C.[Wen-Cheng], Chen, Z.[Zhenxue], Yuan, X.H.[Xiao-Hui],
Simple low-light image enhancement based on Weber-Fechner law in logarithmic space,
SP:IC(106), 2022, pp. 116742.
Elsevier DOI 2206
Logarithmic transformation, Low-light image, Non-uniform illumination, Weber-Fechner law, Color compensation BibRef

Li, C.Y.[Chong-Yi], Guo, C.[Chunle], Loy, C.C.[Chen Change],
Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation,
PAMI(44), No. 8, August 2022, pp. 4225-4238.
IEEE DOI 2207
Lighting, Estimation, Training, Image enhancement, Image color analysis, Dynamic range, Task analysis, zero-reference learning BibRef

Li, C.Y.[Chong-Yi], Guo, C.[Chunle], Han, L.H.[Ling-Hao], Jiang, J.[Jun], Cheng, M.M.[Ming-Ming], Gu, J.W.[Jin-Wei], Loy, C.C.[Chen Change],
Low-Light Image and Video Enhancement Using Deep Learning: A Survey,
PAMI(44), No. 12, December 2022, pp. 9396-9416.
IEEE DOI 2212
Lighting, Deep learning, Feature extraction, Supervised learning, Cameras, Training data, Photography, Image and video restoration, computational photography BibRef

Guo, C.[Chunle], Li, C.Y.[Chong-Yi], Guo, J.C.[Ji-Chang], Loy, C.C.[Chen Change], Hou, J.H.[Jun-Hui], Kwong, S.[Sam], Cong, R.M.[Run-Min],
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement,
CVPR20(1777-1786)
IEEE DOI 2008
Lighting, Estimation, Dynamic range, Training, Image color analysis, Task analysis, Image enhancement BibRef

Huang, C.Y.[Chao-Yan], Fang, Y.Y.[Ying-Ying], Wu, T.T.[Ting-Ting], Zeng, T.Y.[Tie-Yong], Zeng, Y.H.[Yong-Hua],
Quaternion Screened Poisson Equation for Low-Light Image Enhancement,
SPLetters(29), 2022, pp. 1417-1421.
IEEE DOI 2207
Quaternions, Image color analysis, Color, Mathematical models, Image enhancement, Task analysis, Poisson equations, screened Poisson equation BibRef

Chang, J.[Jie], Zhu, G.P.[Guo-Pu], Zhang, H.L.[Hong-Li], Zhu, L.Y.[Ling-Yu], Yang, W.H.[Wen-Han], Chen, B.L.[Bao-Liang], Lu, F.B.[Fang-Bo], Wang, S.Q.[Shi-Qi],
Enlightening Low-Light Images With Dynamic Guidance for Context Enrichment,
CirSysVideo(32), No. 8, August 2022, pp. 5068-5079.
IEEE DOI 2208
Lighting, Image color analysis, Feature extraction, Image enhancement, Histograms, Image edge detection, contextual feature BibRef

Nie, T.[Ting], Wang, X.F.[Xiao-Feng], Liu, H.X.[Hong-Xing], Li, M.X.[Ming-Xuan], Nong, S.[Shenkai], Yuan, H.[Hangfei], Zhao, Y.C.[Yu-Chen], Huang, L.[Liang],
Enhancement and Noise Suppression of Single Low-Light Grayscale Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Xu, K.[Kai], Chen, H.A.[Huai-An], Xu, C.M.[Chun-Mei], Jin, Y.[Yi], Zhu, C.G.[Chan-Gan],
Structure-Texture Aware Network for Low-Light Image Enhancement,
CirSysVideo(32), No. 8, August 2022, pp. 4983-4996.
IEEE DOI 2208
Image enhancement, Image color analysis, Image edge detection, Task analysis, Lighting, Distortion, Visualization, hybrid loss BibRef

Lin, Y.H.[Yi-Hsien], Lu, Y.C.[Yi-Chang],
Low-Light Enhancement Using a Plug-and-Play Retinex Model With Shrinkage Mapping for Illumination Estimation,
IP(31), 2022, pp. 4897-4908.
IEEE DOI 2208
Lighting, Optimization, Image edge detection, Stars, Learning systems, Linear programming, Image quality, alternating direction method of multipliers BibRef

Wang, Y.[Ya'nan], Jiang, Z.Q.[Zhu-Qing], Liu, C.[Chang], Li, K.[Kai], Men, A.D.[Ai-Dong], Wang, H.Y.[Hai-Ying], Chen, X.B.[Xiao-Bo],
Shedding light on images: Multi-level image brightness enhancement guided by arbitrary references,
PR(131), 2022, pp. 108867.
Elsevier DOI 2208
Low-light image enhancement, Multi-level mapping, Arbitrary references, Codec network, Decomposition, Concatenation BibRef

Quan, Y.Z.[Yi-Zhuo], Fu, D.[Dong], Chang, Y.[Yuanfei], Wang, C.B.[Cheng-Bo],
3D Convolutional Neural Network for Low-Light Image Sequence Enhancement in SLAM,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Rasheed, M.T.[Muhammad Tahir], Guo, G.Y.[Gui-Yu], Shi, D.M.[Da-Ming], Khan, H.[Hufsa], Cheng, X.C.[Xiao-Chun],
An Empirical Study on Retinex Methods for Low-Light Image Enhancement,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Wang, Y.[Yong], Li, B.[Bo], Jiang, L.J.[Li-Jun], Yang, W.M.[Wen-Ming],
R2Net: Relight the restored low-light image based on complementarity of illumination and reflection,
SP:IC(108), 2022, pp. 116800.
Elsevier DOI 2209
Low-light image enhancement, Retinex-based method, Attention module, Image restoration BibRef

Wei, K.X.[Kai-Xuan], Fu, Y.[Ying], Zheng, Y.Q.[Yin-Qiang], Yang, J.L.[Jiao-Long],
Physics-Based Noise Modeling for Extreme Low-Light Photography,
PAMI(44), No. 11, November 2022, pp. 8520-8537.
IEEE DOI 2210
Imaging, Noise reduction, Computational modeling, Photonics, Data models, Training data, Extreme low-light imaging, low-light denoising dataset BibRef

Wei, K.X.[Kai-Xuan], Fu, Y.[Ying], Yang, J.L.[Jiao-Long], Huang, H.,
A Physics-Based Noise Formation Model for Extreme Low-Light Raw Denoising,
CVPR20(2755-2764)
IEEE DOI 2008
Data models, Photonics, Semiconductor device modeling, Cameras, Noise measurement, Pipelines BibRef

Liu, X.K.[Xiao-Kai], Ma, W.H.[Wei-Hao], Ma, X.R.[Xiao-Rui], Wang, J.[Jie],
LAE-Net: A locally-adaptive embedding network for low-light image enhancement,
PR(133), 2023, pp. 109039.
Elsevier DOI 2210
Locally-adaptive, Image enhancement, Multi-distribution, Image entropy, Kernel selection BibRef

Liang, J.X.[Jin-Xiu], Xu, Y.[Yong], Quan, Y.H.[Yu-Hui], Shi, B.X.[Bo-Xin], Ji, H.[Hui],
Self-Supervised Low-Light Image Enhancement Using Discrepant Untrained Network Priors,
CirSysVideo(32), No. 11, November 2022, pp. 7332-7345.
IEEE DOI 2211
Lighting, Reflectivity, Artificial neural networks, Training data, Training, Noise reduction, Visualization, untrained network priors BibRef

Fan, G.D.[Guo-Dong], Fan, B.[Bi], Gan, M.[Min], Chen, G.Y.[Guang-Yong], Chen, C.L.P.[C. L. Philip],
Multiscale Low-Light Image Enhancement Network With Illumination Constraint,
CirSysVideo(32), No. 11, November 2022, pp. 7403-7417.
IEEE DOI 2211
Lighting, Image enhancement, Image color analysis, Deep learning, Task analysis, Atmospheric modeling, Histograms, Res2Net BibRef

Liu, C.X.[Chun-Xiao], Wu, F.D.[Fan-Ding], Wang, X.[Xun],
EFINet: Restoration for Low-Light Images via Enhancement-Fusion Iterative Network,
CirSysVideo(32), No. 12, December 2022, pp. 8486-8499.
IEEE DOI 2212
Lighting, Image color analysis, Training, Image enhancement, Iterative methods, Feature extraction, Task analysis, light-weight CNNs BibRef

Peng, B.[Bo], Zhang, X.Y.[Xuan-Yu], Lei, J.J.[Jian-Jun], Zhang, Z.[Zhe], Ling, N.[Nam], Huang, Q.M.[Qing-Ming],
LVE-S2D: Low-Light Video Enhancement From Static to Dynamic,
CirSysVideo(32), No. 12, December 2022, pp. 8342-8352.
IEEE DOI 2212
Image enhancement, Video sequences, Training, Task analysis, Histograms, Correlation, Lighting, Low-light video enhancement, deep learning BibRef

Guo, X.J.[Xiao-Jie], Hu, Q.M.[Qi-Ming],
Low-light Image Enhancement via Breaking Down the Darkness,
IJCV(131), No. 1, January 2023, pp. 48-66.
Springer DOI 2301
BibRef

Cotogni, M.[Marco], Cusano, C.[Claudio],
TreEnhance: A tree search method for low-light image enhancement,
PR(136), 2023, pp. 109249.
Elsevier DOI 2301
Low-light image enhancement, Deep reinforcement learning, Automatic image retouching, Image processing, Tree search BibRef

Xu, W.[Wanyan], Dong, X.[Xingbo], Ma, L.[Lan], Teoh, A.B.J.[Andrew Beng Jin], Lin, Z.X.[Zhi-Xian],
RawFormer: An Efficient Vision Transformer for Low-Light RAW Image Enhancement,
SPLetters(29), 2022, pp. 2677-2681.
IEEE DOI 2301
Transformers, Convolution, Image enhancement, Image restoration, Task analysis, Computational modeling, Computational efficiency, RAW camera data processing BibRef

Liu, M.[Maomei], Tang, L.[Lei], Zhong, S.[Sheng], Luo, H.Z.[Hang-Zai], Peng, J.Y.[Jin-Ye],
Learning to recover lost details from the dark,
PRL(165), 2023, pp. 107-113.
Elsevier DOI 2301
Low-light image enhancement, Convolutional neural network, Low-light dataset BibRef

Cai, R.T.[Rong-Tai], Chen, Z.K.[Ze-Kun],
Brain-like retinex: A biologically plausible retinex algorithm for low light image enhancement,
PR(136), 2023, pp. 109195.
Elsevier DOI 2301
Retinex, Low light image enhancement, Contour detection, Edge detection, Brain-inspired computation, Color constancy, Retinal circuit BibRef

Hai, J.[Jiang], Xuan, Z.[Zhu], Yang, R.[Ren], Hao, Y.T.[Yu-Tong], Zou, F.Z.[Feng-Zhu], Lin, F.[Fang], Han, S.C.[Song-Chen],
R2RNet: Low-light image enhancement via Real-low to Real-normal Network,
JVCIR(90), 2023, pp. 103712.
Elsevier DOI 2301
Retinex theory, Low-light image enhancement, Image processing, Real-world low/normal-light image pairs BibRef

Hai, J.[Jiang], Hao, Y.T.[Yu-Tong], Zou, F.Z.[Feng-Zhu], Lin, F.[Fang], Han, S.C.[Song-Chen],
Advanced RetinexNet: A fully convolutional network for low-light image enhancement,
SP:IC(112), 2023, pp. 116916.
Elsevier DOI 2302
Retinex, Low-light image enhancement, Image processing, Fully convolutional network BibRef

Yang, J.[Jie], Wang, J.[Jun], Dong, L.L.[Lin-Lu], Chen, S.Y.[Shu-Yuan], Wu, H.[Hao], Zhong, Y.W.[Ya-Wen],
Optimization algorithm for low-light image enhancement based on Retinex theory,
IET-IPR(17), No. 2, 2023, pp. 505-517.
DOI Link 2302
fast and robust fuzzy C-means, guided filtering, image enhancement, low-light image BibRef

Malik, S.[Sameer], Soundararajan, R.[Rajiv],
Semi-Supervised Learning for Low-light Image Restoration through Quality Assisted Pseudo-Labeling,
WACV23(4094-4103)
IEEE DOI 2302
Training, Image quality, Training data, Lighting, Self-supervised learning, Semisupervised learning, Distortion. BibRef

Zhang, W.[Wei], Jia, Z.H.[Zhen-Hong], Yang, J.[Jie], Kasabov, N.K.[Nikola K.],
A dual channel decomposition and remapping fusion model for low illumination images with a wide field of view,
SP:IC(113), 2023, pp. 116925.
Elsevier DOI 2303
Wide field of view and low illumination, Image decomposition, Brightness mapping, Noise suppression BibRef

Zhang, Z.H.[Zhi-Hong], Cheng, Y.X.[Yu-Xiao], Suo, J.L.[Jin-Li], Bian, L.[Liheng], Dai, Q.H.[Qiong-Hai],
INFWIDE: Image and Feature Space Wiener Deconvolution Network for Non-Blind Image Deblurring in Low-Light Conditions,
IP(32), 2023, pp. 1390-1402.
IEEE DOI 2303
Image restoration, Deconvolution, Kernel, Training, Photography, Convergence, Photonics, Non-blind deblurring, low-light, deep wiener deconvolution BibRef

Singh, K.[Kavinder], Parihar, A.S.[Anil Singh],
DSE-Net: Deep simultaneous estimation network for low-light image enhancement,
JVCIR(91), 2023, pp. 103780.
Elsevier DOI 2303
Deep learning-based network, Simultaneous estimation, Illumination, Reflectance, Convolutional neural networks BibRef

Wang, Y.N.[Yong-Nian], Zhang, Z.B.[Zhi-Bin],
Global attention retinex network for low light image enhancement,
JVCIR(92), 2023, pp. 103795.
Elsevier DOI 2303
Low light image enhancement, Retinex, Global attention, Channel attention BibRef

Trung, N.T.[Nguyen Tu], Le, X.H.[Xuan-Hien], Tuan, T.M.[Tran Manh],
Enhancing Contrast of Dark Satellite Images Based on Fuzzy Semi-Supervised Clustering and an Enhancement Operator,
RS(15), No. 6, 2023, pp. 1645.
DOI Link 2304
BibRef

Fan, J.Y.[Jun-Yu], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Joint transformer progressive self-calibration network for low light enhancement,
IET-IPR(17), No. 5, 2023, pp. 1493-1509.
DOI Link 2304
attention mechanism, LBP texture feature, low-light enhancement, self-calibration, transformer BibRef

Shi, B.Q.[Bao-Qiang], Jia, Z.H.[Zhen-Hong], Yang, J.[Jie], Kasabov, N.K.[Nikola K.],
Unsupervised Change Detection in Wide-Field Video Images Under Low Illumination,
CirSysVideo(33), No. 4, April 2023, pp. 1564-1576.
IEEE DOI 2304
Lighting, Surveillance, Clustering algorithms, Speckle, Remote sensing, Transforms, Wide field of view, difference image BibRef

Liu, R.S.[Ri-Sheng], Ma, L.[Long], Ma, T.Y.[Teng-Yu], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Learning With Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision,
PAMI(45), No. 5, May 2023, pp. 5953-5969.
IEEE DOI 2304
Task analysis, Computer architecture, Training, Visualization, Deep learning, Noise reduction, Image enhancement, cooperative architecture search BibRef

Zhou, C.[Chu], Teng, M.G.[Ming-Gui], Han, J.[Jin], Liang, J.X.[Jin-Xiu], Xu, C.[Chao], Cao, G.[Gang], Shi, B.X.[Bo-Xin],
Deblurring Low-Light Images with Events,
IJCV(131), No. 5, May 2023, pp. 1284-1298.
Springer DOI 2305
BibRef
Earlier: A1, A2, A3, A5, A7, Only:
DeLiEve-Net: Deblurring Low-light Images with Light Streaks and Local Events,
PBDL21(1155-1164)
IEEE DOI 2112
Neural networks, Dynamic range, Cameras, Spatial resolution, Low latency communication BibRef

Zhang, K.B.[Kai-Bing], Yuan, C.[Cheng], Li, J.[Jie], Gao, X.B.[Xin-Bo], Li, M.Q.[Min-Qi],
Multi-Branch and Progressive Network for Low-Light Image Enhancement,
IP(32), 2023, pp. 2295-2308.
IEEE DOI 2305
Image enhancement, Lighting, Degradation, Image color analysis, Network architecture, Technological innovation, Task analysis, recurrent network BibRef

Wang, M.L.[Man-Li], Li, J.Y.[Jia-Yue], Zhang, C.S.[Chang-Sen],
Low-Light Image Enhancement by Deep Learning Network for Improved Illumination Map,
CVIU(232), 2023, pp. 103681.
Elsevier DOI 2305
Low-light image enhancement, Retinex theory, Convolutional neural networks, Depth-separable convolution, Illumination map BibRef

He, L.[Lei], Liu, S.X.[Shou-Xin], Long, W.[Wei], Li, Y.Y.[Yan-Yan],
Low-light image enhancement via span correction function and discrete mapping model,
IET-IPR(17), No. 6, 2023, pp. 1812-1836.
DOI Link 2305
brightness enhancement, contrast enhancement, discrete mapping, grey span characterization, low-light image BibRef

Lu, H.X.[Hao-Xiang], Liu, Z.B.[Zhen-Bing], Lan, R.[Rushi], Pan, X.P.[Xi-Peng], Gong, J.M.[Jun-Ming],
Retinex-inspired contrast stretch and detail boosting for lowlight image enhancement,
IET-IPR(17), No. 6, 2023, pp. 1718-1738.
DOI Link 2305
image enhancement, image fusion, image processing BibRef

Zhou, F.[Fei], Sun, X.[Xin], Dong, J.Y.[Jun-Yu], Zhu, X.X.[Xiao Xiang],
SurroundNet: Towards effective low-light image enhancement,
PR(141), 2023, pp. 109602.
Elsevier DOI 2306
Image processing, Image enhancement, Convolution Neural Network, Surround function, Lightweight BibRef

Lim, C.C.[Choon Chen], Loh, Y.P.[Yuen Peng], Wong, L.K.[Lai-Kuan],
LAU-Net: A low light image enhancer with attention and resizing mechanisms,
SP:IC(115), 2023, pp. 116971.
Elsevier DOI 2306
Low-light image enhancement, Advanced U-Net, Attention, Resizing modules BibRef

Li, P.Y.[Peng-Yue], Chen, X.[Xi'ai], Tian, J.[Jiandong], Tang, Y.D.[Yan-Dong],
Progressive feature-aware recurrent net for low-light image enhancement,
SP:IC(115), 2023, pp. 116966.
Elsevier DOI 2306
Low light enhancement, Progressive recurrent network, Coordinated attention, Cumulative learning BibRef

Zhang, X.[Xin], Wang, X.[Xia], Yan, C.D.[Chang-Da],
LL-CSFormer: A Novel Image Denoiser for Intensified CMOS Sensing Images under a Low Light Environment,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Park, J.M.[Jae-Min], Hong, S.[Sungchul], Shin, H.S.[Hyu-Soung],
Pilot Study of Low-Light Enhanced Terrain Mapping for Robotic Exploration in Lunar PSRs,
RS(15), No. 13, 2023, pp. 3412.
DOI Link 2307
BibRef

Zhang, X.[Xupei], Qin, H.L.[Han-Lin], Yu, Y.[Yue], Yan, X.[Xiang], Yang, S.L.[Shang-Lin], Wang, G.[Guanghao],
Unsupervised Low-Light Image Enhancement via Virtual Diffraction Information in Frequency Domain,
RS(15), No. 14, 2023, pp. 3580.
DOI Link 2307
BibRef

Simoneau, A.[Alexandre], Aubé, M.[Martin],
Methods to Calibrate a Digital Colour Camera as a Multispectral Imaging Sensor in Low Light Conditions,
RS(15), No. 14, 2023, pp. 3634.
DOI Link 2307
BibRef

Zhang, S.S.[Shan-Si], Meng, N.[Nan], Lam, E.Y.[Edmund Y.],
LRT: An Efficient Low-Light Restoration Transformer for Dark Light Field Images,
IP(32), 2023, pp. 4314-4326.
IEEE DOI 2308
Transformers, Image restoration, Lighting, Task analysis, Noise reduction, Head, Feature extraction, Light field, noise parameters BibRef

Jiang, N.F.[Nan-Feng], Lin, J.H.[Jun-Hong], Zhang, T.[Ting], Zheng, H.F.[Hai-Feng], Zhao, T.S.[Tie-Song],
Low-Light Image Enhancement via Stage-Transformer-Guided Network,
CirSysVideo(33), No. 8, August 2023, pp. 3701-3712.
IEEE DOI 2308
Degradation, Transformers, Task analysis, Lighting, Training, Feature extraction, Visualization, Low-light image enhancement, degradation query BibRef

Kandula, P.[Praveen], Suin, M.[Maitreya], Rajagopalan, A.N.,
Illumination-Adaptive Unpaired Low-Light Enhancement,
CirSysVideo(33), No. 8, August 2023, pp. 3726-3736.
IEEE DOI 2308
Lighting, Task analysis, Cameras, Roads, Image restoration, Image enhancement, Histograms, Unsupervised learning, context-guided illumination-adaptive norm BibRef

Zhang, Z.[Zenan], Guo, J.[Jichang], Yue, H.H.[Hui-Hui], Wang, Y.D.[Yu-Dong],
Global guidance-based integration network for salient object detection in low-light images,
JVCIR(95), 2023, pp. 103862.
Elsevier DOI 2309
Low-light images, Salient object detection, Global information flow, U-shaped attention refinement BibRef

Jin, H.Y.[Hai-Yan], Wang, Q.[Qiaobin], Su, H.[Haonan], Xiao, Z.L.[Zhao-Lin],
Event-guided low light image enhancement via a dual branch GAN,
JVCIR(95), 2023, pp. 103887.
Elsevier DOI 2309
Low-light enhancement, Feature fusion, Event camera, Gradient reconstruction BibRef

Lv, X.Q.[Xiao-Qian], Zhang, S.P.[Sheng-Ping], Wang, C.Y.[Chen-Yang], Zhang, W.G.[Wei-Gang], Yao, H.X.[Hong-Xun], Huang, Q.M.[Qing-Ming],
Unsupervised Low-Light Video Enhancement With Spatial-Temporal Co-Attention Transformer,
IP(32), 2023, pp. 4701-4715.
IEEE DOI 2309
BibRef

Huang, J.[Jie], Fu, X.Y.[Xue-Yang], Xiao, Z.[Zeyu], Zhao, F.[Feng], Xiong, Z.W.[Zhi-Wei],
Low-Light Stereo Image Enhancement,
MultMed(25), 2023, pp. 2978-2992.
IEEE DOI 2309
BibRef

Tang, H.P.[Hua-Peng], Qin, D.Y.[Dan-Yang], Yang, J.Q.[Jia-Qiang], Bie, H.[Haoze], Yan, M.[Mengying], Zhang, G.X.[Geng-Xin], Ma, L.[Lin],
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments,
IJGI(12), No. 8, 2023, pp. 300.
DOI Link 2309
BibRef

Yang, B.[Biao], Zheng, L.L.[Liang-Liang], Wu, X.B.[Xia-Bin], Gao, T.[Tan], Chen, X.L.[Xiao-Long],
Low-Illumination Image Enhancement Using Local Gradient Relative Deviation for Retinex Models,
RS(15), No. 17, 2023, pp. 4327.
DOI Link 2310
BibRef

Ma, L.[Long], Liu, R.S.[Ri-Sheng], Wang, Y.Y.[Yi-Yang], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Low-Light Image Enhancement via Self-Reinforced Retinex Projection Model,
MultMed(25), 2023, pp. 3573-3586.
IEEE DOI 2310
BibRef

Lei, X.Z.[Xiao-Zhou], Fei, Z.X.[Zi-Xiang], Zhou, W.J.[Wen-Ju], Zhou, H.Y.[Hui-Yu], Fei, M.[Minrui],
Low-Light Image Enhancement Using the Cell Vibration Model,
MultMed(25), 2023, pp. 4439-4454.
IEEE DOI 2310
BibRef

Lei, X.Z.[Xiao-Zhou], Fei, Z.X.[Zi-Xiang], Zhou, W.J.[Wen-Ju], Zhou, H.Y.[Hui-Yu], Fei, M.[Minrui],
Low-light image enhancement based on cell vibration energy model and lightness difference,
CVIU(247), 2024, pp. 104079.
Elsevier DOI Code:
WWW Link. 2408
Low light, Image enhancement, Cell vibration model, HSV space, Weibull distribution BibRef

Han, G.[Guang], Wang, Y.F.[Ying-Fan], Liu, J.X.[Ji-Xin], Zeng, F.[Fanyu],
Low-light images enhancement and denoising network based on unsupervised learning multi-stream feature modeling,
JVCIR(96), 2023, pp. 103932.
Elsevier DOI 2310
Low-light enhancement, Generative adversarial network, Multi-stream modeling, Multi-scale feature fusion BibRef

Wang, W.C.[Wen-Cheng], Yan, D.L.[Dong-Liang], Wu, X.J.[Xiao-Jin], He, W.[Weikai], Chen, Z.[Zhenxue], Yuan, X.H.[Xiao-Hui], Li, L.[Lun],
Low-light image enhancement based on virtual exposure,
SP:IC(118), 2023, pp. 117016.
Elsevier DOI 2310
Low-light image enhancement, Virtual exposure, Image fusion, Gamma correction, Camera response function BibRef

Ma, Q.T.[Qian-Ting], Wang, Y.[Yang], Zeng, T.Y.[Tie-Yong],
Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising,
MultMed(25), 2023, pp. 5580-5588.
IEEE DOI 2311
BibRef

Zhao, Z.J.[Zun-Jin], Lin, H.X.[He-Xiu], Shi, D.M.[Da-Ming], Zhou, G.Q.[Guo-Qing],
A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation,
PR(146), 2024, pp. 110025.
Elsevier DOI Code:
WWW Link. 2311
Low-light image enhancement, Illumination estimation, Parameterization, Bilateral grid, Non-regularization BibRef

Jeon, J.J.[Jong Ju], Park, J.Y.[Jun Young], Eom, I.K.[Il Kyu],
Low-light image enhancement using gamma correction prior in mixed color spaces,
PR(146), 2024, pp. 110001.
Elsevier DOI Code:
WWW Link. 2311
Low-light image enhancement, Gamma correction prior, Mixed color spaces, Transmission map, Inverted image, Atmospheric scattering model BibRef

Xu, J.Z.[Jing-Zhao], Yuan, M.[Mengke], Yan, D.M.[Dong-Ming], Wu, T.[Tieru],
Illumination Guided Attentive Wavelet Network for Low-Light Image Enhancement,
MultMed(25), 2023, pp. 6258-6271.
IEEE DOI 2311
BibRef

Tang, H.[Huapeng], Qin, D.Y.[Dan-Yang], Yang, J.Q.[Jia-Qiang], Bie, H.[Haoze], Li, Y.[Yue], Zhu, Y.[Yong], Ma, L.[Lin],
Target Search for Joint Local and High-Level Semantic Information Based on Image Preprocessing Enhancement in Indoor Low-Light Environments,
IJGI(12), No. 10, 2023, pp. 400.
DOI Link 2311
BibRef

Lin, S.D.[Shi-Deng], Tang, F.[Fan], Dong, W.M.[Wei-Ming], Pan, X.J.[Xing-Jia], Xu, C.S.[Chang-Sheng],
SMNet: Synchronous Multi-Scale Low Light Enhancement Network With Local and Global Concern,
MultMed(25), 2023, pp. 9506-9517.
IEEE DOI 2312
BibRef

Feng, H.[Hansen], Wang, L.Z.[Li-Zhi], Wang, Y.Z.[Yu-Zhi], Fan, H.Q.[Hao-Qiang], Huang, H.[Hua],
Learnability Enhancement for Low-Light Raw Image Denoising: A Data Perspective,
PAMI(46), No. 1, January 2024, pp. 370-387.
IEEE DOI 2312
BibRef

Hu, X.[Xin], Wang, J.H.[Jin-Hua], Xu, S.[Sunhan],
Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer,
IEICE(E107-D), No. 1, January 2024, pp. 157-160.
WWW Link. 2401
BibRef

Luo, Y.[Yu], You, B.[Bijia], Yue, G.H.[Guang-Hui], Ling, J.[Jie],
Pseudo-Supervised Low-Light Image Enhancement With Mutual Learning,
CirSysVideo(34), No. 1, January 2024, pp. 85-96.
IEEE DOI 2401
BibRef

Shi, Y.Y.[Yuan-Yuan], Fu, X.L.[Xiao-Long], Li, Y.[Yunan], Miao, K.B.[Kai-Bin], Liu, X.Z.[Xiang-Zeng], Zhao, B.C.[Bo-Cheng], Miao, Q.G.[Qi-Guang],
A Semi-Supervised Underexposed Image Enhancement Network With Supervised Context Attention and Multi-Exposure Fusion,
MultMed(26), 2024, pp. 1229-1243.
IEEE DOI 2402
Training, Visualization, Image color analysis, Fuses, Image edge detection, Lighting, Generative adversarial networks, supervised context attention BibRef

Wang, X.Z.[Xing-Zheng], Chen, K.Q.[Kai-Qiang], Wang, Z.X.[Zi-Xuan], Huang, W.H.[Wen-Hao],
PMSNet: Parallel Multi-Scale Network for Accurate Low-Light Light-Field Image Enhancement,
MultMed(26), 2024, pp. 2041-2055.
IEEE DOI 2402
Correlation, Feature extraction, Convolution, Spatial resolution, Image reconstruction, Lighting, Low-light light field, 3D convolution BibRef

Jiang, Y.[Yu], Wang, Y.[Yuehang], Li, S.Q.[Si-Qi], Zhang, Y.J.[Yong-Ji], Zhao, M.H.[Ming-Hao], Gao, Y.[Yue],
Event-Based Low-Illumination Image Enhancement,
MultMed(26), 2024, pp. 1920-1931.
IEEE DOI 2402
Image reconstruction, Streaming media, Cameras, Feature extraction, Image enhancement, Image color analysis, Visualization, transformer BibRef

Wu, K.[Kangle], Huang, J.[Jun], Ma, Y.[Yong], Fan, F.[Fan], Ma, J.Y.[Jia-Yi],
Cycle-Retinex: Unpaired Low-Light Image Enhancement via Retinex-Inline CycleGAN,
MultMed(26), 2024, pp. 1213-1228.
IEEE DOI 2402
Image enhancement, Image color analysis, Image restoration, Lighting, Colored noise, Degradation, Deep learning, unsupervised learning BibRef

Xu, H.[Han], Zhang, H.[Hao], Yi, X.P.[Xun-Peng], Ma, J.Y.[Jia-Yi],
CRetinex: A Progressive Color-Shift Aware Retinex Model for Low-Light Image Enhancement,
IJCV(132), No. 1, January 2024, pp. 3610-3632.
Springer DOI 2409
BibRef

Zhou, M.L.[Ming-Liang], Wu, X.T.[Xing-Tai], Wei, X.[Xuekai], Xiang, T.[Tao], Fang, B.[Bin], Kwong, S.[Sam],
Low-Light Enhancement Method Based on a Retinex Model for Structure Preservation,
MultMed(26), 2024, pp. 650-662.
IEEE DOI 2402
Lighting, Reflectivity, Image enhancement, Dispersion, Standards, Sensitivity, Histograms, Coefficient of variation, retinex model, structure-preserving BibRef

Lin, C.Y.[Chun-Yi], Haq, M.A.[Muhamad Amirul], Chen, J.H.[Jiun-Han], Ruan, S.J.[Shanq-Jang], Naroska, E.[Edwin],
Efficient Saliency Map Detection for Low-Light Images Based on Image Gradient,
CirSysVideo(34), No. 2, February 2024, pp. 852-865.
IEEE DOI 2402
Image enhancement, Deep learning, Object detection, Neural networks, Lighting, Histograms, Saliency detection, saliency map detection BibRef

Ye, D.J.[Dong-Jie], Ni, Z.K.[Zhang-Kai], Yang, W.H.[Wen-Han], Wang, H.[Hanli], Wang, S.Q.[Shi-Qi], Kwong, S.[Sam],
Glow in the Dark: Low-Light Image Enhancement With External Memory,
MultMed(26), 2024, pp. 2148-2163.
IEEE DOI 2402
Testing, Image enhancement, Transformers, Training data, Training, Histograms, Lighting, Low-light image enhancement, memory module, vision transformer BibRef

Li, X.S.[Xiang-Sheng], Liu, M.[Manlu], Ling, Q.[Qiang],
Pixel-Wise Gamma Correction Mapping for Low-Light Image Enhancement,
CirSysVideo(34), No. 2, February 2024, pp. 681-694.
IEEE DOI 2402
Lighting, Visualization, Image enhancement, Deep learning, Unsupervised learning, Computational modeling, Task analysis BibRef

Ni, D.D.[Dong-Dong], Jia, Z.H.[Zhen-Hong], Yang, J.[Jie], Kasabov, N.K.[Nikola K.],
Online Low-Light Sand-Dust Video Enhancement Using Adaptive Dynamic Brightness Correction and a Rolling Guidance Filter,
MultMed(26), 2024, pp. 2192-2206.
IEEE DOI 2402
Streaming media, Brightness, Image color analysis, Heuristic algorithms, Image enhancement, Lighting, Navigation, dual-threshold interframe detection strategy BibRef

Singh, K.[Kavinder], Parihar, A.S.[Anil Singh],
MRN-LOD: Multi-exposure Refinement Network for Low-light Object Detection,
JVCIR(99), 2024, pp. 104079.
Elsevier DOI 2403
Object detection, Multi-exposure images, Adaptive refinement network, Low-light images, Feature extraction BibRef

Ye, J.[Jing], Qiu, C.Z.[Chang-Zhen], Zhang, Z.Y.[Zhi-Yong],
SNR-Prior Guided Trajectory-Aware Transformer for Low-Light Video Enhancement,
CirSysVideo(34), No. 3, March 2024, pp. 1873-1885.
IEEE DOI 2403
Transformers, Signal to noise ratio, Lighting, Image reconstruction, Image enhancement, Video sequences, deep learning BibRef

Wang, Z.[Zhen], Zhang, X.H.[Xiao-Huan],
Contextual recovery network for low-light image enhancement with texture recovery,
JVCIR(99), 2024, pp. 104050.
Elsevier DOI 2403
Low light enhancement, Texture optimization, Squeeze-excitation, Information aggregation BibRef

Xie, D.[Dian], Xing, H.J.[Hua-Jun], Chen, L.[Liangyu], Hao, S.J.[Shi-Jie],
A lightness-aware loss for low-light image enhancement,
PRL(179), 2024, pp. 123-129.
Elsevier DOI 2403
Low-light image enhancement, Illumination distribution, Loss function BibRef

Li, X.F.[Xiao-Fang], Wang, W.W.[Wei-Wei], Feng, X.C.[Xiang-Chu], Li, M.[Min],
Deep Parametric Retinex Decomposition Model for Low-Light Image Enhancement,
CVIU(241), 2024, pp. 103948.
Elsevier DOI 2403
Low-light image enhancement, Parametric Retinex decomposition, Deep network, Denoising BibRef

Dang, J.C.[Jia-Chen], Zhong, Y.[Yong], Qin, X.L.[Xiao-Lin],
PPformer: Using pixel-wise and patch-wise cross-attention for low-light image enhancement,
CVIU(241), 2024, pp. 103930.
Elsevier DOI 2403
Low-light image enhancement, Cross-attention, Lightweight, CNN-transformer hybrid network BibRef

Jiang, H.[Hai], Ren, Y.[Yang], Han, S.C.[Song-Chen],
Revisiting coarse-to-fine strategy for low-light image enhancement with deep decomposition guided training,
CVIU(241), 2024, pp. 103952.
Elsevier DOI Code:
WWW Link. 2403
Low-light image enhancement, Coarse-to-fine restoration, Light-head and heavy-tail network, Retinex theory BibRef

Guo, L.Q.[Lan-Qing], Wan, R.J.[Ren-Jie], Yang, W.H.[Wen-Han], Kot, A.C.[Alex C.], Wen, B.[Bihan],
Cross-Image Disentanglement for Low-Light Enhancement in Real World,
CirSysVideo(34), No. 4, April 2024, pp. 2550-2563.
IEEE DOI Code:
WWW Link. 2404
Training, Lighting, Brightness, Reflectivity, Task analysis, Feature extraction, Image enhancement, Low-light enhancement, disentanglement BibRef

He, Z.Q.[Zhi-Quan], Ran, W.[Wu], Liu, S.L.[Shu-Lin], Li, K.[Kehua], Lu, J.[Jiawen], Xie, C.Y.[Chang-Yong], Liu, Y.[Yong], Lu, H.[Hong],
Low-Light Image Enhancement With Multi-Scale Attention and Frequency-Domain Optimization,
CirSysVideo(34), No. 4, April 2024, pp. 2861-2875.
IEEE DOI 2404
Lighting, Image enhancement, Image color analysis, Discrete wavelet transforms, Image restoration, Histograms BibRef

Yu, N.[Nana], Shi, H.[Hong], Han, Y.[Yahong],
Joint Correcting and Refinement for Balanced Low-Light Image Enhancement,
MultMed(26), 2024, pp. 6310-6324.
IEEE DOI 2404
Image color analysis, Lighting, Feature extraction, Brightness, Image enhancement, Distortion, Visualization, illumination adjustment BibRef

Li, Y.Z.[Yue-Zhou], Xu, R.[Rui], Niu, Y.Z.[Yu-Zhen], Guo, W.Z.[Wen-Zhong], Zhao, T.S.[Tie-Song],
Perceptual Decoupling With Heterogeneous Auxiliary Tasks for Joint Low-Light Image Enhancement and Deblurring,
MultMed(26), 2024, pp. 6663-6675.
IEEE DOI 2404
Task analysis, Degradation, Image reconstruction, Image enhancement, Brightness, Image restoration, image deblurring BibRef

Guo, L.[Lanqing], Lin, Y.X.[Yu-Xin], Li, J.[Jian], Wen, B.[Bihan],
Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement,
MultMedMag(31), No. 1, January 2024, pp. 33-41.
IEEE DOI 2404
Lighting, Training, Generators, Cameras, Task analysis, Image enhancement, Benchmark testing, Deep learning, Image quality, Semisupervised learning BibRef

Yuan, S.[Shuang], Li, J.J.[Jin-Jiang], Ren, L.[Lu], Chen, Z.[Zheng],
Multi-Frequency Field Perception and Sparse Progressive Network for low-light image enhancement,
JVCIR(100), 2024, pp. 104133.
Elsevier DOI 2405
Frequency domain scene perception, Sparse enhancement factor, Iterative progressive structure BibRef

Li, W.[Wei], Huang, Y.[Ya], Zhang, X.Y.[Xin-Yuan], Han, G.J.[Gui-Jin],
LIIS: Low-light image instance segmentation,
JVCIR(100), 2024, pp. 104116.
Elsevier DOI 2405
Instance segmentation, Low-light image, Post-processing detail enhancement denoising module, W-BCNet instance segmentation network BibRef

Qiao, S.[Sihai], Chen, R.[Rong],
Progressive feature fusion for SNR-aware low-light image enhancement,
JVCIR(100), 2024, pp. 104148.
Elsevier DOI 2405
Low light enhancement, SNR, Progressive feature fusion, High frequency information BibRef

Jin, H.Y.[Hai-Yan], Li, L.[Long], Su, H.[Haonan], Zhang, Y.L.[Yuan-Lin], Xiao, Z.L.[Zhao-Lin], Wang, B.[Bin],
Learn to enhance the low-light image via a multi-exposure generation and fusion method,
JVCIR(100), 2024, pp. 104127.
Elsevier DOI 2405
Multi exposure generation and fusion, Low light image enhancement, Perceptual importance, Feature fusion BibRef

Khan, R.[Rizwan], Mehmood, A.[Atif], Shahid, F.[Farah], Zheng, Z.[Zhonglong], Ibrahim, M.M.[Mostafa M.],
Lit me up: A reference free adaptive low light image enhancement for in-the-wild conditions,
PR(153), 2024, pp. 110490.
Elsevier DOI 2405
Uneven lighting, Image enhancement, Adaptive learning BibRef

Zhang, J.Y.[Jing-Yao], Hao, S.J.[Shi-Jie], Rao, Y.[Yuan],
Pre-trained low-light image enhancement transformer,
IET-IPR(18), No. 8, 2024, pp. 1967-1984.
DOI Link 2406
image enhancement, image processing BibRef

Gao, J.X.[Jia-Xin], Liu, Y.H.[Yao-Hua], Yue, Z.Y.[Zi-Yu], Fan, X.[Xin], Liu, R.S.[Ri-Sheng],
Collaborative brightening and amplification of low-light imagery via bi-level adversarial learning,
PR(154), 2024, pp. 110558.
Elsevier DOI Code:
WWW Link. 2406
Low-light image, Bi-level optimization, Image enhancement, Deep learning BibRef

Han, W.W.[Wen-Wu], Xiao, Y.[Yigai], Yin, Y.[Yu],
UM-GAN: Underground mine GAN for underground mine low-light image enhancement,
IET-IPR(18), No. 8, 2024, pp. 2154-2160.
DOI Link 2406
computer vision, image denoising, image enhancement BibRef

Demir, Y., Kaplan, N.H., Kucuk, S., Severoglu, N.,
Pixel-wise low-light image enhancement based on metropolis theorem,
JVCIR(102), 2024, pp. 104211.
Elsevier DOI 2407
Low-light enhancement, Metropolis theorem, Multi-scale decomposition, Gamma correction BibRef

Zhang, Y.T.[Yuan-Tong], Teng, B.X.[Bao-Xin], Yang, D.Q.[Dai-Qin], Chen, Z.Z.[Zhen-Zhong], Ma, H.C.[Hai-Chuan], Li, G.[Gang], Ding, W.P.[Wen-Peng],
Learning a Single Convolutional Layer Model for Low Light Image Enhancement,
CirSysVideo(34), No. 7, July 2024, pp. 5995-6008.
IEEE DOI Code:
WWW Link. 2407
Lighting, Convolution, Computational modeling, Image enhancement, Training, Technological innovation, Deep learning, structural re-parameterization BibRef

Li, Q.[Qintong], Ma, Y.[Yong], Huang, J.[Jun], Zhang, C.[Can], Cai, Z.[Zhao],
LELD: Learn enhancement by learning degradation,
IVC(148), 2024, pp. 105102.
Elsevier DOI 2407
Low-light image enhancement, Degradation network, Generative adversarial network, Retinex theory BibRef

Yu, N.[Nana], Wang, J.[Jie], Shi, H.[Hong], Zhang, Z.[Zihao], Han, Y.[Yahong],
Degradation-removed multiscale fusion for low-light salient object detection,
PR(155), 2024, pp. 110650.
Elsevier DOI Code:
WWW Link. 2408
Salient object detection, Low-light, Image enhancement, Retinex decomposition, Multiscale adaptive fusion BibRef

Qu, J.X.[Jing-Xiang], Liu, R.W.[Ryan Wen], Gao, Y.[Yuan], Guo, Y.[Yu], Zhu, F.[Fenghua], Wang, F.Y.[Fei-Yue],
Double Domain Guided Real-Time Low-Light Image Enhancement for Ultra-High-Definition Transportation Surveillance,
ITS(25), No. 8, August 2024, pp. 9550-9562.
IEEE DOI Code:
WWW Link. 2408
BibRef

Wang, W.J.[Wen-Jing], Luo, R.D.[Run-Dong], Yang, W.H.[Wen-Han], Liu, J.Y.[Jia-Ying],
Unsupervised Illumination Adaptation for Low-Light Vision,
PAMI(46), No. 9, September 2024, pp. 5951-5966.
IEEE DOI 2408
Task analysis, Training, Adaptation models, Lighting, Cameras, Data models, Face recognition, Domain adaptation, self-supervised learning BibRef

Jiang, S.Q.[Sheng-Qin], Mei, Y.[Yongyue], Wang, P.[Peng], Liu, Q.S.[Qing-Shan],
Exposure difference network for low-light image enhancement,
PR(156), 2024, pp. 110796.
Elsevier DOI 2408
Low-light image, Image enhancement, Exposure difference, Neural network BibRef

Lu, X.[Xiao], Yuan, Y.L.[Yu-Lin], Liu, X.[Xing], Wang, L.[Lucai], Zhou, X.Y.[Xuan-Yu], Yang, Y.M.[Yi-Min],
Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects,
CirSysVideo(34), No. 8, August 2024, pp. 7712-7724.
IEEE DOI Code:
WWW Link. 2408
Object detection, Task analysis, Image enhancement, Lighting, Feature extraction, Training, Dynamic range, datasets BibRef

Wang, Z.X.[Ze-Xin], Qingge, L.[Letu], Pan, Q.Y.[Qing-Yi], Yang, P.[Pei],
Retinex decomposition based low-light image enhancement by integrating Swin transformer and U-Net-like architecture,
IET-IPR(18), No. 11, 2024, pp. 3028-3041.
DOI Link 2409
low-light image enhancement, residual connection, swin transformer, U-Net BibRef

Manekar, R.[Raunak], Negrini, E.[Elisa], Pham, M.[Minh], Jacobs, D.[Daniel], Srivastava, J.[Jaideep], Osher, S.J.[Stanley J.], Miao, J.W.[Jian-Wei],
Low-Light Phase Retrieval With Implicit Generative Priors,
IP(33), 2024, pp. 4728-4737.
IEEE DOI 2409
Imaging, Diffraction, Noise, Lighting, Image reconstruction, Training, Optimization, Deep generative models, computational imaging, zero-shot learning BibRef

Liang, D.[Dong], Xu, Z.Y.[Zheng-Yan], Li, L.[Ling], Wei, M.Q.[Ming-Qiang], Chen, S.C.[Song-Can],
PIE: Physics-Inspired Low-Light Enhancement,
IJCV(132), No. 1, January 2024, pp. 3911-3932.
Springer DOI 2409
BibRef

Bernabel, S.A.[Silvano A.], Agaian, S.S.[Sos S.],
NDELS: A Novel Approach for Nighttime Dehazing, Low-Light Enhancement, and Light Suppression,
MultMed(26), 2024, pp. 9292-9303.
IEEE DOI 2409
Training, Image color analysis, Lighting, Colored noise, Image restoration, Image edge detection, Histograms, multiscale retinex BibRef

Hou, Y.Q.[Yong-Qi], Yang, B.[Bo],
Semantic attention guided low-light image enhancement with multi-scale perception,
JVCIR(103), 2024, pp. 104242.
Elsevier DOI 2409
Low-light image enhancement, Semantic guidance, Attention mechanism, Deep learning BibRef

Anoop, P.P., Deivanathan, R.,
Advancements in low light image enhancement techniques and recent applications,
JVCIR(103), 2024, pp. 104223.
Elsevier DOI 2409
Low-light image enhancement, Deep learning, Image processing, Machine learning, Image quality assessment BibRef

Xue, R.[Rui], Duan, J.[Jialu], Du, Z.W.[Zheng-Wei],
MPE-DETR: A multiscale pyramid enhancement network for object detection in low-light images,
IVC(150), 2024, pp. 105202.
Elsevier DOI Code:
WWW Link. 2409
Object detection, Low-light images, Multiscale pyramid networks BibRef

Liu, R.W.[Ryan Wen], Han, C.[Chu], Huang, Y.H.[Yan-Hong],
Low-light visibility enhancement for improving visual surveillance in intelligent waterborne transportation systems,
IET-ITS(18), No. 9, 2024, pp. 1632-1651.
DOI Link 2409
image enhancement, image restoration, marine vehicles BibRef

Wang, X.J.[Xue-Jin], Huang, L.L.[Lei-Lei], Chen, H.W.[Hang-Wei], Jiang, Q.P.[Qiu-Ping], Weng, S.W.[Shao-Wei], Shao, F.[Feng],
Benchmark Dataset and Pair-Wise Ranking Method for Quality Evaluation of Night-Time Image Enhancement,
MultMed(26), 2024, pp. 9436-9449.
IEEE DOI Code:
WWW Link. 2410
Measurement, Image enhancement, Lighting, Feature extraction, Image quality, Distortion, Benchmark testing, pair-wise ranking
See also Underwater Image Enhancement Quality Evaluation: Benchmark Dataset and Objective Metric. BibRef

Ye, D.J.[Dong-Jie], Chen, B.L.[Bao-Liang], Wang, S.Q.[Shi-Qi], Kwong, S.[Sam],
CodedBGT: Code Bank-Guided Transformer for Low-Light Image Enhancement,
MultMed(26), 2024, pp. 9880-9891.
IEEE DOI 2410
Codes, Image enhancement, Transformers, Lighting, Decoding, Artificial neural networks, Visualization, vision transformer BibRef

Li, F.[Fei], Wang, C.[Caiju], Li, X.M.[Xiao-Mao],
Enhancing low-light images via dehazing principles: Essence and method,
PRL(185), 2024, pp. 167-174.
Elsevier DOI 2410
Low-light image enhancement, Dehazing, Haze formation model, Image inversion BibRef

Xue, M.L.[Ming-Long], He, Y.Y.[Yan-Yi], He, J.H.[Jin-Hong], Zhong, S.M.[Sen-Ming],
DLDiff: Image Detail-Guided Latent Diffusion Model for Low-Light Image Enhancement,
SPLetters(31), 2024, pp. 2255-2259.
IEEE DOI 2410
Diffusion models, Noise, Task analysis, Training, Image enhancement, Feature extraction, Diffusion processes, latent diffusion models BibRef

Wang, H.N.[Hao-Ning], Yang, H.B.[Hong-Bo], Zhang, Y.[Yang], Yang, M.H.[Ming-Hao],
Unsupervised Low-Light Image Enhancement via Feature Smoothing and Curve Regression,
SPLetters(31), 2024, pp. 2475-2479.
IEEE DOI 2410
Lighting, Noise, Reflection, Feature extraction, Noise reduction, Histograms, Training, Deep learning, image denoising, low-light image enhancement BibRef


Makwana, D.[Dhruv], Deshmukh, G.[Gayatri], Susladkar, O.[Onkar], Mittal, S.[Sparsh], Teja, R.S.C.[R. Sai Chandra],
LIVENet: A novel network for real-world low-light image denoising and enhancement,
WACV24(5844-5853)
IEEE DOI Code:
WWW Link. 2404
Image color analysis, Atmospheric modeling, Source coding, Noise reduction, Lighting, Transforms, Gray-scale, Applications, and algorithms BibRef

Liu, Y.L.[Yun-Long], Huang, T.[Tao], Dong, W.S.[Wei-Sheng], Wu, F.F.[Fang-Fang], Li, X.[Xin], Shi, G.M.[Guang-Ming],
Low-Light Image Enhancement with Multi-stage Residue Quantization and Brightness-aware Attention,
ICCV23(12106-12115)
IEEE DOI 2401
BibRef

Zhang, F.[Feng], Xu, B.[Bin], Li, Z.Q.[Zhi-Qiang], Liu, X.R.[Xin-Ran], Lu, Q.B.[Qing-Bo], Gao, C.X.[Chang-Xin], Sang, N.[Nong],
Towards General Low-Light Raw Noise Synthesis and Modeling,
ICCV23(10786-10796)
IEEE DOI 2401
BibRef

Liang, J.X.[Jin-Xiu], Yang, Y.X.[Yi-Xin], Li, B.[Boyu], Duan, P.Q.[Pei-Qi], Xu, Y.[Yong], Shi, B.X.[Bo-Xin],
Coherent Event Guided Low-Light Video Enhancement,
ICCV23(10581-10591)
IEEE DOI 2401
BibRef

Yi, X.[Xunpeng], Xu, H.[Han], Zhang, H.[Hao], Tang, L.F.[Lin-Feng], Ma, J.Y.[Jia-Yi],
Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model,
ICCV23(12268-12277)
IEEE DOI 2401
BibRef

Zheng, N.S.[Nai-Shan], Zhou, M.[Man], Dong, Y.M.[Yan-Meng], Rui, X.Y.[Xiang-Yu], Huang, J.[Jie], Li, C.Y.[Chong-Yi], Zhao, F.[Feng],
Empowering Low-Light Image Enhancer through Customized Learnable Priors,
ICCV23(12525-12535)
IEEE DOI Code:
WWW Link. 2401
BibRef

Fu, H.Y.[Hui-Yuan], Zheng, W.K.[Wen-Kai], Wang, X.[Xicong], Wang, J.X.[Jia-Xuan], Zhang, H.[Heng], Ma, H.D.[Hua-Dong],
Dancing in the Dark: A Benchmark towards General Low-light Video Enhancement,
ICCV23(12831-12840)
IEEE DOI Code:
WWW Link. 2401
BibRef

Yang, S.[Shuzhou], Ding, M.[Moxuan], Wu, Y.M.[Yan-Min], Li, Z.[Zihan], Zhang, J.[Jian],
Implicit Neural Representation for Cooperative Low-light Image Enhancement,
ICCV23(12872-12881)
IEEE DOI Code:
WWW Link. 2401
BibRef

Wang, Y.L.[Ying-Long], Liu, Z.[Zhen], Liu, J.Z.[Jian-Zhuang], Xu, S.[Songcen], Liu, S.C.[Shuai-Cheng],
Low-Light Image Enhancement with Illumination-Aware Gamma Correction and Complete Image Modelling Network,
ICCV23(13082-13091)
IEEE DOI 2401
BibRef

Desai, C.[Chaitra], Akalwadi, N.[Nikhil], Joshi, A.[Amogh], Malagi, S.[Sampada], Mandi, C.[Chinmayee], Tabib, R.A.[Ramesh Ashok], Patil, U.[Ujwala], Mudenagudi, U.[Uma],
LightNet: Generative Model for Enhancement of Low-Light Images,
WiCV-ICCV23(2223-2232)
IEEE DOI 2401
BibRef

Hashmi, K.A.[Khurram Azeem], Kallempudi, G.[Goutham], Stricker, D.[Didier], Afzal, M.Z.[Muhammamd Zeshan],
FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision,
ICCV23(6702-6712)
IEEE DOI 2401
BibRef

Wang, Y.F.[Yu-Fei], Yu, Y.[Yi], Yang, W.H.[Wen-Han], Guo, L.Q.[Lan-Qing], Chau, L.P.[Lap-Pui], Kot, A.C.[Alex C.], Wen, B.[Bihan],
ExposureDiffusion: Learning to Expose for Low-light Image Enhancement,
ICCV23(12404-12414)
IEEE DOI Code:
WWW Link. 2401
BibRef

Cai, Y.H.[Yuan-Hao], Bian, H.[Hao], Lin, J.[Jing], Wang, H.Q.[Hao-Qian], Timofte, R.[Radu], Zhang, Y.[Yulun],
Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement,
ICCV23(12470-12479)
IEEE DOI Code:
WWW Link. 2401
BibRef

Choudhary, R.[Rohit], Reddy, T.H.[T Harshith], Sharma, M.[Mansi],
ELEGAN: An Efficient Low Light Enhancement GAN for Unpaired Supervision,
ICIP23(3105-3109)
IEEE DOI 2312
BibRef

Ooi, X.P.[Xin Peng], Chan, C.S.[Chee Seng],
LLDE: Enhancing Low-Light Images with Diffusion Model,
ICIP23(1305-1309)
IEEE DOI Code:
WWW Link. 1806
BibRef

Yi, X.[Xunpeng], Wang, Y.X.[Yu-Xuan], Zhao, Y.Z.[Yi-Zhen], Yan, J.[Jia], Zhang, W.X.[Wei-Xia],
Llieformer: A Low-Light Image Enhancement Transformer Network with a Degraded Restoration Model,
ICIP23(1195-1199)
IEEE DOI Code:
WWW Link. 2312
BibRef

Kuang, H.[Haowei], Huang, H.F.[Hao-Feng], Yang, W.H.[Wen-Han], Liu, J.Y.[Jia-Ying],
Flash Compensated Low-Light Enhancement Via Hierarchical Network Prediction,
ICIP23(3115-3119)
IEEE DOI 2312
BibRef

Wei, X.J.[Xin-Jie], Chang, K.[Kan], Li, G.Q.[Gui-Qing], Huang, M.Y.[Meng-Yuan], Qin, Q.P.[Qing-Pao],
DLEN: Deep Laplacian Enhancement Networks for Low-Light Images,
ICIP23(2120-2124)
IEEE DOI Code:
WWW Link. 2312
BibRef

Huang, Z.[Zhuo], Zhu, M.[Miaoxi], Xia, X.B.[Xiao-Bo], Shen, L.[Li], Yu, J.[Jun], Gong, C.[Chen], Han, B.[Bo], Du, B.[Bo], Liu, T.L.[Tong-Liang],
Robust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness Minimization,
CVPR23(16175-16185)
IEEE DOI 2309
BibRef

Sanghvi, Y.[Yash], Mao, Z.Y.[Zhi-Yuan], Chan, S.H.[Stanley H.],
Structured Kernel Estimation for Photon-Limited Deconvolution,
CVPR23(9863-9872)
IEEE DOI 2309

WWW Link. BibRef

Wu, Y.H.[Yu-Hui], Pan, C.[Chen], Wang, G.Q.[Guo-Qing], Yang, Y.[Yang], Wei, J.[Jiwei], Li, C.Y.[Chong-Yi], Shen, H.T.[Heng Tao],
Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement,
CVPR23(1662-1671)
IEEE DOI 2309
BibRef

Cao, Y.[Yue], Liu, M.[Ming], Liu, S.[Shuai], Wang, X.T.[Xiao-Tao], Lei, L.[Lei], Zuo, W.M.[Wang-Meng],
Physics-Guided ISO-Dependent Sensor Noise Modeling for Extreme Low-Light Photography,
CVPR23(5744-5753)
IEEE DOI 2309
BibRef

Xu, X.G.[Xiao-Gang], Wang, R.X.[Rui-Xing], Lu, J.B.[Jiang-Bo],
Low-Light Image Enhancement via Structure Modeling and Guidance,
CVPR23(9893-9903)
IEEE DOI 2309
BibRef

Fu, H.Y.[Hui-Yuan], Zheng, W.K.[Wen-Kai], Meng, X.Y.[Xiang-Yu], Wang, X.[Xin], Wang, C.M.[Chuan-Ming], Ma, H.D.[Hua-Dong],
You Do Not Need Additional Priors or Regularizers in Retinex-Based Low-Light Image Enhancement,
CVPR23(18125-18134)
IEEE DOI 2309
BibRef

Fu, Z.Q.[Zhen-Qi], Yang, Y.[Yan], Tu, X.T.[Xiao-Tong], Huang, Y.[Yue], Ding, X.H.[Xing-Hao], Ma, K.K.[Kai-Kuang],
Learning a Simple Low-Light Image Enhancer from Paired Low-Light Instances,
CVPR23(22252-22261)
IEEE DOI 2309
BibRef

Lee, S.[Sunhyeok], Jang, D.[Donggon], Kim, D.S.[Dae-Shik],
Temporally Averaged Regression for Semi-Supervised Low-Light Image Enhancement,
UG23(4208-4217)
IEEE DOI 2309
BibRef

Özcan, M.[Mustafa], Ergezer, H.[Hamza], Ayazoglu, M.[Mustafa],
FLIGHT Mode On: A Feather-Light Network for Low-Light Image Enhancement,
UG23(4226-4235)
IEEE DOI 2309
BibRef

Berral-Soler, R.[Rafael], Muñoz-Salinas, R.[Rafael], Medina-Carnicer, R.[Rafael], Marín-Jiménez, M.J.[Manuel J.],
Deeparuco: Marker Detection and Classification in Challenging Lighting Conditions,
IbPRIA23(199-210).
Springer DOI 2307
BibRef

Chen, X.Y.[Xin-Yu], Yu, Y.[Yantao],
Image Illumination Enhancement for Construction Worker Pose Estimation in Low-light Conditions,
CVCivil22(147-162).
Springer DOI 2304
BibRef

Wang, H.D.[Hao-Dian], Wang, Y.[Yang], Cao, Y.[Yang], Zha, Z.J.[Zheng-Jun],
Fusion-Based Low-Light Image Enhancement,
MMMod23(I: 121-133).
Springer DOI 2304
BibRef

Batziou, E.[Elissavet], Ioannidis, K.[Konstantinos], Patras, I.[Ioannis], Vrochidis, S.[Stefanos], Kompatsiaris, I.[Ioannis],
Low-light Image Enhancement Based on U-net and Haar Wavelet Pooling,
MMMod23(II: 510-522).
Springer DOI 2304
BibRef

Li, Y.H.[Yu-Hang], Cai, F.F.[Fei-Fan], Tu, Y.F.[Yi-Fei], Ding, Y.D.[You-Dong],
Low-light Image Enhancement Under Non-uniform Dark,
MMMod23(II: 190-201).
Springer DOI 2304
BibRef

Nguyen, H.[Hue], Tran, D.[Diep], Nguyen, K.[Khoi], Nguyen, R.[Rang],
PSENet: Progressive Self-Enhancement Network for Unsupervised Extreme-Light Image Enhancement,
WACV23(1756-1765)
IEEE DOI 2302
Training, Measurement, Codes, Lighting, Face detection, Image enhancement BibRef

Lamba, M.[Mohit], Kumar, M.V.A.S.[M V A Suhas], Mitra, K.[Kaushik],
Real-Time Restoration of Dark Stereo Images,
WACV23(4903-4913)
IEEE DOI 2302
Visualization, Convolution, Estimation, Real-time systems, Light fields, Applications: Commercial/retail, Robotics BibRef

Duan, B.J.[Bing-Jie], Wang, C.[Chao], Li, Y.Y.[Yan-Yun],
NonReference Mapping Net,
ICIVC22(718-724)
IEEE DOI 2301
Training, Image quality, Visualization, Image color analysis, Nonlinear distortion, Object detection, Task analysis, NonReference mapping BibRef

Liu, B.[Bokun], Wei, J.Y.[Jun-Yu], Su, S.J.[Shao-Jing], Tong, X.Z.[Xiao-Zhong],
Research on Task-Driven Dual-Light Image Fusion and Enhancement Method under Low Illumination,
ICIVC22(523-530)
IEEE DOI 2301
Visualization, Roads, Semantics, Lighting, Object detection, Propagation losses, Reliability, image fusion and enhancement, low illumination BibRef

Quan, J.C.[Jin-Cheng], Jin, H.M.[Hong-Mei], Li, Z.L.[Zhan-Li], Wen, Z.[Zi],
Low Illumination Image Enhancement Algorithm Based on HSV-RNET,
ICIVC22(531-536)
IEEE DOI 2301
Smoothing methods, Image color analysis, Image edge detection, Noise reduction, Lighting, Distortion, Visual effects, Retinex, low-light images BibRef

Wei, X.L.[Xiao-Long], Sun, J.[Jian], Cai, Y.[Yulu], Ma, A.[Aiyong], Su, W.[Wei],
Zero-DCE with HSV loss for Low-Light Image Enhancement,
ICIVC22(537-541)
IEEE DOI 2301
Image color analysis, Surveillance, Brightness, Estimation, Reconnaissance, Benchmark testing, Image restoration, Zero-DCE, HSV, enhancement BibRef

Liu, M.H.[Ming-Hao], Luo, J.H.[Jia-Hao], Zhang, X.H.[Xiao-Han], Liu, Y.[Yang], Davis, J.[James],
Low-light Image Enhancement Using Chain-Consistent Adversarial Networks,
ICPR22(713-719)
IEEE DOI 2212
Training, Measurement, Image quality, Supervised learning, Training data, Imaging, Generators BibRef

Xiong, W.[Wei], Liu, D.[Ding], Shen, X.H.[Xiao-Hui], Fang, C.[Chen], Luo, J.B.[Jie-Bo],
Unsupervised Low-light Image Enhancement with Decoupled Networks,
ICPR22(457-463)
IEEE DOI 2212
Training, Adaptation models, Noise reduction, Lighting, Pattern recognition, Task analysis, Image enhancement BibRef

Hsu, P.H.[Po-Hao], Lin, C.T.[Che-Tsung], Ng, C.C.[Chun Chet], Kew, J.L.[Jie Long], Tan, M.Y.[Mei Yih], Lai, S.H.[Shang-Hong], Chan, C.S.[Chee Seng], Zach, C.[Christopher],
Extremely Low-Light Image Enhancement with Scene Text Restoration,
ICPR22(317-323)
IEEE DOI 2212
Learning systems, Image quality, Image edge detection, Image restoration, Pattern recognition, Image enhancement, Image reconstruction BibRef

Chen, Z.L.[Zi-Long], Liang, Y.L.[Ya-Ling], Du, M.H.[Ming-Hui],
Attention-based Broad Self-guided Network for Low-light Image Enhancement,
ICPR22(31-38)
IEEE DOI 2212
Wavelet transforms, Runtime, Stacking, Object detection, Benchmark testing, Feature extraction, Data mining BibRef

Xu, Z.W.[Zi-Wei], Wang, W.K.[Wei-Kang], Cui, Z.K.[Ze-Kun], Wang, C.[Chao],
A Low-light Image Enhancement Algorithm Based on Optimized Multi-illumination Fusion,
ICIVC22(549-554)
IEEE DOI 2301
Smoothing methods, Filtering, Heuristic algorithms, Brightness, Lighting, Optimization methods, Dynamic range, adaptive threshold BibRef

Guo, J.[Jiacen], Jin, X.[Xin], Chen, W.L.[Wei-Lin], Wang, C.[Chao],
A Novel Low-light Image Enhancement Algorithm Based on Information Assistance,
ICPR22(3865-3871)
IEEE DOI 2212
Image color analysis, Lighting, Distortion, Pattern recognition, Optimal matching, Image enhancement BibRef

Fan, C.M.[Chi-Mao], Liu, T.J.[Tsung-Jung], Liu, K.H.[Kuan-Hsien],
Half Wavelet Attention on M-Net+ for Low-Light Image Enhancement,
ICIP22(3878-3882)
IEEE DOI 2211
Measurement, Visualization, Image segmentation, Wavelet domain, Semantics, Neural networks, Image enhancement, hierarchical, M-Net, attention mechanism BibRef

Lecert, A.[Arthur], Fraisse, R.[Renaud], Roumy, A.[Aline], Guillemot, C.[Christine],
A New Regularization for Retinex Decomposition of Low-Light Images,
ICIP22(906-910)
IEEE DOI 2211
Measurement, Lighting, Image restoration, Image enhancement, Light sources, Low light enhancement, Image decomposition, Neural Networks BibRef

Mukaida, M.[Mashiho], Ueda, Y.[Yoshiaki], Suetake, N.[Noriaki],
Low-Light Image Enhancement Method by Using a Modified Gamma Transform for Convex Combination Coefficients,
ICIP22(2866-2870)
IEEE DOI 2211
Histograms, Smoothing methods, Image color analysis, Transforms, Information filters, Computational efficiency, Image enhancement, Histogram Specification BibRef

Gao, H.Y.[Hao-Yu], Zhang, L.[Lin], Zhang, S.[Shunli],
Recurrent Attentive Decomposition Network for Low-Light Image Enhancement,
ICIP22(3818-3822)
IEEE DOI 2211
Visualization, Image recognition, Image color analysis, Distortion, Reflection, Image decomposition, Image restoration, Recurrent Attentive Decomposition Network BibRef

Monakhova, K.[Kristina], Richter, S.R.[Stephan R.], Waller, L.[Laura], Koltun, V.[Vladlen],
Dancing under the stars: video denoising in starlight,
CVPR22(16220-16230)
IEEE DOI 2210
Semiconductor device modeling, Noise reduction, Lighting, Stars, Cameras, Quality assessment, Pattern recognition, Physics-based vision and shape-from-X BibRef

Wu, W.H.[Wen-Hui], Weng, J.[Jian], Zhang, P.P.[Ping-Ping], Wang, X.[Xu], Yang, W.H.[Wen-Han], Jiang, J.M.[Jian-Min],
URetinex-Net: Retinex-based Deep Unfolding Network for Low-light Image Enhancement,
CVPR22(5891-5900)
IEEE DOI 2210
Reflectivity, Learning systems, Adaptation models, Codes, Noise reduction, Lighting, Low-level vision BibRef

Ma, L.[Long], Ma, T.Y.[Teng-Yu], Liu, R.S.[Ri-Sheng], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Toward Fast, Flexible, and Robust Low-Light Image Enhancement,
CVPR22(5627-5636)
IEEE DOI 2210
Training, Adaptation models, Visualization, Image segmentation, Computational modeling, Semantics, Lighting, Low-level vision BibRef

Zhang, Z.[Zhao], Zheng, H.[Huan], Hong, R.C.[Ri-Chang], Xu, M.L.[Ming-Liang], Yan, S.C.[Shui-Cheng], Wang, M.[Meng],
Deep Color Consistent Network for Low-Light Image Enhancement,
CVPR22(1889-1898)
IEEE DOI 2210
Image quality, Histograms, Image color analysis, Lighting, Collaboration, Color, Low-level vision, Deep learning architectures and techniques BibRef

Xu, X.G.[Xiao-Gang], Wang, R.X.[Rui-Xing], Fu, C.W.[Chi-Wing], Jia, J.Y.[Jia-Ya],
SNR-Aware Low-light Image Enhancement,
CVPR22(17693-17703)
IEEE DOI 2210
Photography, Convolutional codes, Convolution, Semantics, Transformers, Pattern recognition, Noise measurement, Low-level vision BibRef

Morawski, I.[Igor], Chen, Y.A.[Yu-An], Lin, Y.S.[Yu-Sheng], Dangi, S.[Shusil], He, K.[Kai], Hsu, W.H.[Winston H.],
GenISP: Neural ISP for Low-Light Machine Cognition,
NTIRE22(629-638)
IEEE DOI 2210
Image sensors, Image color analysis, Pipelines, Detectors, Object detection, Cameras, Cognition BibRef

Fu, Z.C.[Zhi-Cheng], Song, M.[Miao], Ma, C.[Chao], Nasti, J.[Joe], Tyagi, V.[Vivek], Lloyd, G.[Grant], Tang, W.[Wei],
An Efficient Hybrid Model for Low-light Image Enhancement in Mobile Devices,
MobileAI22(3056-3065)
IEEE DOI 2210
Estimation, Predictive models, Software, Real-time systems, Hardware, Convolutional neural networks BibRef

Qi, J.Z.[Jing-Zhong], Qi, N.[Na], Zhu, Q.[Qing],
SUnet++: Joint Demosaicing and Denoising of Extreme Low-Light Raw Image,
MMMod22(II:171-181).
Springer DOI 2203
BibRef

Jin, S.[Shuang], Qi, N.[Na], Zhu, Q.[Qing], Ouyang, H.R.[Hao-Ran],
Progressive GAN-Based Transfer Network for Low-Light Image Enhancement,
MMMod22(II:292-304).
Springer DOI 2203
BibRef

Zheng, C.J.[Chuan-Jun], Shi, D.M.[Da-Ming], Shi, W.[Wentian],
Adaptive Unfolding Total Variation Network for Low-Light Image Enhancement,
ICCV21(4419-4428)
IEEE DOI 2203
Adaptation models, Adaptive systems, TV, Noise reduction, Pipelines, Estimation, Minimization, Low-level and physics-based vision, BibRef

Kim, B.[Bomi], Lee, S.[Sunhyeok], Kim, N.[Nahyun], Jang, D.G.[Dong-Gon], Kim, D.S.[Dae-Shik],
Learning Color Representations for Low-Light Image Enhancement,
WACV22(904-912)
IEEE DOI 2202
Training, Representation learning, Histograms, Visualization, Image color analysis, Supervised learning, Image restoration, Image Processing -> Image Restoration Deep Learning BibRef

Lamba, M.[Mohit], Mitra, K.[Kaushik],
Fast and Efficient Restoration of Extremely Dark Light Fields,
WACV22(3152-3161)
IEEE DOI 2202
Geometry, Fuses, Estimation, Light fields, Distance measurement, Image and Video Synthesis Low-level and Physics-based Vision BibRef

Zheng, S.[Shen], Gupta, G.[Gaurav],
Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement,
RWSurvil22(581-590)
IEEE DOI 2202
Photography, Image segmentation, Convolution, Motion segmentation, Conferences, Semantics BibRef

Akai, M.[Masato], Ueda, Y.[Yoshiaki], Koga, T.[Takanori], Suetake, N.[Noriaki],
A Single Backlit Image Enhancement Method for Improvement of Visibility of Dark Part,
ICIP21(1659-1663)
IEEE DOI 2201
Histograms, Task analysis, Image enhancement, Backlit image, image enhancement, weight map, alpha blending BibRef

Zhao, L.C.[Ling-Chao], Gong, X.L.[Xiao-Lin], Liu, K.[Kaihua], Wang, J.[Jian], Zhao, B.[Bai], Liu, Y.[Yu],
Color Channel Fusion Network for Low-Light Image Enhancement,
ICIP21(1654-1658)
IEEE DOI 2201
Training, Image color analysis, Lighting, Image reconstruction, Image enhancement, low-light image enhancement, deep learning, detail enhancement BibRef

Guo, L.Q.[Lan-Qing], Wan, R.J.[Ren-Jie], Su, G.M.[Guan-Ming], Kot, A.C.[Alex C.], Wen, B.[Bihan],
Multi-Scale Feature Guided Low-Light Image Enhancement,
ICIP21(554-558)
IEEE DOI 2201
Visualization, Inverse problems, Lighting, Object detection, Feature extraction, Generative adversarial networks, Low-Light, Unsupervised Learning BibRef

Tang, P.L.[Peng-Liang], Guo, X.Q.[Xiao-Qiang], Ju, G.D.[Guo-Dong], Shen, L.H.[Liang-Heng], Men, A.[Aidong],
Integration-and-Diffusion Network for Low-Light Image Enhancement,
ICIP21(1664-1668)
IEEE DOI 2201
Learning systems, Image color analysis, Image enhancement, Image reconstruction, Signal to noise ratio, Photonics, color recovery BibRef

Wu, Q.[Qi], Qin, M.L.[Mao-Ling], Song, J.Q.[Jing-Qi], Liu, L.[Li],
An Improved Method of Low Light Image Enhancement Based on Retinex,
ICIVC21(233-241)
IEEE DOI 2112
Lighting, Reflection, Image decomposition, Feeds, Task analysis, Image enhancement, low light, image enhancement, Retinex BibRef

Wang, W.J.[Wen-Jing], Yang, W.H.[Wen-Han], Liu, J.Y.[Jia-Ying],
HLA-Face: Joint High-Low Adaptation for Low Light Face Detection,
CVPR21(16190-16199)
IEEE DOI 2111
Training, Annotations, Face recognition, Surveillance, Pipelines, Buildings, Detectors BibRef

Zhang, F.[Fan], Li, Y.[Yu], You, S.D.[Shao-Di], Fu, Y.[Ying],
Learning Temporal Consistency for Low Light Video Enhancement from Single Images,
CVPR21(4965-4974)
IEEE DOI 2111
Training, Computational modeling, Video sequences, Stability analysis, Planning, Pattern recognition BibRef

Liu, R.S.[Ri-Sheng], Ma, L.[Long], Zhang, J.[Jiaao], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Retinex-inspired Unrolling with Cooperative Prior Architecture Search for Low-light Image Enhancement,
CVPR21(10556-10565)
IEEE DOI 2111
Deep learning, Architecture, Computational modeling, Lighting, Search problems, Pattern recognition BibRef

Moseley, B.[Ben], Bickel, V.[Valentin], López-Francos, I.G.[Ignacio G.], Rana, L.[Loveneesh],
Extreme Low-Light Environment-Driven Image Denoising over Permanently Shadowed Lunar Regions with a Physical Noise Model,
CVPR21(6313-6323)
IEEE DOI 2111
Training, Solid modeling, Moon, Noise reduction, Training data, Ray tracing BibRef

Qiu, Y.S.[Yan-Sheng], Chen, J.[Jun], Wang, X.[Xiao], Jang, K.[Kui],
Illuminate Low-Light Image via Coarse-to-Fine Multi-Level Network,
MMMod21(I:253-264).
Springer DOI 2106
BibRef

Wang, L.W.[Li-Wen], Siu, W.C.[Wan-Chi], Liu, Z.S.[Zhi-Song], Li, C.T.[Chu-Tak], Lun, D.P.K.[Daniel Pak-Kong],
Video Lightening with Dedicated CNN Architecture,
ICPR21(6447-6454)
IEEE DOI 2105
Measurement, Legged locomotion, Visualization, Uncertainty, Roads, Transfer learning, Lighting, Low-light video enhancement, deep learning BibRef

Guo, H.F.[Hai-Feng], Lu, T.[Tong], Wu, Y.[Yirui],
Dynamic Low-Light Image Enhancement for Object Detection via End-to-End Training,
ICPR21(5611-5618)
IEEE DOI 2105
Training, Image quality, Lighting, Object detection, Detectors, Pattern recognition, Low-Light Image Enhancement, Object Detection BibRef

Song, Y.[Yuda], Zhu, Y.F.[Yun-Fang], Du, X.[Xin],
Automatical Enhancement and Denoising of Extremely Low-light Images,
ICPR21(858-865)
IEEE DOI 2105
Histograms, Noise reduction, Neural networks, Lighting, Manuals, Image sampling, Image restoration BibRef

Vogt, C.[Carson], Lyu, G.[Geng], Subr, K.[Kartic],
Lightless Fields: Enhancement and Denoising of Light-deficient Light Fields,
ISVC20(I:383-396).
Springer DOI 2103
BibRef

Guo, P.[Peiyao], Ma, Z.[Zhan],
Low-light Color Imaging via Dual Camera Acquisition,
ACCV20(II:150-167).
Springer DOI 2103
BibRef

Loh, Y.P.[Yuen Peng],
Exploring the Contributions of Low-light Image Enhancement to Network-based Object Detection,
MOI2QDN20(655-669).
Springer DOI 2103
BibRef

Azizi, Z., Lei, X., Kuo, C.C.J.,
Noise-Aware Texture-Preserving Low-Light Enhancement,
VCIP20(443-446)
IEEE DOI 2102
Lighting, Noise reduction, Noise measurement, Image color analysis, Image edge detection, Optimization, Estimation, denoising BibRef

Ngee Bow, N.C., Tran, V.H., Kerdsiri, P., Loh, Y.P., Huang, C.C.,
DEN: Disentanglement and Enhancement Networks for Low Illumination Images,
VCIP20(419-422)
IEEE DOI 2102
Lighting, Feature extraction, Reflectivity, Image enhancement, Finite element analysis, Convolution, Tuning, multi-branch enhancement network BibRef

Xi, L., Chen, W., Zhao, C., Wu, X., Wang, J.,
Image Enhancement for Remote Photoplethysmography in a Low-Light Environment,
FG20(1-7)
IEEE DOI 2102
Gesture recognition, Face recognition BibRef

Triantafyllidou, D.[Danai], Moran, S.[Sean], McDonagh, S.[Steven], Parisot, S.[Sarah], Slabaugh, G.[Gregory],
Low Light Video Enhancement Using Synthetic Data Produced with an Intermediate Domain Mapping,
ECCV20(XIII:103-119).
Springer DOI 2011
BibRef

Chi, Y.H.[Yi-Heng], Gnanasambandam, A.[Abhiram], Koltun, V.[Vladlen], Chan, S.H.[Stanley H.],
Dynamic Low-light Imaging with Quanta Image Sensors,
ECCV20(XXI:122-138).
Springer DOI 2011
BibRef

Ke, X.[Xue], Lin, W.[Wei], Chen, G.J.[Gao-Jie], Chen, Q.[Quan], Qi, X.Z.[Xian-Zhi], Ma, J.[Jie],
EDLLIE-Net: Enhanced Deep Convolutional Networks for Low-Light Image Enhancement,
ICIVC20(59-68)
IEEE DOI 2009
Image enhancement, Task analysis, Feature extraction, Lighting, Image color analysis, Artificial intelligence, Automation, EDLLIE-Net BibRef

Xu, K., Yang, X., Yin, B., Lau, R.W.H.,
Learning to Restore Low-Light Images via Decomposition-and-Enhancement,
CVPR20(2278-2287)
IEEE DOI 2008
Noise measurement, Image color analysis, Colored noise, Image enhancement, Lighting, Integrated circuit modeling, Noise reduction BibRef

Atoum, Y., Ye, M., Ren, L., Tai, Y., Liu, X.,
Color-wise Attention Network for Low-light Image Enhancement,
NTIRE20(2130-2139)
IEEE DOI 2008
Image color analysis, Noise reduction, Task analysis, Colored noise, Lighting, Frequency modulation, Computer vision BibRef

Liba, O., Movshovitz-Attias, Y., Cai, L., Pritch, Y., Tsai, Y., Chen, H., Eban, E., Barron, J.T.,
Sky Optimization: Semantically aware image processing of skies in low-light photography,
NTIRE20(2230-2238)
IEEE DOI 2008
Image segmentation, Image resolution, Mobile handsets, Neural networks, Cameras, Image color analysis, Colored noise BibRef

Wang, W., Chen, X., Yang, C., Li, X., Hu, X., Yue, T.,
Enhancing Low Light Videos by Exploring High Sensitivity Camera Noise,
ICCV19(4110-4118)
IEEE DOI 2004
cameras, image capture, image denoising, image enhancement, recurrent neural nets, video signal processing, digital cameras, Gaussian distribution BibRef

Wang, R.X.[Rui-Xing], Zhang, Q.[Qing], Fu, C.W.[Chi-Wing], Shen, X.Y.[Xiao-Yong], Zheng, W.S.[Wei-Shi], Jia, J.Y.[Jia-Ya],
Underexposed Photo Enhancement Using Deep Illumination Estimation,
CVPR19(6842-6850).
IEEE DOI 2002
BibRef

Kanellakis, C.[Christoforos], Karvelis, P.[Petros], Nikolakopoulos, G.[George],
Image Enhancing in Poorly Illuminated Subterranean Environments for Mav Applications: A Comparison Study,
CVS19(511-520).
Springer DOI 1912
BibRef

Cheng, Y., Yan, J., Wang, Z.,
Enhancement of Weakly Illuminated Images by Deep Fusion Networks,
ICIP19(924-928)
IEEE DOI 1910
weakly illuminated image enhancement, Retinex, image fusion, convolution neural network BibRef

Kim, G., Kwon, D., Kwon, J.,
Low-Lightgan: Low-Light Enhancement Via Advanced Generative Adversarial Network With Task-Driven Training,
ICIP19(2811-2815)
IEEE DOI 1910
Low-light enhancement, task-driven training set, GANs, spectral normalization BibRef

Ghosh, S., Chaudhury, K.N.,
Kernel-Based Image Filtering: Fast Algorithms and Applications,
ICIP19(3018-3019)
IEEE DOI 1910
low-light enhancement, retinex, bilateral filter, Fourier approximation, fast algorithm BibRef

Ghosh, S., Chaudhury, K.N.,
Fast Bright-Pass Bilateral Filtering for Low-Light Enhancement,
ICIP19(205-209)
IEEE DOI 1910
low-light enhancement, retinex, bilateral filter, Fourier approximation, fast algorithm BibRef

Malik, S., Soundararajan, R.,
A Model Learning Approach For Low Light Image Restoration,
ICIP20(1033-1037)
IEEE DOI 2011
BibRef
Earlier:
Llrnet: A Multiscale Subband Learning Approach for Low Light Image Restoration,
ICIP19(779-783)
IEEE DOI 1910
Image restoration, Noise reduction, Noise measurement, Distortion, Computational modeling, Training, Cameras, Contrast enhancement, CNN. Contrast enhancement, low light enhancement, denoising. Laplacian pyramid BibRef

Dhara, S.K., Sen, D.,
Low Light Image Enhancement Using Grover's Algorithm on Superposed Luminance Levels,
ICIP18(1113-1117)
IEEE DOI 1809
Histograms, Image enhancement, Lighting, Image color analysis, Probability density function, Proposals, Quantum probability BibRef

Rupapara, P., Rangavajjula, A., Jain, A.,
Low complexity image fusion in bayer domain using a monochrome sensor and bayer sensor,
ICIP17(1980-1984)
IEEE DOI 1803
Erbium, Bayer image fusion, Dual sensor system, Low light photography BibRef

Tao, L.[Li], Zhu, C.[Chuang], Xiang, G.Q.[Guo-Qing], Li, Y.[Yuan], Jia, H.Z.[Hui-Zhu], Xie, X.D.[Xiao-Dong],
LLCNN: A Convolutional Neural Network for Low-Light Image Enhancement,
VCIP17(1-4)
IEEE DOI 1804
convolution, feature extraction, feedforward neural nets, image enhancement, image texture, CNN based method, low-light image BibRef

Tao, L., Zhu, C., Song, J., Lu, T., Jia, H., Xie, X.,
Low-light image enhancement using CNN and bright channel prior,
ICIP17(3215-3219)
IEEE DOI 1803
Adaptation models, Atmospheric modeling, Filtering theory, Image color analysis, Mathematical model, Scattering, CNN, low-light model BibRef

Shi, W., Chen, C., Jiang, F., Zhao, D., Shen, W.,
Group-based sparse representation for low lighting image enhancement,
ICIP16(4082-4086)
IEEE DOI 1610
Decision support systems BibRef

Kim, Y.[Youngbae], Koh, Y.J.[Yeong Jun], Lee, C.[Chulwoo], Kim, S.H.[Se-Hoon], Kim, C.S.[Chang-Su],
Dark image enhancement based onpairwise target contrast and multi-scale detail boosting,
ICIP15(1404-1408)
IEEE DOI 1512
Dark image enhancement BibRef

Arun, M., Rajagopalan, A.N.,
Hand-held low-light photography with exposure bracketing,
ICIP16(1749-1753)
IEEE DOI 1610
Cameras BibRef

Fotiadou, K.[Konstantina], Tsagkatakis, G.[Grigorios], Tsakalides, P.[Panagiotis],
Low Light Image Enhancement via Sparse Representations,
ICIAR14(I: 84-93).
Springer DOI 1410
BibRef

Zhang, X.D.[Xiang-Dong], Shen, P.[Peiyi], Luo, L.[Lingli], Zhang, L.[Liang], Song, J.[Juan],
Enhancement and noise reduction of very low light level images,
ICPR12(2034-2037).
WWW Link. 1302
BibRef

Matsui, S.[Sosuke], Okabe, T.[Takahiro], Shimano, M.[Mihoko], Sato, Y.[Yoichi],
Image Enhancement of Low-Light Scenes with Near-Infrared Flash Images,
ACCV09(I: 213-223).
Springer DOI 0909
BibRef

Mohanty, K.K., Gellaboina, M.K.,
Enhancement of low light image based on Gaussian Mixture Modeling,
EUVIP10(232-236).
IEEE DOI 1110
BibRef

Tao, L.[Li], Ngo, H.[Hau], Zhang, M.[Ming], Livingston, A., Asari, V.K.,
A multisensor image fusion and enhancement system for assisting drivers in poor lighting conditions,
AIPR05(106-113).
IEEE DOI 0510

See also Illuminance-Reflectance Model for Nonlinear Enhancement of Color Images, An. BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Night Time Processing .


Last update:Sep 28, 2024 at 17:47:54