7.1.7.4 Low Light Object Detection

Chapter Contents (Back)
Low Light. Object Detection.

Al Sobbahi, R.[Rayan], Tekli, J.[Joe],
Low-Light Homomorphic Filtering Network for integrating image enhancement and classification,
SP:IC(100), 2022, pp. 116527.
Elsevier DOI 2112
Image enhancement, Low-light conditions, Deep learning, Object classification, Homomorphic filtering BibRef

Al Sobbahi, R.[Rayan], Tekli, J.[Joe],
Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges,
SP:IC(109), 2022, pp. 116848.
Elsevier DOI 2210
BibRef
Earlier:
Low-Light Image Enhancement Using Image-to-Frequency Filter Learning,
CIAP22(II:693-705).
Springer DOI 2205
Image enhancement, Low-light conditions, Deep learning models, Object detection and classification, Empirical comparison BibRef

Zhang, Z.[Zenan], Guo, J.[Jichang], Yue, H.H.[Hui-Hui], Wang, Y.D.[Yu-Dong],
Global guidance-based integration network for salient object detection in low-light images,
JVCIR(95), 2023, pp. 103862.
Elsevier DOI 2309
Low-light images, Salient object detection, Global information flow, U-shaped attention refinement BibRef

Lin, C.Y.[Chun-Yi], Haq, M.A.[Muhamad Amirul], Chen, J.H.[Jiun-Han], Ruan, S.J.[Shanq-Jang], Naroska, E.[Edwin],
Efficient Saliency Map Detection for Low-Light Images Based on Image Gradient,
CirSysVideo(34), No. 2, February 2024, pp. 852-865.
IEEE DOI 2402
Image enhancement, Deep learning, Object detection, Neural networks, Lighting, Histograms, Saliency detection, saliency map detection BibRef

Singh, K.[Kavinder], Parihar, A.S.[Anil Singh],
MRN-LOD: Multi-exposure Refinement Network for Low-light Object Detection,
JVCIR(99), 2024, pp. 104079.
Elsevier DOI 2403
Object detection, Multi-exposure images, Adaptive refinement network, Low-light images, Feature extraction BibRef

Yu, N.[Nana], Wang, J.[Jie], Shi, H.[Hong], Zhang, Z.[Zihao], Han, Y.[Yahong],
Degradation-removed multiscale fusion for low-light salient object detection,
PR(155), 2024, pp. 110650.
Elsevier DOI Code:
WWW Link. 2408
Salient object detection, Low-light, Image enhancement, Retinex decomposition, Multiscale adaptive fusion BibRef

Lu, X.[Xiao], Yuan, Y.L.[Yu-Lin], Liu, X.[Xing], Wang, L.[Lucai], Zhou, X.Y.[Xuan-Yu], Yang, Y.M.[Yi-Min],
Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects,
CirSysVideo(34), No. 8, August 2024, pp. 7712-7724.
IEEE DOI Code:
WWW Link. 2408
Object detection, Task analysis, Image enhancement, Lighting, Feature extraction, Training, Dynamic range, datasets BibRef

Xue, R.[Rui], Duan, J.[Jialu], Du, Z.W.[Zheng-Wei],
MPE-DETR: A multiscale pyramid enhancement network for object detection in low-light images,
IVC(150), 2024, pp. 105202.
Elsevier DOI Code:
WWW Link. 2409
Object detection, Low-light images, Multiscale pyramid networks BibRef

Zhang, H.[Han], Wang, Y.F.[Yong-Fang], Yang, Y.J.[Ying-Jie],
LL-WSOD: Weakly supervised object detection in low-light,
JVCIR(98), 2024, pp. 104010.
Elsevier DOI 2402
Weakly supervised learning, Object detection, Low light, Salient priors BibRef

Jing, L.H.[Liang-Hu], Wang, B.[Bo],
EMNet: Edge-guided multi-level network for salient object detection in low-light images,
IVC(143), 2024, pp. 104933.
Elsevier DOI 2403
Low-light images, Salient object detection, Multi-layer feature fusion, Edge feature highlight BibRef

Zhao, D.[Dewei], Shao, F.[Faming], Zhang, S.[Sheng], Yang, L.[Li], Zhang, H.[Heng], Liu, S.D.[Shao-Dong], Liu, Q.[Qiang],
Advanced Object Detection in Low-Light Conditions: Enhancements to YOLOv7 Framework,
RS(16), No. 23, 2024, pp. 4493.
DOI Link 2501
BibRef

Fu, C.P.[Chen-Ping], Xiao, J.[Jiewen], Yuan, W.Q.[Wan-Qi], Liu, R.S.[Ri-Sheng], Fan, X.[Xin],
Learning Cruxes to Push for Object Detection in Low-Quality Images,
CirSysVideo(34), No. 12, December 2024, pp. 12233-12243.
IEEE DOI Code:
WWW Link. 2501
Detectors, Feature extraction, Convolution, Accuracy, Training, Rain, Degradation, Object detection, low-quality scenes, image enhancement BibRef

Ye, S.[Shu], Huang, W.X.[Wen-Xin], Liu, W.X.[Wen-Xuan], Chen, L.[Liang], Wang, X.[Xiao], Zhong, X.[Xian],
YES: You should Examine Suspect cues for low-light object detection,
CVIU(251), 2025, pp. 104271.
Elsevier DOI Code:
WWW Link. 2501
Image signal processing, Feature disentanglement, Uneven lighting, Object-background cheating, Low-light object detection BibRef


Tran, D.Q.[Dai Quoc], Aboah, A.[Armstrong], Jeon, Y.[Yuntae], Shoman, M.[Maged], Park, M.S.[Min-Soo], Park, S.[Seunghee],
Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets,
AICity24(7056-7065)
IEEE DOI Code:
WWW Link. 2410
Accuracy, Urban areas, Transportation, Object detection, Cameras, Robustness, Vehicle dynamics BibRef

Zhang, H.[Hao], Tang, L.F.[Lin-Feng], Xiang, X.Y.[Xin-Yu], Zuo, X.[Xuhui], Ma, J.Y.[Jia-Yi],
Dispel Darkness for Better Fusion: A Controllable Visual Enhancer Based on Cross-Modal Conditional Adversarial Learning,
CVPR24(26477-26486)
IEEE DOI Code:
WWW Link. 2410
Visualization, Codes, Image color analysis, Semantic segmentation, Brightness, Object detection, Low-light, Enhancement, Image fusion, Infrared BibRef

Hashmi, K.A.[Khurram Azeem], Kallempudi, G.[Goutham], Stricker, D.[Didier], Afzal, M.Z.[Muhammamd Zeshan],
FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision,
ICCV23(6702-6712)
IEEE DOI 2401
BibRef

Duan, B.J.[Bing-Jie], Wang, C.[Chao], Li, Y.Y.[Yan-Yun],
NonReference Mapping Net,
ICIVC22(718-724)
IEEE DOI 2301
Training, Image quality, Visualization, Image color analysis, Nonlinear distortion, Object detection, Task analysis, NonReference mapping BibRef

Liu, B.[Bokun], Wei, J.Y.[Jun-Yu], Su, S.J.[Shao-Jing], Tong, X.Z.[Xiao-Zhong],
Research on Task-Driven Dual-Light Image Fusion and Enhancement Method under Low Illumination,
ICIVC22(523-530)
IEEE DOI 2301
Visualization, Roads, Semantics, Lighting, Object detection, Propagation losses, Reliability, image fusion and enhancement, low illumination BibRef

Chen, Z.L.[Zi-Long], Liang, Y.L.[Ya-Ling], Du, M.H.[Ming-Hui],
Attention-based Broad Self-guided Network for Low-light Image Enhancement,
ICPR22(31-38)
IEEE DOI 2212
Wavelet transforms, Runtime, Stacking, Object detection, Benchmark testing, Feature extraction, Data mining BibRef

Morawski, I.[Igor], Chen, Y.A.[Yu-An], Lin, Y.S.[Yu-Sheng], Dangi, S.[Shusil], He, K.[Kai], Hsu, W.H.[Winston H.],
GenISP: Neural ISP for Low-Light Machine Cognition,
NTIRE22(629-638)
IEEE DOI 2210
Image sensors, Image color analysis, Pipelines, Detectors, Object detection, Cameras, Cognition BibRef

Guo, L.Q.[Lan-Qing], Wan, R.J.[Ren-Jie], Su, G.M.[Guan-Ming], Kot, A.C.[Alex C.], Wen, B.[Bihan],
Multi-Scale Feature Guided Low-Light Image Enhancement,
ICIP21(554-558)
IEEE DOI 2201
Visualization, Inverse problems, Lighting, Object detection, Feature extraction, Generative adversarial networks, Low-Light, Unsupervised Learning BibRef

Guo, H.F.[Hai-Feng], Lu, T.[Tong], Wu, Y.[Yirui],
Dynamic Low-Light Image Enhancement for Object Detection via End-to-End Training,
ICPR21(5611-5618)
IEEE DOI 2105
Training, Image quality, Lighting, Object detection, Detectors, Low-Light Image Enhancement, Object Detection BibRef

Loh, Y.P.[Yuen Peng],
Exploring the Contributions of Low-light Image Enhancement to Network-based Object Detection,
MOI2QDN20(655-669).
Springer DOI 2103
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Remote Sensing Object Detection Applications .


Last update:Mar 17, 2025 at 20:02:03