Hankerson, B.,
Kjaersgaard, J.,
Hay, C.,
Estimation of Evapotranspiration from Fields with and without Cover
Crops Using Remote Sensing and in situ Methods,
RS(4), No. 12, December 2012, pp. 3796-3812.
DOI Link
1211
BibRef
Nagler, P.L.[Pamela L.],
Glenn, E.P.[Edward P.],
Nguyen, U.[Uyen],
Scott, R.L.[Russell L.],
Doody, T.[Tanya],
Estimating Riparian and Agricultural Actual Evapotranspiration by
Reference Evapotranspiration and MODIS Enhanced Vegetation Index,
RS(5), No. 8, 2013, pp. 3849-3871.
DOI Link
1309
BibRef
Tian, J.,
Su, H.,
Sun, X.,
Chen, S.,
He, H.,
Zhao, L.,
Impact of the Spatial Domain Size on the Performance of the Ts-VI
Triangle Method in Terrestrial Evapotranspiration Estimation,
RS(5), No. 4, April 2013, pp. 1998-2013.
DOI Link
1305
BibRef
Sun, Z.G.[Zhi-Gang],
Gebremichael, M.[Mekonnen],
Wang, Q.X.[Qin-Xue],
Wang, J.M.[Jun-Ming],
Sammis, T.W.[Ted W.],
Nickless, A.[Alecia],
Evaluation of Clear-Sky Incoming Radiation Estimating Equations
Typically Used in Remote Sensing Evapotranspiration Algorithms,
RS(5), No. 10, 2013, pp. 4735-4752.
DOI Link
1311
BibRef
Nouri, H.[Hamideh],
Beecham, S.[Simon],
Anderson, S.[Sharolyn],
Nagler, P.[Pamela],
High Spatial Resolution WorldView-2 Imagery for Mapping NDVI and Its
Relationship to Temporal Urban Landscape Evapotranspiration Factors,
RS(6), No. 1, 2014, pp. 580-602.
DOI Link
1402
BibRef
Yao, Y.J.[Yun-Jun],
Liang, S.L.[Shun-Lin],
Zhao, S.H.[Shao-Hua],
Zhang, Y.[Yuhu],
Qin, Q.M.[Qi-Ming],
Cheng, J.[Jie],
Jia, K.[Kun],
Xie, X.H.[Xian-Hong],
Zhang, N.N.[Nan-Nan],
Liu, M.[Meng],
Validation and Application of the Modified Satellite-Based
Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration,
RS(6), No. 1, 2014, pp. 880-904.
DOI Link
1402
BibRef
Amri, R.[Rim],
Zribi, M.[Mehrez],
Lili-Chabaane, Z.[Zohra],
Szczypta, C.[Camille],
Calvet, J.C.[Jean Christophe],
Boulet, G.[Gilles],
FAO-56 Dual Model Combined with Multi-Sensor Remote Sensing for
Regional Evapotranspiration Estimations,
RS(6), No. 6, 2014, pp. 5387-5406.
DOI Link
1407
BibRef
Lu, J.[Jing],
Tang, R.L.[Rong-Lin],
Tang, H.J.[Hua-Jun],
Li, Z.L.[Zhao-Liang],
Zhou, G.Q.[Guo-Qing],
Shao, K.[Kun],
Bi, Y.Y.[Yu-Yun],
Labed, J.[Jelila],
Daily Evaporative Fraction Parameterization Scheme Driven by
Day-Night Differences in Surface Parameters:
Improvement and Validation,
RS(6), No. 5, 2014, pp. 4369-4390.
DOI Link
1407
BibRef
Peng, J.[Jian],
Loew, A.[Alexander],
Evaluation of Daytime Evaporative Fraction from MODIS TOA Radiances
Using FLUXNET Observations,
RS(6), No. 7, 2014, pp. 5959-5975.
DOI Link
1408
BibRef
Wang, X.G.[Xiao-Gang],
Wang, W.[Wen],
Huang, D.[Dui],
Yong, B.[Bin],
Chen, X.[Xi],
Modifying SEBAL Model Based on the Trapezoidal Relationship between
Land Surface Temperature and Vegetation Index for Actual
Evapotranspiration Estimation,
RS(6), No. 7, 2014, pp. 5909-5937.
DOI Link
1408
BibRef
Lu, H.Y.[Han-Yu],
Liu, T.X.[Ting-Xi],
Yang, Y.T.[Yu-Ting],
Yao, D.D.[Dan-Dan],
A Hybrid Dual-Source Model of Estimating Evapotranspiration over
Different Ecosystems and Implications for Satellite-Based Approaches,
RS(6), No. 9, 2014, pp. 8359-8386.
DOI Link
1410
BibRef
Romaguera, M.[Mireia],
Salama, M.S.[Mhd. Suhyb],
Krol, M.S.[Maarten S.],
Hoekstra, A.Y.[Arjen Y.],
Su, Z.B.[Zhong-Bo],
Towards the Improvement of Blue Water Evapotranspiration Estimates by
Combining Remote Sensing and Model Simulation,
RS(6), No. 8, 2014, pp. 7026-7049.
DOI Link
1410
BibRef
Romaguera, M.[Mireia],
Krol, M.S.[Maarten S.],
Salama, M.S.[Mhd. Suhyb],
Su, Z.B.[Zhong-Bo],
Hoekstra, A.Y.[Arjen Y.],
Application of a Remote Sensing Method for Estimating Monthly Blue
Water Evapotranspiration in Irrigated Agriculture,
RS(6), No. 10, 2014, pp. 10033-10050.
DOI Link
1411
BibRef
Ahrends, H.E.[Hella Ellen],
Haseneder-Lind, R.[Rainer],
Schween, J.H.[Jan H.],
Crewell, S.[Susanne],
Stadler, A.[Anja],
Rascher, U.[Uwe],
Diurnal Dynamics of Wheat Evapotranspiration Derived from
Ground-Based Thermal Imagery,
RS(6), No. 10, 2014, pp. 9775-9801.
DOI Link
1411
BibRef
Hu, G.C.[Guang-Cheng],
Jia, L.[Li],
Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin
by Combining Microwave and Optical Remote Sensing Observations,
RS(7), No. 3, 2015, pp. 3056-3087.
DOI Link
1504
BibRef
Xu, T.R.[Tong-Ren],
Liu, S.M.[Shao-Min],
Xu, L.[Lu],
Chen, Y.J.[Yu-Jie],
Jia, Z.Z.[Zhen-Zhen],
Xu, Z.W.[Zi-Wei],
Nielson, J.[Jeffrey],
Temporal Upscaling and Reconstruction of Thermal Remotely Sensed
Instantaneous Evapotranspiration,
RS(7), No. 3, 2015, pp. 3400-3425.
DOI Link
1504
BibRef
Song, Y.[Yi],
Ma, M.G.[Ming-Guo],
Jin, L.[Long],
Wang, X.F.[Xu-Feng],
A Revised Temporal Scaling Method to Yield Better ET Estimates at a
Regional Scale,
RS(7), No. 5, 2015, pp. 6433-6453.
DOI Link
1506
estimate total daytime evapotranspiration
BibRef
Schwerdtfeger, J.[Julia],
da Silveira, S.W.G.[Sérgio Wagner Gripp],
Zeilhofer, P.[Peter],
Weiler, M.[Markus],
Coupled Ground- and Space-Based Assessment of Regional Inundation
Dynamics to Assess Impact of Local and Upstream Changes on
Evaporation in Tropical Wetlands,
RS(7), No. 8, 2015, pp. 9769.
DOI Link
1509
BibRef
Stefan, V.G.[Vivien Georgiana],
Merlin, O.[Olivier],
Er-Raki, S.[Salah],
Escorihuela, M.J.[Maria-José],
Khabba, S.[Said],
Consistency between In Situ, Model-Derived and
High-Resolution-Image-Based Soil Temperature Endmembers: Towards a
Robust Data-Based Model for Multi-Resolution Monitoring of Crop
Evapotranspiration,
RS(7), No. 8, 2015, pp. 10444.
DOI Link
1509
BibRef
Mi, S.J.[Su-Juan],
Su, H.B.[Hong-Bo],
Zhang, R.H.[Ren-Hua],
Tian, J.[Jing],
Using Simplified Thermal Inertia to Determine the Theoretical Dry
Line in Feature Space for Evapotranspiration Retrieval,
RS(7), No. 8, 2015, pp. 10856.
DOI Link
1509
BibRef
Huang, C.L.[Chun-Lin],
Li, Y.[Yan],
Gu, J.[Juan],
Lu, L.[Ling],
Li, X.[Xin],
Improving Estimation of Evapotranspiration under Water-Limited
Conditions Based on SEBS and MODIS Data in Arid Regions,
RS(7), No. 12, 2015, pp. 15854.
DOI Link
1601
BibRef
Sun, H.[Hao],
A Two-Source Model for Estimating Evaporative Fraction (TMEF)
Coupling Priestley-Taylor Formula and Two-Stage Trapezoid,
RS(8), No. 3, 2016, pp. 248.
DOI Link
1604
BibRef
Ke, Y.H.[Ying-Hai],
Im, J.[Jungho],
Park, S.[Seonyoung],
Gong, H.[Huili],
Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8
Data and Machine Learning Approaches,
RS(8), No. 3, 2016, pp. 215.
DOI Link
1604
BibRef
Nouri, H.[Hamideh],
Glenn, E.P.[Edward P.],
Beecham, S.[Simon],
Boroujeni, S.C.[Sattar Chavoshi],
Sutton, P.[Paul],
Alaghmand, S.[Sina],
Noori, B.[Behnaz],
Nagler, P.[Pamela],
Comparing Three Approaches of Evapotranspiration Estimation in Mixed
Urban Vegetation: Field-Based, Remote Sensing-Based and
Observational-Based Methods,
RS(8), No. 6, 2016, pp. 492.
DOI Link
1608
BibRef
Zhang, T.,
Jin, S.,
Evapotranspiration Variations in the Mississippi River Basin
Estimated From GPS Observations,
GeoRS(54), No. 8, August 2016, pp. 4694-4701.
IEEE DOI
1608
Global Positioning System
BibRef
Zhang, H.[Hua],
Gorelick, S.M.[Steven M.],
Avisse, N.[Nicolas],
Tilmant, A.[Amaury],
Rajsekhar, D.[Deepthi],
Yoon, J.[Jim],
A New Temperature-Vegetation Triangle Algorithm with Variable Edges
(TAVE) for Satellite-Based Actual Evapotranspiration Estimation,
RS(8), No. 9, 2016, pp. 735.
DOI Link
1610
BibRef
Hu, Z.M.[Zhong-Min],
Wu, G.[Genan],
Zhang, L.X.[Liang-Xia],
Li, S.G.[Sheng-Gong],
Zhu, X.J.[Xian-Jin],
Zheng, H.[Han],
Zhang, L.M.[Lei-Ming],
Sun, X.M.[Xiao-Min],
Yu, G.[Guirui],
Modeling and Partitioning of Regional Evapotranspiration Using a
Satellite-Driven Water-Carbon Coupling Model,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Zhu, W.B.[Wen-Bin],
Lv, A.[Aifeng],
Jia, S.F.[Shao-Feng],
Yan, J.[Jiabao],
A New Contextual Parameterization of Evaporative Fraction to Reduce
the Reliance of the Ts-VI Triangle Method on the Dry Edge,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Knipper, K.[Kyle],
Hogue, T.[Terri],
Scott, R.L.[Russell L.],
Franz, K.[Kristie],
Evapotranspiration Estimates Derived Using Multi-Platform Remote
Sensing in a Semiarid Region,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Ke, Y.H.[Ying-Hai],
Im, J.[Jungho],
Park, S.[Seonyoung],
Gong, H.[Huili],
Spatiotemporal downscaling approaches for monitoring 8-day 30 m
actual evapotranspiration,
PandRS(126), No. 1, 2017, pp. 79-93.
Elsevier DOI
1704
Evapotranspiration
BibRef
Mahour, M.[Milad],
Tolpekin, V.[Valentyn],
Stein, A.[Alfred],
Sharifi, A.[Ali],
A comparison of two downscaling procedures to increase the spatial
resolution of mapping actual evapotranspiration,
PandRS(126), No. 1, 2017, pp. 56-67.
Elsevier DOI
1704
Downscaling cokriging
BibRef
Qiu, G.Y.[Guo-Yu],
Tan, S.L.[Sheng-Lin],
Wang, Y.[Yue],
Yu, X.H.[Xiao-Hui],
Yan, C.H.[Chun-Hua],
Characteristics of Evapotranspiration of Urban Lawns in a
Sub-Tropical Megacity and Its Measurement by the 'Three Temperature
Model + Infrared Remote Sensing' Method,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
He, R.[Ruyan],
Jin, Y.F.[Yu-Fang],
Kandelous, M.M.[Maziar M.],
Zaccaria, D.[Daniele],
Sanden, B.L.[Blake L.],
Snyder, R.L.[Richard L.],
Jiang, J.B.[Jin-Bao],
Hopmans, J.W.[Jan W.],
Evapotranspiration Estimate over an Almond Orchard Using Landsat
Satellite Observations,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Wagle, P.[Pradeep],
Bhattarai, N.[Nishan],
Gowda, P.H.[Prasanna H.],
Kakani, V.G.[Vijaya G.],
Performance of five surface energy balance models for estimating
daily evapotranspiration in high biomass sorghum,
PandRS(128), No. 1, 2017, pp. 192-203.
Elsevier DOI
1706
Eddy, covariance
BibRef
Pérez, J.Á.M.[José Ángel Martínez],
García-Galiano, S.G.[Sandra G.],
Martin-Gorriz, B.[Bernardo],
Baille, A.[Alain],
Satellite-Based Method for Estimating the Spatial Distribution of
Crop Evapotranspiration: Sensitivity to the Priestley-Taylor
Coefficient,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Najmaddin, P.M.[Peshawa M.],
Whelan, M.J.[Mick J.],
Balzter, H.[Heiko],
Estimating Daily Reference Evapotranspiration in a Semi-Arid Region
Using Remote Sensing Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Tang, R.,
Li, Z.L.,
An End-Member-Based Two-Source Approach for Estimating Land Surface
Evapotranspiration From Remote Sensing Data,
GeoRS(55), No. 10, October 2017, pp. 5818-5832.
IEEE DOI
1710
atmospheric radiation, evaporation,
longwave radiation transmission, meteorology.
BibRef
Bhattarai, N.[Nishan],
Wagle, P.[Pradeep],
Gowda, P.H.[Prasanna H.],
Kakani, V.G.[Vijaya G.],
Utility of remote sensing-based surface energy balance models to
track water stress in rain-fed switchgrass under dry and wet
conditions,
PandRS(133), No. Supplement C, 2017, pp. 128-141.
Elsevier DOI
1711
Crop water stress index, Eddy covariance, Evapotranspiration,
Single-source SEB models, Regression, model
BibRef
Zhang, Y.[Yu],
Li, L.[Long],
Chen, L.Q.[Long-Qian],
Liao, Z.H.[Zhi-Hong],
Wang, Y.C.[Yu-Chen],
Wang, B.Y.[Bing-Yi],
Yang, X.Y.[Xiao-Yan],
A Modified Multi-Source Parallel Model for Estimating Urban Surface
Evapotranspiration Based on ASTER Thermal Infrared Data,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Kalmus, P.,
Lebsock, M.,
Correcting Biased Evaporation in CloudSat Warm Rain,
GeoRS(55), No. 11, November 2017, pp. 6207-6217.
IEEE DOI
1711
Atmospheric modeling, Clouds, Radar, Rain, Sea measurements,
Sea surface, Table lookup, Atmospheric modeling, clouds,
error correction, radar remote sensing
BibRef
Raoufi, R.[Roozbeh],
Beighley, E.[Edward],
Estimating Daily Global Evapotranspiration Using Penman-Monteith
Equation and Remotely Sensed Land Surface Temperature,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Bahir, M.[Malik],
Boulet, G.[Gilles],
Olioso, A.[Albert],
Rivalland, V.[Vincent],
Gallego-Elvira, B.[Belen],
Mira, M.[Maria],
Rodriguez, J.C.[Julio-Cesar],
Jarlan, L.[Lionel],
Merlin, O.[Olivier],
Evaluation and Aggregation Properties of Thermal Infra-Red-Based
Evapotranspiration Algorithms from 100 m to the km Scale over a
Semi-Arid Irrigated Agricultural Area,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Li, X.J.[Xiao-Jun],
Xin, X.Z.[Xiao-Zhou],
Peng, Z.Q.[Zhi-Qing],
Zhang, H.L.[Hai-Long],
Yi, C.X.[Chuan-Xiang],
Li, B.[Bin],
Analysis of the Spatial Variability of Land Surface Variables for ET
Estimation: Case Study in HiWATER Campaign,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Xu, J.[Jia_Ming],
Wu, B.F.[Bing-Fang],
Yan, N.[Nana],
Tan, S.[Shen],
Regional Daily ET Estimates Based on the Gap-Filling Method of
Surface Conductance,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Yang, Y.M.[Yong-Min],
Qiu, J.X.[Jian-Xiu],
Zhang, R.H.[Ren-Hua],
Huang, S.F.[Shi-Feng],
Chen, S.[Sheng],
Wang, H.[Hui],
Luo, J.[Jiashun],
Fan, Y.[Yue],
Intercomparison of Three Two-Source Energy Balance Models for
Partitioning Evaporation and Transpiration in Semiarid Climates,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Grosso, C.[Carla],
Manoli, G.[Gabriele],
Martello, M.[Marco],
Chemin, Y.H.[Yann H.],
Pons, D.H.[Diego H.],
Teatini, P.[Pietro],
Piccoli, I.[Ilaria],
Morari, F.[Francesco],
Mapping Maize Evapotranspiration at Field Scale Using SEBAL: A
Comparison with the FAO Method and Soil-Plant Model Simulations,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Tan, S.[Shen],
Wu, B.F.[Bing-Fang],
Yan, N.[Nana],
Zeng, H.W.[Hong-Wei],
Satellite-Based Water Consumption Dynamics Monitoring in an Extremely
Arid Area,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Talsma, C.J.[Carl J.],
Good, S.P.[Stephen P.],
Miralles, D.G.[Diego G.],
Fisher, J.B.[Joshua B.],
Martens, B.[Brecht],
Jimenez, C.[Carlos],
Purdy, A.J.[Adam J.],
Sensitivity of Evapotranspiration Components in Remote Sensing-Based
Models,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Yi, Z.Y.[Zhen-Yan],
Zhao, H.L.[Hong-Li],
Jiang, Y.Z.[Yun-Zhong],
Continuous Daily Evapotranspiration Estimation at the Field-Scale
over Heterogeneous Agricultural Areas by Fusing ASTER and MODIS Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Dhungel, S.[Sulochan],
Barber, M.E.[Michael E.],
Estimating Calibration Variability in Evapotranspiration Derived from
a Satellite-Based Energy Balance Model,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Martens, B.[Brecht],
de Jeu, R.A.M.[Richard A. M.],
Verhoest, N.E.C.[Niko E. C.],
Schuurmans, H.[Hanneke],
Kleijer, J.[Jonne],
Miralles, D.G.[Diego G.],
Towards Estimating Land Evaporation at Field Scales Using GLEAM,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Poon, P.K.[Patrick K.],
Kinoshita, A.M.[Alicia M.],
Estimating Evapotranspiration in a Post-Fire Environment Using Remote
Sensing and Machine Learning,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Delogu, E.[Emilie],
Boulet, G.[Gilles],
Olioso, A.[Albert],
Garrigues, S.[Sébastien],
Brut, A.[Aurore],
Tallec, T.[Tiphaine],
Demarty, J.[Jérôme],
Soudani, K.[Kamel],
Lagouarde, J.P.[Jean-Pierre],
Evaluation of the SPARSE Dual-Source Model for Predicting Water
Stress and Evapotranspiration from Thermal Infrared Data over
Multiple Crops and Climates,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Small, E.E.[Eric E.],
Badger, A.M.[Andrew M.],
Abolafia-Rosenzweig, R.[Ronnie],
Livneh, B.[Ben],
Estimating Soil Evaporation Using Drying Rates Determined from
Satellite-Based Soil Moisture Records,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Sousa, D.[Daniel],
Small, C.[Christopher],
Spectral Mixture Analysis as a Unified Framework for the Remote
Sensing of Evapotranspiration,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Bellvert, J.[Joaquim],
Adeline, K.[Karine],
Baram, S.[Shahar],
Pierce, L.[Lars],
Sanden, B.L.[Blake L.],
Smart, D.R.[David R.],
Monitoring Crop Evapotranspiration and Crop Coefficients over an
Almond and Pistachio Orchard Throughout Remote Sensing,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zou, Z.D.[Zhen-Dong],
Yang, Y.J.[Ya-Jun],
Qiu, G.Y.[Guo Yu],
Quantifying the Evapotranspiration Rate and Its Cooling Effects of
Urban Hedges Based on Three-Temperature Model and Infrared Remote
Sensing,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Pagán, B.R.[Brianna R.],
Maes, W.H.[Wouter H.],
Gentine, P.[Pierre],
Martens, B.[Brecht],
Miralles, D.G.[Diego G.],
Exploring the Potential of Satellite Solar-Induced Fluorescence to
Constrain Global Transpiration Estimates,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Khand, K.[Kul],
Taghvaeian, S.[Saleh],
Gowda, P.[Prasanna],
Paul, G.[George],
A Modeling Framework for Deriving Daily Time Series of
Evapotranspiration Maps Using a Surface Energy Balance Model,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Guillevic, P.C.[Pierre C.],
Olioso, A.[Albert],
Hook, S.J.[Simon J.],
Fisher, J.B.[Joshua B.],
Lagouarde, J.P.[Jean-Pierre],
Vermote, E.F.[Eric F.],
Impact of the Revisit of Thermal Infrared Remote Sensing Observations
on Evapotranspiration Uncertainty: A Sensitivity Study Using
AmeriFlux Data,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Cheng, J.[Jie],
Kustas, W.P.[William P.],
Using Very High Resolution Thermal Infrared Imagery for More Accurate
Determination of the Impact of Land Cover Differences on
Evapotranspiration in an Irrigated Agricultural Area,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wang, T.[Tong],
Tang, R.L.[Rong-Lin],
Li, Z.L.[Zhao-Liang],
Jiang, Y.[Yazhen],
Liu, M.[Meng],
Niu, L.[Lu],
An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for
Evapotranspiration Mapping,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Jamshidi, S.[Sajad],
Zand-Parsa, S.[Shahrokh],
Jahromi, M.N.[Mojtaba Naghdyzadegan],
Niyogi, D.[Dev],
Application of A Simple Landsat-MODIS Fusion Model to Estimate
Evapotranspiration over A Heterogeneous Sparse Vegetation Region,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
McCabe, M.F.[Matthew F.],
Miralles, D.G.[Diego G.],
Holmes, T.R.H.[Thomas R.H.],
Fisher, J.B.[Joshua B.],
Advances in the Remote Sensing of Terrestrial Evaporation,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Zhao, Y.[Yan],
Lu, Z.X.[Zhi-Xiang],
Wei, Y.P.[Yong-Ping],
An Assessment of Global Precipitation and Evapotranspiration Products
for Regional Applications,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Mokhtari, A.[Ali],
Noory, H.[Hamideh],
Pourshakouri, F.[Farrokh],
Haghighatmehr, P.[Parisa],
Afrasiabian, Y.[Yasamin],
Razavi, M.[Maryam],
Fereydooni, F.[Fatemeh],
Naeni, A.S.[Ali Sadeghi],
Calculating potential evapotranspiration and single crop coefficient
based on energy balance equation using Landsat 8 and Sentinel-2,
PandRS(154), 2019, pp. 231-245.
Elsevier DOI
1907
Landsat 8, MSDF-ET method, Potential evapotranspiration,
Sentinel-2, Single crop coefficient, TsHARP algorithm
BibRef
Nocco, M.A.[Mallika A.],
Zipper, S.C.[Samuel C.],
Booth, E.G.[Eric G.],
Cummings, C.R.[Cadan R.],
Loheide, S.P.[Steven P.],
Kucharik, C.J.[Christopher J.],
Combining Evapotranspiration and Soil Apparent Electrical
Conductivity Mapping to Identify Potential Precision Irrigation
Benefits,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Fang, L.[Li],
Zhan, X.[Xiwu],
Schull, M.[Mitchell],
Kalluri, S.[Satya],
Laszlo, I.[Istvan],
Yu, P.[Peng],
Carter, C.[Corinne],
Hain, C.[Christopher],
Anderson, M.[Martha],
Evapotranspiration Data Product from NESDIS GET-D System Upgraded for
GOES-16 ABI Observations,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Du, T.[Tao],
Wang, L.[Li],
Yuan, G.F.[Guo-Fu],
Sun, X.M.[Xiao-Min],
Wang, S.[Shusen],
Effects of Distinguishing Vegetation Types on the Estimates of
Remotely Sensed Evapotranspiration in Arid Regions,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Aboutalebi, M.[Mahyar],
Torres-Rua, A.F.[Alfonso F.],
McKee, M.[Mac],
Kustas, W.P.[William P.],
Nieto, H.[Hector],
Alsina, M.M.[Maria Mar],
White, A.[Alex],
Prueger, J.H.[John H.],
McKee, L.[Lynn],
Alfieri, J.[Joseph],
Hipps, L.[Lawrence],
Coopmans, C.[Calvin],
Dokoozlian, N.[Nick],
Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products
into Remote Sensing Evapotranspiration Models,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Wu, B.F.[Bing-Fang],
Zhu, W.W.[Wei-Wei],
Yan, N.[Nana],
Xing, Q.A.[Qi-Ang],
Xu, J.M.[Jia-Ming],
Ma, Z.H.[Zong-Han],
Wang, L.J.[Lin-Jiang],
Regional Actual Evapotranspiration Estimation with Land and
Meteorological Variables Derived from Multi-Source Satellite Data,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Jiang, L.[Lulu],
Wu, H.[Huan],
Tao, J.[Jing],
Kimball, J.S.[John S.],
Alfieri, L.[Lorenzo],
Chen, X.W.[Xiu-Wan],
Satellite-Based Evapotranspiration in Hydrological Model Calibration,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
He, X.L.[Xin-Lei],
Xu, T.R.[Tong-Ren],
Xia, Y.L.[You-Long],
Bateni, S.M.[Sayed M.],
Guo, Z.X.[Zhi-Xia],
Liu, S.M.[Shao-Min],
Mao, K.[Kebiao],
Zhang, Y.[Yuan],
Feng, H.Z.[Huai-Ze],
Zhao, J.X.[Jing-Xue],
A Bayesian Three-Cornered Hat (BTCH) Method:
Improving the Terrestrial Evapotranspiration Estimation,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Yu, B.[Bing],
Shang, S.H.[Song-Hao],
Estimating Growing Season Evapotranspiration and Transpiration of
Major Crops over a Large Irrigation District from HJ-1A/1B Data Using
a Remote Sensing-Based Dual Source Evapotranspiration Model,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Burchard-Levine, V.[Vicente],
Nieto, H.[Héctor],
Riaño, D.[David],
Migliavacca, M.[Mirco],
El-Madany, T.S.[Tarek S.],
Perez-Priego, O.[Oscar],
Carrara, A.[Arnaud],
Martín, M.P.[M. Pilar],
Seasonal Adaptation of the Thermal-Based Two-Source Energy Balance
Model for Estimating Evapotranspiration in a Semiarid Tree-Grass
Ecosystem,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Sun, H.[Hao],
Zhou, B.C.[Bai-Chi],
Zhang, C.J.[Chuan-Jun],
Liu, H.X.[Hong-Xing],
Yang, B.[Bo],
DSCALE_mod16: A Model for Disaggregating Microwave Satellite Soil
Moisture with Land Surface Evapotranspiration Products and Gridded
Meteorological Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Guzinski, R.[Radoslaw],
Nieto, H.[Hector],
Sandholt, I.[Inge],
Karamitilios, G.[Georgios],
Modelling High-Resolution Actual Evapotranspiration through
Sentinel-2 and Sentinel-3 Data Fusion,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Weksler, S.[Shahar],
Rozenstein, O.[Offer],
Haish, N.[Nadav],
Moshelion, M.[Menachem],
Walach, R.[Rony],
Ben-Dor, E.[Eyal],
A Hyperspectral-Physiological Phenomics System: Measuring Diurnal
Transpiration Rates and Diurnal Reflectance,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Barrios, J.M.[José Miguel],
Arboleda, A.[Alirio],
de Pue, J.[Jan],
Chormanski, J.[Jaroslaw],
Gellens-Meulenberghs, F.[Françoise],
Continuous Daily Evapotranspiration with Optical Spaceborne
Observations at Sub-Kilometre Spatial Resolution,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Cha, M.X.[Ming-Xing],
Li, M.M.[Meng-Meng],
Wang, X.Q.[Xiao-Qin],
Estimation of Seasonal Evapotranspiration for Crops in Arid Regions
Using Multisource Remote Sensing Images,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Chen, H.L.[Hui-Ling],
Zhu, G.F.[Gao-Feng],
Zhang, K.[Kun],
Bi, J.[Jian],
Jia, X.P.[Xiao-Peng],
Ding, B.Y.[Bing-Yue],
Zhang, Y.[Yang],
Shang, S.S.[Sha-Sha],
Zhao, N.[Nan],
Qin, W.H.[Wen-Hua],
Evaluation of Evapotranspiration Models Using Different LAI and
Meteorological Forcing Data from 1982 to 2017,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Sobejano-Paz, V.[Verónica],
Mikkelsen, T.N.[Teis Nørgaard],
Baum, A.[Andreas],
Mo, X.G.[Xing-Guo],
Liu, S.[Suxia],
Köppl, C.J.[Christian Josef],
Johnson, M.S.[Mark S.],
Gulyas, L.[Lorant],
García, M.[Mónica],
Hyperspectral and Thermal Sensing of Stomatal Conductance,
Transpiration, and Photosynthesis for Soybean and Maize under Drought,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Kim, N.[Nari],
Kim, K.[Kwangjin],
Lee, S.[Soobong],
Cho, J.[Jaeil],
Lee, Y.[Yangwon],
Retrieval of Daily Reference Evapotranspiration for Croplands in
South Korea Using Machine Learning with Satellite Images and
Numerical Weather Prediction Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Liu, R.[Rong],
Wen, J.[Jun],
Wang, X.[Xin],
Wang, Z.L.[Zuo-Liang],
Liu, Y.[Yu],
Zhang, M.[Ming],
Estimates of Daily Evapotranspiration in the Source Region of the
Yellow River Combining Visible/Near-Infrared and Microwave Remote
Sensing,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Bajgain, R.[Rajen],
Xiao, X.M.[Xiang-Ming],
Wagle, P.[Pradeep],
Kimball, J.S.[John S.],
Brust, C.[Colin],
Basara, J.B.[Jefferey B.],
Gowda, P.[Prasanna],
Starks, P.J.[Patrick J.],
Neel, J.P.S.[James P. S.],
Comparing Evapotranspiration Products of Different Temporal and
Spatial Scales in Native and Managed Prairie Pastures,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wang, D.K.[Da-Kang],
Yu, T.[Tao],
Liu, Y.[Yan],
Gu, X.F.[Xing-Fa],
Mi, X.F.[Xiao-Fei],
Shi, S.Y.[Shuai-Yi],
Ma, M.H.[Mei-Hong],
Chen, X.R.[Xin-Ran],
Zhang, Y.[Yin],
Liu, Q.X.[Qi-Xin],
Mumtaz, F.[Faisal],
Zhan, Y.L.[Yu-Lin],
Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale
Utilizing Simulated and Remote Sensing Surface Temperature,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Ma, Z.H.[Zong-Han],
Wu, B.F.[Bing-Fang],
Yan, N.[Nana],
Zhu, W.W.[Wei-Wei],
Zeng, H.W.[Hong-Wei],
Xu, J.M.[Jia-Ming],
Spatial Allocation Method from Coarse Evapotranspiration Data to
Agricultural Fields by Quantifying Variations in Crop Cover and Soil
Moisture,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Soltani, M.[Mohsen],
Koch, J.[Julian],
Stisen, S.[Simon],
Using a Groundwater Adjusted Water Balance Approach and Copulas to
Evaluate Spatial Patterns and Dependence Structures in Remote Sensing
Derived Evapotranspiration Products,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Yao, Y.J.[Yun-Jun],
Di, Z.H.[Zhen-Hua],
Xie, Z.J.[Zi-Jing],
Xiao, Z.Q.[Zhi-Qiang],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Shang, K.[Ke],
Yang, J.M.[Jun-Ming],
Bei, X.Y.[Xiang-Yi],
Guo, X.Z.[Xiao-Zheng],
Yu, R.Y.[Rui-Yang],
Simplified Priestley-Taylor Model to Estimate Land-Surface Latent
Heat of Evapotranspiration from Incident Shortwave Radiation,
Satellite Vegetation Index, and Air Relative Humidity,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Majozi, N.P.[Nobuhle P.],
Mannaerts, C.M.[Chris M.],
Ramoelo, A.[Abel],
Mathieu, R.[Renaud],
Verhoef, W.[Wouter],
Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based
Penman-Monteith Model to Meteorological and Land Surface Input
Variables,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Delogu, E.[Emilie],
Olioso, A.[Albert],
Alliès, A.[Aubin],
Demarty, J.[Jérôme],
Boulet, G.[Gilles],
Evaluation of Multiple Methods for the Production of Continuous
Evapotranspiration Estimates from TIR Remote Sensing,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Mobilia, M.[Mirka],
Longobardi, A.[Antonia],
Prediction of Potential and Actual Evapotranspiration Fluxes Using
Six Meteorological Data-Based Approaches for a Range of Climate and
Land Cover Types,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Li, C.G.[Chan-Glong],
Li, Z.Y.[Zeng-Yuan],
Gao, Z.H.[Zhi-Hai],
Sun, B.[Bin],
Estimation of Evapotranspiration in Sparse Vegetation Areas by
Applying an Optimized Two-Source Model,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Li, B.Y.[Bo-Yang],
Cui, Y.K.[Yao-Kui],
Geng, X.Z.[Xiao-Zhuang],
Li, H.[Huan],
Improving the Evapotranspiration Estimation under Cloudy Condition by
Extending the Ts-VI Triangle Model,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Le, M.S.[Mai Son],
Liou, Y.A.[Yuei-An],
Spatio-Temporal Assessment of Surface Moisture and Evapotranspiration
Variability Using Remote Sensing Techniques,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Silvestro, P.C.[Paolo Cosmo],
Casa, R.[Raffaele],
Hanuš, J.[Jan],
Koetz, B.[Benjamin],
Rascher, U.[Uwe],
Schuettemeyer, D.[Dirk],
Siegmann, B.[Bastian],
Skokovic, D.[Drazen],
Sobrino, J.[José],
Tudoroiu, M.[Marin],
Synergistic Use of Multispectral Data and Crop Growth Modelling for
Spatial and Temporal Evapotranspiration Estimations,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Mokhtari, A.[Ali],
Ahmadi, A.[Arman],
Daccache, A.[Andre],
Drechsler, K.[Kelley],
Actual Evapotranspiration from UAV Images:
A Multi-Sensor Data Fusion Approach,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chao, L.J.[Li-Jun],
Zhang, K.[Ke],
Wang, J.F.[Jing-Feng],
Feng, J.[Jin],
Zhang, M.J.[Meng-Jie],
A Comprehensive Evaluation of Five Evapotranspiration Datasets Based
on Ground and GRACE Satellite Observations: Implications for
Improvement of Evapotranspiration Retrieval Algorithm,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Laipelt, L.[Leonardo],
Henrique Bloedow Kayser, R.[Rafael],
Santos Fleischmann, A.[Ayan],
Ruhoff, A.[Anderson],
Bastiaanssen, W.[Wim],
Erickson, T.A.[Tyler A.],
Melton, F.[Forrest],
Long-term monitoring of evapotranspiration using the SEBAL algorithm
and Google Earth Engine cloud computing,
PandRS(178), 2021, pp. 81-96.
Elsevier DOI
2108
Cloud computation, ERA5 land, geeSEBAL, Google earth engine,
Landsat, Meteorological reanalysis
BibRef
Nassar, A.[Ayman],
Torres-Rua, A.[Alfonso],
Kustas, W.[William],
Alfieri, J.[Joseph],
Hipps, L.[Lawrence],
Prueger, J.[John],
Nieto, H.[Héctor],
Alsina, M.M.[Maria Mar],
White, W.[William],
McKee, L.[Lynn],
Coopmans, C.[Calvin],
Sanchez, L.[Luis],
Dokoozlian, N.[Nick],
Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day
sUAS and EC Information in the GRAPEX Project,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Dimitriadou, S.[Stavroula],
Nikolakopoulos, K.G.[Konstantinos G.],
Annual Actual Evapotranspiration Estimation via GIS Models of Three
Empirical Methods Employing Remotely Sensed Data for the Peloponnese,
Greece, and Comparison with Annual MODIS ET and Pan Evaporation
Measurements,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Xing, W.Q.[Wan-Qiu],
Wang, W.G.[Wei-Guang],
Shao, Q.X.[Quan-Xi],
Song, L.Y.[Lin-Ye],
Cao, M.Z.[Ming-Zhu],
Estimation of Evapotranspiration and Its Components across China
Based on a Modified Priestley-Taylor Algorithm Using Monthly
Multi-Layer Soil Moisture Data,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xue, J.[Jie],
Anderson, M.C.[Martha C.],
Gao, F.[Feng],
Hain, C.[Christopher],
Yang, Y.[Yun],
Knipper, K.R.[Kyle R.],
Kustas, W.P.[William P.],
Yang, Y.[Yang],
Mapping Daily Evapotranspiration at Field Scale Using the Harmonized
Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2
Thermal Proxy,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, Y.[Yuan],
Yue, Q.M.[Qi-Meng],
Wang, Q.Y.[Qian-Yang],
Yu, J.S.[Jing-Shan],
Zheng, Y.X.[Yue-Xin],
Yao, X.L.[Xiao-Lei],
Xu, S.G.[Shu-Gao],
A Framework for Actual Evapotranspiration Assessment and Projection
Based on Meteorological, Vegetation and Hydrological Remote Sensing
Products,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, Y.[Yan],
Zhang, S.[Sha],
Zhang, J.H.[Jia-Hua],
Tang, L.L.[Li-Li],
Bai, Y.[Yun],
Assessment and Comparison of Six Machine Learning Models in
Estimating Evapotranspiration over Croplands Using Remote Sensing and
Meteorological Factors,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
Evaluation, Evapotranspiration.
BibRef
Kadam, S.I.A.[Sun-Il A.],
Stöckle, C.O.[Claudio O.],
Liu, M.L.[Ming-Liang],
Gao, Z.M.[Zhong-Ming],
Russell, E.S.[Eric S.],
Suitability of Earth Engine Evaporation Flux (EEFlux) Estimation of
Evapotranspiration in Rainfed Crops,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Rojas, L.A.R.[Luis A. Reyes],
Moletto-Lobos, I.[Italo],
Corradini, F.[Fabio],
Mattar, C.[Cristian],
Fuster, R.[Rodrigo],
Escobar-Avaria, C.[Cristián],
Determining Actual Evapotranspiration Based on Machine Learning and
Sinusoidal Approaches Applied to Thermal High-Resolution Remote
Sensing Imagery in a Semi-Arid Ecosystem,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Li, X.[Xiang],
Liu, S.M.[Shao-Min],
Yang, X.F.[Xiao-Fan],
Ma, Y.F.[Yan-Fei],
He, X.L.[Xin-Lei],
Xu, Z.W.[Zi-Wei],
Xu, T.R.[Tong-Ren],
Song, L.S.[Li-Sheng],
Zhang, Y.[Yuan],
Hu, X.[Xiao],
Ju, Q.[Qian],
Zhang, X.D.[Xiao-Dong],
Upscaling Evapotranspiration from a Single-Site to Satellite Pixel
Scale,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Castelli, M.[Mariapina],
Evapotranspiration Changes over the European Alps: Consistency of
Trends and Their Drivers between the MOD16 and SSEBop Algorithms,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Bhattarai, N.[Nishan],
Wagle, P.[Pradeep],
Recent Advances in Remote Sensing of Evapotranspiration,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhao, Q.Z.[Qing-Zhi],
Sun, T.T.[Ting-Ting],
Zhang, T.X.[Teng-Xu],
He, L.[Lin],
Zhang, Z.Y.[Zhi-Yi],
Shen, Z.Y.[Zi-Yu],
Xiong, S.[Si],
High-Precision Potential Evapotranspiration Model Using GNSS
Observation,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Abbasi, N.[Neda],
Nouri, H.[Hamideh],
Didan, K.[Kamel],
Barreto-Muñoz, A.[Armando],
Borujeni, S.C.[Sattar Chavoshi],
Salemi, H.[Hamidreza],
Opp, C.[Christian],
Siebert, S.[Stefan],
Nagler, P.[Pamela],
Estimating Actual Evapotranspiration over Croplands Using Vegetation
Index Methods and Dynamic Harvested Area,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Koch, J.[Julian],
Demirel, M.C.[Mehmet Cüneyd],
Stisen, S.[Simon],
Climate Normalized Spatial Patterns of Evapotranspiration Enhance the
Calibration of a Hydrological Model,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Nassar, A.[Ayman],
Torres-Rua, A.[Alfonso],
Hipps, L.[Lawrence],
Kustas, W.[William],
McKee, M.[Mac],
Stevens, D.[David],
Nieto, H.[Héctor],
Keller, D.[Daniel],
Gowing, I.[Ian],
Coopmans, C.[Calvin],
Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to
Analyze Evapotranspiration Modeling in a Natural Ecosystem,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Long, X.J.[Xun-Jian],
Cui, Y.K.[Yao-Kui],
Spatially Downscaling a Global Evapotranspiration Product for End
User Using a Deep Neural Network: A Case Study with the GLEAM Product,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Guo, X.[Xiao],
Wu, Z.Y.[Zhi-Yong],
He, H.[Hai],
Xu, Z.G.[Zheng-Guang],
Evaluating the Potential of Different Evapotranspiration Datasets for
Distributed Hydrological Model Calibration,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, L.J.[Lin-Jiang],
Wu, B.F.[Bing-Fang],
Elnashar, A.[Abdelrazek],
Zhu, W.W.[Wei-Wei],
Yan, N.[Nana],
Ma, Z.H.[Zong-Han],
Liu, S.R.[Shi-Rong],
Niu, X.D.[Xiao-Dong],
Incorporation of Net Radiation Model Considering Complex Terrain in
Evapotranspiration Determination with Sentinel-2 Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Guo, D.[Danlu],
Parehkar, A.[Arash],
Ryu, D.[Dongryeol],
Wang, Q.J.[Quan J.],
Western, A.W.[Andrew W.],
Parsimonious Gap-Filling Models for Sub-Daily Actual
Evapotranspiration Observations from Eddy-Covariance Systems,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Astuti, I.S.[Ike Sari],
Wiwoho, B.S.[Bagus Setiabudi],
Purwanto, P.[Purwanto],
Wagistina, S.[Satti],
Deffinika, I.[Ifan],
Sucahyo, H.R.[Hetty Rahmawati],
Herlambang, G.A.[Gilang Aulia],
Alfarizi, I.A.G.[Imam Abdul Gani],
An Application of Improved MODIS-Based Potential Evapotranspiration
Estimates in a Humid Tropic Brantas Watershed:
Implications for Agricultural Water Management,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Yang, Y.[Yun],
Anderson, M.[Martha],
Gao, F.[Feng],
Xue, J.[Jie],
Knipper, K.[Kyle],
Hain, C.[Christopher],
Improved Daily Evapotranspiration Estimation Using Remotely Sensed
Data in a Data Fusion System,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Ebert, L.A.[Logan A.],
Talib, A.[Ammara],
Zipper, S.C.[Samuel C.],
Desai, A.R.[Ankur R.],
U, K.T.P.[Kyaw Tha Paw],
Chisholm, A.J.[Alex J.],
Prater, J.[Jacob],
Nocco, M.A.[Mallika A.],
How High to Fly? Mapping Evapotranspiration from Remotely Piloted
Aircrafts at Different Elevations,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Matta, E.[Erica],
Amadori, M.[Marina],
Free, G.[Gary],
Giardino, C.[Claudia],
Bresciani, M.[Mariano],
A Satellite-Based Tool for Mapping Evaporation in Inland Water
Bodies: Formulation, Application, and Operational Aspects,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Garcia-Santos, V.[Vicente],
Niclòs, R.[Raquel],
Valor, E.[Enric],
Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8
Split-Window Land Surface Temperature Products over Two European
Agricultural Crops,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Luo, Z.L.[Ze-Lin],
Guo, M.[Mengjing],
Bai, P.[Peng],
Li, J.[Jing],
Different Vegetation Information Inputs Significantly Affect the
Evapotranspiration Simulations of the PT-JPL Model,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
García-Santos, V.[Vicente],
Sánchez, J.M.[Juan Manuel],
Cuxart, J.[Joan],
Evapotranspiration Acquired with Remote Sensing Thermal-Based
Algorithms: A State-of-the-Art Review,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, Y.[Yuan],
Liu, S.M.[Shao-Min],
Song, L.S.[Li-Sheng],
Li, X.[Xiang],
Jia, Z.Z.[Zhen-Zhen],
Xu, T.R.[Tong-Ren],
Xu, Z.W.[Zi-Wei],
Ma, Y.F.[Yan-Fei],
Zhou, J.[Ji],
Yang, X.F.[Xiao-Fan],
He, X.L.[Xin-Lei],
Yao, Y.J.[Yun-Jun],
Hu, G.C.[Guang-Cheng],
Integrated Validation of Coarse Remotely Sensed Evapotranspiration
Products over Heterogeneous Land Surfaces,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Jiang, Y.[Yazhen],
Wang, J.[Junrui],
Wang, Y.[Yafei],
Daily Evapotranspiration Estimations by Direct Calculation and
Temporal Upscaling Based on Field and MODIS Data,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chai, X.Y.[Xing-Yu],
Li, J.C.[Jin-Cai],
Zhao, J.[Jun],
Wang, W.X.[Wu-Xin],
Zhao, X.F.[Xiao-Feng],
LGB-PHY: An Evaporation Duct Height Prediction Model Based on
Physically Constrained LightGBM Algorithm,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, H.[Haobo],
Jiang, C.[Chenhui],
Choy, S.[Suelynn],
Wang, X.M.[Xiao-Ming],
Zhang, K.[Kefei],
Zhu, D.J.[De-Jun],
A Comprehensive Study on Factors Affecting the Calibration of
Potential Evapotranspiration Derived from the Thornthwaite Model,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Athira, K.V.,
Eswar, R.,
Boulet, G.[Gilles],
Nigam, R.[Rahul],
Bhattacharya, B.K.[Bimal K.],
Modeling Evapotranspiration at Larger Temporal Scales: Effects of
Temporal Aggregation and Data Gaps,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yang, C.[Cheng],
Wang, J.[Jian],
Shi, Y.[Yafei],
A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height
Prediction Model Derived from MAGIC Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Che, X.H.[Xiang-Hong],
Zhang, H.K.[Hankui K.],
Sun, Q.[Qing],
Ouyang, Z.[Zutao],
Liu, J.P.[Ji-Ping],
MODIS Evapotranspiration Downscaling Using a Deep Neural Network
Trained Using Landsat 8 Reflectance and Temperature Data,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, L.J.[Li-Juan],
Guo, N.[Ni],
Yue, P.[Ping],
Hu, D.[Die],
Sha, S.[Sha],
Wang, X.P.[Xiao-Ping],
Regulation of Evapotranspiration in Different Precipitation Zones and
Its Application in High-Temperature and Drought Monitoring,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Saboori, M.[Mojtaba],
Mousivand, Y.[Yousef],
Cristóbal, J.[Jordi],
Shah-Hosseini, R.[Reza],
Mokhtari, A.[Ali],
An Automated and Improved Methodology to Retrieve Long-time Series of
Evapotranspiration Based on Remote Sensing and Reanalysis Data,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Mueller, M.M.[Marlin M.],
Dubois, C.[Clémence],
Jagdhuber, T.[Thomas],
Hellwig, F.M.[Florian M.],
Pathe, C.[Carsten],
Schmullius, C.[Christiane],
Steele-Dunne, S.[Susan],
Sentinel-1 Backscatter Time Series for Characterization of
Evapotranspiration Dynamics over Temperate Coniferous Forests,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chang, Y.P.[Ya-Ping],
Ding, Y.J.[Yong-Jian],
Zhao, Q.D.[Qiu-Dong],
Zhang, S.Q.[Shi-Qiang],
Attributing Evapotranspiration Changes with an Extended Budyko
Framework Considering Glacier Changes in a Cryospheric-Dominated
Watershed,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Abbasi, N.[Neda],
Nouri, H.[Hamideh],
Didan, K.[Kamel],
Barreto-Muñoz, A.[Armando],
Borujeni, S.C.[Sattar Chavoshi],
Opp, C.[Christian],
Nagler, P.[Pamela],
Thenkabail, P.S.[Prasad S.],
Siebert, S.[Stefan],
Mapping Vegetation Index-Derived Actual Evapotranspiration across
Croplands Using the Google Earth Engine Platform,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
He, Y.[Yan],
Wang, C.[Chen],
Hu, J.H.[Jing-Hao],
Mao, H.H.[Hui-Hui],
Duan, Z.[Zheng],
Qu, C.[Cixiao],
Li, R.[Runkui],
Wang, M.Y.[Ming-Yu],
Song, X.F.[Xian-Feng],
Discovering Optimal Triplets for Assessing the Uncertainties of
Satellite-Derived Evapotranspiration Products,
RS(15), No. 13, 2023, pp. 3215.
DOI Link
2307
BibRef
Blagoveshchenskaya, N.F.[Nataly F.],
Borisova, T.D.[Tatiana D.],
Kalishin, A.S.[Alexey S.],
Egorov, I.M.[Ivan M.],
Artificial Ducts Created via High-Power HF Radio Waves at EISCAT,
RS(15), No. 9, 2023, pp. 2300.
DOI Link
See also Comment on Blagoveshchenskaya et al. Artificial Ducts Created via High-Power HF Radio Waves at EISCAT. Remote Sens. 2023, 15, 2300.
BibRef
2300
Huang, L.F.[Li-Feng],
Liu, C.G.[Cheng-Guo],
Wu, Z.P.[Zhi-Peng],
Zhang, L.J.[Li-Jun],
Wang, H.G.[Hong-Guang],
Zhu, Q.L.[Qing-Lin],
Han, J.[Jie],
Sun, M.C.[Ming-Chen],
Comparative Analysis of Intelligent Optimization Algorithms for
Atmospheric Duct Inversion Using Automatic Identification System
Signals,
RS(15), No. 14, 2023, pp. 3577.
DOI Link
2307
BibRef
Wang, T.T.[Tian-Teng],
Wang, X.P.[Xu-Ping],
Jiang, Y.P.[Yi-Ping],
Sun, Z.[Zilai],
Liang, Y.[Yuhu],
Hu, X.P.[Xiang-Pei],
Li, H.[Hao],
Shi, Y.[Yan],
Xu, J.[Jingjun],
Ruan, J.[Junhu],
Hybrid Machine Learning Approach for Evapotranspiration Estimation of
Fruit Tree in Agricultural Cyber-Physical Systems,
Cyber(53), No. 9, September 2023, pp. 5677-5691.
IEEE DOI
2309
BibRef
Zhu, W.B.[Wen-Bin],
Fan, L.[Li],
Jia, S.F.[Shao-Feng],
Integration of microwave satellite soil moisture products in the
contextual surface temperature-vegetation index models for spatially
continuous evapotranspiration estimation,
PandRS(203), 2023, pp. 211-229.
Elsevier DOI
2310
Evapotranspiration, Soil moisture, Contextual TVX models,
Downscaling, Satellite remote sensing
BibRef
Yang, C.[Chao],
Wang, Y.[Yulu],
Zhang, A.[Aoxiang],
Fan, H.[Hualei],
Guo, L.X.[Li-Xin],
A Random Forest Algorithm Combined with Bayesian Optimization for
Atmospheric Duct Estimation,
RS(15), No. 17, 2023, pp. 4296.
DOI Link
2310
BibRef
Rietveld, M.[Michael],
Senior, A.[Andrew],
Comment on Blagoveshchenskaya et al. Artificial Ducts Created via
High-Power HF Radio Waves at EISCAT. Remote Sens. 2023, 15, 2300,
RS(15), No. 17, 2023, pp. 4294.
DOI Link
2310
See also Artificial Ducts Created via High-Power HF Radio Waves at EISCAT.
BibRef
Liu, Y.[Yi],
Ortega-Farías, S.[Samuel],
Fan, Y.F.[Yun-Fei],
Hou, Y.[Yu],
Wang, S.[Sufen],
Yang, W.[Weicai],
Li, S.[Sien],
Tian, F.[Fei],
Comparison of Differences in Actual Cropland Evapotranspiration under
Two Irrigation Methods Using Satellite-Based Model,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Hascoet, T.[Tristan],
Pellet, V.[Victor],
Aires, F.[Filipe],
Takiguchi, T.[Tetsuya],
Learning Global Evapotranspiration Dataset Corrections from a Water
Cycle Closure Supervision,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Xie, Z.J.[Zi-Jing],
Yao, Y.J.[Yun-Jun],
Tang, Q.X.[Qing-Xin],
Zhang, X.Y.[Xue-Yi],
Zhang, X.T.[Xiao-Tong],
Jiang, B.[Bo],
Xu, J.[Jia],
Yu, R.Y.[Rui-Yang],
Liu, L.[Lu],
Ning, J.[Jing],
Fan, J.[Jiahui],
Zhang, L.[Luna],
Global Terrestrial Evapotranspiration Estimation from Visible
Infrared Imaging Radiometer Suite (VIIRS) Data,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Cui, Z.L.[Zi-Long],
Zhang, Y.[Yuan],
Wang, A.[Anzhi],
Wu, J.[Jiabing],
Li, C.[Chunbo],
Uncertainty Analysis and Data Fusion of Multi-Source Land
Evapotranspiration Products Based on the TCH Method,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Dai, Q.[Qin],
Chen, H.[Hong],
Cui, C.F.[Chen-Feng],
Li, J.[Jie],
Sun, J.[Jun],
Ma, Y.X.[Yu-Xin],
Peng, X.[Xuelian],
Wang, Y.K.[Ya-Kun],
Hu, X.T.[Xiao-Tao],
Spatiotemporal Characteristics of Actual Evapotranspiration Changes
and Their Climatic Causes in China,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Wang, Z.J.[Zi-Jun],
Liu, Y.Y.[Yang-Yang],
Wang, Z.Q.[Zhen-Qian],
Zhang, H.[Hong],
Chen, X.[Xu],
Wen, Z.M.[Zhong-Ming],
Lin, Z.Q.[Zi-Qi],
Han, P.[Peidong],
Xue, T.[Tingyi],
Quantifying the Spatiotemporal Changes in Evapotranspiration and Its
Components Driven by Vegetation Greening and Climate Change in the
Northern Foot of Yinshan Mountain,
RS(16), No. 2, 2024, pp. 357.
DOI Link
2402
BibRef
Zhao, G.[Gengle],
Song, L.S.[Li-Sheng],
Zhao, L.[Long],
Tao, S.[Sinuo],
A Comparison of Different Machine Learning Methods to Reconstruct
Daily Evapotranspiration Time Series Estimated by Thermal-Infrared
Remote Sensing,
RS(16), No. 3, 2024, pp. 509.
DOI Link
2402
BibRef
Rautiainen, L.[Laura],
Tyynelä, J.[Jani],
Lensu, M.[Mikko],
Siiriä, S.[Simo],
Vakkari, V.[Ville],
O'Connor, E.[Ewan],
Hämäläinen, K.[Karoliina],
Lonka, H.[Harry],
Stenbäck, K.[Ken],
Koistinen, J.[Jarmo],
Laakso, L.[Lauri],
Uto Observatory for Analysing Atmospheric Ducting Events over Baltic
Coastal and Marine Waters,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Jin, T.[Taekyeong],
Cho, J.[Jeongmin],
Jang, D.[Doyoung],
Choo, H.[Hosung],
Prediction of Atmospheric Duct Conditions from a Clutter Power
Spectrum Using Deep Learning,
RS(16), No. 4, 2024, pp. 674.
DOI Link
2402
BibRef
Du, C.M.[Chang-Min],
Jiang, S.Z.[Shou-Zheng],
Chen, C.Q.[Chu-Qiang],
Guo, Q.Y.[Qian-Yue],
He, Q.Y.[Qing-Yan],
Zhan, C.[Cun],
Machine Learning-Based Estimation of Daily Cropland
Evapotranspiration in Diverse Climate Zones,
RS(16), No. 5, 2024, pp. 730.
DOI Link
2403
BibRef
Zheng, X.[Xin],
Zhang, S.[Sha],
Zhang, J.H.[Jia-Hua],
Yang, S.S.[Shan-Shan],
Huang, J.J.[Jiao-Jiao],
Meng, X.[Xianye],
Bai, Y.[Yun],
Prediction of Large-Scale Regional Evapotranspiration Based on
Multi-Scale Feature Extraction and Multi-Headed Self-Attention,
RS(16), No. 7, 2024, pp. 1235.
DOI Link
2404
BibRef
Hiestand, M.P.[Mikael P.],
Tollerud, H.J.[Heather J.],
Funk, C.[Chris],
Senay, G.B.[Gabriel B.],
Fickas, K.C.[Kate C.],
Friedrichs, M.O.[MacKenzie O.],
SSEBop Evapotranspiration Estimates Using Synthetically Derived
Landsat Data from the Continuous Change Detection and Classification
Algorithm,
RS(16), No. 7, 2024, pp. 1297.
DOI Link
2404
BibRef
Derardja, B.[Bilal],
Khadra, R.[Roula],
Abdelmoneim, A.A.A.[Ahmed Ali Ayoub],
El-Shirbeny, M.A.[Mohammed A.],
Valsamidis, T.[Theophilos],
de Pasquale, V.[Vito],
Deflorio, A.M.[Anna Maria],
Volden, E.[Espen],
Advancements in Remote Sensing for Evapotranspiration Estimation:
A Comprehensive Review of Temperature-Based Models,
RS(16), No. 11, 2024, pp. 1927.
DOI Link
2406
BibRef
Petrakis, R.E.[Roy E.],
Norman, L.M.[Laura M.],
Villarreal, M.L.[Miguel L.],
Senay, G.B.[Gabriel B.],
Friedrichs, M.O.[MacKenzie O.],
Cassassuce, F.[Florance],
Gomis, F.[Florent],
Nagler, P.L.[Pamela L.],
An Ensemble Mean Method for Remote Sensing of Actual
Evapotranspiration to Estimate Water Budget Response across a
Restoration Landscape,
RS(16), No. 12, 2024, pp. 2122.
DOI Link
2406
BibRef
Zhang, X.C.[Xiao-Chun],
Gao, H.[Hongsi],
Shi, L.[Liangsheng],
Hu, X.L.[Xiao-Long],
Zhong, L.[Liao],
Bian, J.[Jiang],
Mapping Crop Evapotranspiration by Combining the Unmixing and Weight
Image Fusion Methods,
RS(16), No. 13, 2024, pp. 2414.
DOI Link
2407
BibRef
Tawalbeh, Z.M.[Zada M.],
Bawazir, A.S.[A. Salim],
Fernald, A.[Alexander],
Sabie, R.[Robert],
Spatiotemporal Variabilities in Evapotranspiration of Alfalfa:
A Case Study Using Remote Sensing METRIC and SSEBop Models and Eddy
Covariance,
RS(16), No. 13, 2024, pp. 2290.
DOI Link
2407
BibRef
Sabie, R.[Robert],
Bawazir, A.S.[A. Salim],
Buenemann, M.[Michaela],
Steele, C.[Caitriana],
Fernald, A.[Alexander],
Calculating Vegetation Index-Based Crop Coefficients for Alfalfa in
the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2
(HLS) Data and Eddy Covariance Flux Tower Data,
RS(16), No. 16, 2024, pp. 2876.
DOI Link
2408
BibRef
Xie, Z.J.[Zi-Jing],
Yao, Y.J.[Yun-Jun],
Li, Y.[Yufu],
Liu, L.[Lu],
Ning, J.[Jing],
Yu, R.Y.[Rui-Yang],
Fan, J.[Jiahui],
Kan, Y.X.[Yi-Xi],
Zhang, L.[Luna],
Xu, J.[Jia],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Satellite-Based PT-SinRH Evapotranspiration Model:
Development and Validation from AmeriFlux Data,
RS(16), No. 15, 2024, pp. 2783.
DOI Link
2408
BibRef
Gokool, S.[Shaeden],
Kunz, R.[Richard],
Clulow, A.[Alistair],
Toucher, M.[Michele],
Leveraging Google Earth Engine and Machine Learning to Estimate
Evapotranspiration in a Commercial Forest Plantation,
RS(16), No. 15, 2024, pp. 2726.
DOI Link
2408
BibRef
Cheng, Y.[Yinhe],
Zha, M.L.[Meng-Ling],
Qiao, W.L.[Wen-Li],
He, H.J.[Hong-Jian],
Wang, S.W.[Shu-Wen],
Wang, S.X.[Sheng-Xiang],
Li, X.R.[Xiao-Ran],
He, W.[Weiye],
An Improved Remote Sensing Retrieval Method for Elevated Duct in the
South China Sea,
RS(16), No. 14, 2024, pp. 2649.
DOI Link
2408
BibRef
Laipelt, L.[Leonardo],
Rossi, J.B.[Julia Brusso],
de Andrade, B.C.[Bruno Comini],
Scherer-Warren, M.[Morris],
Ruhoff, A.[Anderson],
Assessing Evapotranspiration Changes in Response to Cropland
Expansion in Tropical Climates,
RS(16), No. 18, 2024, pp. 3404.
DOI Link
2410
BibRef
Gemechu, T.M.[Tewekel Melese],
Chen, B.Z.[Bao-Zhang],
Zhang, H.F.[Hui-Fang],
Fang, J.J.[Jun-Jun],
Dilawar, A.[Adil],
Enhancing Transpiration Estimates: A Novel Approach Using SIF
Partitioning and the TL-LUE Model,
RS(16), No. 21, 2024, pp. 3924.
DOI Link
2411
BibRef
Liu, X.,
Tang, Q.,
Changes in Evapotranspiration and The Potential Drivers in Asian Arid
Regions During 2003 to 2017,
SMPR19(679-682).
DOI Link
1912
BibRef
Abid, N.,
Mannaerts, C.,
Bargaoui, Z.,
Sensitivity of Actual Evapotranspiration Estimation Using The Sebs
Model to Variation of Input Parameters (lst, Dssf, Aerodynamics
Parameters, Lai, Fvc),
ISSDQ19(1193-1200).
DOI Link
1912
BibRef
Fonseca-Luengo, D.[David],
Lillo-Saavedra, M.[Mario],
Lagos, L.O.,
García-Pedrero, A.[Angel],
Gonzalo-Martín, C.[Consuelo],
Use of Machine Learning to Improve the Robustness of Spatial Estimation
of Evapotranspiration,
CIARP17(237-245).
Springer DOI
1802
BibRef
Martens, B.,
Miralles, D.G.,
Dorigo, W.A.,
Waegeman, W.,
Verhoest, N.E.C.,
Investigating the control of ocean-atmospheric oscillations over
global terrestrial evaporation using a simple supervised learning
method,
MultiTemp17(1-3)
IEEE DOI
1712
atmospheric movements, climatology, ecology, evaporation,
climate impact, climatic variables,
Terrestrial atmosphere
BibRef
Barrios, J.M.,
Ghilain, N.,
Arboleda, A.,
Gellens-Meulenberghs, F.,
Evaluating an energy balance setting and random forest-based
downscaling for the estimation of daily ET at sub-kilometer spatial
resolution,
MultiTemp17(1-4)
IEEE DOI
1712
evaporation, remote sensing, transpiration, Biebrza river,
North Eastern Poland, Random Forest, energy balance,
Spatial resolution
BibRef
Barrios, J.M.,
Ghilain, N.,
Arboleda, A.,
Gellens-Meulenberghs, F.,
Retrieving daily evapotranspiration from the combination of
geostationary and polar-orbit satellite data,
MultiTemp15(1-4)
IEEE DOI
1511
ecology
BibRef
Atasever, Ü.H.,
Kesikoglu, M.H.,
Özkan, C.,
Evamapper: A Novel Matlab Toolbox For Evapotranspiration Mapping,
SSG13(23-26).
DOI Link
1402
BibRef
Doklestic, D.[Dea],
Smith, R.B.[Ronald B.],
Does evapotranspiration influence the strength of the North American
monsoon? Multitemporal satellite analysis of evapotranspiration and
its effects,
MultiTemp11(173-176).
IEEE DOI
1109
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Specific Site Evapotranspiration Analyusis .