Tang, X.[Xiaoou],
Stewart, W.K.[W. Kenneth],
Huang, H.[He],
Gallager, S.M.[Scott M.],
Davis, C.S.[Cabell S.],
Vincent, L.[Luc],
Marra, M.[Marty],
Automatic Plankton Image Recognition,
AIR(12), No. 1-3, February 1998, pp. 177-199.
WWW Link.
9807
Applied to detection and monitoring of plankton.
BibRef
Toth, L.,
Culverhouse, P.F.,
3D Object Recognition from Static 2D Views Using
Multiple Coarse Data Channels,
IVC(17), No. 11, September 1999, pp. 845-858.
Elsevier DOI A computer vision journal report on work dealing with monitoring
plankton.
BibRef
9909
d'Alimonte, D.,
Zibordi, G.,
Phytoplankton determination in an optically complex coastal region
using a multilayer perceptron neural network,
GeoRS(41), No. 12, December 2003, pp. 2861-2868.
IEEE Abstract.
0402
BibRef
Luo, T.,
Kramer, K.,
Goldgof, D.B.,
Hall, L.O.,
Samson, S.,
Remsen, A.,
Hopkins, T.,
Recognizing Plankton Images From the Shadow Image Particle Profiling
Evaluation Recorder,
SMC-B(34), No. 4, August 2004, pp. 1753-1762.
IEEE Abstract.
0409
BibRef
And:
Errata:
SMC-B(34), No. 6, December 2004, pp. 2423-2423.
IEEE Abstract.
0412
BibRef
Verikas, A.[Antanas],
Gelzinis, A.[Adas],
Bacauskiene, M.[Marija],
Olenina, I.,
Olenin, S.,
Vaiciukynas, E.[Evaldas],
Phase congruency-based detection of circular objects applied to
analysis of phytoplankton images,
PR(45), No. 4, 2012, pp. 1659-1670.
Elsevier DOI
1410
Phase congruency
BibRef
Gelzinis, A.[Adas],
Verikas, A.[Antanas],
Vaiciukynas, E.[Evaldas],
Bacauskiene, M.[Marija],
A novel technique to extract accurate cell contours applied for
segmentation of phytoplankton images,
MVA(26), No. 2-3, April 2015, pp. 305-315.
Springer DOI
1504
BibRef
Rousseaux, C.S.[Cecile S.],
Gregg, W.W.[Watson W.],
Interannual Variation in Phytoplankton Primary Production at A Global
Scale,
RS(6), No. 1, 2013, pp. 1-19.
DOI Link
1412
BibRef
Ryan, J.P.[John P.],
Davis, C.O.[Curtiss O.],
Tufillaro, N.B.[Nicholas B.],
Kudela, R.M.[Raphael M.],
Gao, B.C.[Bo-Cai],
Application of the Hyperspectral Imager for the Coastal Ocean to
Phytoplankton Ecology Studies in Monterey Bay, CA, USA,
RS(6), No. 2, 2014, pp. 1007-1025.
DOI Link
1403
See also Correction: Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA.
BibRef
Montes, M.J.[Marcos J.],
Ryan, J.P.[John P.],
Davis, C.O.[Curtiss O.],
Tufillaro, N.B.[Nicholas B.],
Kudela, R.M.[Raphael M.],
Correction: Application of the Hyperspectral Imager
for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey
Bay, CA, USA,
RS(7), No. 10, 2015, pp. 13364.
DOI Link
1511
See also Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA.
BibRef
Siswanto, E.[Eko],
Tanaka, K.[Katsuhisa],
Phytoplankton Biomass Dynamics in the Strait of Malacca within the
Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual
Variations and Decadal-Scale Trends,
RS(6), No. 4, 2014, pp. 2718-2742.
DOI Link
1405
BibRef
Blondeau-Patissier, D.[David],
Schroeder, T.[Thomas],
Brando, V.E.[Vittorio E.],
Maier, S.W.[Stefan W.],
Dekker, A.G.[Arnold G.],
Phinn, S.[Stuart],
ESA-MERIS 10-Year Mission Reveals Contrasting Phytoplankton Bloom
Dynamics in Two Tropical Regions of Northern Australia,
RS(6), No. 4, 2014, pp. 2963-2988.
DOI Link
1405
BibRef
Brewin, R.J.W.[Robert J.W.],
Mélin, F.[Frédéric],
Sathyendranath, S.[Shubha],
Steinmetz, F.[François],
Chuprin, A.[Andrei],
Grant, M.[Mike],
On the temporal consistency of chlorophyll products derived from
three ocean-colour sensors,
PandRS(97), No. 1, 2014, pp. 171-184.
Elsevier DOI
1410
Phytoplankton
BibRef
Xi, H.Y.[Hong-Yan],
Hieronymi, M.[Martin],
Röttgers, R.[Rüdiger],
Krasemann, H.[Hajo],
Qiu, Z.F.[Zhong-Feng],
Hyperspectral Differentiation of Phytoplankton Taxonomic Groups:
A Comparison between Using Remote Sensing Reflectance and Absorption
Spectra,
RS(7), No. 11, 2015, pp. 14781.
DOI Link
1512
BibRef
Xue, K.[Kun],
Zhang, Y.C.[Yu-Chao],
Duan, H.T.[Hong-Tao],
Ma, R.H.[Rong-Hua],
Loiselle, S.[Steven],
Zhang, M.W.[Min-Wei],
A Remote Sensing Approach to Estimate Vertical Profile Classes of
Phytoplankton in a Eutrophic Lake,
RS(7), No. 11, 2015, pp. 14403.
DOI Link
1512
BibRef
Cristina, S.[Sónia],
Cordeiro, C.[Clara],
Lavender, S.[Samantha],
Goela, P.C.[Priscila Costa],
Icely, J.[John],
Newton, A.[Alice],
MERIS Phytoplankton Time Series Products from the SW Iberian
Peninsula (Sagres) Using Seasonal-Trend Decomposition Based on Loess,
RS(8), No. 6, 2016, pp. 449.
DOI Link
1608
BibRef
Wolanin, A.[Aleksandra],
Soppa, M.A.[Mariana A.],
Bracher, A.[Astrid],
Investigation of Spectral Band Requirements for Improving Retrievals
of Phytoplankton Functional Types,
RS(8), No. 10, 2016, pp. 871.
DOI Link
1609
BibRef
Liu, Z.H.[Zong-Hua],
Watson, J.[John],
Allen, A.[Alastair],
A polygonal approximation of shape boundaries of marine plankton
based-on genetic algorithms,
JVCIR(41), No. 1, 2016, pp. 305-313.
Elsevier DOI
1612
Image processing
BibRef
Zheng, H.Y.[Hai-Yong],
Wang, N.[Nan],
Yu, Z.B.[Zhi-Bin],
Gu, Z.R.[Zhao-Rui],
Zheng, B.[Bing],
Robust and automatic cell detection and segmentation from microscopic
images of non-setae phytoplankton species,
IET-IPR(11), No. 11, November 2017, pp. 1077-1085.
DOI Link
1711
BibRef
Waga, H.[Hisatomo],
Hirawake, T.[Toru],
Fujiwara, A.[Amane],
Kikuchi, T.[Takashi],
Nishino, S.[Shigeto],
Suzuki, K.[Koji],
Takao, S.[Shintaro],
Saitoh, S.I.[Sei-Ichi],
Differences in Rate and Direction of Shifts between Phytoplankton
Size Structure and Sea Surface Temperature,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Deng, Y.B.[Yu-Bing],
Zhang, Y.L.[Yun-Lin],
Li, D.[Deping],
Shi, K.[Kun],
Zhang, Y.[Yibo],
Temporal and Spatial Dynamics of Phytoplankton Primary Production in
Lake Taihu Derived from MODIS Data,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Hu, S.B.[Shui-Bo],
Liu, H.Z.[Hui-Zeng],
Zhao, W.J.[Wen-Jing],
Shi, T.Z.[Tie-Zhu],
Hu, Z.W.[Zhong-Wen],
Li, Q.Q.[Qing-Quan],
Wu, G.F.[Guo-Feng],
Comparison of Machine Learning Techniques in Inferring Phytoplankton
Size Classes,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Pan, J.[Jiayi],
Huang, L.[Lei],
Devlin, A.T.[Adam T.],
Lin, H.[Hui],
Quantification of Typhoon-Induced Phytoplankton Blooms Using
Satellite Multi-Sensor Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Martinez, E.[Elodie],
Raapoto, H.[Hirohiti],
Maes, C.[Christophe],
Maamaatuaihutapu, K.[Keitapu],
Influence of Tropical Instability Waves on Phytoplankton Biomass near
the Marquesas Islands,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Hu, S.B.[Shui-Bo],
Zhou, W.[Wen],
Wang, G.F.[Gui-Fen],
Cao, W.X.[Wen-Xi],
Xu, Z.T.[Zhan-Tang],
Liu, H.Z.[Hui-Zeng],
Wu, G.F.[Guo-Feng],
Zhao, W.J.[Wen-Jing],
Comparison of Satellite-Derived Phytoplankton Size Classes Using
In-Situ Measurements in the South China Sea,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Correa-Ramirez, M.[Marco],
Morales, C.E.[Carmen E.],
Letelier, R.[Ricardo],
Anabalón, V.[Valeria],
Hormazabal, S.[Samuel],
Improving the Remote Sensing Retrieval of Phytoplankton Functional
Types (PFT) Using Empirical Orthogonal Functions: A Case Study in a
Coastal Upwelling Region,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Li, W.Z.[Wen-Zhao],
El-Askary, H.[Hesham],
Qurban, M.A.[Mohamed A.],
Proestakis, E.[Emmanouil],
Garay, M.J.[Michael J.],
Kalashnikova, O.V.[Olga V.],
Amiridis, V.[Vassilis],
Gkikas, A.[Antonis],
Marinou, E.[Eleni],
Piechota, T.[Thomas],
Manikandan, K.P.,
An Assessment of Atmospheric and Meteorological Factors Regulating
Red Sea Phytoplankton Growth,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Joo, H.[Huitae],
Lee, D.[Dabin],
Son, S.H.[Seung Hyun],
Lee, S.H.[Sang Heon],
Annual New Production of Phytoplankton Estimated from MODIS-Derived
Nitrate Concentration in the East/Japan Sea,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Launeau, P.[Patrick],
Méléder, V.[Vona],
Verpoorter, C.[Charles],
Barillé, L.[Laurent],
Kazemipour-Ricci, F.[Farzaneh],
Giraud, M.[Manuel],
Jesus, B.[Bruno],
Le Menn, E.[Erwan],
Microphytobenthos Biomass and Diversity Mapping at Different Spatial
Scales with a Hyperspectral Optical Model,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Mascarenhas, V.J.[Veloisa J.],
Zielinski, O.[Oliver],
Parameterization of Spectral Particulate and Phytoplankton Absorption
Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting
Norwegian Fjord Ecosystems,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Corredor-Acosta, A.[Andrea],
Morales, C.E.[Carmen E.],
Brewin, R.J.W.[Robert J. W.],
Auger, P.A.[Pierre-Amaël],
Pizarro, O.[Oscar],
Hormazabal, S.[Samuel],
Anabalón, V.[Valeria],
Phytoplankton Size Structure in Association with Mesoscale Eddies off
Central-Southern Chile: The Satellite Application of a Phytoplankton
Size-Class Model,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Lange, P.K.[Priscila K.],
Brewin, R.J.W.[Robert J. W.],
Dall'Olmo, G.[Giorgio],
Tarran, G.A.[Glen A.],
Sathyendranath, S.[Shubha],
Zubkov, M.[Mikhail],
Bouman, H.A.[Heather A.],
Scratching Beneath the Surface: A Model to Predict the Vertical
Distribution of Prochlorococcus Using Remote Sensing,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
unicellular cyanobacterium Prochlorococcus is the most dominant
resident of the subtropical gyres.
BibRef
Liu, X.[Xiaohan],
Devred, E.[Emmanuel],
Johnson, C.[Catherine],
Remote Sensing of Phytoplankton Size Class in Northwest Atlantic from
1998 to 2016: Bio-Optical Algorithms Comparison and Application,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Lamont, T.[Tarron],
Barlow, R.G.[Raymond G.],
Brewin, R.J.W.[Robert J. W.],
Variations in Remotely-Sensed Phytoplankton Size Structure of a
Cyclonic Eddy in the Southwest Indian Ocean,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Raitoharju, J.[Jenni],
Riabchenko, E.[Ekaterina],
Ahmad, I.[Iftikhar],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Kiranyaz, S.[Serkan],
Tirronen, V.[Ville],
Ärje, J.[Johanna],
Kärkkäinen, S.[Salme],
Meissner, K.[Kristian],
Benchmark database for fine-grained image classification of benthic
macroinvertebrates,
IVC(78), 2018, pp. 73-83.
Elsevier DOI
1809
BibRef
Earlier: A2, A10, A3, A4, A7, A5, A6, Only:
Learned vs. engineered features for fine-grained classification of
aquatic macroinvertebrates,
ICPR16(2276-2281)
IEEE DOI
1705
Biomonitoring, Fine-grained classification,
Benthic macroinvertebrates, Deep learning, Convolutional Neural Networks.
Databases, Ecosystems, Feature extraction, Machine vision,
Microscopy, Water, resources
BibRef
Raitoharju, J.[Jenni],
Riabchenko, E.[Ekaterina],
Meissner, K.,
Ahmad, I.[Iftikhar],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Kiranyaz, S.[Serkan],
Data Enrichment in Fine-Grained Classification of Aquatic
Macroinvertebrates,
CVAUI16(43-48)
IEEE DOI
1701
Convolution
BibRef
Kiranyaz, S.[Serkan],
Gabbouj, M.[Moncef],
Pulkkinen, J.[Jenni],
Ince, T.[Turker],
Meissner, K.[Kristian],
Network of evolutionary binary classifiers for classification and
retrieval in macroinvertebrate databases,
ICIP10(2257-2260).
IEEE DOI
1009
BibRef
Zhai, P.W.[Peng-Wang],
Boss, E.[Emmanuel],
Franz, B.[Bryan],
Werdell, P.J.[P. Jeremy],
Hu, Y.X.[Yong-Xiang],
Radiative Transfer Modeling of Phytoplankton Fluorescence Quenching
Processes,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Al-Barazanchi, H.[Hussein],
Verma, A.[Abhishek],
Wang, S.X.[Shawn X.],
Intelligent plankton image classification with deep learning,
IJCVR(8), No. 6, 2018, pp. 561-571.
DOI Link
1810
BibRef
Sammartino, M.[Michela],
Marullo, S.[Salvatore],
Santoleri, R.[Rosalia],
Scardi, M.[Michele],
Modelling the Vertical Distribution of Phytoplankton Biomass in the
Mediterranean Sea from Satellite Data: A Neural Network Approach,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Xue, K.[Kun],
Ma, R.H.[Rong-Hua],
Wang, D.[Dian],
Shen, M.[Ming],
Optical Classification of the Remote Sensing Reflectance and Its
Application in Deriving the Specific Phytoplankton Absorption in
Optically Complex Lakes,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Houskeeper, H.F.[Henry F.],
Kudela, R.M.[Raphael M.],
Ocean Color Quality Control Masks Contain the High Phytoplankton
Fraction of Coastal Ocean Observations,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Bellacicco, M.[Marco],
Pitarch, J.[Jaime],
Organelli, E.[Emanuele],
Martinez-Vicente, V.[Victor],
Volpe, G.[Gianluca],
Marullo, S.[Salvatore],
Improving the Retrieval of Carbon-Based Phytoplankton Biomass from
Satellite Ocean Colour Observations,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Liu, Y.Y.[Yang-Yang],
Boss, E.[Emmanuel],
Chase, A.[Alison],
Xi, H.Y.[Hong-Yan],
Zhang, X.D.[Xiao-Dong],
Röttgers, R.[Rüdiger],
Pan, Y.[Yanqun],
Bracher, A.[Astrid],
Retrieval of Phytoplankton Pigments from Underway Spectrophotometry
in the Fram Strait,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Deng, L.[Lin],
Zhou, W.[Wen],
Cao, W.X.[Wen-Xi],
Zheng, W.[Wendi],
Wang, G.F.[Gui-Fen],
Xu, Z.T.[Zhan-Tang],
Li, C.[Cai],
Yang, Y.Z.[Yue-Zhong],
Hu, S.B.[Shui-Bo],
Zhao, W.J.[Wen-Jing],
Retrieving Phytoplankton Size Class from the Absorption Coefficient
and Chlorophyll A Concentration Based on Support Vector Machine,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Soriano-González, J.[Jesús],
Angelats, E.[Eduard],
Fernández-Tejedor, M.[Margarita],
Diogene, J.[Jorge],
Alcaraz, C.[Carles],
First Results of Phytoplankton Spatial Dynamics in Two
NW-Mediterranean Bays from Chlorophyll-a Estimates Using Sentinel 2:
Potential Implications for Aquaculture,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ogashawara, I.[Igor],
Li, L.[Lin],
Removal of Chlorophyll-a Spectral Interference for Improved
Phycocyanin Estimation from Remote Sensing Reflectance,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Zhu, Q.[Qing],
Shen, F.[Fang],
Shang, P.[Pei],
Pan, Y.Q.[Yan-Qun],
Li, M.[Mengyu],
Hyperspectral Remote Sensing of Phytoplankton Species Composition
Based on Transfer Learning,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
And:
Correction:
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Soomets, T.[Tuuli],
Uudeberg, K.[Kristi],
Kangro, K.[Kersti],
Jakovels, D.[Dainis],
Brauns, A.[Agris],
Toming, K.[Kaire],
Zagars, M.[Matiss],
Kutser, T.[Tiit],
Spatio-Temporal Variability of Phytoplankton Primary Production in
Baltic Lakes Using Sentinel-3 OLCI Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Mishra, D.R.[Deepak R.],
Kumar, A.[Abhishek],
Muduli, P.R.[Pradipta R.],
Equeenuddin, S.M.,
Rastogi, G.[Gurdeep],
Acharyya, T.[Tamoghna],
Swain, D.[Debadatta],
Decline in Phytoplankton Biomass along Indian Coastal Waters due to
COVID-19 Lockdown,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Cassianides, A.[Angelina],
Martinez, E.[Elodie],
Maes, C.[Christophe],
Carton, X.[Xavier],
Gorgues, T.[Thomas],
Monitoring the Influence of the Mesoscale Ocean Dynamics on
Phytoplanktonic Plumes around the Marquesas Islands Using
Multi-Satellite Missions,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Lyu, H.[Heng],
Yang, Z.Q.[Zi-Qian],
Shi, L.[Lei],
Li, Y.Y.[Yang-Yang],
Guo, H.L.[Hong-Lei],
Zhong, S.[Suke],
Miao, S.[Song],
Bi, S.[Shun],
Li, Y.M.[Yun-Mei],
A Novel Algorithm to Estimate Phytoplankton Carbon Concentration in
Inland Lakes Using Sentinel-3 OLCI Images,
GeoRS(58), No. 9, September 2020, pp. 6512-6523.
IEEE DOI
2008
Carbon, Lakes, Estimation, Oceans, Carbon dioxide, Optical sensors,
Absorption, Absorption height of particles, quantitative estimation
BibRef
Mao, Z.X.[Ze-Xi],
Mao, Z.H.[Zhi-Hua],
Jamet, C.[Cédric],
Linderman, M.[Marc],
Wang, Y.T.[Yun-Tao],
Chen, X.Y.[Xiao-Yan],
Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using
the Daily Climatology from Satellite-Retrieved Chlorophyll-a
Concentration (1997-2019) Over Global Ocean,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Wang, T.Y.[Tong-Yu],
Chen, F.[Fajin],
Zhang, S.W.[Shu-Wen],
Pan, J.[Jiayi],
Devlin, A.T.[Adam Thomas],
Ning, H.[Hao],
Zeng, W.Q.A.[Wei-Qi-Ang],
Remote Sensing and Argo Float Observations Reveal Physical Processes
Initiating a Winter-Spring Phytoplankton Bloom South of the Kuroshio
Current Near Shikoku,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Martinez, E.[Elodie],
Brini, A.[Anouar],
Gorgues, T.[Thomas],
Drumetz, L.[Lucas],
Roussillon, J.[Joana],
Tandeo, P.[Pierre],
Maze, G.[Guillaume],
Fablet, R.[Ronan],
Neural Network Approaches to Reconstruct Phytoplankton Time-Series in
the Global Ocean,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
And:
Correction:
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xu, W.L.[Wen-Long],
Wang, G.F.[Gui-Fen],
Jiang, L.[Long],
Cheng, X.H.[Xu-Hua],
Zhou, W.[Wen],
Cao, W.X.[Wen-Xi],
Spatiotemporal Variability of Surface Phytoplankton Carbon and
Carbon-to-Chlorophyll a Ratio in the South China Sea Based on
Satellite Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Gittings, J.A.[John A.],
Raitsos, D.E.[Dionysios E.],
Brewin, R.J.W.[Robert J. W.],
Hoteit, I.[Ibrahim],
Links between Phenology of Large Phytoplankton and Fisheries in the
Northern and Central Red Sea,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zheng, W.[Wendi],
Zhou, W.[Wen],
Cao, W.X.[Wen-Xi],
Liu, Y.P.[Yu-Peng],
Wang, G.F.[Gui-Fen],
Deng, L.[Lin],
Li, C.[Cai],
Zhang, Y.[Yu],
Zeng, K.[Kai],
Vertical Variability of Total and Size-Partitioned Phytoplankton
Carbon in the South China Sea,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Papagiannopoulos, N.[Nikolaos],
Raitsos, D.E.[Dionysios E.],
Krokos, G.[Georgios],
Gittings, J.A.[John A.],
Brewin, R.J.W.[Robert J. W.],
Papadopoulos, V.P.[Vassilis P.],
Pavlidou, A.[Alexandra],
Selmes, N.[Nick],
Groom, S.[Steve],
Hoteit, I.[Ibrahim],
Phytoplankton Biomass and the Hydrodynamic Regime in NEOM, Red Sea,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Rodriguez-Alvarez, N.[Nereida],
Oudrhiri, K.[Kamal],
The Bistatic Radar as an Effective Tool for Detecting and Monitoring
the Presence of Phytoplankton on the Ocean Surface,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhang, H.W.[Hong-Wei],
Zhang, Y.S.[Yuan-Shuai],
Li, Z.W.[Zi-Wang],
Liu, B.[Bingyi],
Yin, B.[Bin],
Wu, S.H.[Song-Hua],
Small Angle Scattering Intensity Measurement by an Improved Ocean
Scheimpflug Lidar System,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
for phytoplankton detection.
BibRef
Churnside, J.H.[James H.],
Marchbanks, R.D.[Richard D.],
Marshall, N.[Nathan],
Airborne Lidar Observations of a Spring Phytoplankton Bloom in the
Western Arctic Ocean,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Lu, X.M.[Xiao-Mei],
Hu, Y.X.[Yong-Xiang],
Omar, A.[Ali],
Baize, R.[Rosemary],
Vaughan, M.[Mark],
Rodier, S.[Sharon],
Kar, J.[Jayanta],
Getzewich, B.[Brian],
Lucker, P.[Patricia],
Trepte, C.[Charles],
Hostetler, C.[Chris],
Winker, D.[David],
Global Ocean Studies from CALIOP/CALIPSO by Removing Polarization
Crosstalk Effects,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) for phytoplankton distributions.
BibRef
Verma, N.[Neeharika],
Lohrenz, S.[Steven],
Chakraborty, S.[Sumit],
Fichot, C.G.[Cédric G.],
Underway Hyperspectral Bio-Optical Assessments of Phytoplankton Size
Classes in the River-Influenced Northern Gulf of Mexico,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhong, C.[Chunyi],
Chen, P.[Peng],
Pan, D.[Delu],
An Improved Adaptive Subsurface Phytoplankton Layer Detection Method
for Ocean Lidar Data,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Kraus, C.N.[Cleber Nunes],
Maciel, D.A.[Daniel Andrade],
Bonnet, M.P.[Marie Paule],
de Moraes Novo, E.M.L.[Evlyn Márcia Leăo],
Phytoplankton Genera Structure Revealed from the Multispectral
Vertical Diffuse Attenuation Coefficient,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhang, Y.[Yinxue],
Wang, G.[Guifen],
Sathyendranath, S.[Shubha],
Xu, W.L.[Wen-Long],
Xiao, Y.Z.[Yi-Zhe],
Jiang, L.[Long],
Retrieval of Phytoplankton Pigment Composition from Their In Vivo
Absorption Spectra,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Demetriou, M.[Monica],
Raitsos, D.E.[Dionysios E.],
Kournopoulou, A.[Antonia],
Mandalakis, M.[Manolis],
Sfenthourakis, S.[Spyros],
Psarra, S.[Stella],
Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on
Remote Sensing and In Situ Observations,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Shu, C.[Chan],
Xiu, P.[Peng],
Xing, X.G.[Xiao-Gang],
Qiu, G.Q.[Guo-Qiang],
Ma, W.T.[Wen-Tao],
Brewin, R.J.W.[Robert J. W.],
Ciavatta, S.[Stefano],
Biogeochemical Model Optimization by Using Satellite-Derived
Phytoplankton Functional Type Data and BGC-Argo Observations in the
Northern South China Sea,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Siswanto, E.[Eko],
Sasai, Y.[Yoshikazu],
Matsumoto, K.[Kazuhiko],
Honda, M.C.[Makio C.],
Winter-Spring Phytoplankton Phenology Associated with the
Kuroshio Extension Instability,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Wang, Y.C.[Yu-Chao],
Liu, F.F.[Fen-Fen],
Remote Sensing of Marine Phytoplankton Sizes and Groups Based on the
Generalized Addictive Model (GAM),
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Teng, J.[Jing],
Zhang, T.[Tinglu],
Sun, K.[Kunpeng],
Gao, H.[Hong],
Retrieving Pigment Concentrations Based on Hyperspectral Measurements
of the Phytoplankton Absorption Coefficient in Global Oceans,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yang, Y.C.[Yi-Chen],
Pan, H.K.[Hang-Kai],
Zheng, D.K.[De-Kang],
Zhao, H.K.[Hong-Kai],
Zhou, Y.[Yudi],
Liu, D.[Dong],
Characteristics and Formation Conditions of Thin Phytoplankton Layers
in the Northern Gulf of Mexico Revealed by Airborne Lidar,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Guo, J.[Jin],
Li, W.G.[Wen-Gen],
Guan, J.H.[Ji-Hong],
Gao, H.[Hang],
Liu, B.B.[Bao-Bo],
Gong, L.[Lili],
CDFM: A cross-domain few-shot model for marine plankton
classification,
IET-CV(17), No. 1, 2023, pp. 111-121.
DOI Link
2303
BibRef
Muzhoffar, D.A.F.[Dimas Angga Fakhri],
Sakuno, Y.[Yuji],
Taniguchi, N.[Naokazu],
Hamada, K.[Kunihiro],
Shimabukuro, H.[Hiromori],
Hori, M.[Masakazu],
Automatic Detection of Floating Macroalgae via Adaptive Thresholding
Using Sentinel-2 Satellite Data with 10 m Spatial Resolution,
RS(15), No. 8, 2023, pp. 2039.
DOI Link
2305
BibRef
McCarry, C.L.[Cait L.],
Basedow, S.L.[Sünnje L.],
Davies, E.J.[Emlyn J.],
McKee, D.[David],
Estimating Surface Concentrations of Calanus finmarchicus Using
Standardised Satellite-Derived Enhanced RGB Imagery,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
zooplankton.
BibRef
Ciranni, M.[Massimiliano],
Murino, V.[Vittorio],
Odone, F.[Francesca],
Pastore, V.P.[Vito Paolo],
Computer vision and deep learning meet plankton: Milestones and
future directions,
IVC(143), 2024, pp. 104934.
Elsevier DOI
2403
Plankton image analysis, Deep learning,
Image classification, Object detection, Anomaly detection, Transfer learning
BibRef
Zhong, C.[Chunyi],
Chen, P.[Peng],
Zhang, S.Q.[Si-Qi],
Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data
through Supervised Machine Learning Techniques,
RS(16), No. 11, 2024, pp. 1953.
DOI Link
2406
BibRef
Pastore, V.P.[Vito Paolo],
Megiddo, N.[Nimrod],
Bianco, S.[Simone],
An Anomaly Detection Approach for Plankton Species Discovery,
CIAP22(II:599-609).
Springer DOI
2205
BibRef
Liu, Y.[Yiran],
Qiao, X.[Xu],
Gao, R.[Rui],
Plankton Classification on Imbalanced Dataset via Hybrid Resample
Method with LightBGM,
ICIVC21(191-195)
IEEE DOI
2112
Dimensionality reduction, Deep learning,
Technological innovation, Image recognition, LightBGM
BibRef
Pu, Y.C.[Yu-Chun],
Feng, Z.H.[Zheng-Hui],
Wang, Z.L.[Zhong-Lei],
Yang, Z.Y.[Zhen-Yu],
Li, J.P.[Jian-Ping],
Anomaly Detection for In situ Marine Plankton Images,
OceanVision21(3654-3664)
IEEE DOI
2112
Training, Machine learning algorithms, Face recognition, Pipelines,
Observers, Robustness, Task analysis
BibRef
Walker, J.L.[Joseph L.],
Orenstein, E.C.[Eric C.],
Improving Rare-Class Recognition of Marine Plankton with Hard
Negative Mining,
OceanVision21(3665-3675)
IEEE DOI
2112
Training, Oceans, Sociology, Machine learning, Biology
BibRef
Ma, W.Q.[Wen-Qi],
Chen, T.[Tao],
Zhang, Z.G.[Zhen-Gwen],
Yang, Z.Y.[Zhen-Yu],
Dong, C.[Chao],
Qiao, J.P.[Jian-Ping],
Li, J.P.[Jian-Ping],
Super-resolution for in situ Plankton Images,
OceanVision21(3676-3685)
IEEE DOI
2112
Deep learning, Visualization, Image registration, Instruments,
Biological system modeling, Superresolution, Pipelines
BibRef
Bure, J.[Jaroslav],
Eerola, T.[Tuomas],
Lensu, L.[Lasse],
Kälviäinen, H.[Heikki],
Zemcík, P.[Pavel],
Plankton Recognition in Images with Varying Size,
MAES20(110-120).
Springer DOI
2103
BibRef
Shunmugapandi, R.,
Gedam, S.,
Inamdar, A.B.,
Study on Cyclone Induced Phytoplankton Bloom In the Arabian Sea Through
Gap-free Reconstructed Chlorophyll-a Data,
ISPRS20(B3:1391-1396).
DOI Link
2012
BibRef
Schröder, S.M.[Simon-Martin],
Kiko, R.[Rainer],
Irisson, J.O.[Jean-Olivier],
Koch, R.[Reinhard],
Low-Shot Learning of Plankton Categories,
GCPR18(391-404).
Springer DOI
1905
BibRef
Bochinski, E.[Erik],
Bacha, G.[Ghassen],
Eiselein, V.[Volker],
Walles, T.J.W.[Tim J. W.],
Nejstgaard, J.C.[Jens C.],
Sikora, T.[Thomas],
Deep Active Learning for In Situ Plankton Classification,
CVAUI18(5-15).
Springer DOI
1901
BibRef
Zelenka, C.[Claudius],
Koch, R.[Reinhard],
Single Image Plankton 3D Reconstruction from Extended Depth of Field
Shadowgraph,
CVAUI18(76-85).
Springer DOI
1901
BibRef
Wang, C.,
Yu, Z.,
Zheng, H.,
Wang, N.,
Zheng, B.,
CGAN-plankton: Towards large-scale imbalanced class generation and
fine-grained classification,
ICIP17(855-859)
IEEE DOI
1803
Computational modeling, Data models, Kernel, Oceans,
Task analysis, Training, GAN, adversarial training, class imbalance,
samples generation
BibRef
Orenstein, E.C.,
Beijbom, O.,
Transfer Learning and Deep Feature Extraction for Planktonic Image
Data Sets,
WACV17(1082-1088)
IEEE DOI
1609
Cameras, Data mining, Feature extraction, Oceans, Training
BibRef
Dai, J.L.[Jia-Lun],
Yu, Z.B.[Zhi-Bin],
Zheng, H.Y.[Hai-Yong],
Zheng, B.[Bing],
Wang, N.[Nan],
A Hybrid Convolutional Neural Network for Plankton Classification,
MCBMIIA16(III: 102-114).
Springer DOI
1704
BibRef
Hirata, N.S.T.,
Fernandez, M.A.,
Lopes, R.M.,
Plankton Image Classification Based on Multiple Segmentations,
CVAUI16(55-60)
IEEE DOI
1701
Algorithm design and analysis
BibRef
Lee, H.,
Park, M.,
Kim, J.,
Plankton classification on imbalanced large scale database via
convolutional neural networks with transfer learning,
ICIP16(3713-3717)
IEEE DOI
1610
Data models
BibRef
Gao, G.M.[Guo-Ming],
Liu, H.[Huan],
Gu, Y.F.[Yan-Feng],
Jia, X.P.[Xiu-Ping],
Normalized difference phytoplankton index (NDPI) and spatio-temporal
cloud filtering for multitemporal cyanobacteria pollution analysis on
Erie Lake in 2014,
MultiTemp15(1-4)
IEEE DOI
1511
lakes
BibRef
Rahimi, A.M.,
Miller, R.J.,
Fedorov, D.V.,
Sunderrajan, S.,
Doheny, B.M.,
Page, H.M.,
Manjunath, B.S.,
Marine Biodiversity Classification Using Dropout Regularization,
CVAUI14(80-87)
IEEE DOI
1412
Biodiversity
BibRef
Mazzei, L.[Luca],
Marini, S.[Simone],
Craig, J.[Jessica],
Aguzzi, J.[Jacopo],
Fanelli, E.[Emanuela],
Priede, I.G.[Imants G.],
Automated Video Imaging System for Counting Deep-Sea Bioluminescence
Organisms Events,
CVAUI14(57-64)
IEEE DOI
1412
Ash
BibRef
Corgnati, L.[Lorenzo],
Mazzei, L.[Luca],
Marini, S.[Simone],
Aliani, S.[Stefano],
Conversi, A.[Alessandra],
Griffa, A.[Annalisa],
Isoppo, B.[Bruno],
Ottaviani, E.[Ennio],
Automated Gelatinous Zooplankton Acquisition and Recognition,
CVAUI14(1-8)
IEEE DOI
1412
Feature extraction
BibRef
Matuszewski, D.J.[Damian J.],
Martins, C.I.O.[C. Iury O.],
Cesar, Jr., R.M.[Roberto M.],
Strickler, J.R.[J. Rudi],
Lopes, R.M.[Rubens M.],
Visual rhythm-based plankton detection method for ballast water quality
assessment,
ICIP12(1009-1012).
IEEE DOI
1302
BibRef
Zhao, F.[Feng],
Lin, F.[Feng],
Seah, H.S.[Hock Soon],
Bagging based plankton image classification,
ICIP09(2081-2084).
IEEE DOI
0911
BibRef
Alarcon, V.J.,
van der Zwaag, J.,
Moorhead, R.,
Estimation of Estuary Phytoplankton using a Web-based Tool for
Visualization of Hyper-spectral Images,
AIPR06(25-25).
IEEE DOI
0610
BibRef
Alarcon, V.J.,
O'Hara, C.G.,
Advanced Techniques for Watershed Visualization,
AIPR06(30-30).
IEEE DOI
0610
BibRef
Luo, T.[Tong],
Kramer, K.,
Samson, S.,
Remsen, A.,
Active learning to recognize multiple types of plankton,
ICPR04(III: 478-481).
IEEE DOI
0409
BibRef
Zhao, F.[Feng],
Tang, X.[Xiaoou],
Lin, F.[Feng],
Samson, S.,
Remsen, A.,
Binary Plankton Image Classification Using Random Subspace,
ICIP05(I: 357-360).
IEEE DOI
0512
BibRef
Blaschko, M.B.[Matthew B.],
Holness, G.[Gary],
Mattar, M.A.[Marwan A.],
Lisin, D.A.[Dimitri A.],
Utgoff, P.E.[Paul E.],
Hanson, A.R.[Allen R.],
Schultz, H.[Howard],
Riseman, E.M.[Edward M.],
Sieracki, M.E.[Michael E.],
Balch, W.M.[William M.],
Tupper, B.[Ben],
Automatic In Situ Identification of Plankton,
WACV05(I: 79-86).
IEEE DOI
0502
BibRef
Lisin, D.A.,
Mattar, M.A.,
Blaschko, M.B.,
Learned-Miller, E.G.,
Benfield, M.C.,
Combining Local and Global Image Features for Object Class Recognition,
LCV05(III: 47-47).
IEEE DOI
0507
BibRef
Thonnat, M.,
Gandelin, M.,
An expert system for the automatic classification and description of
zooplanktons from monocular images,
ICPR88(I: 114-118).
IEEE DOI
8811
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Diatoms .