20.7.3.7.11 Plankton Analysis, Extraction, Features, Small Scale and Large Scale

Chapter Contents (Back)
Plankton. Application, Plankton.
See also Diatoms.
See also Algal Blooms, Analysis, Detection.
See also Water Turbidity, Turbid Water Areas.

Tang, X.[Xiaoou], Stewart, W.K.[W. Kenneth], Huang, H.[He], Gallager, S.M.[Scott M.], Davis, C.S.[Cabell S.], Vincent, L.[Luc], Marra, M.[Marty],
Automatic Plankton Image Recognition,
AIR(12), No. 1-3, February 1998, pp. 177-199.
WWW Link. 9807
Applied to detection and monitoring of plankton. BibRef

Toth, L., Culverhouse, P.F.,
3D Object Recognition from Static 2D Views Using Multiple Coarse Data Channels,
IVC(17), No. 11, September 1999, pp. 845-858.
Elsevier DOI A computer vision journal report on work dealing with monitoring plankton. BibRef 9909

d'Alimonte, D., Zibordi, G.,
Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network,
GeoRS(41), No. 12, December 2003, pp. 2861-2868.
IEEE Abstract. 0402
BibRef

Luo, T., Kramer, K., Goldgof, D.B., Hall, L.O., Samson, S., Remsen, A., Hopkins, T.,
Recognizing Plankton Images From the Shadow Image Particle Profiling Evaluation Recorder,
SMC-B(34), No. 4, August 2004, pp. 1753-1762.
IEEE Abstract. 0409
BibRef
And: Errata: SMC-B(34), No. 6, December 2004, pp. 2423-2423.
IEEE Abstract. 0412
BibRef

Verikas, A.[Antanas], Gelzinis, A.[Adas], Bacauskiene, M.[Marija], Olenina, I., Olenin, S., Vaiciukynas, E.[Evaldas],
Phase congruency-based detection of circular objects applied to analysis of phytoplankton images,
PR(45), No. 4, 2012, pp. 1659-1670.
Elsevier DOI 1410
Phase congruency BibRef

Gelzinis, A.[Adas], Verikas, A.[Antanas], Vaiciukynas, E.[Evaldas], Bacauskiene, M.[Marija],
A novel technique to extract accurate cell contours applied for segmentation of phytoplankton images,
MVA(26), No. 2-3, April 2015, pp. 305-315.
Springer DOI 1504
BibRef

Rousseaux, C.S.[Cecile S.], Gregg, W.W.[Watson W.],
Interannual Variation in Phytoplankton Primary Production at A Global Scale,
RS(6), No. 1, 2013, pp. 1-19.
DOI Link 1412
BibRef

Ryan, J.P.[John P.], Davis, C.O.[Curtiss O.], Tufillaro, N.B.[Nicholas B.], Kudela, R.M.[Raphael M.], Gao, B.C.[Bo-Cai],
Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA,
RS(6), No. 2, 2014, pp. 1007-1025.
DOI Link 1403

See also Correction: Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA. BibRef

Montes, M.J.[Marcos J.], Ryan, J.P.[John P.], Davis, C.O.[Curtiss O.], Tufillaro, N.B.[Nicholas B.], Kudela, R.M.[Raphael M.],
Correction: Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA,
RS(7), No. 10, 2015, pp. 13364.
DOI Link 1511

See also Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA. BibRef

Siswanto, E.[Eko], Tanaka, K.[Katsuhisa],
Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends,
RS(6), No. 4, 2014, pp. 2718-2742.
DOI Link 1405
BibRef

Blondeau-Patissier, D.[David], Schroeder, T.[Thomas], Brando, V.E.[Vittorio E.], Maier, S.W.[Stefan W.], Dekker, A.G.[Arnold G.], Phinn, S.[Stuart],
ESA-MERIS 10-Year Mission Reveals Contrasting Phytoplankton Bloom Dynamics in Two Tropical Regions of Northern Australia,
RS(6), No. 4, 2014, pp. 2963-2988.
DOI Link 1405
BibRef

Brewin, R.J.W.[Robert J.W.], Mélin, F.[Frédéric], Sathyendranath, S.[Shubha], Steinmetz, F.[François], Chuprin, A.[Andrei], Grant, M.[Mike],
On the temporal consistency of chlorophyll products derived from three ocean-colour sensors,
PandRS(97), No. 1, 2014, pp. 171-184.
Elsevier DOI 1410
Phytoplankton BibRef

Xi, H.Y.[Hong-Yan], Hieronymi, M.[Martin], Röttgers, R.[Rüdiger], Krasemann, H.[Hajo], Qiu, Z.F.[Zhong-Feng],
Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra,
RS(7), No. 11, 2015, pp. 14781.
DOI Link 1512
BibRef

Xue, K.[Kun], Zhang, Y.C.[Yu-Chao], Duan, H.T.[Hong-Tao], Ma, R.H.[Rong-Hua], Loiselle, S.[Steven], Zhang, M.W.[Min-Wei],
A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake,
RS(7), No. 11, 2015, pp. 14403.
DOI Link 1512
BibRef

Cristina, S.[Sónia], Cordeiro, C.[Clara], Lavender, S.[Samantha], Goela, P.C.[Priscila Costa], Icely, J.[John], Newton, A.[Alice],
MERIS Phytoplankton Time Series Products from the SW Iberian Peninsula (Sagres) Using Seasonal-Trend Decomposition Based on Loess,
RS(8), No. 6, 2016, pp. 449.
DOI Link 1608
BibRef

Wolanin, A.[Aleksandra], Soppa, M.A.[Mariana A.], Bracher, A.[Astrid],
Investigation of Spectral Band Requirements for Improving Retrievals of Phytoplankton Functional Types,
RS(8), No. 10, 2016, pp. 871.
DOI Link 1609
BibRef

Liu, Z.H.[Zong-Hua], Watson, J.[John], Allen, A.[Alastair],
A polygonal approximation of shape boundaries of marine plankton based-on genetic algorithms,
JVCIR(41), No. 1, 2016, pp. 305-313.
Elsevier DOI 1612
Image processing BibRef

Zheng, H.Y.[Hai-Yong], Wang, N.[Nan], Yu, Z.B.[Zhi-Bin], Gu, Z.R.[Zhao-Rui], Zheng, B.[Bing],
Robust and automatic cell detection and segmentation from microscopic images of non-setae phytoplankton species,
IET-IPR(11), No. 11, November 2017, pp. 1077-1085.
DOI Link 1711
BibRef

Waga, H.[Hisatomo], Hirawake, T.[Toru], Fujiwara, A.[Amane], Kikuchi, T.[Takashi], Nishino, S.[Shigeto], Suzuki, K.[Koji], Takao, S.[Shintaro], Saitoh, S.I.[Sei-Ichi],
Differences in Rate and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Deng, Y.B.[Yu-Bing], Zhang, Y.L.[Yun-Lin], Li, D.[Deping], Shi, K.[Kun], Zhang, Y.[Yibo],
Temporal and Spatial Dynamics of Phytoplankton Primary Production in Lake Taihu Derived from MODIS Data,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Hu, S.B.[Shui-Bo], Liu, H.Z.[Hui-Zeng], Zhao, W.J.[Wen-Jing], Shi, T.Z.[Tie-Zhu], Hu, Z.W.[Zhong-Wen], Li, Q.Q.[Qing-Quan], Wu, G.F.[Guo-Feng],
Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Pan, J.[Jiayi], Huang, L.[Lei], Devlin, A.T.[Adam T.], Lin, H.[Hui],
Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Martinez, E.[Elodie], Raapoto, H.[Hirohiti], Maes, C.[Christophe], Maamaatuaihutapu, K.[Keitapu],
Influence of Tropical Instability Waves on Phytoplankton Biomass near the Marquesas Islands,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Hu, S.B.[Shui-Bo], Zhou, W.[Wen], Wang, G.F.[Gui-Fen], Cao, W.X.[Wen-Xi], Xu, Z.T.[Zhan-Tang], Liu, H.Z.[Hui-Zeng], Wu, G.F.[Guo-Feng], Zhao, W.J.[Wen-Jing],
Comparison of Satellite-Derived Phytoplankton Size Classes Using In-Situ Measurements in the South China Sea,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Correa-Ramirez, M.[Marco], Morales, C.E.[Carmen E.], Letelier, R.[Ricardo], Anabalón, V.[Valeria], Hormazabal, S.[Samuel],
Improving the Remote Sensing Retrieval of Phytoplankton Functional Types (PFT) Using Empirical Orthogonal Functions: A Case Study in a Coastal Upwelling Region,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Li, W.Z.[Wen-Zhao], El-Askary, H.[Hesham], Qurban, M.A.[Mohamed A.], Proestakis, E.[Emmanouil], Garay, M.J.[Michael J.], Kalashnikova, O.V.[Olga V.], Amiridis, V.[Vassilis], Gkikas, A.[Antonis], Marinou, E.[Eleni], Piechota, T.[Thomas], Manikandan, K.P.,
An Assessment of Atmospheric and Meteorological Factors Regulating Red Sea Phytoplankton Growth,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Joo, H.[Huitae], Lee, D.[Dabin], Son, S.H.[Seung Hyun], Lee, S.H.[Sang Heon],
Annual New Production of Phytoplankton Estimated from MODIS-Derived Nitrate Concentration in the East/Japan Sea,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Launeau, P.[Patrick], Méléder, V.[Vona], Verpoorter, C.[Charles], Barillé, L.[Laurent], Kazemipour-Ricci, F.[Farzaneh], Giraud, M.[Manuel], Jesus, B.[Bruno], Le Menn, E.[Erwan],
Microphytobenthos Biomass and Diversity Mapping at Different Spatial Scales with a Hyperspectral Optical Model,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Mascarenhas, V.J.[Veloisa J.], Zielinski, O.[Oliver],
Parameterization of Spectral Particulate and Phytoplankton Absorption Coefficients in Sognefjord and Trondheimsfjord, Two Contrasting Norwegian Fjord Ecosystems,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Corredor-Acosta, A.[Andrea], Morales, C.E.[Carmen E.], Brewin, R.J.W.[Robert J. W.], Auger, P.A.[Pierre-Amaël], Pizarro, O.[Oscar], Hormazabal, S.[Samuel], Anabalón, V.[Valeria],
Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Lange, P.K.[Priscila K.], Brewin, R.J.W.[Robert J. W.], Dall'Olmo, G.[Giorgio], Tarran, G.A.[Glen A.], Sathyendranath, S.[Shubha], Zubkov, M.[Mikhail], Bouman, H.A.[Heather A.],
Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
unicellular cyanobacterium Prochlorococcus is the most dominant resident of the subtropical gyres. BibRef

Liu, X.[Xiaohan], Devred, E.[Emmanuel], Johnson, C.[Catherine],
Remote Sensing of Phytoplankton Size Class in Northwest Atlantic from 1998 to 2016: Bio-Optical Algorithms Comparison and Application,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Lamont, T.[Tarron], Barlow, R.G.[Raymond G.], Brewin, R.J.W.[Robert J. W.],
Variations in Remotely-Sensed Phytoplankton Size Structure of a Cyclonic Eddy in the Southwest Indian Ocean,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Raitoharju, J.[Jenni], Riabchenko, E.[Ekaterina], Ahmad, I.[Iftikhar], Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef], Kiranyaz, S.[Serkan], Tirronen, V.[Ville], Ärje, J.[Johanna], Kärkkäinen, S.[Salme], Meissner, K.[Kristian],
Benchmark database for fine-grained image classification of benthic macroinvertebrates,
IVC(78), 2018, pp. 73-83.
Elsevier DOI 1809
BibRef
Earlier: A2, A10, A3, A4, A7, A5, A6, Only:
Learned vs. engineered features for fine-grained classification of aquatic macroinvertebrates,
ICPR16(2276-2281)
IEEE DOI 1705
Biomonitoring, Fine-grained classification, Benthic macroinvertebrates, Deep learning, Convolutional Neural Networks. Databases, Ecosystems, Feature extraction, Machine vision, Microscopy, Water, resources BibRef

Raitoharju, J.[Jenni], Riabchenko, E.[Ekaterina], Meissner, K., Ahmad, I.[Iftikhar], Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef], Kiranyaz, S.[Serkan],
Data Enrichment in Fine-Grained Classification of Aquatic Macroinvertebrates,
CVAUI16(43-48)
IEEE DOI 1701
Convolution BibRef

Kiranyaz, S.[Serkan], Gabbouj, M.[Moncef], Pulkkinen, J.[Jenni], Ince, T.[Turker], Meissner, K.[Kristian],
Network of evolutionary binary classifiers for classification and retrieval in macroinvertebrate databases,
ICIP10(2257-2260).
IEEE DOI 1009
BibRef

Zhai, P.W.[Peng-Wang], Boss, E.[Emmanuel], Franz, B.[Bryan], Werdell, P.J.[P. Jeremy], Hu, Y.X.[Yong-Xiang],
Radiative Transfer Modeling of Phytoplankton Fluorescence Quenching Processes,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Al-Barazanchi, H.[Hussein], Verma, A.[Abhishek], Wang, S.X.[Shawn X.],
Intelligent plankton image classification with deep learning,
IJCVR(8), No. 6, 2018, pp. 561-571.
DOI Link 1810
BibRef

Sammartino, M.[Michela], Marullo, S.[Salvatore], Santoleri, R.[Rosalia], Scardi, M.[Michele],
Modelling the Vertical Distribution of Phytoplankton Biomass in the Mediterranean Sea from Satellite Data: A Neural Network Approach,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Xue, K.[Kun], Ma, R.H.[Rong-Hua], Wang, D.[Dian], Shen, M.[Ming],
Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the Specific Phytoplankton Absorption in Optically Complex Lakes,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Houskeeper, H.F.[Henry F.], Kudela, R.M.[Raphael M.],
Ocean Color Quality Control Masks Contain the High Phytoplankton Fraction of Coastal Ocean Observations,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Bellacicco, M.[Marco], Pitarch, J.[Jaime], Organelli, E.[Emanuele], Martinez-Vicente, V.[Victor], Volpe, G.[Gianluca], Marullo, S.[Salvatore],
Improving the Retrieval of Carbon-Based Phytoplankton Biomass from Satellite Ocean Colour Observations,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Liu, Y.Y.[Yang-Yang], Boss, E.[Emmanuel], Chase, A.[Alison], Xi, H.Y.[Hong-Yan], Zhang, X.D.[Xiao-Dong], Röttgers, R.[Rüdiger], Pan, Y.[Yanqun], Bracher, A.[Astrid],
Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Deng, L.[Lin], Zhou, W.[Wen], Cao, W.X.[Wen-Xi], Zheng, W.[Wendi], Wang, G.F.[Gui-Fen], Xu, Z.T.[Zhan-Tang], Li, C.[Cai], Yang, Y.Z.[Yue-Zhong], Hu, S.B.[Shui-Bo], Zhao, W.J.[Wen-Jing],
Retrieving Phytoplankton Size Class from the Absorption Coefficient and Chlorophyll A Concentration Based on Support Vector Machine,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Soriano-González, J.[Jesús], Angelats, E.[Eduard], Fernández-Tejedor, M.[Margarita], Diogene, J.[Jorge], Alcaraz, C.[Carles],
First Results of Phytoplankton Spatial Dynamics in Two NW-Mediterranean Bays from Chlorophyll-a Estimates Using Sentinel 2: Potential Implications for Aquaculture,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Ogashawara, I.[Igor], Li, L.[Lin],
Removal of Chlorophyll-a Spectral Interference for Improved Phycocyanin Estimation from Remote Sensing Reflectance,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Zhu, Q.[Qing], Shen, F.[Fang], Shang, P.[Pei], Pan, Y.Q.[Yan-Qun], Li, M.[Mengyu],
Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef
And: Correction: RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Soomets, T.[Tuuli], Uudeberg, K.[Kristi], Kangro, K.[Kersti], Jakovels, D.[Dainis], Brauns, A.[Agris], Toming, K.[Kaire], Zagars, M.[Matiss], Kutser, T.[Tiit],
Spatio-Temporal Variability of Phytoplankton Primary Production in Baltic Lakes Using Sentinel-3 OLCI Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Mishra, D.R.[Deepak R.], Kumar, A.[Abhishek], Muduli, P.R.[Pradipta R.], Equeenuddin, S.M., Rastogi, G.[Gurdeep], Acharyya, T.[Tamoghna], Swain, D.[Debadatta],
Decline in Phytoplankton Biomass along Indian Coastal Waters due to COVID-19 Lockdown,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Cassianides, A.[Angelina], Martinez, E.[Elodie], Maes, C.[Christophe], Carton, X.[Xavier], Gorgues, T.[Thomas],
Monitoring the Influence of the Mesoscale Ocean Dynamics on Phytoplanktonic Plumes around the Marquesas Islands Using Multi-Satellite Missions,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Lyu, H.[Heng], Yang, Z.Q.[Zi-Qian], Shi, L.[Lei], Li, Y.Y.[Yang-Yang], Guo, H.L.[Hong-Lei], Zhong, S.[Suke], Miao, S.[Song], Bi, S.[Shun], Li, Y.M.[Yun-Mei],
A Novel Algorithm to Estimate Phytoplankton Carbon Concentration in Inland Lakes Using Sentinel-3 OLCI Images,
GeoRS(58), No. 9, September 2020, pp. 6512-6523.
IEEE DOI 2008
Carbon, Lakes, Estimation, Oceans, Carbon dioxide, Optical sensors, Absorption, Absorption height of particles, quantitative estimation BibRef

Mao, Z.X.[Ze-Xi], Mao, Z.H.[Zhi-Hua], Jamet, C.[Cédric], Linderman, M.[Marc], Wang, Y.T.[Yun-Tao], Chen, X.Y.[Xiao-Yan],
Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using the Daily Climatology from Satellite-Retrieved Chlorophyll-a Concentration (1997-2019) Over Global Ocean,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Wang, T.Y.[Tong-Yu], Chen, F.[Fajin], Zhang, S.W.[Shu-Wen], Pan, J.[Jiayi], Devlin, A.T.[Adam Thomas], Ning, H.[Hao], Zeng, W.Q.A.[Wei-Qi-Ang],
Remote Sensing and Argo Float Observations Reveal Physical Processes Initiating a Winter-Spring Phytoplankton Bloom South of the Kuroshio Current Near Shikoku,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Martinez, E.[Elodie], Brini, A.[Anouar], Gorgues, T.[Thomas], Drumetz, L.[Lucas], Roussillon, J.[Joana], Tandeo, P.[Pierre], Maze, G.[Guillaume], Fablet, R.[Ronan],
Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef
And: Correction: RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Xu, W.L.[Wen-Long], Wang, G.F.[Gui-Fen], Jiang, L.[Long], Cheng, X.H.[Xu-Hua], Zhou, W.[Wen], Cao, W.X.[Wen-Xi],
Spatiotemporal Variability of Surface Phytoplankton Carbon and Carbon-to-Chlorophyll a Ratio in the South China Sea Based on Satellite Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Gittings, J.A.[John A.], Raitsos, D.E.[Dionysios E.], Brewin, R.J.W.[Robert J. W.], Hoteit, I.[Ibrahim],
Links between Phenology of Large Phytoplankton and Fisheries in the Northern and Central Red Sea,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Zheng, W.[Wendi], Zhou, W.[Wen], Cao, W.X.[Wen-Xi], Liu, Y.P.[Yu-Peng], Wang, G.F.[Gui-Fen], Deng, L.[Lin], Li, C.[Cai], Zhang, Y.[Yu], Zeng, K.[Kai],
Vertical Variability of Total and Size-Partitioned Phytoplankton Carbon in the South China Sea,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Papagiannopoulos, N.[Nikolaos], Raitsos, D.E.[Dionysios E.], Krokos, G.[Georgios], Gittings, J.A.[John A.], Brewin, R.J.W.[Robert J. W.], Papadopoulos, V.P.[Vassilis P.], Pavlidou, A.[Alexandra], Selmes, N.[Nick], Groom, S.[Steve], Hoteit, I.[Ibrahim],
Phytoplankton Biomass and the Hydrodynamic Regime in NEOM, Red Sea,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Rodriguez-Alvarez, N.[Nereida], Oudrhiri, K.[Kamal],
The Bistatic Radar as an Effective Tool for Detecting and Monitoring the Presence of Phytoplankton on the Ocean Surface,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Zhang, H.W.[Hong-Wei], Zhang, Y.S.[Yuan-Shuai], Li, Z.W.[Zi-Wang], Liu, B.[Bingyi], Yin, B.[Bin], Wu, S.H.[Song-Hua],
Small Angle Scattering Intensity Measurement by an Improved Ocean Scheimpflug Lidar System,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
for phytoplankton detection. BibRef

Churnside, J.H.[James H.], Marchbanks, R.D.[Richard D.], Marshall, N.[Nathan],
Airborne Lidar Observations of a Spring Phytoplankton Bloom in the Western Arctic Ocean,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Lu, X.M.[Xiao-Mei], Hu, Y.X.[Yong-Xiang], Omar, A.[Ali], Baize, R.[Rosemary], Vaughan, M.[Mark], Rodier, S.[Sharon], Kar, J.[Jayanta], Getzewich, B.[Brian], Lucker, P.[Patricia], Trepte, C.[Charles], Hostetler, C.[Chris], Winker, D.[David],
Global Ocean Studies from CALIOP/CALIPSO by Removing Polarization Crosstalk Effects,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for phytoplankton distributions. BibRef

Verma, N.[Neeharika], Lohrenz, S.[Steven], Chakraborty, S.[Sumit], Fichot, C.G.[Cédric G.],
Underway Hyperspectral Bio-Optical Assessments of Phytoplankton Size Classes in the River-Influenced Northern Gulf of Mexico,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Zhong, C.[Chunyi], Chen, P.[Peng], Pan, D.[Delu],
An Improved Adaptive Subsurface Phytoplankton Layer Detection Method for Ocean Lidar Data,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Kraus, C.N.[Cleber Nunes], Maciel, D.A.[Daniel Andrade], Bonnet, M.P.[Marie Paule], de Moraes Novo, E.M.L.[Evlyn Márcia Leăo],
Phytoplankton Genera Structure Revealed from the Multispectral Vertical Diffuse Attenuation Coefficient,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Zhang, Y.[Yinxue], Wang, G.[Guifen], Sathyendranath, S.[Shubha], Xu, W.L.[Wen-Long], Xiao, Y.Z.[Yi-Zhe], Jiang, L.[Long],
Retrieval of Phytoplankton Pigment Composition from Their In Vivo Absorption Spectra,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Demetriou, M.[Monica], Raitsos, D.E.[Dionysios E.], Kournopoulou, A.[Antonia], Mandalakis, M.[Manolis], Sfenthourakis, S.[Spyros], Psarra, S.[Stella],
Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on Remote Sensing and In Situ Observations,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Shu, C.[Chan], Xiu, P.[Peng], Xing, X.G.[Xiao-Gang], Qiu, G.Q.[Guo-Qiang], Ma, W.T.[Wen-Tao], Brewin, R.J.W.[Robert J. W.], Ciavatta, S.[Stefano],
Biogeochemical Model Optimization by Using Satellite-Derived Phytoplankton Functional Type Data and BGC-Argo Observations in the Northern South China Sea,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Siswanto, E.[Eko], Sasai, Y.[Yoshikazu], Matsumoto, K.[Kazuhiko], Honda, M.C.[Makio C.],
Winter-Spring Phytoplankton Phenology Associated with the Kuroshio Extension Instability,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Wang, Y.C.[Yu-Chao], Liu, F.F.[Fen-Fen],
Remote Sensing of Marine Phytoplankton Sizes and Groups Based on the Generalized Addictive Model (GAM),
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Teng, J.[Jing], Zhang, T.[Tinglu], Sun, K.[Kunpeng], Gao, H.[Hong],
Retrieving Pigment Concentrations Based on Hyperspectral Measurements of the Phytoplankton Absorption Coefficient in Global Oceans,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Yang, Y.C.[Yi-Chen], Pan, H.K.[Hang-Kai], Zheng, D.K.[De-Kang], Zhao, H.K.[Hong-Kai], Zhou, Y.[Yudi], Liu, D.[Dong],
Characteristics and Formation Conditions of Thin Phytoplankton Layers in the Northern Gulf of Mexico Revealed by Airborne Lidar,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Guo, J.[Jin], Li, W.G.[Wen-Gen], Guan, J.H.[Ji-Hong], Gao, H.[Hang], Liu, B.B.[Bao-Bo], Gong, L.[Lili],
CDFM: A cross-domain few-shot model for marine plankton classification,
IET-CV(17), No. 1, 2023, pp. 111-121.
DOI Link 2303
BibRef

Muzhoffar, D.A.F.[Dimas Angga Fakhri], Sakuno, Y.[Yuji], Taniguchi, N.[Naokazu], Hamada, K.[Kunihiro], Shimabukuro, H.[Hiromori], Hori, M.[Masakazu],
Automatic Detection of Floating Macroalgae via Adaptive Thresholding Using Sentinel-2 Satellite Data with 10 m Spatial Resolution,
RS(15), No. 8, 2023, pp. 2039.
DOI Link 2305
BibRef

McCarry, C.L.[Cait L.], Basedow, S.L.[Sünnje L.], Davies, E.J.[Emlyn J.], McKee, D.[David],
Estimating Surface Concentrations of Calanus finmarchicus Using Standardised Satellite-Derived Enhanced RGB Imagery,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
zooplankton. BibRef

Ciranni, M.[Massimiliano], Murino, V.[Vittorio], Odone, F.[Francesca], Pastore, V.P.[Vito Paolo],
Computer vision and deep learning meet plankton: Milestones and future directions,
IVC(143), 2024, pp. 104934.
Elsevier DOI 2403
Plankton image analysis, Deep learning, Image classification, Object detection, Anomaly detection, Transfer learning BibRef

Zhong, C.[Chunyi], Chen, P.[Peng], Zhang, S.Q.[Si-Qi],
Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques,
RS(16), No. 11, 2024, pp. 1953.
DOI Link 2406
BibRef


Alfano, P.D.[Paolo Didier], Rando, M.[Marco], Letizia, M.[Marco], Odone, F.[Francesca], Rosasco, L.[Lorenzo], Pastore, V.P.[Vito Paolo],
Efficient Unsupervised Learning for Plankton Images,
ICPR22(1314-1321)
IEEE DOI 2212
Image segmentation, Microorganisms, Pipelines, Neural networks, Sociology, Feature extraction BibRef

Pastore, V.P.[Vito Paolo], Megiddo, N.[Nimrod], Bianco, S.[Simone],
An Anomaly Detection Approach for Plankton Species Discovery,
CIAP22(II:599-609).
Springer DOI 2205
BibRef

Liu, Y.[Yiran], Qiao, X.[Xu], Gao, R.[Rui],
Plankton Classification on Imbalanced Dataset via Hybrid Resample Method with LightBGM,
ICIVC21(191-195)
IEEE DOI 2112
Dimensionality reduction, Deep learning, Technological innovation, Image recognition, LightBGM BibRef

Pu, Y.C.[Yu-Chun], Feng, Z.H.[Zheng-Hui], Wang, Z.L.[Zhong-Lei], Yang, Z.Y.[Zhen-Yu], Li, J.P.[Jian-Ping],
Anomaly Detection for In situ Marine Plankton Images,
OceanVision21(3654-3664)
IEEE DOI 2112
Training, Machine learning algorithms, Face recognition, Pipelines, Observers, Robustness, Task analysis BibRef

Walker, J.L.[Joseph L.], Orenstein, E.C.[Eric C.],
Improving Rare-Class Recognition of Marine Plankton with Hard Negative Mining,
OceanVision21(3665-3675)
IEEE DOI 2112
Training, Oceans, Sociology, Machine learning, Biology BibRef

Ma, W.Q.[Wen-Qi], Chen, T.[Tao], Zhang, Z.G.[Zhen-Gwen], Yang, Z.Y.[Zhen-Yu], Dong, C.[Chao], Qiao, J.P.[Jian-Ping], Li, J.P.[Jian-Ping],
Super-resolution for in situ Plankton Images,
OceanVision21(3676-3685)
IEEE DOI 2112
Deep learning, Visualization, Image registration, Instruments, Biological system modeling, Superresolution, Pipelines BibRef

Bureš, J.[Jaroslav], Eerola, T.[Tuomas], Lensu, L.[Lasse], Kälviäinen, H.[Heikki], Zemcík, P.[Pavel],
Plankton Recognition in Images with Varying Size,
MAES20(110-120).
Springer DOI 2103
BibRef

Shunmugapandi, R., Gedam, S., Inamdar, A.B.,
Study on Cyclone Induced Phytoplankton Bloom In the Arabian Sea Through Gap-free Reconstructed Chlorophyll-a Data,
ISPRS20(B3:1391-1396).
DOI Link 2012
BibRef

Schröder, S.M.[Simon-Martin], Kiko, R.[Rainer], Irisson, J.O.[Jean-Olivier], Koch, R.[Reinhard],
Low-Shot Learning of Plankton Categories,
GCPR18(391-404).
Springer DOI 1905
BibRef

Bochinski, E.[Erik], Bacha, G.[Ghassen], Eiselein, V.[Volker], Walles, T.J.W.[Tim J. W.], Nejstgaard, J.C.[Jens C.], Sikora, T.[Thomas],
Deep Active Learning for In Situ Plankton Classification,
CVAUI18(5-15).
Springer DOI 1901
BibRef

Zelenka, C.[Claudius], Koch, R.[Reinhard],
Single Image Plankton 3D Reconstruction from Extended Depth of Field Shadowgraph,
CVAUI18(76-85).
Springer DOI 1901
BibRef

Wang, C., Yu, Z., Zheng, H., Wang, N., Zheng, B.,
CGAN-plankton: Towards large-scale imbalanced class generation and fine-grained classification,
ICIP17(855-859)
IEEE DOI 1803
Computational modeling, Data models, Kernel, Oceans, Task analysis, Training, GAN, adversarial training, class imbalance, samples generation BibRef

Orenstein, E.C., Beijbom, O.,
Transfer Learning and Deep Feature Extraction for Planktonic Image Data Sets,
WACV17(1082-1088)
IEEE DOI 1609
Cameras, Data mining, Feature extraction, Oceans, Training BibRef

Dai, J.L.[Jia-Lun], Yu, Z.B.[Zhi-Bin], Zheng, H.Y.[Hai-Yong], Zheng, B.[Bing], Wang, N.[Nan],
A Hybrid Convolutional Neural Network for Plankton Classification,
MCBMIIA16(III: 102-114).
Springer DOI 1704
BibRef

Hirata, N.S.T., Fernandez, M.A., Lopes, R.M.,
Plankton Image Classification Based on Multiple Segmentations,
CVAUI16(55-60)
IEEE DOI 1701
Algorithm design and analysis BibRef

Lee, H., Park, M., Kim, J.,
Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning,
ICIP16(3713-3717)
IEEE DOI 1610
Data models BibRef

Gao, G.M.[Guo-Ming], Liu, H.[Huan], Gu, Y.F.[Yan-Feng], Jia, X.P.[Xiu-Ping],
Normalized difference phytoplankton index (NDPI) and spatio-temporal cloud filtering for multitemporal cyanobacteria pollution analysis on Erie Lake in 2014,
MultiTemp15(1-4)
IEEE DOI 1511
lakes BibRef

Rahimi, A.M., Miller, R.J., Fedorov, D.V., Sunderrajan, S., Doheny, B.M., Page, H.M., Manjunath, B.S.,
Marine Biodiversity Classification Using Dropout Regularization,
CVAUI14(80-87)
IEEE DOI 1412
Biodiversity BibRef

Mazzei, L.[Luca], Marini, S.[Simone], Craig, J.[Jessica], Aguzzi, J.[Jacopo], Fanelli, E.[Emanuela], Priede, I.G.[Imants G.],
Automated Video Imaging System for Counting Deep-Sea Bioluminescence Organisms Events,
CVAUI14(57-64)
IEEE DOI 1412
Ash BibRef

Corgnati, L.[Lorenzo], Mazzei, L.[Luca], Marini, S.[Simone], Aliani, S.[Stefano], Conversi, A.[Alessandra], Griffa, A.[Annalisa], Isoppo, B.[Bruno], Ottaviani, E.[Ennio],
Automated Gelatinous Zooplankton Acquisition and Recognition,
CVAUI14(1-8)
IEEE DOI 1412
Feature extraction BibRef

Matuszewski, D.J.[Damian J.], Martins, C.I.O.[C. Iury O.], Cesar, Jr., R.M.[Roberto M.], Strickler, J.R.[J. Rudi], Lopes, R.M.[Rubens M.],
Visual rhythm-based plankton detection method for ballast water quality assessment,
ICIP12(1009-1012).
IEEE DOI 1302
BibRef

Zhao, F.[Feng], Lin, F.[Feng], Seah, H.S.[Hock Soon],
Bagging based plankton image classification,
ICIP09(2081-2084).
IEEE DOI 0911
BibRef

Alarcon, V.J., van der Zwaag, J., Moorhead, R.,
Estimation of Estuary Phytoplankton using a Web-based Tool for Visualization of Hyper-spectral Images,
AIPR06(25-25).
IEEE DOI 0610
BibRef

Alarcon, V.J., O'Hara, C.G.,
Advanced Techniques for Watershed Visualization,
AIPR06(30-30).
IEEE DOI 0610
BibRef

Luo, T.[Tong], Kramer, K., Samson, S., Remsen, A.,
Active learning to recognize multiple types of plankton,
ICPR04(III: 478-481).
IEEE DOI 0409
BibRef

Zhao, F.[Feng], Tang, X.[Xiaoou], Lin, F.[Feng], Samson, S., Remsen, A.,
Binary Plankton Image Classification Using Random Subspace,
ICIP05(I: 357-360).
IEEE DOI 0512
BibRef

Blaschko, M.B.[Matthew B.], Holness, G.[Gary], Mattar, M.A.[Marwan A.], Lisin, D.A.[Dimitri A.], Utgoff, P.E.[Paul E.], Hanson, A.R.[Allen R.], Schultz, H.[Howard], Riseman, E.M.[Edward M.], Sieracki, M.E.[Michael E.], Balch, W.M.[William M.], Tupper, B.[Ben],
Automatic In Situ Identification of Plankton,
WACV05(I: 79-86).
IEEE DOI 0502
BibRef

Lisin, D.A., Mattar, M.A., Blaschko, M.B., Learned-Miller, E.G., Benfield, M.C.,
Combining Local and Global Image Features for Object Class Recognition,
LCV05(III: 47-47).
IEEE DOI 0507
BibRef

Thonnat, M., Gandelin, M.,
An expert system for the automatic classification and description of zooplanktons from monocular images,
ICPR88(I: 114-118).
IEEE DOI 8811
BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Diatoms .


Last update:Sep 28, 2024 at 17:47:54