Gokturk, S.B.,
Tomasi, C.,
Acar, B.,
Beaulieu, C.F.,
Paik, D.S.,
Jeffrey, R.B.,
Yee, J.,
Napel, S.,
A statistical 3-D pattern processing method for computer-aided
detection of polyps in CT colonography,
MedImg(20), No. 12, December 2001, pp. 1251-1260.
IEEE Top Reference.
0201
BibRef
Acar, B.,
Beaulieu, C.F.,
Gokturk, S.B.,
Tomasi, C.,
Paik, D.S.,
Jeffrey, R.B.,
Yee, J.,
Napel, S.,
Edge displacement field-based classification for improved detection of
polyps in CT colonography,
MedImg(21), No. 12, December 2002, pp. 1461-1467.
IEEE Top Reference.
0301
BibRef
Yoshida, H.,
Nappi, J.,
Three-dimensional computer-aided diagnosis scheme for detection of
colonic polyps,
MedImg(20), No. 12, December 2001, pp. 1261-1274.
IEEE Top Reference.
0201
BibRef
Yao, J.H.,
Miller, M.,
Franaszek, M.,
Summers, R.M.,
Colonic Polyp Segmentation in CT Colonography-Based on Fuzzy Clustering
and Deformable Models,
MedImg(23), No. 11, November 2004, pp. 1344-1352.
IEEE Abstract.
0411
BibRef
Konukoglu, E.,
Acar, B.,
Paik, D.S.,
Beaulieu, C.F.,
Rosenberg, J.,
Napel, S.,
Polyp Enhancing Level Set Evolution of Colon Wall:
Method and Pilot Study,
MedImg(26), No. 12, December 2007, pp. 1649-1656.
IEEE DOI
0712
BibRef
Hafner, M.[Michael],
Kwitt, R.[Roland],
Uhl, A.[Andreas],
Wrba, F.[Friedrich],
Gangl, A.[Alfred],
Vecsei, A.[Andreas],
Computer-assisted pit-pattern classification in different wavelet
domains for supporting dignity assessment of colonic polyps,
PR(42), No. 6, June 2009, pp. 1180-1191.
Elsevier DOI
0902
Computer-assisted pit-pattern classification; Wavelet transformation;
Colorectal cancer; Color-texture analysis
BibRef
Kwitt, R.[Roland],
Uhl, A.[Andreas],
Hafner, M.[Michael],
Gangl, A.[Alfred],
Wrba, F.[Friedrich],
Vecsei, A.[Andreas],
Predicting the histology of colorectal lesions in a probabilistic
framework,
MMBIA10(103-110).
IEEE DOI
1006
BibRef
Häfner, M.,
Gangl, A.,
Liedlgruber, M.,
Uhl, A.[Andreas],
Vécsei, A.,
Wrba, F.,
Endoscopic Image Classification Using Edge-Based Features,
ICPR10(2724-2727).
IEEE DOI
1008
BibRef
And:
Classification of Endoscopic Images Using Delaunay Triangulation-Based
Edge Features,
ICIAR10(II: 131-140).
Springer DOI
1006
BibRef
Uhl, A.[Andreas],
Vécsei, A.[Andreas],
Wimmer, G.[Georg],
Complex Wavelet Transform Variants in a Scale Invariant Classification
of Celiac Disease,
IbPRIA11(742-749).
Springer DOI
1106
BibRef
Yao, J.H.[Jian-Hua],
Li, J.[Jiang],
Summers, R.M.[Ronald M.],
Employing topographical height map in colonic polyp measurement and
false positive reduction,
PR(42), No. 6, June 2009, pp. 1029-1040.
Elsevier DOI
0902
CAD; Colonic polyps; Topographical height map; Range image
BibRef
van Ravesteijn, V.F.,
van Wijk, C.,
Vos, F.M.,
Truyen, R.,
Peters, J.F.,
Stoker, J.,
van Vliet, L.J.,
Computer-Aided Detection of Polyps in CT Colonography Using Logistic
Regression,
MedImg(29), No. 1, January 2010, pp. 120-131.
IEEE DOI
1001
BibRef
van Wijk, C.,
van Ravesteijn, V.F.[Vincent F.],
Vos, F.M.[Frans M.],
van Vliet, L.J.[Lucas J.],
Detection and Segmentation of Colonic Polyps on Implicit Isosurfaces by
Second Principal Curvature Flow,
MedImg(29), No. 3, March 2010, pp. 688-698.
IEEE DOI
1003
BibRef
van Ravesteijn, V.F.[Vincent F.],
Vos, F.M.[Frans M.],
van Vliet, L.J.[Lucas J.],
Recognition of Protruding Objects in Highly Structured Surroundings by
Structural Inference,
SCIA09(41-50).
Springer DOI
0906
BibRef
van Ravesteijn, V.F.,
Vos, F.M.,
Serlie, I.W.O.,
Truyen, R.,
van Vliet, L.J.,
Thin layer tissue classification for electronic cleansing of CT
colonography data,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Chowdhury, A.S.[Ananda S.],
Tan, S.[Sovira],
Yao, J.H.[Jian-Hua],
Summers, R.M.[Ronald M.],
Colonic fold detection from computed tomographic colonography images
using diffusion-FCM and level sets,
PRL(31), No. 9, 1 July 2010, pp. 876-883.
Elsevier DOI
1004
Heat diffusion; Fuzzy c-means; Level sets; Shape index; Computed
tomographic colonography
BibRef
Wei, Z.S.[Zhuo-Shi],
Yao, J.H.[Jian-Hua],
Wang, S.J.[Shi-Jun],
Summers, R.M.[Ronald M.],
Teniae Coli Extraction in Human Colon for Computed Tomographic
Colonography Images,
VirtualColon10(98-104).
Springer DOI
1112
BibRef
Chowdhury, A.S.,
Yao, J.H.[Jian-Hua],
van Uitert, R.L.,
Linguraru, M.G.,
Summers, R.M.[Ronald M.],
Detection of anatomical landmarks in human colon from computed
tomographic colonography images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Lamy, J.[Julien],
Summers, R.M.[Ronald M.],
Teniæ Coli Detection from Colon Surface: Extraction of Anatomical
Markers for Virtual Colonoscopy,
ISVC07(I: 199-207).
Springer DOI
0711
BibRef
Yao, J.H.[Jian-Hua],
Li, J.[Jiang],
Summers, R.M.[Ronald M.],
CT Colonography Computer-Aided Polyp Detection using Topographical
Height Map,
ICIP07(V: 21-24).
IEEE DOI
0709
BibRef
Wang, S.J.[Shi-Jun],
Yao, J.H.[Jian-Hua],
Summers, R.M.[Ronald M.],
Matching colonic polyps from prone and supine CT colonography scans
based on statistical curvature information,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Huang, A.[Adam],
Li, J.[Jiang],
Summers, R.M.[Ronald M.],
Petrick, N.[Nicholas],
Hara, A.K.[Amy K.],
Improving polyp detection algorithms for CT colonography:
Pareto front approach,
PRL(31), No. 11, 1 August 2010, pp. 1461-1469.
Elsevier DOI
1008
Pareto front; Computer-aided detection; Polyp detection; CT
colonography; Virtual colonoscopy
BibRef
Suzuki, K.[Kenji],
Zhang, J.,
Xu, J.W.[Jian-Wu],
Massive-Training Artificial Neural Network Coupled With
Laplacian-Eigenfunction-Based Dimensionality Reduction for
Computer-Aided Detection of Polyps in CT Colonography,
MedImg(29), No. 11, November 2010, pp. 1907-1917.
IEEE DOI
1011
BibRef
Xu, J.W.[Jian-Wu],
Suzuki, K.[Kenji],
Computer-Aided Detection of Polyps in CT Colonography with Pixel-Based
Machine Learning Techniques,
MLMI11(360-367).
Springer DOI
1109
BibRef
Earlier:
False-Positive Reduction in Computer-Aided Detection of Polyps in CT
Colonography: A Massive-Training Support Vector Regression Approach,
VirtualColon10(47-52).
Springer DOI
1112
BibRef
Suzuki, K.[Kenji],
Recent Advances in Reduction of False Positives in Computerized
Detection of Polyps in CT Colonography,
VirtualColon10(32-39).
Springer DOI
1112
BibRef
Ong, J.L.[Ju Lynn],
Seghouane, A.K.[Abd-Krim],
Feature selection using mutual information in CT colonography,
PRL(32), No. 2, 15 January 2011, pp. 337-341.
Elsevier DOI
1101
BibRef
Earlier: A2, A1:
Efficient feature selection for polyp detection,
ICIP10(2285-2288).
IEEE DOI
1009
Feature selection; Computed tomography; Support vector classifier;
Mutual information
BibRef
Ong, J.L.[Ju Lynn],
Seghouane, A.K.[Abd-Krim],
From Point to Local Neighborhood: Polyp Detection in CT Colonography
Using Geodesic Ring Neighborhoods,
IP(20), No. 4, April 2011, pp. 1000-1010.
IEEE DOI
1103
BibRef
Earlier: A2, A1:
Geodesic-ring based curvature maps for polyp detection in CT
colonography,
ICIP10(1421-1424).
IEEE DOI
1009
BibRef
Ong, J.L.[Ju Lynn],
Seghouane, A.K.,
Osborn, K.,
Mean Shape Models for Polyp Detection in CT Colonography,
DICTA08(287-293).
IEEE DOI
0812
BibRef
Bernal, J.,
Sánchez, J.,
Vilariño, F.,
Towards automatic polyp detection with a polyp appearance model,
PR(45), No. 9, September 2012, pp. 3166-3182.
Elsevier DOI
1206
Colonoscopy; Polyp detection; Region segmentation; SA-DOVA descriptor
BibRef
Vazquez, E.[Eduard],
Yang, X.Y.[Xiao-Yun],
Slabaugh, G.G.[Greg G.],
Erosion band signatures for spatial extraction of features,
MVA(24), No. 4, May 2013, pp. 695-705.
Springer DOI
1304
spatial coherence of features extracted from a region.
Apply to polyp detection and head tracking.
BibRef
Yang, X.Y.[Xiao-Yun],
Beddoe, G.[Gareth],
Slabaugh, G.G.[Greg G.],
Learning to Detect 3D Rectal Tubes in CT Colonography Using a Global
Shape Model,
VirtualColon10(53-59).
Springer DOI
1112
BibRef
Boyes, R.[Richard],
Slabaugh, G.G.[Greg G.],
Beddoe, G.[Gareth],
Fast pseudo-enhancement correction in CT colonography using linear
shift-invariant filters,
ICIP09(2509-2512).
IEEE DOI
0911
BibRef
Ye, X.J.[Xu-Jiong],
Beddoe, G.[Gareth],
Slabaugh, G.G.[Greg G.],
A Bayesian Approach for False Positive Reduction in CTC CAD,
VirtualColon10(40-46).
Springer DOI
1112
BibRef
Boyes, R.[Richard],
Ye, X.J.[Xu-Jiong],
Beddoe, G.[Gareth],
Slabaugh, G.G.[Greg G.],
Sparse Parallel Electronic Bowel Cleansing in CT Colonography,
3DPVT10(xx-yy).
WWW Link.
1005
BibRef
Mamonov, A.V.,
Figueiredo, I.N.,
Figueiredo, P.N.,
Tsai, Y.H.R.[Y.H. Richard],
Automated Polyp Detection in Colon Capsule Endoscopy,
MedImg(33), No. 7, July 2014, pp. 1488-1502.
IEEE DOI
1407
Biological tissues
BibRef
Bernal, J.[Jorge],
Polyp Localization and Segmentation in Colonoscopy Images by Means of a
Model of Appearance for Polyps,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Bernal, J.[Jorge],
Sánchez, J.[Javier],
Vilariño, F.[Fernando],
A Region Segmentation Method for Colonoscopy Images Using a Model of
Polyp Appearance,
IbPRIA11(134-142).
Springer DOI
1106
BibRef
Bae, S.H.[Seung-Hwan],
Yoon, K.J.[Kuk-Jin],
Polyp Detection via Imbalanced Learning and Discriminative Feature
Learning,
MedImg(34), No. 11, November 2015, pp. 2379-2393.
IEEE DOI
1511
Detectors
BibRef
Tajbakhsh, N.,
Gurudu, S.R.,
Liang, J.,
Automated Polyp Detection in Colonoscopy Videos Using Shape and
Context Information,
MedImg(35), No. 2, February 2016, pp. 630-644.
IEEE DOI
1602
Cancer
BibRef
Roth, H.R.,
Lu, L.,
Liu, J.,
Yao, J.,
Seff, A.,
Cherry, K.,
Kim, L.,
Summers, R.M.,
Improving Computer-Aided Detection Using Convolutional Neural
Networks and Random View Aggregation,
MedImg(35), No. 5, May 2016, pp. 1170-1181.
IEEE DOI
1605
Colonic polyps
BibRef
Hu, Y.,
Liang, Z.,
Song, B.,
Han, H.,
Pickhardt, P.J.,
Zhu, W.,
Duan, C.,
Zhang, H.,
Barish, M.A.,
Lascarides, C.E.,
Texture Feature Extraction and Analysis for Polyp Differentiation via
Computed Tomography Colonography,
MedImg(35), No. 6, June 2016, pp. 1522-1531.
IEEE DOI
1606
Cancer
BibRef
Bernal, J.,
Tajkbaksh, N.,
Sánchez, F.J.,
Matuszewski, B.J.,
Chen, H.,
Yu, L.,
Angermann, Q.,
Romain, O.,
Rustad, B.,
Balasingham, I.,
Pogorelov, K.,
Choi, S.,
Debard, Q.,
Maier-Hein, L.,
Speidel, S.,
Stoyanov, D.,
Brandao, P.,
Córdova, H.,
Sánchez-Montes, C.,
Gurudu, S.R.,
Fernández-Esparrach, G.,
Dray, X.,
Liang, J.,
Histace, A.,
Comparative Validation of Polyp Detection Methods in Video
Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge,
MedImg(36), No. 6, June 2017, pp. 1231-1249.
IEEE DOI
1706
Biomedical imaging, Cancer, Colon, Colonoscopy, Databases, Endoscopes,
Lesions, Endoscopic vision, handcrafted features, machine learning,
polyp detection, validation, framework
BibRef
Zhang, R.K.[Rui-Kai],
Zheng, Y.[Yali],
Poon, C.C.Y.[Carmen C.Y.],
Shen, D.G.[Ding-Gang],
Lau, J.Y.W.[James Y.W.],
Polyp detection during colonoscopy using a regression-based
convolutional neural network with a tracker,
PR(83), 2018, pp. 209-219.
Elsevier DOI
1808
Smart cancer screening, Therapeutic endoscopy,
Endoscopic Informatics, Body Sensor Network, Deep Learning, Health Informatics
BibRef
Jia, X.,
Xing, X.,
Yuan, Y.,
Xing, L.,
Meng, M.Q.,
Wireless Capsule Endoscopy: A New Tool for Cancer Screening in the
Colon With Deep-Learning-Based Polyp Recognition,
PIEEE(108), No. 1, January 2020, pp. 178-197.
IEEE DOI
2001
Cancer, Endoscopes, Deep learning, Machine learning,
Medical treatment, Biomedical imaging, Cancer screening,
wireless capsule endoscopy (WCE)
BibRef
Mostafiz, R.[Rafid],
Hasan, M.[Mosaddik],
Hossain, I.[Imran],
Rahman, M.M.[Mohammad M.],
An intelligent system for gastrointestinal polyp detection in
endoscopic video using fusion of bidimensional empirical mode
decomposition and convolutional neural network features,
IJIST(30), No. 1, 2020, pp. 224-233.
DOI Link
2002
CEMD features, convolutional neural network (CNN),
empirical mode decomposition, support vector machine (SVM), video endoscopy
BibRef
Tan, J.,
Gao, Y.,
Liang, Z.,
Cao, W.,
Pomeroy, M.J.,
Huo, Y.,
Li, L.,
Barish, M.A.,
Abbasi, A.F.,
Pickhardt, P.J.,
3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based
CNN Model for Polyp Classification via CT Colonography,
MedImg(39), No. 6, June 2020, pp. 2013-2024.
IEEE DOI
2006
Polyp differentiation, image features, deep learning, GLCM, CT colonoscopy
BibRef
Haj-Manouchehri, A.[Azadeh],
Mohammadi, H.M.[Hossein Mahvash],
Polyp detection using CNNs in colonoscopy video,
IET-CV(14), No. 5, August 2020, pp. 241-247.
DOI Link
2007
BibRef
Kaçmaz, R.N.[Rukiye Nur],
Yilmaz, B.[Bülent],
Aydin, Z.[Zafer],
Effect of interpolation on specular reflections in texture-based
automatic colonic polyp detection,
IJIST(31), No. 1, 2021, pp. 327-335.
DOI Link
2102
classification, colon polyp, image processing, machine learning,
specular reflection
BibRef
Guo, X.,
Yang, C.,
Liu, Y.,
Yuan, Y.,
Learn to Threshold: ThresholdNet With Confidence-Guided Manifold
Mixup for Polyp Segmentation,
MedImg(40), No. 4, April 2021, pp. 1134-1146.
IEEE DOI
2104
Image segmentation, Training, Cancer, Feature extraction, Manifolds,
Deep learning, Task analysis, Polyp segmentation,
TMSG module
BibRef
Afify, H.M.[Heba M.],
Mohammed, K.K.[Kamel K.],
Hassanien, A.E.[Aboul Ella],
An improved framework for polyp image segmentation based on SegNet
architecture,
IJIST(31), No. 3, 2021, pp. 1741-1751.
DOI Link
2108
convolutional neural network, Kvasir-SEG database,
polyp image segmentation, SegNet, VGG-16 network, VGG-19 network
BibRef
Ghosh, S.K.[Swarup Kr],
Ghosh, A.[Anupam],
A novel intuitionistic fuzzy soft set based colonogram enhancement
for polyps localization,
IJIST(31), No. 3, 2021, pp. 1486-1502.
DOI Link
2108
colonography, contrast enhancement, fuzzy soft set,
intuitionistic fuzzy set, polyps localization
BibRef
Yildirim, M.[Muhammed],
Cinar, A.[Ahmet],
Classification with respect to colon adenocarcinoma and colon benign
tissue of colon histopathological images with a new CNN model: MA:NET,
IJIST(32), No. 1, 2022, pp. 155-162.
DOI Link
2201
classification, CNN, colon cancer, deep learning, image processing
BibRef
Sasmal, P.[Pradipta],
Bhuyan, M.K.,
Dutta, S.[Soumayan],
Iwahori, Y.J.[Yu-Ji],
An unsupervised approach of colonic polyp segmentation using adaptive
markov random fields,
PRL(154), 2022, pp. 7-15.
Elsevier DOI
2202
Endoscopic image, Super-pixel, Markov random field (MRF),
Local binary pattern (LBP)
BibRef
Liu, X.Y.[Xin-Yu],
Yuan, Y.X.[Yi-Xuan],
A Source-Free Domain Adaptive Polyp Detection Framework With Style
Diversification Flow,
MedImg(41), No. 7, July 2022, pp. 1897-1908.
IEEE DOI
2207
Adaptation models, Detectors, Data models, Task analysis, Training,
Cancer, Object detection, Automatic polyp detection,
source-free domain adaptation
BibRef
Lin, Y.[Yi],
Wu, J.[Jichun],
Xiao, G.[Guobao],
Guo, J.W.[Jun-Wen],
Chen, G.[Geng],
Ma, J.Y.[Jia-Yi],
BSCA-Net: Bit Slicing Context Attention network for polyp
segmentation,
PR(132), 2022, pp. 108917.
Elsevier DOI
2209
Medical image segmentation, Polyp segmentation, Colonoscopy, Attention mechanism
BibRef
Shi, J.H.[Jing-Hui],
Zhang, Q.[Qing],
Tang, Y.H.[Yu-Hao],
Zhang, Z.Q.[Zhong-Qun],
Polyp-Mixer: An Efficient Context-Aware MLP-Based Paradigm for Polyp
Segmentation,
CirSysVideo(33), No. 1, January 2023, pp. 30-42.
IEEE DOI
2301
Decoding, Transformers, Task analysis, Image segmentation,
Feature extraction, Convolution, Computational modeling, MLP,
polyp segmentation
BibRef
Bhattacharya, D.[Debayan],
Eggert, D.[Dennis],
Betz, C.[Christian],
Schlaefer, A.[Alexander],
Squeeze and multi-context attention for polyp segmentation,
IJIST(33), No. 1, 2023, pp. 123-142.
DOI Link
2301
attention, attention gate, polyp segmentation,
squeeze and excite, squeeze and multi-context, U-Net
BibRef
Sushama, G.[Geetha],
Menon, G.C.[Gopakumar Chandrasekhara],
Attention augmented residual autoencoder for efficient polyp
segmentation,
IJIST(33), No. 2, 2023, pp. 701-713.
DOI Link
2303
attention module, autoencoder, colon polyps,
residual skip-connected CNN, semantic segmentation
BibRef
Sharma, P.[Pallabi],
Das, D.[Dipankar],
Gautam, A.[Anmol],
Balabantaray, B.K.[Bunil Kumar],
LPNet: A lightweight CNN with discrete wavelet pooling strategies for
colon polyps classification,
IJIST(33), No. 2, 2023, pp. 495-510.
DOI Link
2303
deep learning, classification, CNN, polyps, colonoscopy
BibRef
Wu, H.[Huisi],
Zhao, Z.B.[Ze-Bin],
Zhong, J.F.[Jia-Fu],
Wang, W.[Wei],
Wen, Z.K.[Zhen-Kun],
Qin, J.[Jing],
PolypSeg+: A Lightweight Context-Aware Network for Real-Time Polyp
Segmentation,
Cyber(53), No. 4, April 2023, pp. 2610-2621.
IEEE DOI
2303
Feature extraction, Image segmentation, Cancer, Real-time systems,
Colonoscopy, Task analysis, Data mining, Colonoscopy,
real-time polyp segmentation
BibRef
Zhou, T.[Tao],
Zhou, Y.[Yi],
He, K.[Kelei],
Gong, C.[Chen],
Yang, J.[Jian],
Fu, H.Z.[Hua-Zhu],
Shen, D.G.[Ding-Gang],
Cross-level Feature Aggregation Network for Polyp Segmentation,
PR(140), 2023, pp. 109555.
Elsevier DOI
2305
Polyp segmentation, boundary-aware features,
cross-level feature fusion, boundary aggregated module
BibRef
Mushtaq, D.[Dania],
Madni, T.M.[Tahir Mustafa],
Janjua, U.I.[Uzair Iqbal],
Anwar, F.[Fozia],
Kakakhail, A.[Ahmad],
An automatic gastric polyp detection technique using deep learning,
IJIST(33), No. 3, 2023, pp. 866-880.
DOI Link
2305
attention mechanism, convolution neural network,
feature map concatenation, gastric polyp, gastroscopy, SSD
BibRef
Guo, Q.Q.[Qing-Qing],
Fang, X.Y.[Xian-Yong],
Wang, K.B.[Kai-Bing],
Shi, Y.Q.[Yu-Qing],
Wang, L.[Linbo],
Zhang, E.[Enming],
Liu, Z.Y.[Zheng-Yi],
Parallel matters: Efficient polyp segmentation with parallel
structured feature augmentation modules,
IET-IPR(17), No. 8, 2023, pp. 2503-2515.
DOI Link
2306
biomedical imaging, image segmentation
BibRef
Al Jowair, H.[Hamdan],
Alsulaiman, M.[Mansour],
Muhammad, G.[Ghulam],
Multi parallel U-net encoder network for effective polyp image
segmentation,
IVC(137), 2023, pp. 104767.
Elsevier DOI
2309
Polyp, Medical image segmentation, Deep learning,
Multi encoders, Skip connections
BibRef
Lu, L.[Lu],
Chen, S.H.[Shu-Han],
Tang, H.[Haonan],
Zhang, X.F.[Xin-Feng],
Hu, X.L.[Xue-Long],
A multi-scale perceptual polyp segmentation network based on boundary
guidance,
IVC(138), 2023, pp. 104811.
Elsevier DOI
2310
Polyp segmentation, Boundary guidance,
Multi-scale global perception, Complementary fusion, Detail refinement
BibRef
Jiang, S.[Shen],
Li, J.J.[Jin-Jiang],
Hua, Z.[Zhen],
GR-Net: Gated axial attention ResNest network for polyp segmentation,
IJIST(33), No. 5, 2023, pp. 1531-1548.
DOI Link
2310
attention, colonoscopy, medical image segmentation, polyp segmentation
BibRef
Chen, L.F.[Li-Fang],
Ge, H.Z.[Hong-Ze],
Li, J.W.[Jia-Wei],
CrossFormer: Multi-scale cross-attention for polyp segmentation,
IET-IPR(17), No. 12, 2023, pp. 3441-3452.
DOI Link
2310
channel enhancement, colorectal cancer, cross-attention,
multi scale, polyp segmentation
BibRef
Wang, Z.[Zhi],
Gao, F.[Feng],
Yu, L.[Long],
Tian, S.W.[Sheng-Wei],
UACENet: Uncertain area attention and cross-image context extraction
network for polyp segmentation,
IJIST(33), No. 6, 2023, pp. 1973-1987.
DOI Link
2311
attention mechanism, context feature learning, deep learning, polyp segmentation
BibRef
Jain, S.[Samir],
Atale, R.[Rohan],
Gupta, A.[Anubhav],
Mishra, U.[Utkarsh],
Seal, A.[Ayan],
Ojha, A.[Aparajita],
Jaworek-Korjakowska, J.[Joanna],
Krejcar, O.[Ondrej],
CoInNet: A Convolution-Involution Network With a Novel Statistical
Attention for Automatic Polyp Segmentation,
MedImg(42), No. 12, December 2023, pp. 3987-4000.
IEEE DOI
2312
BibRef
Gao, S.[Shanglei],
Zhan, Y.W.[Yin-Wei],
Chen, Z.J.[Zi-Jun],
BGNet: Boundary-guided network for polyp segmentation,
IJIST(34), No. 1, 2024, pp. e22959.
DOI Link
2401
boundary-guided, colorectal cancer (CRC), encoder-decoder,
polyp image segmentation
BibRef
Li, W.X.[Wen-Xue],
Xiong, X.Y.[Xin-Yu],
Li, S.Y.[Si-Ying],
Fan, F.[Fugui],
HybridVPS: Hybrid-Supervised Video Polyp Segmentation Under Low-Cost
Labels,
SPLetters(31), 2024, pp. 111-115.
IEEE DOI
2401
BibRef
Zhao, Y.Y.[Yi-Yang],
Li, J.J.[Jin-Jiang],
Hua, Z.[Zhen],
TACT: Text attention based CNN-Transformer network for polyp
segmentation,
IJIST(34), No. 2, 2024, pp. e22997.
DOI Link
2402
CNN-Transformer, colonoscopy, medical image segmentation, polyp segmentation
BibRef
Selvaraj, J.[Jothiraj],
Jayanthy, A.K.,
Design and development of artificial intelligence-based application
programming interface for early detection and diagnosis of colorectal
cancer from wireless capsule endoscopy images,
IJIST(34), No. 2, 2024, pp. e23034.
DOI Link
2402
artificial intelligence, colorectal cancer, colorectal polyp,
computer-aided diagnosis, deep learning, early diagnosis, wireless capsule endoscopy
BibRef
Yue, G.H.[Guang-Hui],
Li, Y.[Yuanyan],
Jiang, W.C.[Wen-Chao],
Zhou, W.[Wei],
Zhou, T.W.[Tian-Wei],
Boundary Refinement Network for Colorectal Polyp Segmentation in
Colonoscopy Images,
SPLetters(31), 2024, pp. 954-958.
IEEE DOI
2404
Feature extraction, Convolution, Image segmentation, Task analysis,
Shape, Data augmentation, Colonoscopy, Deep neural network,
colonoscopy image
BibRef
Yu, Z.N.[Zhen-Ni],
Zhao, L.[Li],
Liao, T.F.[Tang-Fei],
Zhang, X.Q.[Xiao-Qin],
Chen, G.[Geng],
Xiao, G.B.[Guo-Bao],
A novel non-pretrained deep supervision network for polyp
segmentation,
PR(154), 2024, pp. 110554.
Elsevier DOI Code:
WWW Link.
2406
Polyp segmentation, Deep supervision, Attention mechanism,
Global context relation
BibRef
Liu, Z.Z.[Zhi-Zhe],
Zheng, S.[Shuai],
Sun, X.Y.[Xiao-Yi],
Zhu, Z.F.[Zhen-Feng],
Zhao, Y.[Yawei],
Yang, X.B.[Xue-Bing],
Zhao, Y.[Yao],
The Devil Is in the Boundary: Boundary-Enhanced Polyp Segmentation,
CirSysVideo(34), No. 7, July 2024, pp. 5414-5423.
IEEE DOI Code:
WWW Link.
2407
Image segmentation, Training, Task analysis, Feature extraction,
Colonoscopy, Data models, Computational modeling,
multi-level collaboration
BibRef
Zheng, Z.R.[Zhuo-Ran],
Wu, C.[Chen],
Jin, Y.[Yeying],
Jia, X.[Xiuyi],
Polyp-DAM: Polyp Segmentation via Depth Anything Model,
SPLetters(31), 2024, pp. 2925-2929.
IEEE DOI
2411
Image segmentation, Convolution, Image resolution, Dams, Training,
Accuracy, Large models, polyp segmentation tasks, depth map
BibRef
Hu, Y.B.[Yi-Biao],
Jin, Y.[Yan],
Jiang, Z.W.[Zhi-Wei],
Zheng, Q.[Qiufu],
PVT2DNet: Polyp segmentation with vision transformer and dual decoder
refinement strategy,
JVCIR(104), 2024, pp. 104304.
Elsevier DOI
2411
Polyp image segmentation, Context enhancement, Dual decoder refinement
BibRef
Wang, T.[Tong],
Qi, X.M.[Xiao-Ming],
Yang, G.[Guanyu],
Polyp Segmentation via Semantic Enhanced Perceptual Network,
CirSysVideo(34), No. 12, December 2024, pp. 12594-12607.
IEEE DOI
2501
Semantics, Kernel, Feature extraction, Convolution, Shape,
Image segmentation, Image color analysis, Polyp segmentation, feature fusion
BibRef
Wang, S.[Shuai],
Zhao, T.J.[Tie-Jun],
Wang, G.[Guocun],
Han, Y.[Ye],
Wu, F.[Fan],
UCFA-Net: A U-shaped cross-fusion network with attention mechanism
for enhanced polyp segmentation,
IET-IPR(19), No. 1, 2025, pp. e13293.
DOI Link
2501
medical image processing, polyp segmentation
BibRef
Xiong, X.Y.[Xin-Yu],
Li, W.X.[Wen-Xue],
Ma, J.[Jie],
Huang, D.[Duojun],
Li, S.Y.[Si-Ying],
Free Meal: Boosting Semi-Supervised Polyp Segmentation by Harvesting
Negative Samples,
SPLetters(32), 2025, pp. 131-135.
IEEE DOI
2501
Training, Image segmentation, Lesions, Annotations,
Semisupervised learning, Biomedical imaging, Robustness, Hospitals,
semi-supervised learning
BibRef
Li, Z.J.[Zi-Jian],
Yang, Z.Y.[Zhi-Yong],
Wu, W.[Wangsheng],
Guo, Z.H.[Zi-Hang],
Zhu, D.D.[Dong-Dong],
Boundary Refinement Network for Polyp Segmentation With Deformable
Attention,
SPLetters(32), 2025, pp. 121-125.
IEEE DOI
2501
Convolution, Feature extraction, Transformers, Kernel, Image segmentation,
Computational modeling, Training, Shape, polyp segmentation
BibRef
Fu, J.[Junhu],
Chen, K.[Ke],
Dou, Q.[Qi],
Gao, Y.[Yun],
He, Y.P.[Yi-Ping],
Zhou, P.[Pinghong],
Lin, S.L.[Sheng-Li],
Wang, Y.Y.[Yuan-Yuan],
Guo, Y.[Yi],
IPNet: An Interpretable Network With Progressive Loss for Whole-Stage
Colorectal Disease Diagnosis,
MedImg(44), No. 2, February 2025, pp. 789-800.
IEEE DOI
2502
Lesions, Feature extraction, Ultrasonic imaging, Cancer,
Classification algorithms, Accuracy, Medical diagnosis, interpretability
BibRef
ELKarazle, K.[Khaled],
Raman, V.[Valliappan],
Chua, C.[Caslon],
Then, P.[Patrick],
SCABNet: A Novel Polyp Segmentation Network With Spatial-Gradient
Attention and Channel Prioritization,
IJIST(35), No. 2, 2025, pp. e70039.
DOI Link Code:
WWW Link.
2502
channel prioritization, colorectal cancer,
colorectal polyp segmentation, colorectal polyps, deep learning
BibRef
Nguyen, Q.V.[Quang Vinh],
Vo, T.H.S.[Thanh Hoang Son],
Kang, S.R.[Sae-Ryung],
Kim, S.H.[Soo-Hyung],
Polyp-ses: Automatic Polyp Segmentation with Self-enriched Semantic
Model,
ACCV24(II: 174-190).
Springer DOI
2412
BibRef
Chikhaoui, K.[Khalil],
Alfarraj, M.[Motaz],
Advancing Colorectal Polyp Segmentation with Watershed
Algorithm-Enhanced Parallel Self-Supervised Learning,
ICIP24(3124-3130)
IEEE DOI
2411
Image segmentation, Visualization, Watersheds,
Self-supervised learning, Feature extraction, Data models,
image reconstruction
BibRef
Nguyen, P.T.[Phuong Thao],
Watanabe, H.[Hiroshi],
GEEG-YOLOv8: Gaussian Enhanced Euclidean Norm Ghost Attention for
Real-Time Polyp Detection,
ICIP24(3057-3063)
IEEE DOI
2411
Accuracy, Attention mechanisms, Endoscopes, Convolution, Shape,
Feature extraction, Real-time systems, Attention mechanism, yolov8,
medical image analysis
BibRef
Chakraborti, N.[Niladri],
Nayak, D.R.[Deepak Ranjan],
MCT-Net: a Lightweight Multiscale Convolutional Transformer Network
for Polyp Segmentation,
ICIP24(2944-2950)
IEEE DOI
2411
Image segmentation, Accuracy, Convolution, Shape, Transformers,
Feature extraction, Decoding, Polyp segmentation, transformer,
cascaded attention
BibRef
Yousuf, M.[Mohamed],
Harb, S.[Samir],
Alkabbany, I.[Islam],
Ali, A.[Asem],
Elshazley, S.[Salwa],
Farag, A.[Aly],
Multi-View Network for Colorectal Polyps Detection in CT Colonography,
ICIP24(3051-3056)
IEEE DOI
2411
Location awareness, Sensitivity, Computed tomography, Neurons,
Detectors, Colonography, Feature extraction, Colorectal cancer,
segmentation
BibRef
Sharma, V.[Vanshali],
Kumar, A.[Abhishek],
Jha, D.[Debesh],
Bhuyan, M.K.,
Das, P.K.[Pradip K.],
Bagci, U.[Ulas],
ControlPolypNet: Towards Controlled Colon Polyp Synthesis for
Improved Polyp Segmentation,
EnhanceMedIm24(2325-2334)
IEEE DOI Code:
WWW Link.
2410
Image segmentation, Pathology, Shape, Source coding, Process control,
Manuals, Feature extraction, Diffusion model, Colonoscopy, Polyp segmentation
BibRef
Rahman, M.M.[Md Mostafijur],
Munir, M.[Mustafa],
Jha, D.[Debesh],
Bagci, U.[Ulas],
Marculescu, R.[Radu],
PP-SAM: Perturbed Prompts for Robust Adaption of Segment Anything
Model for Polyp Segmentation,
DEF-AI-MIA24(4989-4995)
IEEE DOI Code:
WWW Link.
2410
Training, Image segmentation, Adaptation models,
Perturbation methods, Robustness,
Robustness analysis
BibRef
Bui, N.T.[Nhat-Tan],
Hoang, D.H.[Dinh-Hieu],
Nguyen, Q.T.[Quang-Thuc],
Tran, M.T.[Minh-Triet],
Le, N.[Ngan],
MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary
Polyp Segmentation,
WACV24(7970-7979)
IEEE DOI Code:
WWW Link.
2404
Measurement, Location awareness, Technological innovation,
Image segmentation, Laplace equations, Shape, Image edge detection,
Image recognition and understanding
BibRef
Yoo, Y.[Youngbeom],
Lee, J.Y.[Jae Young],
Lee, D.J.[Dong-Jae],
Jeon, J.[Jiwoon],
Kim, J.[Junmo],
Real-Time Polyp Detection in Colonoscopy using Lightweight
Transformer,
WACV24(7794-7804)
IEEE DOI
2404
YOLO, Performance evaluation, Computational modeling, Colonoscopy,
Computer architecture, Transformers, Real-time systems,
Image recognition and understanding
BibRef
Nam, J.H.[Ju-Hyeon],
Park, S.H.[Seo-Hyeong],
Syazwany, N.S.[Nur Suriza],
Jung, Y.[Yerim],
Im, Y.H.[Yu-Han],
Lee, S.C.[Sang-Chul],
M3FPolypSegNet: Segmentation Network with Multi-Frequency Feature
Fusion for Polyp Localization in Colonoscopy Images,
ICIP23(1530-1534)
IEEE DOI
2312
BibRef
Wang, A.[Ao],
Wu, M.[Ming],
Qi, H.[Hao],
Shi, H.[Hong],
Chen, J.H.[Jian-Hua],
Chen, Y.R.[Yin-Ran],
Luo, X.B.[Xiong-Biao],
Pyramid Transformer Driven Multibranch Fusion for Polyp Segmentation
in Colonoscopic Video Images,
ICIP23(2350-2354)
IEEE DOI
2312
BibRef
Yousuf, M.[Mohamed],
Alkabbany, I.[Islam],
Ali, A.[Asem],
Elshazley, S.[Salwa],
Seow, A.[Albert],
Dryden, G.[Gerald],
Farag, A.[Aly],
An Automatic Colorectal Polyps Detection Approach for Ct Colonography,
ICIP23(2790-2794)
IEEE DOI
2312
BibRef
Ren, G.Y.[Guang-Yu],
Lazarou, M.[Michalis],
Yuan, J.[Jing],
Stathaki, T.[Tania],
Towards Automated Polyp Segmentation Using Weakly- and
Semi-Supervised Learning and Deformable Transformers,
VISION23(4355-4364)
IEEE DOI
2309
BibRef
Nguyen-Mau, T.H.[Trong-Hieu],
Trinh, Q.H.[Quoc-Huy],
Bui, N.T.[Nhat-Tan],
Thi, P.T.V.[Phuoc-Thao Vo],
Nguyen, M.V.[Minh-Van],
Cao, X.N.[Xuan-Nam],
Tran, M.T.[Minh-Triet],
Nguyen, H.D.[Hai-Dang],
Pefnet: Positional Embedding Feature for Polyp Segmentation,
MMMod23(II: 240-251).
Springer DOI
2304
BibRef
Tomar, N.K.[Nikhil Kumar],
Jha, D.[Debesh],
Bagci, U.[Ulas],
DilatedSegNet: A Deep Dilated Segmentation Network for Polyp
Segmentation,
MMMod23(I: 334-344).
Springer DOI
2304
BibRef
Srivastava, A.[Abhishek],
Chanda, S.[Sukalpa],
Jha, D.[Debesh],
Pal, U.[Umapada],
Ali, S.[Sharib],
GMSRF-Net: An Improved generalizability with Global Multi-Scale
Residual Fusion Network for Polyp Segmentation,
ICPR22(4321-4327)
IEEE DOI
2212
Training, Image segmentation, Protocols, Supervised learning,
Logic gates, Performance gain
BibRef
Liu, G.Q.[Guo-Qi],
Zhao, M.[Manqi],
Bai, L.[Lu],
Guo, Z.[Zhengnan],
Cooperation of Boundary Attention and Negative Matrix L1
Regularization Loss Function for Polyp Segmentation,
ICPR22(82-88)
IEEE DOI
2212
Image segmentation, Shape, Image edge detection, Colonic polyps,
Cancer, Biomedical imaging
BibRef
Wu, H.[Huisi],
Chen, G.L.[Gui-Lian],
Wen, Z.K.[Zhen-Kun],
Qin, J.[Jing],
Collaborative and Adversarial Learning of Focused and Dispersive
Representations for Semi-supervised Polyp Segmentation,
ICCV21(3469-3478)
IEEE DOI
2203
Training, Representation learning, Image segmentation, Shape,
Semantics, Collaboration, Medical services, Medical, biological,
Vision applications and systems
BibRef
Barbano, C.A.[Carlo Alberto],
Perlo, D.[Daniele],
Tartaglione, E.[Enzo],
Fiandrotti, A.[Attilio],
Bertero, L.[Luca],
Cassoni, P.[Paola],
Grangetto, M.[Marco],
Unitopatho, A Labeled Histopathological Dataset for Colorectal Polyps
Classification and Adenoma Dysplasia Grading,
ICIP21(76-80)
IEEE DOI
2201
Deep learning, Training, Pathology, Image resolution, Annotations,
Feature extraction, Deep Learning, Multi Resolution,
Digital Pathology
BibRef
Lan, P.N.[Phan Ngoc],
An, N.S.[Nguyen Sy],
Hang, D.V.[Dao Viet],
Long, D.V.[Dao Van],
Trung, T.Q.[Tran Quang],
Thuy, N.T.[Nguyen Thi],
Sang, D.V.[Dinh Viet],
NeoUNet: Towards Accurate Colon Polyp Segmentation and Neoplasm
Detection,
ISVC21(II:15-28).
Springer DOI
2112
BibRef
Patel, K.[Krushi],
Bur, A.M.[Andrés M.],
Wang, G.H.[Guang-Hui],
Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation,
CRV21(181-188)
IEEE DOI
2108
Image segmentation, Shape, Image color analysis, Semantics,
Colonoscopy, Decoding, Task analysis, Polyp segmentation, U-Net
BibRef
Tomar, N.K.[Nikhil Kumar],
Jha, D.[Debesh],
Ali, S.[Sharib],
Johansen, H.D.[Håvard D.],
Johansen, D.[Dag],
Riegler, M.A.[Michael A.],
Halvorsen, P.[Pål],
Ddanet: Dual Decoder Attention Network for Automatic Polyp Segmentation,
EndoTect20(307-314).
Springer DOI
2103
BibRef
Galdran, A.[Adrian],
Carneiro, G.[Gustavo],
Ballester, M.A.G.[Miguel A. González],
Double Encoder-decoder Networks for Gastrointestinal Polyp Segmentation,
AIHA20(293-307).
Springer DOI
2103
BibRef
Mulliqi, N.,
Yildirim, S.,
Mohammed, A.,
Ahmedi, L.,
Wang, H.,
Elezaj, O.,
Hovde, Ø.,
The Importance Of Skip Connections In Encoder-Decoder Architectures
For Colorectal Polyp Detection,
ICIP20(380-384)
IEEE DOI
2011
Image segmentation, Computer architecture, Colonoscopy, Cancer,
Indexes, Colon, Feature extraction, Colorectal polyps, U-Net++
BibRef
Jha, D.[Debesh],
Smedsrud, P.H.[Pia H.],
Riegler, M.A.[Michael A.],
Halvorsen, P.[Pål],
de Lange, T.[Thomas],
Johansen, D.[Dag],
Johansen, H.D.[Håvard D.],
Kvasir-seg: A Segmented Polyp Dataset,
MMMod20(II:451-462).
Springer DOI
2003
BibRef
van Grinsven, M.C.A.,
Scheeve, T.,
Schreuder, R.,
van der Sommen, F.,
Schoon, E.J.,
de With, P.H.N.,
Image Features for Automated Colorectal Polyp Classification Based on
Clinical Prediction Models,
ICIP19(210-214)
IEEE DOI
1910
Colorectal polyps, quantitative features,
computer-aided diagnosis, SVM, gastroenterology
BibRef
Mo, X.,
Tao, K.,
Wang, Q.,
Wang, G.,
An Efficient Approach for Polyps Detection in Endoscopic Videos Based
on Faster R-CNN,
ICPR18(3929-3934)
IEEE DOI
1812
Proposals, Videos, Training, Cancer, Head, Detectors
BibRef
Souaidi, M.,
Charfi, S.,
Abdelouahad, A.A.,
El Ansari, M.,
New features for wireless capsule endoscopy polyp detection,
ISCV18(1-6)
IEEE DOI
1807
Gabor filters, curvelet transforms, discrete wavelet transforms,
diseases, endoscopes, feature extraction, medical image processing,
wireless capsule endoscopy (WCE)
BibRef
Taha, B.,
Dias, J.,
Werghi, N.,
Convolutional neural networkasa feature extractor for automatic polyp
detection,
ICIP17(2060-2064)
IEEE DOI
1803
Cancer, Computer architecture, Convolution, Databases,
Feature extraction, Support vector machines, Training,
feature extractor
BibRef
Wichakam, I.[Itsara],
Panboonyuen, T.[Teerapong],
Udomcharoenchaikit, C.[Can],
Vateekul, P.[Peerapon],
Real-Time Polyps Segmentation for Colonoscopy Video Frames Using
Compressed Fully Convolutional Network,
MMMod18(I:393-404).
Springer DOI
1802
BibRef
Angermann, Q.[Quentin],
Bernal, J.[Jorge],
Sánchez-Montes, C.[Cristina],
Hammami, M.[Maroua],
Fernández-Esparrach, G.[Gloria],
Dray, X.[Xavier],
Romain, O.[Olivier],
Sánchez, F.J.[F. Javier],
Histace, A.[Aymeric],
Towards Real-Time Polyp Detection in Colonoscopy Videos:
Adapting Still Frame-Based Methodologies for Video Sequences Analysis,
CARE17(29-41).
Springer DOI
1711
BibRef
Korbar, B.,
Olofson, A.M.,
Miraflor, A.P.,
Nicka, C.M.,
Suriawinata, M.A.,
Torresani, L.,
Suriawinata, A.A.,
Hassanpour, S.,
Looking Under the Hood: Deep Neural Network Visualization to
Interpret Whole-Slide Image Analysis Outcomes for Colorectal Polyps,
Microscopy17(821-827)
IEEE DOI
1709
Agriculture, Backpropagation, Cancer, Computer architecture,
Neural networks, Training, Visualization
BibRef
Ribeiro, E.[Eduardo],
Uhl, A.[Andreas],
Wimmer, G.[Georg],
Häfner, M.[Michael],
Transfer Learning for Colonic Polyp Classification Using Off-the-Shelf
CNN Features,
CARE16(1-13).
Springer DOI
1703
BibRef
Wimmer, G.[Georg],
Gadermayr, M.[Michael],
Kwitt, R.[Roland],
Häfner, M.[Michael],
Merhof, D.[Dorit],
Uhl, A.[Andreas],
Evaluation of i-Scan Virtual Chromoendoscopy and Traditional
Chromoendoscopy for the Automated Diagnosis of Colonic Polyps,
CARE16(59-71).
Springer DOI
1703
BibRef
Gil, D.[Debora],
Sánchez, F.J.[F. Javier],
Fernández-Esparrach, G.[Gloria],
Bernal, J.[Jorge],
3D Stable Spatio-Temporal Polyp Localization in Colonoscopy Videos,
CARE15(140-152).
WWW Link.
1605
BibRef
Wimmer, G.,
Uhl, A.,
Häfner, M.[Michael],
A novel filterbank especially designed for the classification of
colonic polyps,
ICPR16(2150-2155)
IEEE DOI
1705
BibRef
Earlier: A2, A1, A3:
Shape and size adapted local fractal dimension for the classification
of polyps in HD colonoscopy,
ICIP14(2299-2303)
IEEE DOI
1502
Colonic polyps, Databases, Endoscopes, Feature extraction,
Gaussian distribution, Histograms.
Colon
BibRef
Hafner, M.,
Liedlgruber, M.,
Uhl, A.[Andreas],
Wimmer, G.,
Bridging the Resolution Gap between Endoscope Types for a Colonic
Polyp Classification,
ICPR14(2739-2744)
IEEE DOI
1412
Endoscopes
BibRef
Fiori, M.[Marcelo],
Musé, P.[Pablo],
Sapiro, G.[Guillermo],
Polyps Flagging in Virtual Colonoscopy,
CIARP13(II:181-189).
Springer DOI
1311
BibRef
Xu, H.Y.[Hai-Yong],
Gage, H.D.[H. Donald],
Santago, P.[Pete],
Ge, Y.R.[Yao-Rong],
Colorectal Polyp Segmentation Based on Geodesic Active Contours with a
Shape-Prior Model,
VirtualColon10(134-140).
Springer DOI
1112
BibRef
Iwahori, Y.[Yuji],
Shinohara, T.[Takayuki],
Hattori, A.[Akira],
Woodham, R.J.[Robert J.],
Fukui, S.[Shinji],
Bhuyan, M.K.,
Kasugai, K.[Kunio],
Automatic Polyp Detection in Endoscope Images Using a Hessian Filter,
MVA13(xx-yy).
Award, MVA Decade.
BibRef
1300
Tsuda, S.[Seiya],
Iwahori, Y.J.[Yu-Ji],
Hanai, Y.[Yuki],
Woodham, R.J.[Robert J.],
Bhuyan, M.K.,
Kasugai, K.[Kunio],
Recovering size and shape of polyp from endoscope image by RBF-NN
modification,
ICIP15(4684-4688)
IEEE DOI
1512
Endoscope Image; RBF-NN; Regression Analysis; Size and Shape; VBW Model
BibRef
Häfner, M.[Michael],
Uhl, A.[Andreas],
Wimmer, G.[Georg],
A Novel Shape Feature Descriptor for the Classification of Polyps in HD
Colonoscopy,
MCV13(205-213).
Springer DOI
1405
BibRef
Condessa, F.[Filipe],
Bioucas-Dias, J.[José],
Segmentation and Detection of Colorectal Polyps Using Local Polynomial
Approximation,
ICIAR12(II: 188-197).
Springer DOI
1206
BibRef
Park, M.[Mira],
Jin, J.S.[Jesse S.],
Summons, P.[Peter],
Luo, S.[Suhuai],
Hofstetter, R.[Robert],
False Positive Reduction in Colonic Polyp Detection Using Glocal
Information,
DICTA10(15-21).
IEEE DOI
1012
BibRef
Chang, K.W.[Kevin W.],
Liu, J.[Jiamin],
Yao, J.H.[Jian-Hua],
Summers, R.M.[Ronald M.],
Improved method for predicting polyp location from CT colonography for
optical colonoscopy,
ICIP10(4365-4368).
IEEE DOI
1009
BibRef
Chen, D.Q.[Dong-Qing],
Farag, A.A.[Aly A.],
Falk, R.L.[Robert L.],
Dryden, G.W.[Gerald W.],
A variational framework for 3D colonic polyp visualization in virtual
colonoscopy,
ICIP09(2617-2620).
IEEE DOI
0911
BibRef
Park, M.,
Jesse, J.S.,
Hofstetter, R.,
Luo, S.,
Summons, P.,
Classification of colonic polyps using Hidden Markov Models,
IVCNZ08(1-8).
IEEE DOI
0811
BibRef
Chen, D.Q.[Dong-Qing],
Farag, A.A.[Aly A.],
Falk, R.L.[Robert L.],
Dryden, G.W.[Gerald W.],
Gaussian curvature flowmodel for colonic polyp detection in CT
colonography,
ICIP08(2988-2991).
IEEE DOI
0810
BibRef
Shahbazi, M.[Mozhdeh],
Sattari, F.M.[F. Mehran],
Ghazi, M.[Mojtaba],
Automatic Polyp Detection from CT Colonography Using Mathematical
Morphology,
ISPRS08(B5: 823 ff).
PDF File.
0807
BibRef
Lu, L.[Le],
Barbu, A.[Adrian],
Wolf, M.[Matthias],
Liang, J.M.[Jian-Ming],
Salganicoff, M.[Marcos],
Comaniciu, D.[Dorin],
Accurate polyp segmentation for 3D CT colongraphy using multi-staged
probabilistic binary learning and compositional model,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Tu, Z.W.[Zhuo-Wen],
Zhou, X.S.[Xiang Sean],
Bogoni, L.[Luca],
Barbu, A.[Adrian],
Comaniciu, D.[Dorin],
Probabilistic 3D Polyp Detection in CT Images:
The Role of Sample Alignment,
CVPR06(II: 1544-1551).
IEEE DOI
0606
BibRef
Chen, D.Q.[Dong-Qing],
Farag, A.A.[Aly A.],
Hassouna, M.S.[M. Sabry],
Falk, R.[Robert],
Dryden, G.W.[Gerald W.],
Geometric Features Based Framework for Colonic Polyp Detection using a
New Color Coding Scheme,
ICIP07(V: 17-20).
IEEE DOI
0709
BibRef
Hwang, S.[Sae],
Oh, J.H.[Jung-Hwan],
Tavanapong, W.[Wallapak],
Wong, J.[Johnny],
de Groen, P.C.[Piet C.],
Polyp Detection in Colonoscopy Video using Elliptical Shape Feature,
ICIP07(II: 465-468).
IEEE DOI
0709
BibRef
Chowdhury, T.A.[Tarik A.],
Ghita, O.[Ovidiu],
Whelan, P.F.[Paul F.],
Miranda, A.[Abhilash],
Note on Feature Selection for Polyp Detection in CT Colonography,
ICPR06(I: 1017-1021).
IEEE DOI
0609
BibRef