Pajares, G.,
Tellaeche, A.,
Burgosartizzu, X.P.,
Ribeiro, A.,
Design of a computer vision system for a differential spraying
operation in precision agriculture using hebbian learning,
IET-CV(1), No. 3-4, December 2007, pp. 93-99.
DOI Link
0905
BibRef
Burgos-Artizzu, X.P.[Xavier P.],
Ribeiro, A.[Angela],
Tellaeche, A.[Alberto],
Pajares, G.[Gonzalo],
Fernandez-Quintanilla, C.[Cesar],
Analysis of natural images processing for the extraction of
agricultural elements,
IVC(28), No. 1, Januray 2010, pp. 138-149.
Elsevier DOI
1001
Precision agriculture; Weed detection; Parameter
setting; Genetic algorithms
BibRef
Honkavaara, E.[Eija],
Saari, H.[Heikki],
Kaivosoja, J.[Jere],
Pölönen, I.[Ilkka],
Hakala, T.[Teemu],
Litkey, P.[Paula],
Mäkynen, J.[Jussi],
Pesonen, L.[Liisa],
Processing and Assessment of Spectrometric, Stereoscopic Imagery
Collected Using a Lightweight UAV Spectral Camera for Precision
Agriculture,
RS(5), No. 10, 2013, pp. 5006-5039.
DOI Link
1311
BibRef
Honkavaara, E.,
Kaivosoja, J.,
Mäkynen, J.,
Pellikka, I.,
Pesonen, L.,
Saari, H.,
Salo, H.,
Hakala, T.,
Marklelin, L.,
Rosnell, T.,
Hyperspectral Reflectance Signatures and Point Clouds for Precision
Agriculture by light Weight UAV Imaging System,
AnnalsPRS(I-7), No. 2012, pp. 353-358.
DOI Link
1209
BibRef
Yang, C.H.[Cheng-Hai],
Everitt, J.H.,
Du, Q.[Qian],
Luo, B.[Bin],
Chanussot, J.,
Using High-Resolution Airborne and Satellite Imagery to Assess Crop
Growth and Yield Variability for Precision Agriculture,
PIEEE(100), No. 3, March 2013, pp. 582-592.
IEEE DOI
1303
BibRef
Sicre, C.M.[Claire Marais],
Baup, F.[Frédéric],
Fieuzal, R.[Rémy],
Determination of the crop row orientations from Formosat-2
multi-temporal and panchromatic images,
PandRS(94), No. 1, 2014, pp. 127-142.
Elsevier DOI
1407
Crop monitoring
BibRef
Vidovic, I.[Ivan],
Cupec, R.[Robert],
Hocenski, Ž.[Željko],
Crop row detection by global energy minimization,
PR(55), No. 1, 2016, pp. 68-86.
Elsevier DOI
1604
Agricultural automation
BibRef
Ronchetti, G.[Giulia],
Mayer, A.[Alice],
Facchi, A.[Arianna],
Ortuani, B.[Bianca],
Sona, G.[Giovanna],
Crop Row Detection through UAV Surveys to Optimize On-Farm Irrigation
Management,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kang, J.[Jian],
Fernandez-Beltran, R.[Ruben],
Hong, D.F.[Dan-Feng],
Chanussot, J.[Jocelyn],
Plaza, A.[Antonio],
Graph Relation Network: Modeling Relations Between Scenes for
Multilabel Remote-Sensing Image Classification and Retrieval,
GeoRS(59), No. 5, May 2021, pp. 4355-4369.
IEEE DOI
2104
Semantics, Feature extraction, Deep learning,
Extraterrestrial measurements, Training, Remote sensing,
remote sensing (RS)
BibRef
Hong, D.F.[Dan-Feng],
Gao, L.R.[Lian-Ru],
Yokoya, N.[Naoto],
Yao, J.[Jing],
Chanussot, J.[Jocelyn],
Du, Q.[Qian],
Zhang, B.[Bing],
More Diverse Means Better: Multimodal Deep Learning Meets
Remote-Sensing Imagery Classification,
GeoRS(59), No. 5, May 2021, pp. 4340-4354.
IEEE DOI
2104
Feature extraction, Laser radar, Synthetic aperture radar,
Machine learning, Task analysis, Remote sensing, Earth,
synthetic aperture radar (SAR)
BibRef
Lyle, G.,
Lewis, M.,
Ostendorf, B.,
Testing the Temporal Ability of Landsat Imagery and Precision
Agriculture Technology to Provide High Resolution Historical Estimates
of Wheat Yield at the Farm Scale,
RS(5), No. 4, April 2013, pp. 1549-1567.
DOI Link
1305
BibRef
Koenig, K.[Kristina],
Höfle, B.[Bernhard],
Hämmerle, M.[Martin],
Jarmer, T.[Thomas],
Siegmann, B.[Bastian],
Lilienthal, H.[Holger],
Comparative classification analysis of post-harvest growth detection
from terrestrial LiDAR point clouds in precision agriculture,
PandRS(104), No. 1, 2015, pp. 112-125.
Elsevier DOI
1505
Terrestrial laser scanning
BibRef
Candiago, S.[Sebastian],
Remondino, F.[Fabio],
de Giglio, M.[Michaela],
Dubbini, M.[Marco],
Gattelli, M.[Mario],
Evaluating Multispectral Images and Vegetation Indices for Precision
Farming Applications from UAV Images,
RS(7), No. 4, 2015, pp. 4026-4047.
DOI Link
1505
BibRef
Ivanov, S.[Stepan],
Bhargava, K.[Kriti],
Donnelly, W.[William],
Precision Farming: Sensor Analytics,
IEEE_Int_Sys(30), No. 4, July 2015, pp. 76-80.
IEEE DOI
1506
Data integration
BibRef
Houborg, R.[Rasmus],
McCabe, M.F.[Matthew F.],
High-Resolution NDVI from Planet's Constellation of Earth Observing
Nano-Satellites: A New Data Source for Precision Agriculture,
RS(8), No. 9, 2016, pp. 768.
DOI Link
1610
BibRef
Sa, I.[Inkyu],
Popovic, M.[Marija],
Khanna, R.[Raghav],
Chen, Z.[Zetao],
Lottes, P.[Philipp],
Liebisch, F.[Frank],
Nieto, J.[Juan],
Stachniss, C.[Cyrill],
Walter, A.[Achim],
Siegwart, R.[Roland],
WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial
Multispectral Imaging and Deep Neural Network for Precision Farming,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Deng, L.[Lei],
Mao, Z.H.[Zhi-Hui],
Li, X.J.[Xiao-Juan],
Hu, Z.W.[Zhuo-Wei],
Duan, F.Z.[Fu-Zhou],
Yan, Y.[Yanan],
UAV-based multispectral remote sensing for precision agriculture:
A comparison between different cameras,
PandRS(146), 2018, pp. 124-136.
Elsevier DOI
1812
Multispectral camera, Unmanned Aerial Vehicle (UAV),
Remote sensing, Vegetation index, SPAD value
BibRef
Rodrigues, F.A.[Francelino A.],
Blasch, G.[Gerald],
Defourny, P.[Pierre],
Ortiz-Monasterio, J.I.[J. Ivan],
Schulthess, U.[Urs],
Zarco-Tejada, P.J.[Pablo J.],
Taylor, J.A.[James A.],
Gérard, B.[Bruno],
Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral
Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain
Yield and Grain Protein Content,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Aragon, B.[Bruno],
Houborg, R.[Rasmus],
Tu, K.[Kevin],
Fisher, J.B.[Joshua B.],
McCabe, M.[Matthew],
CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for
Precision Agriculture,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Prey, L.[Lukas],
Schmidhalter, U.[Urs],
Simulation of satellite reflectance data using high-frequency ground
based hyperspectral canopy measurements for in-season estimation of
grain yield and grain nitrogen status in winter wheat,
PandRS(149), 2019, pp. 176-187.
Elsevier DOI
1903
Digital agriculture, Phenomics, Spectral resampling,
Satellite vegetation indices, Precision farming, Yield prediction
BibRef
Messina, G.[Gaetano],
Modica, G.[Giuseppe],
Applications of UAV Thermal Imagery in Precision Agriculture:
State of the Art and Future Research Outlook,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Osco, L.P.[Lucas Prado],
dos Santos de Arruda, M.[Mauro],
Gonçalves, D.N.[Diogo Nunes],
Dias, A.[Alexandre],
Batistoti, J.[Juliana],
de Souza, M.[Mauricio],
Gomes, F.D.G.[Felipe David Georges],
Ramos, A.P.M.[Ana Paula Marques],
de Castro Jorge, L.A.[Lúcio André],
Liesenberg, V.[Veraldo],
Li, J.[Jonathan],
Ma, L.F.[Ling-Fei],
Marcato, J.[José],
Gonçalves, W.N.[Wesley Nunes],
A CNN approach to simultaneously count plants and detect
plantation-rows from UAV imagery,
PandRS(174), 2021, pp. 1-17.
Elsevier DOI
2103
Deep learning, UAV imagery, Object detection, Remote sensing,
Precision agriculture
BibRef
Solano-Correa, Y.T.,
Bovolo, F.,
Bruzzone, L.,
Fernández-Prieto, D.,
A Method for the Analysis of Small Crop Fields in Sentinel-2 Dense
Time Series,
GeoRS(58), No. 3, March 2020, pp. 2150-2164.
IEEE DOI
2003
Nonparametric regression, precision agriculture,
satellite image time series (SITS), Sentinel-2, vegetation phenology
BibRef
Sishodia, R.P.[Rajendra P.],
Ray, R.L.[Ram L.],
Singh, S.K.[Sudhir K.],
Applications of Remote Sensing in Precision Agriculture: A Review,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Zhao, W.[Wei],
Yamada, W.[William],
Li, T.X.[Tian-Xin],
Digman, M.[Matthew],
Runge, T.[Troy],
Augmenting Crop Detection for Precision Agriculture with Deep Visual
Transfer Learning: A Case Study of Bale Detection,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Belcore, E.[Elena],
Angeli, S.[Stefano],
Colucci, E.[Elisabetta],
Musci, M.A.[Maria Angela],
Aicardi, I.[Irene],
Precision Agriculture Workflow, from Data Collection to Data
Management Using FOSS Tools: An Application in Northern Italy
Vineyard,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Chen, P.F.[Peng-Fei],
Ma, X.[Xiao],
Wang, F.Y.[Fang-Yong],
Li, J.[Jing],
A New Method for Crop Row Detection Using Unmanned Aerial Vehicle
Images,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Yu, Y.[Yue],
Bao, Y.[Yidan],
Wang, J.C.[Ji-Chun],
Chu, H.J.[Hang-Jian],
Zhao, N.[Nan],
He, Y.[Yong],
Liu, Y.F.[Yu-Fei],
Crop Row Segmentation and Detection in Paddy Fields Based on
Treble-Classification Otsu and Double-Dimensional Clustering Method,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Suleymanov, A.[Azamat],
Abakumov, E.[Evgeny],
Suleymanov, R.[Ruslan],
Gabbasova, I.[Ilyusya],
Komissarov, M.[Mikhail],
The Soil Nutrient Digital Mapping for Precision Agriculture Cases in
the Trans-Ural Steppe Zone of Russia Using Topographic Attributes,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Delavarpour, N.[Nadia],
Koparan, C.[Cengiz],
Nowatzki, J.[John],
Bajwa, S.[Sreekala],
Sun, X.[Xin],
A Technical Study on UAV Characteristics for Precision Agriculture
Applications and Associated Practical Challenges,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wan, S.[Shiuan],
Yeh, M.L.[Mei-Ling],
Ma, H.L.[Hong-Lin],
An Innovative Intelligent System with Integrated CNN and SVM:
Considering Various Crops through Hyperspectral Image Data,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Junos, M.H.[Mohamad Haniff],
Khairuddin, A.S.M.[Anis Salwa Mohd],
Thannirmalai, S.[Subbiah],
Dahari, M.[Mahidzal],
An optimized YOLO-based object detection model for crop harvesting
system,
IET-IPR(15), No. 9, 2021, pp. 2112-2125.
DOI Link
2106
BibRef
Vayssade, J.A.[Jehan-Antoine],
Paoli, J.N.[Jean-Noël],
Gée, C.[Christelle],
Jones, G.[Gawain],
DeepIndices: Remote Sensing Indices Based on Approximation of
Functions through Deep-Learning, Application to Uncalibrated
Vegetation Images,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Ullo, S.L.[Silvia Liberata],
Sinha, G.R.,
Advances in IoT and Smart Sensors for Remote Sensing and Agriculture
Applications,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Kim, B.C.[Byung-Chul],
Jang, J.[Jaesu],
Kim, S.[Sangjo],
Hwang, S.[Seonmin],
Shin, M.[Moonsun],
Design of an ICT convergence farm machinery for an automatic
agricultural planter,
IJCVR(11), No. 4, 2021, pp. 448-460.
DOI Link
2108
BibRef
Xu, R.[Rui],
Li, C.Y.[Chang-Ying],
Bernardes, S.[Sergio],
Development and Testing of a UAV-Based Multi-Sensor System for Plant
Phenotyping and Precision Agriculture,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Huang, X.[Xin],
Dong, X.Y.[Xiao-Ya],
Ma, J.[Jing],
Liu, K.[Kuan],
Ahmed, S.[Shibbir],
Lin, J.L.[Jin-Long],
Qiu, B.[Baijing],
The Improved A* Obstacle Avoidance Algorithm for the Plant Protection
UAV with Millimeter Wave Radar and Monocular Camera Data Fusion,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, J.[Jia],
Xiang, J.J.[Jian-Jian],
Jin, Y.J.[Yong-Jun],
Liu, R.H.[Ren-Hua],
Yan, J.[Jining],
Wang, L.[Lizhe],
Boost Precision Agriculture with Unmanned Aerial Vehicle Remote
Sensing and Edge Intelligence: A Survey,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lu, H.[Hao],
Liu, L.[Liang],
Li, Y.N.[Ya-Nan],
Zhao, X.M.[Xiao-Ming],
Wang, X.Q.[Xi-Qing],
Cao, Z.G.[Zhi-Guo],
TasselNetV3: Explainable Plant Counting With Guided Upsampling and
Background Suppression,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Image segmentation, Agriculture, Plants (biology), Annotations,
Tools, Data visualization, Ear, Explainable counting,
wheat ear
BibRef
Teucher, M.[Mike],
Thürkow, D.[Detlef],
Alb, P.[Philipp],
Conrad, C.[Christopher],
Digital In Situ Data Collection in Earth Observation, Monitoring and
Agriculture: Progress towards Digital Agriculture,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Proctor, C.[Cameron],
Pereira, C.[Cedelle],
Jin, T.[Tian],
Lim, G.[Gloria],
He, Y.H.[Yu-Hong],
Linking the Spectra of Decomposing Litter to Ecosystem Processes:
Tandem Close-Range Hyperspectral Imagery and Decomposition Metrics,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Radocaj, D.[Dorijan],
Jurišic, M.[Mladen],
Gašparovic, M.[Mateo],
The Role of Remote Sensing Data and Methods in a Modern Approach to
Fertilization in Precision Agriculture,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
di Gennaro, S.F.[Salvatore Filippo],
Toscano, P.[Piero],
Gatti, M.[Matteo],
Poni, S.[Stefano],
Berton, A.[Andrea],
Matese, A.[Alessandro],
Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for
Precision Viticulture,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Guan, Z.[Zhen],
Abd-Elrahman, A.[Amr],
Whitaker, V.[Vance],
Agehara, S.[Shinsuke],
Wilkinson, B.[Benjamin],
Gastellu-Etchegorry, J.P.[Jean-Philippe],
Dewitt, B.[Bon],
Radiative Transfer Image Simulation Using L-System Modeled Strawberry
Canopies,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, D.S.[Da-Shuai],
Cao, W.[Wujing],
Zhang, F.[Fan],
Li, Z.L.[Zhuo-Lin],
Xu, S.[Sheng],
Wu, X.Y.[Xin-Yu],
A Review of Deep Learning in Multiscale Agricultural Sensing,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Alibabaei, K.[Khadijeh],
Gaspar, P.D.[Pedro D.],
Lima, T.M.[Tânia M.],
Campos, R.M.[Rebeca M.],
Girão, I.[Inês],
Monteiro, J.[Jorge],
Lopes, C.M.[Carlos M.],
A Review of the Challenges of Using Deep Learning Algorithms to
Support Decision-Making in Agricultural Activities,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Donati, C.[Cesare],
Mammarella, M.[Martina],
Comba, L.[Lorenzo],
Biglia, A.[Alessandro],
Gay, P.[Paolo],
Dabbene, F.[Fabrizio],
3D Distance Filter for the Autonomous Navigation of UAVs in
Agricultural Scenarios,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Wang, Z.H.[Zhi-Hua],
Zhao, Z.[Zhan],
Yin, C.L.[Cheng-Long],
Fine Crop Classification Based on UAV Hyperspectral Images and Random
Forest,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Singh, A.P.[Abhaya Pal],
Yerudkar, A.[Amol],
Mariani, V.[Valerio],
Iannelli, L.[Luigi],
Glielmo, L.[Luigi],
A Bibliometric Review of the Use of Unmanned Aerial Vehicles in
Precision Agriculture and Precision Viticulture for Sensing
Applications,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Gilliot, J.M.[Jean-Marc],
Hadjar, D.[Dalila],
Michelin, J.[Joël],
Potential of Ultra-High-Resolution UAV Images with Centimeter GNSS
Positioning for Plant Scale Crop Monitoring,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Petsoulas, C.[Christos],
Evangelou, E.[Eleftherios],
Tsitouras, A.[Alexandros],
Aschonitis, V.[Vassilis],
Kargiotidou, A.[Anastasia],
Khah, E.[Ebrahim],
Pavli, O.I.[Ourania I.],
Vlachostergios, D.N.[Dimitrios N.],
Spectral Reflectance Indices as a High Throughput Selection Tool in a
Sesame Breeding Scheme,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Assunção, E.[Eduardo],
Gaspar, P.D.[Pedro D.],
Mesquita, R.[Ricardo],
Simões, M.P.[Maria P.],
Alibabaei, K.[Khadijeh],
Veiros, A.[André],
Proença, H.[Hugo],
Real-Time Weed Control Application Using a Jetson Nano Edge Device
and a Spray Mechanism,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Septiarini, F.[Fradina],
Dewi, T.[Tresna],
Rusdianasari,
Design of a solar-powered mobile manipulator using fuzzy logic
controller of agriculture application,
IJCVR(12), No. 5, 2022, pp. 506-531.
DOI Link
2209
BibRef
Lambertini, A.[Alessandro],
Mandanici, E.[Emanuele],
Tini, M.A.[Maria Alessandra],
Vittuari, L.[Luca],
Technical Challenges for Multi-Temporal and Multi-Sensor Image
Processing Surveyed by UAV for Mapping and Monitoring in Precision
Agriculture,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Dericquebourg, E.[Eric],
Hafiane, A.[Adel],
Canals, R.[Raphael],
Generative-Model-Based Data Labeling for Deep Network Regression:
Application to Seed Maturity Estimation from UAV Multispectral Images,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Morris, J.R.[Jesse R.],
Petersen, S.L.[Steven L.],
Madsen, M.D.[Matthew D.],
McMillan, B.R.[Brock R.],
Eggett, D.L.[Dennis L.],
Lawrence, C.R.[C. Russell],
Monitoring Seedling Emergence, Growth, and Survival Using Repeat
High-Resolution Imagery,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lombardi, F.[Federico],
Ortuani, B.[Bianca],
Facchi, A.[Arianna],
Lualdi, M.[Maurizio],
Assessing the Perspectives of Ground Penetrating Radar for Precision
Farming,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tauber, M.[Markus],
Gollan, B.[Benedikt],
Schmittner, C.[Christoph],
Knopf, P.[Philipp],
Passive Precision Farming Reshapes the Agricultural Sector,
Computer(56), No. 1, January 2023, pp. 120-124.
IEEE DOI
2301
Costs, Sociology, Ecosystems, Cyber-physical systems, Product design,
Safety, Quality assessment
BibRef
Li, N.[Na],
Zhang, Y.[Yunlin],
Shi, K.[Kun],
Zhang, Y.[Yibo],
Sun, X.[Xiao],
Wang, W.J.[Wei-Jia],
Qian, H.M.[Hai-Ming],
Yang, H.[Huayin],
Niu, Y.K.[Yong-Kang],
Real-Time and Continuous Tracking of Total Phosphorus Using a
Ground-Based Hyperspectral Proximal Sensing System,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Ma, B.D.[Bao-Dong],
Liu, Q.[Quan],
Jiang, Z.W.[Zi-Wei],
Che, D.[Defu],
Qiu, K.[Kehan],
Shang, X.X.[Xiang-Xiang],
Energy-Efficient 3D Path Planning for Complex Field Scenes Using the
Digital Model with Landcover and Terrain,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Rodriguez-Vazquez, J.[Javier],
Fernandez-Cortizas, M.[Miguel],
Perez-Saura, D.[David],
Molina, M.[Martin],
Campoy, P.[Pascual],
Overcoming Domain Shift in Neural Networks for Accurate Plant
Counting in Aerial Images,
RS(15), No. 6, 2023, pp. 1700.
DOI Link
2304
BibRef
Kang, M.Z.[Meng-Zhen],
Wang, X.J.[Xiu-Juan],
Wang, H.Y.[Hao-Yu],
Hua, J.[Jing],
de Reffye, P.[Philippe],
Wang, F.Y.[Fei-Yue],
The Development of AgriVerse: Past, Present, and Future,
SMCS(53), No. 6, June 2023, pp. 3718-3727.
IEEE DOI
2305
Computational modeling, Biological systems, Biomass,
Biological system modeling, Production, Plants (biology), plant model
BibRef
Li, F.[Fei],
Cen, C.J.[Chao-Jun],
Zhang, X.X.[Xin-Xin],
Li, Z.B.[Zhen-Bo],
Dual-attention global domain adaptation for mariculture image
enhancement,
IET-IPR(17), No. 6, 2023, pp. 1668-1680.
DOI Link
2305
domain adaptation, image enhancement
BibRef
Zhang, T.[Ting],
Jiao, X.H.[Xiao-Hong],
Zhang, Y.H.[Ya-Hui],
Internal-Model-Principle-Based Fast Adaptive Iterative Learning
Trajectory Tracking Control for Autonomous Farming Vehicle Under
Alignment Condition and Input Constraint,
SMCS(53), No. 6, June 2023, pp. 3588-3599.
IEEE DOI
2305
Farming, Process control, Trajectory, Trajectory tracking, Vehicle dynamics,
Control systems, Convergence, internal model principle (IMP)
BibRef
Feng, Y.X.[Ying-Xiang],
Chen, W.[Wei],
Ma, Y.[Yiru],
Zhang, Z.[Ze],
Gao, P.[Pan],
Lv, X.[Xin],
Cotton Seedling Detection and Counting Based on UAV Multispectral
Images and Deep Learning Methods,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Cordier, M.[Mathis],
Torres, C.[Cindy],
Rasti, P.[Pejman],
Rousseau, D.[David],
On the Use of Circadian Cycles to Monitor Individual Young Plants,
RS(15), No. 11, 2023, pp. 2704.
DOI Link
2306
BibRef
Saad, W.H.B.M.[Wira Hidayat Bin Mohd],
Razak, M.H.B.A.[Muhammad Haziq Bin Abd],
Zainudin, M.N.S.[Muhammad Noorazlan Shah],
Radzi, S.B.A.[Syafeeza Binti Ahmad],
Razak, M.S.J.B.A.[Muhammad Shah Jehan Bin Abd],
RGB-depth map formation from cili-padi plant imaging using stereo
vision camera,
IJCVR(13), No. 4, 2023, pp. 343-358.
DOI Link
2307
BibRef
Takekawa, J.Y.[John Y.],
Hagani, J.S.[Jason S.],
Edmunds, T.J.[Timothy J.],
Collins, J.M.[Jesirae M.],
Chappell, S.C.[Steven C.],
Reynolds, W.H.[William H.],
The Sky Is Not the Limit: Use of a Spray Drone for the Precise
Application of Herbicide and Control of an Invasive Plant in Managed
Wetlands,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Kouadio, L.[Louis],
El Jarroudi, M.[Moussa],
Belabess, Z.[Zineb],
Laasli, S.E.[Salah-Eddine],
Roni, M.Z.K.[Md Zohurul Kadir],
Amine, I.D.I.[Ibn Dahou Idrissi],
Mokhtari, N.[Nourreddine],
Mokrini, F.[Fouad],
Junk, J.[Jürgen],
Lahlali, R.[Rachid],
A Review on UAV-Based Applications for Plant Disease Detection and
Monitoring,
RS(15), No. 17, 2023, pp. 4273.
DOI Link
2310
BibRef
Sharma, P.[Purushottam],
Kumar, M.[Manoj],
Sharma, R.[Richa],
Bhushan, S.[Shashi],
Gupta, S.I.[Sun-Il],
An automated system to detect crop diseases using deep learning,
IJCVR(13), No. 5, 2023, pp. 556-571.
DOI Link
2310
BibRef
Imangholiloo, M.[Mohammad],
Luoma, V.[Ville],
Holopainen, M.[Markus],
Vastaranta, M.[Mikko],
Mäkeläinen, A.[Antti],
Koivumäki, N.[Niko],
Honkavaara, E.[Eija],
Khoramshahi, E.[Ehsan],
A New Approach for Feeding Multispectral Imagery into Convolutional
Neural Networks Improved Classification of Seedlings,
RS(15), No. 21, 2023, pp. 5233.
DOI Link
2311
BibRef
Cho, H.M.[Hyun-Min],
Park, J.W.[Jin-Woo],
Lee, J.S.[Jung-Soo],
Han, S.K.[Sang-Kyun],
Assessment of the GNSS-RTK for Application in Precision Forest
Operations,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Sanaeifar, A.[Alireza],
Yang, C.[Ce],
Min, A.[An],
Jones, C.R.[Colin R.],
Michaels, T.E.[Thomas E.],
Krueger, Q.J.[Quinton J.],
Barnes, R.[Robert],
Velte, T.J.[Toby J.],
Noninvasive Early Detection of Nutrient Deficiencies in
Greenhouse-Grown Industrial Hemp Using Hyperspectral Imaging,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Zuckerman, N.[Noa],
Cohen, Y.[Yafit],
Alchanatis, V.[Victor],
Lensky, I.M.[Itamar M.],
Toward Precision Agriculture in Outdoor Vertical Greenery Systems
(VGS): Monitoring and Early Detection of Stress Events,
RS(16), No. 2, 2024, pp. 302.
DOI Link
2402
BibRef
Luo, J.[Jiayun],
Li, B.Y.[Bo-Yang],
Leung, C.[Cyril],
A Survey of Computer Vision Technologies in Urban and
Controlled-environment Agriculture,
Surveys(56), No. 5, November 2023, pp. xx-yy.
DOI Link
2402
flower and fruit detection, growth monitoring,
pest and disease detection, multimodality,
Agriculture 5.0
BibRef
Nijak, M.[Mateusz],
Skrzypczynski, P.[Piotr],
Cwian, K.[Krzysztof],
Zawada, M.[Michal],
Szymczyk, S.[Sebastian],
Wojciechowski, J.[Jacek],
On the Importance of Precise Positioning in Robotised Agriculture,
RS(16), No. 6, 2024, pp. 985.
DOI Link
2403
BibRef
Li, D.F.[Dong-Fang],
Li, B.[Boliao],
Feng, H.[Huaiqu],
Kang, S.[Shuo],
Wang, J.[Jun],
Wei, Z.B.[Zhen-Bo],
Low-altitude remote sensing-based global 3D path planning for
precision navigation of agriculture vehicles - beyond crop row
detection,
PandRS(210), 2024, pp. 25-38.
Elsevier DOI Code:
WWW Link.
2404
Global Path planning, 3D path detection, Oblique photography,
Deep learning, Image processing, Precision agriculture
BibRef
Zhao, R.[Richeng],
Yuan, X.J.[Xian-Ju],
Yang, Z.P.[Zhan-Peng],
Zhang, L.[Lei],
Image-based crop row detection utilizing the Hough transform and
DBSCAN clustering analysis,
IET-IPR(18), No. 5, 2024, pp. 1161-1177.
DOI Link
2404
Agricultural engineering, Canny algorithm, crop row detection,
DBSCAN clustering, ExGR index, Hough transform, image processing
BibRef
Sagan, V.[Vasit],
Coral, R.[Roberto],
Bhadra, S.[Sourav],
Alifu, H.[Haireti],
Akkad, O.A.[Omar Al],
Giri, A.[Aviskar],
Esposito, F.[Flavio],
Hyperfidelis: A Software Toolkit to Empower Precision Agriculture
with GeoAI,
RS(16), No. 9, 2024, pp. 1584.
DOI Link
2405
BibRef
Weyler, J.[Jan],
Magistri, F.[Federico],
Marks, E.[Elias],
Chong, Y.L.[Yue Linn],
Sodano, M.[Matteo],
Roggiolani, G.[Gianmarco],
Chebrolu, N.[Nived],
Stachniss, C.[Cyrill],
Behley, J.[Jens],
PhenoBench: A Large Dataset and Benchmarks for Semantic Image
Interpretation in the Agricultural Domain,
PAMI(46), No. 12, December 2024, pp. 9583-9594.
IEEE DOI
2411
Crops, Semantics, Benchmark testing, Autonomous aerial vehicles,
Training data, Machine vision, Food products, smart agriculture
BibRef
Romero-Bautista, V.[Víctor],
Altamirano-Robles, L.[Leopoldo],
Díaz-Hernández, R.[Raquel],
Zapotecas-Martínez, S.[Saúl],
Sanchez-Medel, N.[Nohemí],
Evaluation of visual SLAM algorithms in unstructured planetary-like
and agricultural environments,
PRL(186), 2024, pp. 106-112.
Elsevier DOI
2412
Visual SLAM, Unstructured environment, Evaluation
BibRef
Chen, T.[Tao],
Lv, L.[Liang],
Wang, D.[Di],
Zhang, J.[Jing],
Yang, Y.[Yue],
Zhao, Z.Y.[Ze-Yang],
Wang, C.[Chen],
Guo, X.W.[Xiao-Wei],
Chen, H.[Hao],
Wang, Q.Y.[Qing-Ye],
Xu, Y.F.[Yu-Fei],
Zhang, Q.M.[Qi-Ming],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Tao, D.C.[Da-Cheng],
Empowering Agrifood System with Artificial Intelligence: A Survey of
the Progress, Challenges and Opportunities,
Surveys(57), No. 2, November 2024, pp. xx-yy.
DOI Link Code:
WWW Link.
2501
Agrifood Systems, artificial intelligence, machine learning,
remote sensing
BibRef
Yilmaz, E.[Esra],
Bocekci, S.C.[Sevim Ceylan],
Safak, C.[Cengiz],
Yildiz, K.[Kazim],
Advancements in smart agriculture: A systematic literature review on
state-of-the-art plant disease detection with computer vision,
IET-CV(19), No. 1, 2025, pp. e70004.
DOI Link
2502
image processing, learning (artificial intelligence)
BibRef
Wang, S.H.[Shao-Hua],
Xu, D.C.[Da-Chuan],
Liang, H.J.[Hao-Jian],
Bai, Y.Q.[Yong-Qing],
Li, X.[Xiao],
Zhou, J.Y.[Jun-Yuan],
Su, C.[Cheng],
Wei, W.Y.[Wen-Yu],
Advances in Deep Learning Applications for Plant Disease and Pest
Detection: A Review,
RS(17), No. 4, 2025, pp. 698.
DOI Link
2502
BibRef
Li, Z.[Zhan],
Yan, Y.M.[Yi-Ming],
Wei, M.S.[Mao-Sheng],
Ge, B.Y.[Bao-Yu],
Su, N.[Nan],
FGOD-YOLOv8: Fine-Grained Object Detection for Crops and Weeds,
SPLetters(32), 2025, pp. 791-795.
IEEE DOI
2503
Feature extraction, Head, Crops, YOLO, Accuracy, Semantics,
Convolutional neural networks, Training, Convolution,
cross-scale feature fusion
BibRef
Liu, H.Y.[Huai-Yang],
Li, H.B.[Hui-Bin],
Wang, H.Z.[Hao-Zhou],
Liu, C.H.[Chuang-Hai],
Qian, J.P.[Jian-Ping],
Wang, Z.B.[Zhan-Biao],
Geng, C.X.[Chang-Xing],
Improved Detection and Location of Small Crop Organs by Fusing UAV
Orthophoto Maps and Raw Images,
RS(17), No. 5, 2025, pp. 906.
DOI Link
2503
BibRef
Xu, J.C.[Jia-Cheng],
Zhao, X.S.[Xue-Sheng],
Cui, B.L.[Bing-Liang],
FSOSM: An Operational Knowledge Empowered Scenario Model for the
Intelligent Farmland Supervision,
IJGI(14), No. 3, 2025, pp. 100.
DOI Link
2503
BibRef
Shikhar, S.[Sambal],
Sobti, A.[Anupam],
Label-free Anomaly Detection in Aerial Agricultural Images with
Masked Image Modeling,
AgriVision24(5440-5449)
IEEE DOI
2410
Training, Productivity, Shape, Computational modeling,
Supervised learning, Self-supervised learning,
Masked Image Modelling
BibRef
Wu, J.[Jing],
Lai, Z.X.[Zhi-Xin],
Chen, S.[Suiyao],
Tao, R.[Ran],
Zhao, P.[Pan],
Hovakimyan, N.[Naira],
The New Agronomists: Language Models are Experts in Crop Management,
AgriVision24(5346-5356)
IEEE DOI Code:
WWW Link.
2410
Decision support systems, Profitability, Noise, Green products,
Crops, Deep reinforcement learning, Language Model
BibRef
Cieslak, M.[Mikolaj],
Govindarajan, U.[Umabharathi],
Garcia, A.[Alejandro],
Chandrashekar, A.[Anuradha],
Hädrich, T.[Torsten],
Mendoza-Drosik, A.[Aleksander],
Michels, D.L.[Dominik L.],
Pirk, S.[Sören],
Fu, C.C.[Chia-Chun],
Palubicki, W.[Wojciech],
Generating Diverse Agricultural Data for Vision-Based Farming
Applications,
AgriVision24(5422-5431)
IEEE DOI
2410
Training, Adaptation models, Semantic segmentation, Crops,
Training data, Soil, Data augmentation
BibRef
Waqar, R.[Rana],
Grbovic, Ž.[Željana],
Khan, M.[Maryam],
Pajevic, N.[Nina],
Stefanovic, D.[Dimitrije],
Filipovic, V.[Vladan],
Panic, M.[Marko],
Djuric, N.[Nemanja],
End-to-End Deep Learning Models for Gap Identification in Maize
Fields,
AgriVision24(5403-5412)
IEEE DOI
2410
Precision agriculture, Industries, Deep learning, Soft sensors,
Prevention and mitigation, Plants (biology), end-to-end, multitask,
precision agriculture
BibRef
Lopes, F.A.[Felipe A.],
Sagan, V.[Vasit],
Esposito, F.[Flavio],
PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction,
WACV24(7051-7060)
IEEE DOI
2404
Training, Plant diseases, Plantations, Vegetation mapping,
Computer architecture, Predictive models,
Remote Sensing
BibRef
Prashanth, K.[Komuravelli],
Harsha, J.S.[Jaladi Sri],
Kumar, S.A.[Sivapuram Arun],
Srilekha, J.[Jaladi],
Towards Accurate Disease Segmentation in Plant Images: A
Comprehensive Dataset Creation and Network Evaluation,
WACV24(7071-7079)
IEEE DOI
2404
Training, Productivity, Image segmentation, Plant diseases,
Pathology, Plants (biology), Refining
BibRef
Tsai, Y.H.[Yao-Hong],
Hsu, T.C.[Tse-Chuan],
An Effective Deep Neural Network in Edge Computing Enabled Internet
of Things for Plant Diseases Monitoring,
IoTDesign24(695-699)
IEEE DOI
2404
Performance evaluation, Deep learning, Plant diseases,
Image recognition, Prototypes, Feature extraction, Loss measurement
BibRef
Hendra, H.[Hansen],
Liu, Y.[Yubin],
Ishikawa, R.[Ryoichi],
Oishi, T.[Takeshi],
Sato, Y.[Yoshihiro],
Quadruped Robot Platform for Selective Pesticide Spraying,
MVA23(1-6)
DOI Link
2403
Support vector machines, Machine vision, Spraying, Crops,
Training data, Pesticides, Object detection
BibRef
Padeiro, C.V.[Carlos Victorino],
Komamizu, T.[Takahiro],
Ide, I.[Ichiro],
Towards Achieving Lightweight Deep Neural Network for Precision
Agriculture with Maize Disease Detection,
MVA23(1-6)
DOI Link
2403
Visualization, Plant diseases, Power supplies, Crops,
Object detection, Detectors, Network architecture
BibRef
Jol, C.[Cees],
Wen, J.[Junhan],
van Gemert, J.C.[Jan C.],
Non-Destructive Infield Quality Estimation of Strawberries using Deep
Architectures,
CVPPA23(515-524)
IEEE DOI
2401
BibRef
Farag, M.[Mohamed],
Kierdorf, J.[Jana],
Roscher, R.[Ribana],
Inductive Conformal Prediction for Harvest-Readiness Classification
of Cauliflower Plants: A Comparative Study of Uncertainty
Quantification Methods,
CVPPA23(651-659)
IEEE DOI
2401
BibRef
Penzel, N.[Niklas],
Kierdorf, J.[Jana],
Roscher, R.[Ribana],
Denzler, J.[Joachim],
Analyzing the Behavior of Cauliflower Harvest-Readiness Models by
Investigating Feature Relevances,
CVPPA23(572-581)
IEEE DOI
2401
BibRef
Pagé-Fortin, M.[Mathieu],
Class-Incremental Learning of Plant and Disease Detection:
Growing Branches with Knowledge Distillation,
CVPPA23(593-603)
IEEE DOI
2401
BibRef
Zampokas, G.[Georgios],
Mariolis, I.[Ioannis],
Giakoumis, D.[Dimitrios],
Tzovaras, D.[Dimitrios],
Residual Cascade CNN for Detection of Spatially Relevant Objects in
Agriculture: The Grape-stem Paradigm,
CVS23(159-168).
Springer DOI
2312
BibRef
Wu, Z.X.[Zheng-Xian],
Liu, X.[Xingpeng],
Xue, Y.[YiMing],
Wen, J.[Juan],
Peng, W.L.[Wan-Li],
HDTC: Hybrid Model of Dual-Transformer and Convolutional Neural
Network from RGB-D for Detection of Lettuce Growth Traits,
ICIP23(2185-2189)
IEEE DOI
2312
BibRef
\
Chai, A.Y.H.[Abel Yu Hao],
Lee, S.H.[Sue Han],
Tay, F.S.[Fei Siang],
Then, Y.L.[Yi Lung],
Goëau, H.[Hervé],
Bonnet, P.[Pierre],
Joly, A.[Alexis],
Pairwise Feature Learning for Unseen Plant Disease Recognition,
ICIP23(306-310)
IEEE DOI
2312
BibRef
Goncalves, D.N.[Diogo Nunes],
Marcato, J.[Jose],
Zamboni, P.[Pedro],
Pistori, H.[Hemerson],
Li, J.[Jonathan],
Nogueira, K.[Keiller],
Goncalves, W.N.[Wesley Nunes],
MTLSegFormer: Multi-task Learning with Transformers for Semantic
Segmentation in Precision Agriculture,
AgriVision23(6290-6298)
IEEE DOI
2309
BibRef
Panda, S.K.[Shivam K.],
Lee, Y.[Yongkyu],
Jawed, M.K.[M. Khalid],
Agronav: Autonomous Navigation Framework for Agricultural Robots and
Vehicles using Semantic Segmentation and Semantic Line Detection,
AgriVision23(6272-6281)
IEEE DOI
2309
BibRef
Tavera, A.[Antonio],
Arnaudo, E.[Edoardo],
Masone, C.[Carlo],
Caputo, B.[Barbara],
Augmentation Invariance and Adaptive Sampling in Semantic
Segmentation of Agricultural Aerial Images,
AgriVision22(1655-1664)
IEEE DOI
2210
Training, Image segmentation, Adaptation models, Adaptive systems,
Semantics, Sampling methods, Loss measurement
BibRef
Shen, Y.[Yao],
Wang, L.[Lei],
Jin, Y.[Yue],
AAFormer:
A Multi-Modal Transformer Network for Aerial Agricultural Images,
AgriVision22(1704-1710)
IEEE DOI
2210
Image segmentation, Image recognition, Semantics,
Transformers, Feature extraction
BibRef
Ciarfuglia, T.A.[Thomas A.],
Motoi, I.M.[Ionut Marian],
Saraceni, L.[Leonardo],
Nardi, D.[Daniele],
Pseudo-label Generation for Agricultural Robotics Applications,
AgriVision22(1685-1693)
IEEE DOI
2210
Structure from motion, Motion segmentation, Pipelines, Refining,
Spraying, Lighting
BibRef
Daniela, L.[Lovarelli],
Daniel, B.[Berckmans],
Jacopo, B.[Bacenetti],
Marcella, G.[Guarino],
Suggestions for the Environmental Sustainability from Precision
Livestock Farming and Replacement in Dairy Cows,
LPLF22(351-360).
Springer DOI
2208
BibRef
Bagha, H.[Hamid],
Yavari, A.[Ali],
Georgakopoulos, D.[Dimitrios],
IoT-based Plant Health Analysis using Optical Sensors in Precision
Agriculture,
DICTA21(01-08)
IEEE DOI
2201
Reflectivity, Plants (biology), Sociology, Crops, Production,
Autonomous aerial vehicles, Data models, IoT,
Optical Data Analysis
BibRef
Bai, C.H.[Chia-Hung],
Prakosa, S.W.[Setya Widyawan],
Hsieh, H.Y.[He-Yen],
Leu, J.S.[Jenq-Shiou],
Fang, W.H.[Wen-Hsien],
Progressive Contextual Excitation for Smart Farming Application,
CAIP21(I:332-340).
Springer DOI
2112
BibRef
Nuthalapati, S.V.[Sai Vidyaranya],
Tunga, A.[Anirudh],
Multi-Domain Few-Shot Learning and Dataset for Agricultural
Applications,
CVPPA21(1399-1408)
IEEE DOI
2112
Measurement, Computational modeling, Plants (biology),
Performance gain, Transformers, Feature extraction
BibRef
Mei, J.[Jie],
Sun, K.Q.[Kai-Qiong],
Xu, X.[Xin],
Combing Color Index and Region Growing with Simple Non-iterative
Clustering for Plant Segmentation,
ICIVC21(119-123)
IEEE DOI
2112
Image segmentation, Image color analysis,
Plants (biology), Clustering methods, Crops, Agriculture, segmentation
BibRef
Ni, J.Y.[Jian-Yuan],
Zhu, Z.[Zanbo],
Zhou, X.G.[Xin-Gen],
Dou, F.[Fugen],
Yang, Y.B.[Yu-Bin],
Wilson, L.T.[Lloyd T.],
Samonte, S.O.P.[Stanley Omar PB.],
Wang, J.[Jing],
Zhang, J.[Jing],
Ridge Detection and Perceptual Grouping Based Automatic Counting of
Rice Seedlings Using UAV Images,
ICIVC21(61-65)
IEEE DOI
2112
Image segmentation, Unmanned aerial vehicles, Skeleton,
rice seedlings counting, unmanned aerial vehicle, perceptual grouping
BibRef
Akiva, P.[Peri],
Planche, B.[Benjamin],
Roy, A.[Aditi],
Dana, K.[Kristin],
Oudemans, P.[Peter],
Mars, M.[Michael],
AI on the Bog: Monitoring and Evaluating Cranberry Crop Risk,
WACV21(2492-2501)
IEEE DOI
2106
Economics, Temperature distribution, Irrigation,
Image segmentation, Object segmentation, Data collection
BibRef
Hassanein, M.,
Khedr, M.,
El-Sheimy, N.,
Crop Row Detection Procedure Using Low-cost UAV Imagery System,
UAV-g19(349-356).
DOI Link
1912
BibRef
Razaak, M.[Manzoor],
Kerdegari, H.[Hamideh],
Davies, E.[Eleanor],
Abozariba, R.[Raouf],
Broadbent, M.[Matthew],
Mason, K.[Katy],
Argyriou, V.[Vasileios],
Remagnino, P.[Paolo],
An Integrated Precision Farming Application Based on 5G, UAV and Deep
Learning Technologies,
CAIPWS19(109-119).
Springer DOI
1909
BibRef
Rezende Silva, G.[Gustavo],
Cunha Escarpinati, M.[Mauricio],
Duarte Abdala, D.[Daniel],
Rezende Souza, I.[Iuri],
Definition of Management Zones Through Image Processing for Precision
Agriculture,
WVC17(150-154)
IEEE DOI
1804
agriculture, autonomous aerial vehicles, crops, farming,
remotely operated vehicles, robot vision, vegetation mapping, NDVI,
k-means clustering
BibRef
Lukas, V.,
Novák, J.,
Neudert, L.,
Svobodova, I.,
Rodriguez-Moreno, F.,
Edrees, M.,
Kren, J.,
The Combination Of UAV Survey And Landsat Imagery For Monitoring Of
Crop Vigor In Precision Agriculture,
ISPRS16(B8: 953-957).
DOI Link
1610
BibRef
Abuleil, A.M.[Ammar M.],
Taylor, G.W.[Graham W.],
Moussa, M.[Medhat],
An Integrated System for Mapping Red Clover Ground Cover Using
Unmanned Aerial Vehicles: A Case Study in Precision Agriculture,
CRV15(277-284)
IEEE DOI
1507
Accuracy
BibRef
Erena, M.,
Montesinos, S.,
Portillo, D.,
Alvarez, J.,
Marin, C.,
Fernandez, L.,
Henarejos, J.M.,
Ruiz, L.A.,
Configuration And Specifications Of An Unmanned Aerial Vehicle For
Precision Agriculture,
ISPRS16(B1: 809-816).
DOI Link
1610
BibRef
Bachmann, F.,
Herbst, R.,
Gebbers, R.,
Hafner, V.V.,
Micro UAV Based Georeferenced Orthophoto Generation in VIS + NIR for
Precision Agriculture,
UAV-g13(11-16).
DOI Link
1311
BibRef
Guo, T.,
Kujirai, T.,
Watanabe, T.,
Mapping Crop Status From An Unmanned Aerial Vehicle For Precision
Agriculture Applications,
ISPRS12(XXXIX-B1:485-490).
DOI Link
1209
BibRef
Meng, X.L.[Xiao-Lin],
Dodson, A.,
Zhang, J.X.[Ji-Xian],
Cai, Y.H.[Yan-Hui],
Liu, C.[Chun],
Geary, K.,
Geospatial Data Fusion for Precision Agriculture,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Food Descriptions, Dishes, Recipe Generation .