Chang, E.S.H.[Edward S.H.],
Kurz, L.[Ludwik],
Trajectory Detection and Experimental Designs,
CVGIP(27), No. 3, September 1984, pp. 346-368.
Elsevier DOI
BibRef
8409
Chang, E.S.H.[Edward S.H.],
Kurz, L.[Ludwik],
Object Detection and Experimental Designs,
CVGIP(40), No. 2, November 1987, pp. 147-168.
Elsevier DOI
BibRef
8711
Iu, S.L.[Siu-Leong],
Wohn, K.Y.[Kwang-Yoen],
Recovery of 3D Motion of a Single Particle,
PR(24), No. 3, 1991, pp. 241-252.
Elsevier DOI
BibRef
9100
Earlier:
Estimation of General Rigid Body Motion from a Long Sequence of Images,
ICPR90(I: 217-219).
IEEE DOI
BibRef
And:
FLAT MMF: A New Recursive Technique for the 3-D Motion Analysis,
DARPA90(405-417).
Claims that constant motion (parameters?) is not needed?
Tracking points with a model based on some of the past points, not all.
BibRef
Rangarajan, K.[Krishnan],
Shah, M.[Mubarak],
Establishing Motion Correspondence,
CVGIP(54), No. 1, July 1991, pp. 56-73.
Elsevier DOI
BibRef
9107
And:
CVPR91(103-108).
IEEE DOI Propose a proximal uniformity constraint (smooth paths, short
distances) for the matching problem (of points -- no features).
Gradient-based optical flow is used for the first two frames.
BibRef
Rangarajan, K.[Krishnan],
Shah, M.[Mubarak],
Interpretation of Motion Trajectories Using Focus of Expansion,
PAMI(14), No. 12, December 1992, pp. 1205-1210.
IEEE DOI Analysis of the locus of the FOE leads to determination
of the trajectory.
BibRef
9212
Rangarajan, K.[Krishnan],
Allen, W.[William],
Shah, M.[Mubarak],
Matching Motion Trajectories Using Scale-Space,
PR(26), No. 4, April 1993, pp. 595-610.
Elsevier DOI
BibRef
9304
Earlier:
Recognition Using Motion and Shape,
ICPR92(I:255-258).
IEEE DOI
BibRef
Shah, M.,
Rangarajan, K., and
Tsai, P.S.,
Motion Trajectories,
SMC(23), 1993, pp. 1138-1150.
BibRef
9300
Earlier:
CVPR92(839-841).
IEEE DOI
BibRef
And:
Generation and Segmentation of Motion Trajectories,
ICPR92(I:74-77).
IEEE DOI
BibRef
Blostein, S.D., and
Huang, T.S.,
Detecting Small, Moving
Objects in Image Sequences Using Sequential Hypothesis Testing,
TSP(39), No. 7, 1991, pp. 1611-1629.
BibRef
9100
Kalivas, D.S.[Dimitrios S.],
Sawchuk, A.A.[Alexander A.],
A Region Matching Motion Estimation Algorithm,
CVGIP(54), No. 2, September 1991, pp. 275-288.
Elsevier DOI
BibRef
9109
Earlier:
A 2-D motion estimation algorithm,
ICPR90(I: 271-273).
IEEE DOI
9006
Basic 2-D motion estimation with region tracking.
BibRef
Bober, M.[Miroslaw],
Kittler, J.V.[Josef V.],
Estimation of Complex Multimodal Motion:
An Approach Based on Robust Statistics and Hough Transform,
IVC(12), No. 10, December 1994, pp. 661-668.
Elsevier DOI
BibRef
9412
Earlier:
BMVC93(239-248).
PDF File.
Hough, Motion.
Affine Model.
BibRef
Bober, M.[Miroslaw],
Kittler, J.V.[Josef V.],
On Combining the Hough Transform and Multiresolution MRFs for
Robust Analysis of Complex Motion,
ACCV95(301-305).
BibRef
9500
And:
Robust Motion Analysis,
CVPR94(947-952).
IEEE DOI Hough based technique.
Comparison of results of different techniques for optical flow.
BibRef
Thirumalai, S.,
Ahuja, N.,
Parallel Distributed Detection of Feature Trajectories in
Multiple Discontinuous Motion Image Sequences,
TNN(7), No. 3, May 1996, pp. 594-603.
9606
BibRef
Earlier:
Detection and Segmentation of Feature Trajectories in Multiple,
Discontinuous Motion Image Sequences,
DARPA93(621-628).
Generate groups of similar motions (not 3-D motions).
BibRef
Szeliski, R.S., and
Kang, S.B.,
Recovering 3D Shape and Motion from Image Streams
Using Non-Linear Least Squares,
JVCIR(5), No. 1, March 1994, pp. 10-28.
BibRef
9403
Earlier:
CVPR93(752-753).
IEEE DOI
BibRef
And:
DEC-CRL-93-3, March 1993.
A very long sequence (96 frames).
BibRef
Fletcher, M.J.,
Warwick, K., and
Mitchell, R.J.,
The Application of a Hybrid Tracking Algorithm to Motion Analysis,
CVPR91(84-89).
IEEE DOI Point tracking for simple motions.
BibRef
9100
Fletcher, M.J., and
Mitchell, R.J.,
Predicting Multiple Feature Locations for a Class of
Dynamic Image Sequences,
IVC(8), No. 3, August 1990, pp. 193-198.
Elsevier DOI
BibRef
9008
Costabile, M.F.,
Guerra, C., and
Pieroni, G.G.,
Matching Shapes: A Case Study in Time-Varying Images,
CVGIP(29), No. 3, 1985, pp. 296-310.
Elsevier DOI
BibRef
8500
Earlier: A3, A1, A2:
Decomposition of Shape Boundaries in a Problem of Map Sequence Analysis,
ICPR80(618-623).
Find the convex pieces of the shape, and apply a tree search on the
possible matches of each individual piece (single to multiple match
is allowed).
BibRef
Pieroni, G.G.,
Costabile, M.F.,
A Method for Detecting Correspondences in a Sequence of
Modifying Shapes,
PRL(3), 1985, pp. 403-412.
Snakes.
BibRef
8500
Earlier:
Finding Correspondences in Time-Varying Shape Boundaries,
ICPR84(1171-1174).
BibRef
Earlier:
Experiments in Dynamic Segmentation,
PRIP79(300-307).
BibRef
Costabile, M.F.,
Pieroni, G.G.,
Detecting Shape Correspondences by Using the
Generalized Hough Transform,
ICPR86(589-591).
BibRef
8600
Pieroni, G.G.,
A Method for Analyzing Dynamic Processes Represented by
Sequences of Maps,
CGIP(10), No. 4, August 1979, pp. 375-387.
Elsevier DOI
BibRef
7908
Pieroni, G.G.,
Freeman, H.,
On the Analysis of Dynamic Map Data,
ICPR78(731-734).
BibRef
7800
Tan, T.N.,
Baker, K.D.,
Sullivan, G.D.,
3D Structure and Motion Estimation from 2D Image Sequences,
IVC(11), No. 4, May 1993, pp. 203-210.
Elsevier DOI
BibRef
9305
Earlier:
BMVC92(xx-yy).
PDF File.
9209
BibRef
Earlier: A1, A3, A2:
Structure from Constrained Motion Using Point Correspondences,
BMVC91(xx-yy).
PDF File.
9109
See also Recognizing Objects on the Ground-Plane.
BibRef
Tan, T.N.,
Sullivan, G.D.,
Baker, K.D.,
Linear Algorithms for Multi-Frame Structure from Constrained Motion,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Zakhor, A.,
Lari, F.,
Edge-Based 3-D Camera Motion Estimation with Application to
Video Coding,
IP(2), No. 4, October 1993, pp. 481-498.
IEEE DOI
BibRef
9310
Lee, C.H.[Chia-Hoang],
Joshi, A.[Anupam],
Correspondence Problem in Image Sequence Analysis,
PR(26), No. 1, January 1993, pp. 47-61.
Elsevier DOI Match using geometric constraints
BibRef
9301
Rudd, J.G.,
Marsh, R.A., and
Roecker, J.A.,
Surveillance and tracking of ballistic missile launches,
IBMRD(38), No. 2, February 1994, pp. 195-216.
BibRef
9402
Vieville, T.,
Faugeras, O.D.,
Luong, Q.T.,
Motion Of Points And Lines In The Uncalibrated Case,
IJCV(17), No. 1, January 1996, pp. 7-41.
Springer DOI
BibRef
9601
Vieville, T.,
Luong, Q.T.,
Computing Motion and Structure in Image Sequences without Calibration,
ICPR94(A:420-425).
IEEE DOI
BibRef
9400
Vieville, T.[Thierry],
Zeller, C.[Cyril], and
Robert, L.[Luc],
Using Collineations to Compute Motion and Structure in an
Uncalibrated Image Sequence,
IJCV(20), No. 3, 1996, pp. 213-242.
BibRef
9600
Earlier:
Recovering Motion and Structure from a Set of Planar Patches
in an Uncalibrated Image Sequence,
ICPR94(A:637-640).
IEEE DOI
BibRef
Huang, C.L.[Chung-Lin],
Wu, C.H.[Chi-Hou],
Dynamic Scene Analysis Using Path and Shape Coherence,
PR(25), No. 5, May 1992, pp. 445-461.
Elsevier DOI
BibRef
9205
Griffin, P.M.,
Messimer, S.L.,
Feature Point Tracking in Time-Varying Images,
PRL(11), 1990, pp. 843-848.
BibRef
9000
Rosenberg, Y.[Yoav],
Werman, M.[Michael],
Representing Local Motion as a Probability Distribution Matrix
and Object Tracking,
DARPA97(153-158).
BibRef
9700
Åström, K.[Kalle],
Kahl, F.[Fredrik],
Motion Estimation in Image Sequences Using the Deformation of Apparent
Contours,
PAMI(21), No. 2, February 1999, pp. 114-127.
IEEE DOI
BibRef
9902
Earlier: A2, A1:
ICCV98(939-942).
IEEE DOI
BibRef
And:
SSAB97(Computer Vision).
9703
Camera motion using unknown surfaces.
Uses epipolar constraints.
BibRef
Wagner, R.[Robert],
Liu, F.Y.[Fei-Yu],
Donner, K.[Klaus],
Robust Motion Estimation for Calibrated Cameras from Monocular Image
Sequences,
CVIU(73), No. 2, February 1999, pp. 258-268.
DOI Link
BibRef
9902
Gibson, D.,
Spann, M.,
Robust Motion Trajectory Estimation for Long Image Sequences with
Applications to Motion Compensated Prediction,
PRAI(13), No. 5, August 1999, pp. 781.
0005
BibRef
Zhang, T.[Tong],
Tomasi, C.[Carlo],
On the Consistency of Instantaneous Rigid Motion Estimation,
IJCV(46), No. 1, January 2002, pp. 51-79.
DOI Link
0201
BibRef
Earlier:
Fast, Robust, and Consistent Camera Motion Estimation,
CVPR99(I: 164-170).
IEEE DOI Using robust techniques to improve estimate as number of points
increases.
BibRef
Cadman, L.,
Tjahjadi, T.,
Efficient Three-Dimensional Metric Object Modeling From Uncalibrated
Image Sequences,
SMC-B(34), No. 2, April 2004, pp. 856-876.
IEEE Abstract.
0404
BibRef
Earlier:
Simultaneous Feature Tracking and Three-dimensional Object
Reconstruction from an Image Sequence,
ICIP01(II: 391-394).
IEEE DOI
0108
BibRef
Arnaud, E.[Elise],
Mémin, E.[Etienne],
Cernuschi-Frias, B.,
Conditional Filters for Image Sequence-Based Tracking:
Application to Point Tracking,
IP(14), No. 1, January 2005, pp. 63-79.
IEEE DOI
0501
BibRef
Arnaud, E.[Elise],
Mémin, E.[Etienne],
Partial Linear Gaussian Models for Tracking in Image Sequences Using
Sequential Monte Carlo Methods,
IJCV(80), No. 1, October 2008, pp. xx-yy.
Springer DOI
0809
BibRef
And:
IJCV(74), No. 1, August 2007, pp. 75-102.
Springer DOI
0705
BibRef
Earlier:
Optimal Importance Sampling for Tracking in Image Sequences:
Application to Point Tracking,
ECCV04(Vol III: 302-314).
Springer DOI
0405
Sequential Monte Carlo methods (also called particle filters)
BibRef
Shih, M.Y.[Ming-Yu],
Tseng, D.C.[Din-Chang],
A wavelet-based multiresolution edge detection and tracking,
IVC(23), No. 4, 1 April 2005, pp. 441-451.
Elsevier DOI
0501
BibRef
Zhu, G.P.[Guo-Pu],
Zeng, Q.S.[Qing-Shuang],
Wang, C.H.[Chang-Hong],
Efficient edge-based object tracking,
PR(39), No. 11, November 2006, pp. 2223-2226.
Elsevier DOI
0608
Keywords: Image edge; Motion estimation; Object tracking
BibRef
Cossalter, M.,
Valenzise, G.,
Tagliasacchi, M.,
Tubaro, S.,
Joint Compressive Video Coding and Analysis,
MultMed(12), No. 3, March 2010, pp. 168-183.
IEEE DOI
1003
BibRef
Cossalter, M.,
Tagliasacchi, M.,
Valenzise, G.,
Privacy-Enabled Object Tracking in Video Sequences Using Compressive
Sensing,
AVSBS09(436-441).
IEEE DOI
0909
BibRef
Chen, M.J.[Min-Jie],
Xu, M.T.[Man-Tao],
Franti, P.[Pasi],
A Fast O(N) Multiresolution Polygonal Approximation Algorithm for GPS
Trajectory Simplification,
IP(21), No. 5, May 2012, pp. 2770-2785.
IEEE DOI
1204
BibRef
Chen, M.J.[Min-Jie],
Xu, M.T.[Man-Tao],
Franti, P.[Pasi],
Compression of GPS trajectories using optimized approximation,
ICPR12(3180-3183).
WWW Link.
1302
BibRef
Fishbain, B.[Barak],
Hochbaum, D.[Dorit],
Yang, Y.[Yan],
A new approach for real-time target tracking in videos,
SPIE(Newsroom), January 29, 2013.
DOI Link
1305
A generic, graph-theory-based tracking method in videos helps solve
the problem of tracking.
BibRef
Zhang, C.L.[Can-Long],
Jing, Z.L.[Zhong-Liang],
Tang, Y.P.[Yan-Ping],
Jin, B.[Bo],
Xiao, G.[Gang],
Locally discriminative stable model for visual tracking with
clustering and principle component analysis,
IET-CV(7), No. 3, 2013, pp. 151-162.
DOI Link
1307
BibRef
Muckell, J.[Jonathan],
Olsen, Jr., P.W.[Paul W.],
Hwang, J.H.[Jeong-Hyon],
Lawson, C.T.[Catherine T.],
Ravi, S.S.,
Compression of Trajectory Data:
A Comprehensive Evaluation and New Approach,
GeoInfo(18), No. 3, July 2014, pp. 435-460.
Springer DOI
1407
BibRef
Martínez, C.[Carol],
Campoy, P.[Pascual],
Mondragón, I.F.[Iván F.],
Sánchez-Lopez, J.L.[José Luis],
Olivares-Méndez, M.A.[Miguel A.],
HMPMR strategy for real-time tracking in aerial images, using direct
methods,
MVA(25), No. 5, July 2014, pp. 1283-1308.
Springer DOI
1407
HMPMR: Hierarchical Multi-Parametric and Multi-Resolution.
BibRef
Zhang, K.H.[Kai-Hua],
Zhang, L.[Lei],
Yang, M.H.[Ming-Hsuan],
Fast Compressive Tracking,
PAMI(36), No. 10, October 2014, pp. 2002-2015.
IEEE DOI
1410
BibRef
Earlier:
Real-Time Compressive Tracking,
ECCV12(III: 864-877).
Springer DOI
1210
Bayes methods
See also Fast Visual Tracking via Dense Spatio-temporal Context Learning.
See also Real-Time Object Tracking Via Online Discriminative Feature Selection.
BibRef
Huang, H.T.[Hong-Tu],
Bi, D.Y.[Du-Yan],
Zha, Y.F.[Yu-Fei],
Ma, S.P.[Shi-Ping],
Gao, S.[Shan],
Liu, C.[Chang],
Robust visual tracking based on product sparse coding,
PRL(56), No. 1, 2015, pp. 52-59.
Elsevier DOI
1503
Visual tracking
BibRef
Chavoshi, S.H.[Seyed Hossein],
de Baets, B.[Bernard],
Neutens, T.[Tijs],
Delafontaine, M.[Matthias],
de Tré, G.[Guy],
van de Weghe, N.[Nico],
Movement Pattern Analysis Based on Sequence Signatures,
IJGI(4), No. 3, 2015, pp. 1605.
DOI Link
1511
BibRef
Lebeda, K.,
Hadfield, S.,
Matas, J.G.,
Bowden, R.,
Texture-Independent Long-Term Tracking Using Virtual Corners,
IP(25), No. 1, January 2016, pp. 359-371.
IEEE DOI
1601
BibRef
Earlier:
Long-Term Tracking through Failure Cases,
VOT13(153-160)
IEEE DOI
1403
Apertures.
edge detection
BibRef
Lebeda, K.[Karel],
Hadfield, S.[Simon],
Bowden, R.[Richard],
Exploring Causal Relationships in Visual Object Tracking,
ICCV15(3065-3073)
IEEE DOI
1602
Cameras; Entropy; Kernel; Object tracking; Visualization
BibRef
Miao, Q.[Quan],
Zhang, C.[Chun],
Meng, L.[Long],
Feature-Based On-Line Object Tracking Combining Both Keypoints and
Quasi-Keypoints Matching,
IEICE(E99-D), No. 4, April 2016, pp. 1264-1267.
WWW Link.
1604
BibRef
Henderson, C.[Craig],
Izquierdo, E.[Ebroul],
Robust Feature Matching in Long-Running Poor-Quality Videos,
CirSysVideo(26), No. 6, June 2016, pp. 1161-1174.
IEEE DOI
1606
Cameras. Match key point and region features.
BibRef
Miao, Q.[Quan],
Shi, C.[Chenbo],
Meng, L.[Long],
Cheng, G.[Guang],
On-Line Rigid Object Tracking via Discriminative Feature Classification,
IEICE(E99-D), No. 11, November 2016, pp. 2824-2827.
WWW Link.
1611
BibRef
Wang, R.[Rui],
Dong, H.[Hao],
Han, T.X.[Tony X.],
Mei, L.[Lei],
Robust tracking via monocular active vision for an intelligent teaching
system,
VC(32), No. 11, November 2016, pp. 1379-1394.
WWW Link.
1611
BibRef
Zhao, L.J.[Liu-Jun],
Zhao, Q.J.[Qing-Jie],
Liu, H.[Hao],
Lv, P.[Peng],
Gu, D.B.[Dong-Bing],
Structural sparse representation-based semi-supervised learning and
edge detection proposal for visual tracking,
VC(33), No. 9, September 2017, pp. 1169-1184.
WWW Link.
1708
BibRef
Wang, M.M.[Min-Min],
Sun, S.L.[Sheng-Li],
Li, Y.J.[Ye-Jin],
A Compressive Tracking Method Based on Gaussian Differential Graph
and Weighted Cosine Similarity Metric,
SPLetters(25), No. 4, April 2018, pp. 501-505.
IEEE DOI
1804
Bayes methods, compressed sensing, feature extraction,
graph theory, object tracking, signal classification,
visual tracking
BibRef
Wang, N.[Ning],
Zhou, W.G.[Wen-Gang],
Li, H.Q.[Hou-Qiang],
Reliable Re-Detection for Long-Term Tracking,
CirSysVideo(29), No. 3, March 2019, pp. 730-743.
IEEE DOI
1903
Target tracking, Reliability, Correlation, Detectors,
Feature extraction, Task analysis, Long-term tracking,
feature combination
BibRef
Wang, N.[Ning],
Zhou, W.G.[Wen-Gang],
Li, H.Q.[Hou-Qiang],
Learning Diverse Models for End-to-End Ensemble Tracking,
IP(30), 2021, pp. 2220-2231.
IEEE DOI
2102
feature extraction, image fusion, image representation,
learning (artificial intelligence), object tracking,
diverse models
BibRef
Wang, N.[Ning],
Zhou, W.G.[Wen-Gang],
Wang, J.[Jie],
Li, H.Q.[Hou-Qiang],
Transformer Meets Tracker:
Exploiting Temporal Context for Robust Visual Tracking,
CVPR21(1571-1580)
IEEE DOI
2111
Bridges, Visualization, Target tracking, Pipelines,
Transformers, Search problems
BibRef
Wang, N.[Ning],
Zhou, W.G.[Wen-Gang],
Tian, Q.[Qi],
Li, H.Q.[Hou-Qiang],
Cascaded Regression Tracking:
Towards Online Hard Distractor Discrimination,
CirSysVideo(31), No. 4, April 2021, pp. 1580-1592.
IEEE DOI
2104
Target tracking, Visualization, Robustness, Adaptation models,
Benchmark testing, Training, Real-time systems, Visual tracking,
hard distractor
BibRef
Zheng, X.X.[Xiao-Xu],
Ramesh, B.[Bharath],
Gao, Z.[Zhi],
Yang, Y.[Yue],
Xiang, C.[Cheng],
A novel framework for robust long-term object tracking in real-time,
MVA(30), No. 3, April 2019, pp. 529-539.
Springer DOI
1906
BibRef
Ramesh, B.[Bharath],
Zhang, S.H.[Shi-Hao],
Yang, H.[Hong],
Ussa, A.[Andres],
Ong, M.[Matthew],
Orchard, G.[Garrick],
Xiang, C.[Cheng],
e-TLD: Event-Based Framework for Dynamic Object Tracking,
CirSysVideo(31), No. 10, October 2021, pp. 3996-4006.
IEEE DOI
2110
Cameras, Object tracking, Target tracking, Detectors, Shape,
Robot vision systems, Training, Event-based vision, dynamic motion
BibRef
Dai, W.C.[Wei-Cong],
Jin, L.X.[Long-Xu],
Li, G.N.[Guo-Ning],
Long-term adaptive tracking via complementary trackers,
IET-IPR(13), No. 9, 18 July 2019, pp. 1569-1577.
DOI Link
1907
BibRef
Gao, J.Y.[Jun-Yu],
Zhang, T.Z.[Tian-Zhu],
Xu, C.S.[Chang-Sheng],
SMART: Joint Sampling and Regression for Visual Tracking,
IP(28), No. 8, August 2019, pp. 3923-3935.
IEEE DOI
1907
feedforward neural nets, image sampling,
learning (artificial intelligence), object tracking,
sampling and regression
BibRef
Bouthemy, P.[Patrick],
Toledo Acosta, B.M.[Bertha Mayela],
Delyon, B.[Bernard],
Robust Model Selection in 2D Parametric Motion Estimation,
JMIV(61), No. 7, September 2019, pp. 1022-1036.
Springer DOI
1908
BibRef
Earlier:
Robust selection of parametric motion models in image sequences,
ICIP16(3743-3747)
IEEE DOI
1610
Complexity theory
BibRef
Li, T.[Tao],
Zhao, S.Y.[San-Yuan],
Meng, Q.H.[Qing-Hao],
Chen, Y.F.[Yu-Feng],
Shen, J.B.[Jian-Bing],
A stable long-term object tracking method with re-detection strategy,
PRL(127), 2019, pp. 119-127.
Elsevier DOI
1911
Correlation filter, Long-term tracking, Re-detection
BibRef
Liao, J.W.[Jia-Wen],
Qi, C.[Chun],
Cao, J.Z.[Jian-Zhong],
Ren, L.[Long],
Zhang, G.P.[Gao-Peng],
Real-time long-term tracker with
tracking-verification-detection-refinement,
JVCIR(72), 2020, pp. 102896.
Elsevier DOI
2010
Correlation filter, Occlusion, Long-term, Detector, Real-time
BibRef
Zhao, S.H.[Shaoc-Huan],
Xu, T.Y.[Tian-Yang],
Wu, X.J.[Xiao-Jun],
Zhu, X.F.[Xue-Feng],
Adaptive feature fusion for visual object tracking,
PR(111), 2021, pp. 107679.
Elsevier DOI
2012
Visual tracking, Deep neural network, Feature fusion, Online adaptation
BibRef
Chen, L.[Lulu],
Zhao, Y.Q.[Yong-Qiang],
Yao, J.X.[Jia-Xin],
Chen, J.X.[Jia-Xin],
Li, N.[Ning],
Chan, J.C.W.[Jonathan Cheung-Wai],
Kong, S.G.[Seong G.],
Object Tracking in Hyperspectral-Oriented Video with Fast
Spatial-Spectral Features,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Tu, Z.Y.[Zhi-Yong],
Lou, Y.D.[Yi-Dong],
Guo, W.F.[Wen-Fei],
Song, W.W.[Wei-Wei],
Wang, Y.S.[Yu-Sheng],
Design and Validation of a Cascading Vector Tracking Loop in High
Dynamic Environments,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yu, L.[Lang],
Zhang, H.L.[Huan-Long],
Yu, J.Y.[Jun-Yang],
Qiao, B.J.[Bao-Jun],
Online-adaptive classification and regression network with
sample-efficient meta learning for long-term tracking,
IVC(112), 2021, pp. 104181.
Elsevier DOI
2107
Long-term tracking, Target regression, Online learning, Meta learning
BibRef
Zhang, Y.H.[Yun-Hua],
Wang, L.J.[Li-Jun],
Wang, D.[Dong],
Qi, J.Q.[Jin-Qing],
Lu, H.C.[Hu-Chuan],
Learning Regression and Verification Networks for Robust Long-term
Tracking,
IJCV(129), No. 9, September 2021, pp. 2536-2547.
Springer DOI
2108
BibRef
Chen, X.[Xin],
Kang, B.[Ben],
Wang, D.[Dong],
Li, D.D.[Dong-Dong],
Lu, H.C.[Hu-Chuan],
Efficient Visual Tracking via Hierarchical Cross-attention Transformer,
VOT22(461-477).
Springer DOI
2304
BibRef
Lukezic, A.[Alan],
Zajc, L.C.[Luka Cehovin],
Vojír, T.[Tomáš],
Matas, J.G.[Jirí G.],
Kristan, M.[Matej],
Performance Evaluation Methodology for Long-Term Single-Object
Tracking,
Cyber(51), No. 12, December 2021, pp. 6305-6318.
IEEE DOI
2112
Target tracking, Benchmark testing, Performance evaluation,
Visualization, Annotations, Current measurement,
visual object tracking
BibRef
Lukežic, A.[Alan],
Matas, J.G.[Jirí G.],
Kristan, M.[Matej],
A Discriminative Single-Shot Segmentation Network for Visual Object
Tracking,
PAMI(44), No. 12, December 2022, pp. 9742-9755.
IEEE DOI
2212
Target tracking, Feature extraction, Object segmentation,
Location awareness, Adaptation models, Estimation, Visualization,
single-shot segmentation
BibRef
Li, Z.Y.[Zhi-Yong],
Nai, K.[Ke],
Li, G.J.[Gui-Ji],
Jiang, S.L.[Shi-Long],
Learning a Dynamic Feature Fusion Tracker for Object Tracking,
ITS(23), No. 2, February 2022, pp. 1479-1491.
IEEE DOI
2202
Target tracking, Correlation, Color, Visualization, Object tracking,
Fuses, Robustness, Visual tracking, correlation filters,
re-detection operation
BibRef
Nai, K.[Ke],
Li, Z.Y.[Zhi-Yong],
Wang, H.D.[Hai-Dong],
Dynamic feature fusion with spatial-temporal context for robust
object tracking,
PR(130), 2022, pp. 108775.
Elsevier DOI
2206
Object tracking, Dynamic feature fusion,
Spatial-temporal context, Correlation filters framework
BibRef
Yu, L.[Lang],
Qiao, B.J.[Bao-Jun],
Zhang, H.L.[Huan-Long],
Yu, J.Y.[Jun-Yang],
He, X.[Xin],
LTST: Long-term segmentation tracker with memory attention network,
IVC(119), 2022, pp. 104374.
Elsevier DOI
2202
Long-term tracking, Object segmentation, Memory network, Attention mechanism
BibRef
Qin, H.[Huai],
Yu, C.Q.[Chang-Qian],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
D2T: A Framework For transferring detection to tracking,
PR(126), 2022, pp. 108544.
Elsevier DOI
2204
Object tracking, Object detection, Transferring detection to tracking
BibRef
Li, G.C.[Gu-Chong],
Li, G.[Gang],
He, Y.[You],
Distributed GGIW-CPHD-Based Extended Target Tracking Over a Sensor
Network,
SPLetters(29), 2022, pp. 842-846.
IEEE DOI
2204
Target tracking, Computational modeling, Symmetric matrices,
Weight measurement, Standards, Radio frequency, Gamma distribution,
multi-agent system
BibRef
Dunnhofer, M.[Matteo],
Simonato, K.[Kristian],
Micheloni, C.[Christian],
Combining complementary trackers for enhanced long-term visual object
tracking,
IVC(122), 2022, pp. 104448.
Elsevier DOI
2205
Video tracking, Visual object tracking,
Long-term visual tracking, Deep learning
BibRef
Dunnhofer, M.[Matteo],
Micheloni, C.[Christian],
CoCoLoT: Combining Complementary Trackers in Long-Term Visual
Tracking,
ICPR22(5132-5139)
IEEE DOI
2212
Location awareness, Deep learning, Visualization, Target tracking,
Benchmark testing, Behavioral sciences
BibRef
Yang, L.[Lei],
Zhang, W.P.[Wen-Peng],
Jiang, W.D.[Wei-Dong],
Recognition of Ballistic Targets by Fusing Micro-Motion Features with
Networks,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhao, H.J.[Hao-Jie],
Yan, B.[Bin],
Wang, D.[Dong],
Qian, X.S.[Xue-Sheng],
Yang, X.Y.[Xiao-Yun],
Lu, H.C.[Hu-Chuan],
Effective Local and Global Search for Fast Long-Term Tracking,
PAMI(45), No. 1, January 2023, pp. 460-474.
IEEE DOI
2212
Target tracking, Search problems, Task analysis, Proposals,
Object tracking, Correlation, Benchmark testing,
global re-detection
BibRef
Xu, X.[Xiang],
Zhao, J.[Jian],
Wu, J.M.[Jian-Min],
Shen, F.[Furao],
Switch and Refine: A Long-Term Tracking and Segmentation Framework,
CirSysVideo(33), No. 3, March 2023, pp. 1291-1304.
IEEE DOI
2303
Target tracking, Task analysis, Switches, Object tracking,
Learning systems, Estimation, Object segmentation,
visual object segmentation
BibRef
Qian, K.[Kun],
Chen, P.[Peng],
Zhao, D.[Dong],
GOMT: Multispectral video tracking based on genetic optimization and
multi-features integration,
IET-IPR(17), No. 5, 2023, pp. 1578-1589.
DOI Link
2304
correlation methods, fast Fourier transforms,
feature extraction, feature selection, image classification, image fusion
BibRef
Ma, J.[Jie],
Lan, X.Y.[Xiang-Yuan],
Zhong, B.N.[Bi-Neng],
Li, G.R.[Guo-Rong],
Tang, Z.J.[Zhen-Jun],
Li, X.X.[Xian-Xian],
Ji, R.R.[Rong-Rong],
Robust Tracking via Uncertainty-Aware Semantic Consistency,
CirSysVideo(33), No. 4, April 2023, pp. 1740-1751.
IEEE DOI
2304
Uncertainty, Feature extraction, Target tracking, Semantics,
Correlation, Estimation, Adaptation models, Object tracking,
uncertainty estimation
BibRef
Fu, Y.K.[Ying-Kai],
Li, M.[Meng],
Liu, W.X.[Wen-Xi],
Wang, Y.C.[Yuan-Chen],
Zhang, J.Q.[Ji-Qing],
Yin, B.C.[Bao-Cai],
Wei, X.P.[Xiao-Peng],
Yang, X.[Xin],
Distractor-Aware Event-Based Tracking,
IP(32), 2023, pp. 6129-6141.
IEEE DOI
2311
BibRef
Wang, X.[Xiao],
Li, J.N.[Jia-Ning],
Zhu, L.[Lin],
Zhang, Z.P.[Zhi-Peng],
Chen, Z.[Zhe],
Li, X.[Xin],
Wang, Y.W.[Yao-Wei],
Tian, Y.H.[Yong-Hong],
Wu, F.[Feng],
VisEvent: Reliable Object Tracking via Collaboration of Frame and
Event Flows,
Cyber(54), No. 3, March 2024, pp. 1997-2010.
IEEE DOI Code:
WWW Link.
2402
Cameras, Target tracking, Task analysis, Benchmark testing,
Transformers, Object tracking, Feature extraction,
visual tracking
BibRef
Wang, X.[Xiao],
Shu, X.J.[Xiu-Jun],
Zhang, Z.P.[Zhi-Peng],
Jiang, B.[Bo],
Wang, Y.W.[Yao-Wei],
Tian, Y.H.[Yong-Hong],
Wu, F.[Feng],
Towards More Flexible and Accurate Object Tracking with Natural
Language: Algorithms and Benchmark,
CVPR21(13758-13768)
IEEE DOI
2111
Target tracking, Natural languages, Video sequences, Semantics,
Switches, Benchmark testing, Search problems
BibRef
Dai, K.[Kuai],
Li, X.[Xutao],
Ye, Y.M.[Yun-Ming],
Wang, Y.[Yaowei],
Feng, S.S.[Shan-Shan],
Xian, D.[Di],
Exploring and Exploiting High-Order Spatial-Temporal Dynamics for
Long-Term Frame Prediction,
CirSysVideo(34), No. 3, March 2024, pp. 1841-1856.
IEEE DOI
2403
Dynamics, Predictive models, Correlation, Training, Task analysis,
Satellites, Long-term, high-order motion patterns
BibRef
Lin, J.P.[Jia-Ping],
Liang, G.[Gang],
Zhang, R.C.[Rong-Chuan],
LTTrack: Rethinking the Tracking Framework for Long-Term Multi-Object
Tracking,
CirSysVideo(34), No. 10, October 2024, pp. 9866-9881.
IEEE DOI Code:
WWW Link.
2411
Target tracking, Predictive models, Feature extraction,
Computational modeling, Transformers, Data models, data association
BibRef
Wen, Z.[Zheng],
Lan, J.[Jian],
Zheng, L.[Le],
Zeng, T.[Tao],
Velocity-Dependent Orientation Estimation Using Variance Adaptation
for Extended Object Tracking,
SPLetters(31), 2024, pp. 3109-3113.
IEEE DOI
2411
Estimation, Shape, Object tracking, Mathematical models,
Bayes methods, Adaptation models, Time measurement, Gaussian noise,
variational Bayesian approach
BibRef
Li, H.Y.[Heng-You],
Liu, X.Y.[Xin-Yan],
Li, G.R.[Guo-Rong],
Wang, S.H.[Shu-Hui],
Qing, L.Y.[Lai-Yun],
Huang, Q.M.[Qing-Ming],
Boost Tracking by Natural Language With Prompt-Guided Grounding,
ITS(26), No. 1, January 2025, pp. 1088-1100.
IEEE DOI
2501
Target tracking, Grounding, Switches, Visualization, Feature extraction,
Computational modeling, Adaptation models, inverse tracking
BibRef
Tumanyan, N.[Narek],
Singer, A.[Assaf],
Bagon, S.[Shai],
Dekel, T.[Tali],
Dino-tracker: Taming Dino for Self-supervised Point Tracking in a
Single Video,
ECCV24(XXVI: 367-385).
Springer DOI
2412
BibRef
Wu, Z.W.[Zhe-Wei],
Yu, R.L.[Rui-Long],
Liu, Q.H.[Qi-He],
Cheng, S.Y.[Shu-Ying],
Qiu, S.L.[Shi-Lin],
Zhou, S.J.[Shi-Jie],
Enhancing Tracking Robustness with Auxiliary Adversarial Defense
Networks,
ECCV24(XLVI: 198-214).
Springer DOI
2412
BibRef
Shrivastava, A.[Ayush],
Owens, A.[Andrew],
Self-supervised Any-point Tracking by Contrastive Random Walks,
ECCV24(XIV: 267-284).
Springer DOI
2412
BibRef
Cho, S.[Seokju],
Huang, J.[Jiahui],
Nam, J.[Jisu],
An, H.G.[Hong-Gyu],
Kim, S.[Seungryong],
Lee, J.Y.[Joon-Young],
Local All-pair Correspondence for Point Tracking,
ECCV24(X: 306-325).
Springer DOI
2412
BibRef
Gao, Y.[Yue],
Li, J.H.[Jia-Hao],
Chu, L.[Lei],
Lu, Y.[Yan],
Implicit Motion Function,
CVPR24(19278-19289)
IEEE DOI
2410
Correlation, Computational modeling, Quality assessment,
Decoding, Video recording
BibRef
Balasingam, A.[Arjun],
Chandler, J.[Joseph],
Li, C.[Chenning],
Zhang, Z.[Zhoutong],
Balakrishnan, H.[Hari],
DriveTrack: A Benchmark for Long-Range Point Tracking in Real-World
Videos,
CVPR24(22488-22497)
IEEE DOI
2410
Point cloud compression, Visualization, Accuracy, Annotations, Buildings,
Benchmark testing, Cameras, point tracking, keypoint, autonomous driving
BibRef
Neoral, M.[Michal],
Šerých, J.[Jonáš],
Matas, J.[Jirí],
MFT: Long-Term Tracking of Every Pixel,
WACV24(6823-6833)
IEEE DOI
2404
Uncertainty, Image resolution, Codes, Video sequences,
Benchmark testing, Streaming media, Algorithms,
Video recognition and understanding
BibRef
Albanese, G.[Giuliano],
Mitra, A.[Arka],
Zaech, J.N.[Jan-Nico],
Zhao, Y.P.[Yu-Peng],
Chhatkuli, A.[Ajad],
Van Gool, L.J.[Luc J.],
Optimizing Long-Term Robot Tracking with Multi-Platform Sensor Fusion,
WACV24(6977-6987)
IEEE DOI
2404
Visualization, Video sequences, Games, Sensor fusion,
Robot sensing systems, Sensors, Robots, Algorithms,
Robotics
BibRef
Doersch, C.[Carl],
Yang, Y.[Yi],
Vecerik, M.[Mel],
Gokay, D.[Dilara],
Gupta, A.[Ankush],
Aytar, Y.[Yusuf],
Carreira, J.[Joao],
Zisserman, A.[Andrew],
TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement,
ICCV23(10027-10038)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zheng, Y.[Yang],
Harley, A.W.[Adam W.],
Shen, B.[Bokui],
Wetzstein, G.[Gordon],
Guibas, L.J.[Leonidas J.],
PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point
Tracking,
ICCV23(19798-19808)
IEEE DOI Code:
WWW Link.
2401
BibRef
Cetintas, O.[Orcun],
Brasó, G.[Guillem],
Leal-Taixé, L.[Laura],
Unifying Short and Long-Term Tracking with Graph Hierarchies,
CVPR23(22877-22887)
IEEE DOI
2309
BibRef
Wang, J.[Jianren],
Wang, X.[Xin],
Shang-Guan, Y.[Yue],
Gupta, A.[Abhinav],
Wanderlust: Online Continual Object Detection in the Real World,
ICCV21(10809-10818)
IEEE DOI
2203
Measurement, Annotations, Object detection, Machine learning,
Detectors, Benchmark testing, Datasets and evaluation,
Detection and localization in 2D and 3D
BibRef
Yu, B.[Bin],
Tang, M.[Ming],
Zheng, L.[Linyu],
Zhu, G.[Guibo],
Wang, J.Q.[Jin-Qiao],
Feng, H.[Hao],
Feng, X.T.[Xue-Tao],
Lu, H.Q.[Han-Qing],
High-Performance Discriminative Tracking with Transformers,
ICCV21(9836-9845)
IEEE DOI
2203
Visualization, Target tracking, Pipelines,
Benchmark testing, Transformers, Motion and tracking,
BibRef
Jiang, S.H.[Shi-Hao],
Campbell, D.[Dylan],
Lu, Y.[Yao],
Li, H.D.[Hong-Dong],
Hartley, R.I.[Richard I.],
Learning to Estimate Hidden Motions with Global Motion Aggregation,
ICCV21(9752-9761)
IEEE DOI
2203
Code, Motion.
WWW Link. Image motion analysis, Codes, Ultraviolet sources, Estimation,
Benchmark testing, Transformers, Motion and tracking, Stereo,
3D from multiview and other sensors
BibRef
Xu, L.[Liang],
Niu, R.X.[Rui-Xin],
Tracking Visual Object As An Extended Target,
ICIP21(664-668)
IEEE DOI
2201
Visualization, Target tracking, Shape, Neural networks, Kinematics,
Search problems, Numerical models, Visual Object Tracking,
Convolutional Neural Network
BibRef
Bian, T.L.[Tian-Ling],
Hua, Y.[Yang],
Song, T.[Tao],
Xue, Z.G.[Zhen-Gui],
Ma, R.[Ruhui],
Robertson, N.[Neil],
Guan, H.B.[Hai-Bing],
VTT: Long-term Visual Tracking with Transformers,
ICPR21(9585-9592)
IEEE DOI
2105
Visualization, Target tracking, Aggregates, Benchmark testing,
Proposals, Labeling
BibRef
Li, Z.,
Wang, Q.,
Gao, J.,
Li, B.,
Hu, W.,
Globally Spatial-Temporal Perception: a Long-Term Tracking System,
ICIP20(2066-2070)
IEEE DOI
2011
Target tracking, Feature extraction, Head, Trajectory,
Object tracking, Robustness, Visual object tracking,
motion model
BibRef
Yin, T.W.[Tian-Wei],
Zhou, X.Y.[Xing-Yi],
Krähenbühl, P.[Philipp],
Center-based 3D Object Detection and Tracking,
CVPR21(11779-11788)
IEEE DOI
2111
Solid modeling, Computational modeling, MIMICs, Fitting, Detectors
BibRef
Zhou, X.Y.[Xing-Yi],
Koltun, V.[Vladlen],
Krähenbühl, P.[Philipp],
Tracking Objects as Points,
ECCV20(IV:474-490).
Springer DOI
2011
BibRef
Dai, K.,
Zhang, Y.,
Wang, D.,
Li, J.,
Lu, H.,
Yang, X.,
High-Performance Long-Term Tracking With Meta-Updater,
CVPR20(6297-6306)
IEEE DOI
2008
Target tracking, Visualization, Switches, Reliability,
Noise measurement, Benchmark testing, Task analysis
BibRef
Du, F.,
Liu, P.,
Zhao, W.,
Tang, X.,
Correlation-Guided Attention for Corner Detection Based Visual
Tracking,
CVPR20(6835-6844)
IEEE DOI
2008
Target tracking, Corner detection, Estimation, Correlation,
Feature extraction, Visualization, Training
BibRef
Karthik, S.,
Moudgil, A.,
Gandhi, V.,
Exploring 3 R's of Long-term Tracking:
Re-detection, Recovery and Reliability,
WACV20(1000-1009)
IEEE DOI
2006
Target tracking, Reliability, Visualization, Correlation, Clutter
BibRef
Yan, B.,
Zhao, H.,
Wang, D.,
Lu, H.,
Yang, X.,
'Skimming-Perusal' Tracking: A Framework for Real-Time and Robust
Long-Term Tracking,
ICCV19(2385-2393)
IEEE DOI
2004
Code, Tracking.
WWW Link. object tracking, search problems, robust target verifier,
tracked object, local search, image-wide global search.
BibRef
Wu, H.,
Yang, X.,
Yang, Y.,
Liu, G.,
Flow Guided Short-Term Trackers with Cascade Detection for Long-Term
Tracking,
VisDrone19(170-178)
IEEE DOI
2004
image sequences, object detection, object tracking, flow_MDNet_RPN,
long-term tracking algorithm,
BibRef
Zhang, W.,
Wang, H.,
Huang, Z.,
Li, Y.,
Zhou, J.,
Jiao, L.,
Accuracy and Long-Term Tracking via Overlap Maximization Integrated
with Motion Continuity,
VisDrone19(109-117)
IEEE DOI
2004
feature extraction, image classification, object detection,
object tracking, regression analysis, state estimation,
BibRef
Liu, H.,
Hu, Q.,
Li, B.,
Guo, Y.,
Long-term Object Tracking with Instance Specific Proposals,
ICPR18(1628-1633)
IEEE DOI
1812
Proposals, Target tracking, Adaptation models, Generators,
Error correction, Computational modeling, Robustness
BibRef
Morgacheva, A.I.,
Kulikov, V.A.,
Kosykh, V.P.,
Dynamic Keypoint-based Algorithm of Object Tracking,
PTVSBB17(79-82).
DOI Link
1805
BibRef
Dai, K.,
Wang, Y.,
Yan, X.,
Long-term object tracking based on siamese network,
ICIP17(3640-3644)
IEEE DOI
1803
Benchmark testing, Convolution,
Real-time systems, Robustness, Target tracking,
Visual Tracking
BibRef
Ramakrishnan, S.K.[Santhosh K.],
Ravindran, S.K.[Swarna Kamlam],
Mittal, A.[Anurag],
CoMaL Tracking: Tracking Points at the Object Boundaries,
PETS17(2133-2142)
IEEE DOI
1709
Detectors, Feature extraction, Image edge detection,
Image segmentation, Robustness, Shape
BibRef
Zhang, L.,
Cai, Y.Q.[Yuan-Qiang],
Ullah, Z.,
Luo, T.,
MLPF algorithm for tracking fast moving target against light
interference,
ICPR16(3939-3944)
IEEE DOI
1705
Interference, Mathematical model, Monte Carlo methods,
Probability density function, State estimation, Target, tracking
BibRef
Baumann, F.[Florian],
Dayangac, E.[Enes],
Aulinas, J.[Josep],
Zobel, M.[Matthias],
MedianStruck for long-term tracking applications,
IPTA16(1-6)
IEEE DOI
1703
computer vision
See also Struck: Structured Output Tracking with Kernels.
BibRef
Xu, J.Q.[Jian-Qiang],
Lu, Y.[Yao],
Robust Visual Tracking Based on Multi-channel Compressive Features,
MMMod17(I: 341-352).
Springer DOI
1701
BibRef
de Almeida Maia, H.,
de Oliveira, F.L.M.,
Bernardes Vieira, M.,
Independent selection and validation for tracking-learning-detection,
ICIP16(3469-3473)
IEEE DOI
1610
Color
BibRef
Tan, K.[Kai],
Li, W.H.[Wei-Hai],
A novel moving parameter estimation approach of fast moving targets
based on phase extraction,
ICIP15(2075-2079)
IEEE DOI
1512
Fast moving targets imaging
BibRef
Rampal, K.[Karon],
Sakurai, K.[Kazuyuki],
Imaoka, H.[Hitoshi],
Occlusion handling in feature point tracking using ranked parts based
models,
ICIP15(740-744)
IEEE DOI
1512
Feature Point; Occlusion; Tracking
BibRef
Islam, M.A.,
Rasheduzzaman, M.,
Lutfe Elahi, M.M.,
Poon, B.,
Amin, M.A.,
Yan, H.,
Feature fusion for robust object tracking,
ICWAPR15(138-145)
IEEE DOI
1511
feature extraction
BibRef
Ryt, A.[Artur],
Sobel, D.[Dawid],
Kwiatkowski, J.[Jan],
Domzal, M.[Mariusz],
Jedrasiak, K.[Karol],
Nawrat, A.[Aleksander],
Real-Time Laser Point Tracking,
ICCVG14(542-551).
Springer DOI
1410
BibRef
Jedrasiak, K.[Karol],
Andrzejczak, M.[Mariusz],
Nawrat, A.[Aleksander],
SETh: The Method for Long-Term Object Tracking,
ICCVG14(302-315).
Springer DOI
1410
BibRef
Supancic, III, J.S.[James Steven],
Ramanan, D.[Deva],
Tracking as Online Decision-Making:
Learning a Policy from Streaming Videos with Reinforcement Learning,
ICCV17(322-331)
IEEE DOI
1802
decision making, learning (artificial intelligence),
object tracking, video streaming, Internet videos,
Videos
BibRef
Supancic, III, J.S.[James Steven],
Ramanan, D.[Deva],
Self-Paced Learning for Long-Term Tracking,
CVPR13(2379-2386)
IEEE DOI
1309
learning; object tracking; self paced learning; tracking
BibRef
Stanco, F.[Filippo],
Allegra, D.[Dario],
Milotta, F.L.M.[Filippo Luigi Maria],
Detection and Correction of Mistracking in Digitalized Analog Video,
MM4CH13(218-227).
Springer DOI
1309
BibRef
Hou, J.[Jie],
Mao, Y.B.[Yao-Bin],
Sun, J.S.[Jin-Sheng],
Visual tracking by separability-maximum online boosting,
ICARCV12(1053-1058).
IEEE DOI
1304
BibRef
Shen, D.[Dong],
Wang, Y.Q.[You-Qing],
Iterative learning control for stochastic point-to-point tracking
system,
ICARCV12(480-485).
IEEE DOI
1304
BibRef
Mukherjee, A.[Arpita],
Sengupta, A.[Aparajita],
Mukherjee, D.[Debaprasad],
Filter design for tracking of ballistic target missile using seeker
measurements with time lag,
ICSIPR13(351-355).
IEEE DOI
1304
BibRef
Rubinstein, M.[Michael],
Liu, C.[Ce],
Towards Longer Long-Range Motion Trajectories,
BMVC12(53).
DOI Link
1301
BibRef
Kozera, R.[Ryszard],
Smietanka, M.[Mateusz],
Sharpness in Trajectory Estimation by Piecewise-quadratics(-cubics) and
Cumulative Chords,
ICCVG12(148-155).
Springer DOI
1210
BibRef
Collins, R.T.[Robert T.],
Multitarget data association with higher-order motion models,
CVPR12(1744-1751).
IEEE DOI
1208
for linking into trajectories
BibRef
Kamberov, G.[George],
Kamberova, G.[Gerda],
Burlick, M.[Matt],
Karydas, L.[Lazaros],
Luczynski, B.[Bart],
Collaborative Track Analysis, Data Cleansing, and Labeling,
ISVC11(I: 718-727).
Springer DOI
1109
Noise in track (trajectory) data.
BibRef
Bassiouny, M.[Mahmoud],
El-Saban, M.[Motaz],
Object matching using feature aggregation over a frame sequence,
WACV11(95-102).
IEEE DOI
1101
Match to models (database) over a sequence. Features change over time.
BibRef
Tehrani, M.M.[Mehdi Mazaheri],
Seresht, M.S.[Mohammad Saadat],
Pose estimation of image sequence captured from urban environment,
PCVIA10(B:72).
PDF File.
1009
Feature tracking over long sequence, occlusions.
BibRef
Kloihofer, W.[Werner],
Kampel, M.[Martin],
Interest Point Based Tracking,
ICPR10(3549-3552).
IEEE DOI
1008
BibRef
Jalal, A.S.[Anand Singh],
Tiwary, U.S.[Uma Shanker],
A Robust Object Tracking Method Using Structural Similarity in
Daubechies Complex Wavelet Domain,
PReMI09(315-320).
Springer DOI
0912
Tracking using wavelet features.
BibRef
Roy, S.D.[Sumantra Dutta],
Tran, S.D.[Son Dinh],
Davis, L.S.[Larry Steven],
Vikram, B.S.[B. Sreenivasa],
Multi-resolution Tracking in Space and Time,
ICCVGIP08(352-358).
IEEE DOI
0812
Tracking through scale and orientation changes
BibRef
Srikrishnan, V.[Viswanathan],
Nagaraj, T.[Tadinada],
Chaudhuri, S.[Subhasis],
Fragment Based Tracking for Scale and Orientation Adaptation,
ICCVGIP08(328-335).
IEEE DOI
0812
Tracking through scale and orientation changes
BibRef
Mostafoui, G.,
Achard, C.[Catherine],
Milgram, M.[Maurice],
Real time tracking of multiple persons using elementary tracks,
AVSBS05(129-134).
IEEE DOI
0602
BibRef
Earlier:
Objects Velocity Estimation on Images Sequences by Hough Transform with
Projection (HTP),
ICPR04(III: 83-86).
IEEE DOI
0409
Hough, Motion.
BibRef
Earlier:
Trajectories extraction from image sequences based on kinematic,
CIAP03(436-441).
IEEE DOI
0310
BibRef
Nam, S.[Siwook],
Kim, H.[Hanjoo],
Kim, J.H.[Jai-Hie],
Trajectory Estimation Based on Globally Consistent Homography,
CAIP03(214-221).
Springer DOI
0311
BibRef
Mukunoki, M.[Masayuki],
Yasuda, K.[Kazutaka],
Asada, N.[Naoki],
3D Model Generation from Image Sequences Using Global Geometric
Constraint,
ISVC05(470-477).
Springer DOI
0512
BibRef
Amano, A.[Akira],
Migita, T.[Tsuyoshi],
Asada, N.[Naoki],
Stable Recovery of Shape and Motion from Partially Tracked Feature
Points with Fast Nonlinear Optimization,
VI02(244).
PDF File.
0208
BibRef
Mery, D.[Domingo],
Ochoa, F.[Felipe],
Vidal, R.[René],
Tracking of Points in a Calibrated and Noisy Image Sequence,
ICIAR04(I: 647-654).
Springer DOI
0409
BibRef
Zhong, D.,
Chang, S.F.,
Long-term Moving Object Segmentation and Tracking Using Spatio-temporal
Consistency,
ICIP01(II: 57-60).
IEEE DOI
0108
BibRef
Gibson, D.P.[David P.],
Campbell, N.W.[Neill W.],
Dalton, C.J.[Colin J.],
Thomas, B.T.[Barry T.],
Extraction of Motion Data from Image Sequences to Assist Animators,
BMVC00(xx-yy).
PDF File.
0009
BibRef
And:
Visual Extraction of Motion-based Information from Image Sequences,
ICPR00(Vol III: 881-884).
IEEE DOI
0009
BibRef
Shum, H.Y.[Heung-Yeung],
Ke, Q.F.[Qi-Fa],
Zhang, Z.Y.[Zheng-You],
Efficient Bundle Adjustment with Virtual Key Frames:
A Hierarchical Approach to Multi-frame Structure from Motion,
CVPR99(II: 538-543).
IEEE DOI
BibRef
9900
Matei, B.[Bogdan],
Meer, P.[Peter],
Optimal Rigid Motion Estimation and Performance Evaluation with
Bootstrap,
CVPR99(I: 339-345).
IEEE DOI
Award, CVPR, Student.
BibRef
9900
Matei, B.[Bogdan],
Meer, P.[Peter],
Tyler, D.H.[David H.],
Performance Assessment by Resampling: Rigid Motion Estimators,
EEMTV98(xx)
BibRef
9800
Carceroni, R.L.[Rodrigo L.],
Kumar, A.[Ankita],
Daniilidis, K.[Kostas],
Structure from Motion with Known Camera Positions,
CVPR06(I: 477-484).
IEEE DOI
0606
BibRef
Carceroni, R.L.[Rodrigo L.],
Kutulakos, K.N.[Kiriakos N.],
Multi-View 3D Shape and Motion Recovery on the Spatio-Temporal Curve
Manifold,
ICCV99(520-527).
IEEE DOI
BibRef
9900
Carceroni, R.L.[Rodrigo L.],
Kutulakos, K.N.[Kiriakos N.],
Toward Recovering Shape and Motion of 3D Curves from Multi-View Image
Sequences,
CVPR99(I: 192-197).
IEEE DOI
BibRef
9900
And:
Shape and Motion of 3-D Curves from Multi-View Image Scenes,
DARPA98(171-176).
BibRef
Rehrmann, V.,
Object-oriented motion estimation in color image sequences,
ECCV98(I: 704).
Springer DOI
BibRef
9800
Oakley, J.P.,
Powell, W.A.,
A Statistical Model for the Realiability of Motion Tracking
Using Mean Normalised Correlation,
PERF96(XX-YY).
HTML Version.
BibRef
9600
Ravela, S.,
Draper, B.A.,
Lim, J., and
Weiss, R.,
Tracking Object Motion Across Aspect Changes for Augmented Reality,
ARPA96(1345-1352).
PS File.
BibRef
9600
Earlier:
Adaptive Tracking and Model Registration Across Distinct Aspects,
IROS95(xx).
BibRef
And:
COINSTR 95-21, March 1995.
HTML Version.
BibRef
Thonnessen, U.,
Ernst, D.,
Gross, H.,
Development of a Segment-Based Description of Events in
Image Sequences,
ICPR92(I:383-386).
IEEE DOI
BibRef
9200
Jacobs, D.W.,
Chennubhotla, C.,
Finding Structurally Consistent Motion Correspondences,
ICPR94(A:650-653).
IEEE DOI
BibRef
9400
Benois-Pineau, J.,
Wu, L.,
Delanges, P.,
Barba, D.,
Motion and Structure Based Image Segmentation for Object-Oriented
Time-Varying Sequences Coding,
ICPR94(A:733-735).
IEEE DOI
BibRef
9400
Silven, O.,
Repo, T.,
Experiments with monocular visual tracking and environment modeling,
ICCV93(84-92).
IEEE DOI
0403
BibRef
Kim, Y.C., and
Price, K.E.,
A Feature-Based Monocular Motion Analysis System
Guided by Feedback Information,
CVPR93(744-745).
IEEE DOI
BibRef
9300
USC Computer Vision
BibRef
And:
DARPA93(611-620).
BibRef
Earlier:
Refinement of Noisy Correspondence Using Feedback from 3-D Motion,
CVPR92(836-838).
IEEE DOI
BibRef
And:
DARPA92(479-486).
Use the motion estimate to determine the best matches for future
frames and generate more complete 3-D structures.
BibRef
Price, K.E., and
Pavlin, I.,
Integration Effort in Knowledge-Based Vision Techniques for the
Autonomous Land Vehicle Program,
DARPA88(417-422).
BibRef
8800
USC Computer VisionResults of building a complete motion analysis
system. Segmentation, matching and motion estimation.
BibRef
Kabuka, M.[Mansur], and
McVey, E.S.[Eugene S.],
Image Processing for Position Detection,
Draft1988.
(UMiami and UVA)
Extract the projection of the image and use the two 1-D functions
to track an object.
BibRef
8800
Narathong, C.,
Inigo, R.M.,
McVey, E.S.,
Motion-vision architectures,
CVPR88(411-416).
IEEE DOI
0403
BibRef
Inigo, R.M.,
Narathong, C.,
Doner, J.F., and
McVey, E.S.,
A Fast Algorithm for Motion Prediction,
Draft1988.
This seems to be a single scan line version of the projection paper above.
BibRef
8800
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Region, Object, Target Tracking .