Hermary Opto Electronics,
1990
WWW Link.
Vendor, Inspection. Industrial inspection systems for sawmills.
LMI Technologies,
1976
WWW Link.
Vendor, Inspection. Industrial inspection systems for sawmills.
DynaVision.
Wood image database,
2000.
WWW Link.
WWW Link. For information also see:
HTML Version.
Dataset, Lumber.
Sobey, P.J.,
Semple, E.C.,
Detection and sizing visual features in wood using tonal measures and a
classification algorithm,
PR(22), No. 4, 1989, pp. 367-380.
Elsevier DOI
0309
BibRef
Bhandarkar, S.M.[Suchendra M.],
Faust, T.D.[Timothy D.],
Tang, M.J.[Meng-Jin],
CATALOG: a system for detection and rendering of internal log defects
using computer tomography,
MVA(11), No. 4, 1999, pp. 171-190.
Springer DOI
0001
BibRef
Bhandarkar, S.M.,
Faust, T.D.,
Tang, M.,
A Computer Vision System for Lumber Production Planning,
WACV98(134-139).
IEEE DOI
9809
BibRef
Bhandarkar, S.M.,
Faust, T.D., and
Tang, M.,
A System for Detection of Internal Log Defects by Computer Analysis of
Axial CT Images,
WACV96(258-263).
IEEE DOI
9609
BibRef
Zhu, D.P.,
Conners, R.W.,
Schmoldt, D.L.,
Araman, P.A.,
A Prototype Vision System for Analyzing CT Imagery of Hardwood Logs,
SMC-B(26), No. 4, August 1996, pp. 522-532.
IEEE Top Reference.
9608
BibRef
Conners, R.W.,
Kline, D.E.,
Araman, P.A.,
Drayer, T.H.,
Machine Vision Technology for the Forest Products Industry,
Computer(30), No. 7, July 1997, pp. 43-48.
9708
BibRef
Lu, Q.,
Conners, R.W.,
Kline, D.E., and
Araman, P.A.,
A Real-Time Algorithm for Color Sorting Edge-Glued Panel Parts,
ICIP97(I: 822-825).
IEEE DOI
BibRef
9700
Lee, S.C.,
Qian, G.S., and
Hay, D.A.,
Determining a Maximum Value Yield of a Log Using an Optical Log Scanner,
CVPR91(747-748).
IEEE DOI
Application, Lumber Mill.
BibRef
9100
Funt, B.V.[Brian V.], and
Bryant, E.C.[Edwin C.],
A Computer Vision System That Analyses CT-Scans of Sawlogs,
CVPR85(175-177). (Simon Fraser Univ.)
Application, Lumber Mill. Interesting application of basic techniques. Impractical because of
the need for ct data.
BibRef
8500
Conners, R.W.,
McMillin, C.W.,
Lin, K., and
Vasquez-Espinosa, R.E.,
Identifying and Location Surface Defects in Wood:
Part of an Automated Lumber Processing System,
PAMI(5), No. 6, November 1983, pp. 573-583.
A related paper with some author overlap is in:
BibRef
8311
ICPR90(I: 726-728).
IEEE DOI
Application, Lumber Mill. Simple scanner, find defects and control a laser cutter. Much
of the savings was in the laser cutting process.
BibRef
Kim, C.W.,
Koivo, A.J.,
Hierarchical Classification of Surface-Defects on Dusty Wood Boards,
PRL(15), No. 7, July 1994, pp. 713-721.
BibRef
9407
Earlier:
ICPR90(I: 775-779).
IEEE DOI
9006
BibRef
Bhandarkar, S.M.[Suchendra M.],
Faust, T.D.[Timothy D.],
Tang, M.J.[Meng-Jin],
Design and prototype development of a computer vision-based lumber
production planning system,
IVC(20), No. 3, March 2002, pp. 167-189.
Elsevier DOI
0202
BibRef
Bennett, R.W.[Ralph W.],
Mayer, R.W.[Robert W.],
Qualls, H.F.[Harold F.],
Bellenot, S.F.[Steven F.],
Infeed log scanning for lumber optimization,
US_Patent6,463,402, Oct 8, 2002
WWW Link.
BibRef
0210
Silvén, O.[Olli],
Niskanen, M.[Matti],
Kauppinen, H.[Hannu],
Wood inspection with non-supervised clustering,
MVA(13), No. 5-6, 2003, pp. 275-285.
WWW Link.
0304
BibRef
Earlier: A2, A1, A3:
Color and Texture Based Wood Inspection with Non-supervised Clustering,
SCIA01(O-Tu3B).
0206
BibRef
Kauppinen, H.,
A Two Stage Defect Recognition Method for Parquet Slab Grading,
ICPR00(Vol IV: 803-806).
IEEE DOI
0009
BibRef
Kauppinen, H.,
Silven, O.,
The Effect of Illumination Variations on Color-Based
Wood Defect Classification,
ICPR96(III: 828-832).
IEEE DOI
9608
(Univ. of Oulu, SF)
BibRef
Bhandarkar, S.M.[Suchendra M.],
Luo, X.Z.[Xing-Zhi],
Daniels, R.[Richard],
Tollner, E.W.[E. William],
Detection of cracks in computer tomography images of logs,
PRL(26), No. 14, 15 October 2005, pp. 2282-2294.
Elsevier DOI
0510
BibRef
Patricio, M.A.,
Maravall, D.,
A novel generalization of the gray-scale histogram and its application
to the automated visual measurement and inspection of wooden Pallets,
IVC(25), No. 6, 1 June 2007, pp. 805-816.
Elsevier DOI
0704
Generalized gray-level histogram; Automatic visual inspection;
Image segmentation; Defect detection; Texture recognition; Wood inspection
BibRef
Mcgunnigle, G.,
Estimating fibre orientation in spruce using lighting direction,
IET-CV(3), No. 3, September 2009, pp. 143-158.
DOI Link
0909
BibRef
Piuri, V.,
Scotti, F.,
Design of an Automatic Wood Types Classification System by Using
Fluorescence Spectra,
SMC-C(40), No. 3, May 2010, pp. 358-366.
IEEE DOI
1003
BibRef
Piuri, V.,
Scotti, F.,
Roveri, M.,
Visual Inspection of Particle Boards for Quality Assessment,
ICIP05(III: 521-524).
IEEE DOI
0512
BibRef
Yusof, R.[Rubiyah],
Khalid, M.[Marzuki],
Khairuddin, A.S.M.[Anis Salwa Mohd],
Fuzzy logic-based pre-classifier for tropical wood species recognition
system,
MVA(24), No. 8, November 2013, pp. 1589-1604.
Springer DOI
1310
BibRef
Yusof, R.,
Rosli, N.R.,
Khalid, M.,
Tropical Wood Species Recognition Based on Gabor Filter,
CISP09(1-5).
IEEE DOI
0910
BibRef
Krähenbühl, A.[Adrien],
Kerautret, B.[Bertrand],
Debled-Rennesson, I.[Isabelle],
Mothe, F.[Frédéric],
Longuetaud, F.[Fleur],
Knot segmentation in 3D CT images of wet wood,
PR(47), No. 12, 2014, pp. 3852-3869.
Elsevier DOI
1410
Segmentation
BibRef
Krähenbühl, A.[Adrien],
Kerautret, B.[Bertrand],
Feschet, F.[Fabien],
Knot Detection from Accumulation Map by Polar Scan,
IWCIA15(352-362).
Springer DOI
1601
BibRef
Othmani, A.A.[Alice Ahlem],
Jiang, C.[Cansen],
Lomenie, N.[Nicolas],
Favreau, J.M.[Jean-Marie],
Piboule, A.[Alexandre],
Voon, L.F.C.L.Y.[Lew Fock Chong Lew Yan],
A novel Computer-Aided Tree Species Identification method based on
Burst Wind Segmentation of 3D bark textures,
MVA(27), No. 5, July 2016, pp. 751-766.
Springer DOI
1608
BibRef
Othmani, A.A.[Alice Ahlem],
Piboule, A.[Alexandre],
Dalmau, O.[Oscar],
Lomenie, N.[Nicolas],
Mokrani, S.[Said],
Voon, L.F.C.L.Y.[Lew Fock Chong Lew Yan],
Tree Species Classification Based on 3D Bark Texture Analysis,
PSIVT13(279-289).
Springer DOI
1412
BibRef
Schraml, R.[Rudolf],
Hofbauer, H.[Heinz],
Petutschnigg, A.[Alexander],
Uhl, A.[Andreas],
On rotational pre-alignment for tree log identification using methods
inspired by fingerprint and iris recognition,
MVA(27), No. 8, November 2016, pp. 1289-1298.
Springer DOI
1612
BibRef
Heppelmann, J.B.[Joachim B.],
Labelle, E.R.[Eric R.],
Seifert, T.[Thomas],
Seifert, S.[Stefan],
Wittkopf, S.[Stefan],
Development and Validation of a Photo-Based Measurement System to
Calculate the Debarking Percentages of Processed Logs,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Yu, Y.[Ying],
Zeng, W.H.[Wei-Hang],
Liu, W.[Wen],
Zhang, H.[He],
Wang, X.H.[Xiao-Hong],
Crack Propagation and Fracture Process Zone (FPZ) of Wood in the
Longitudinal Direction Determined Using Digital Image Correlation
(DIC) Technique,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Reme, V.[Václav],
Haindl, M.[Michal],
Bark recognition using novel rotationally invariant multispectral
textural features,
PRL(125), 2019, pp. 612-617.
Elsevier DOI
1909
Bark recognition, Tree taxonomy clasification, Spiral Markov random field model
BibRef
Delconte, F.[Florian],
Ngo, P.[Phuc],
Kerautret, B.[Bertrand],
Debled-Rennesson, I.[Isabelle],
Nguyen, V.T.[Van-Tho],
Constant, T.[Thiery],
CNN-based Method for Segmenting Tree Bark Surface Singularites,
IPOL(12), 2022, pp. 1-26.
DOI Link
2201
WWW Link.
Code, Tree Bark.
BibRef
Nguyen, V.T.[Van-Tho],
Kerautret, B.,
Debled-Rennesson, I.,
Colin, F.,
Piboule, A.,
Constant, T.,
Segmentation of defects on log surface from terrestrial lidar data,
ICPR16(3168-3173)
IEEE DOI
1705
Image segmentation, Rough surfaces, Shape, Surface roughness,
Surface treatment, Vegetation
BibRef
Delconte, F.[Florian],
Ngo, P.[Phuc],
Debled-Rennesson, I.[Isabelle],
Kerautret, B.[Bertrand],
Nguyen, V.T.[Van-Tho],
Constant, T.[Thiery],
Tree Defect Segmentation using Geometric Features and CNN,
Reproducible Research on PR(RRPR), 2021.
Springer DOI
BibRef
2100
Nguyen, V.T.[Van-Tho],
Constant, T.[Thiery],
Kerautret, B.[Bertrand],
Debled-Rennesson, I.[Isabelle],
Colin, F.,
A machine-learning approach for classifying defects on
tree trunks using terrestrial LiDAR,
Comp and Elec in Ag(171), 2020, p. 105332.
Elsevier DOI
BibRef
2000
Dalponte, M.[Michele],
Kallio, A.J.I.[Alvar J. I.],
Řrka, H.O.[Hans Ole],
Nćsset, E.[Erik],
Gobakken, T.[Terje],
Wood Decay Detection in Norway Spruce Forests Based on Airborne
Hyperspectral and ALS Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Decelle, R.[Rémi],
Ngo, P.[Phuc],
Debled-Rennesson, I.[Isabelle],
Mothe, F.[Frédéric],
Longuetaud, F.[Fleur],
Ant Colony Optimization for Estimating Pith Position on Images of
Tree Log Ends,
IPOL(12), 2022, pp. 558-581.
DOI Link
2212
BibRef
Zhang, L.[Li],
Huang, W.[Wei],
Wang, J.Q.[Jia-Qi],
Counting of Pine Wood Nematode Based on VDNet Convolutional Neural
Network,
ICRVC22(164-168)
IEEE DOI
2301
Image resolution, Convolution, Biological system modeling,
Vegetation, Forestry, Mean square error methods, density map
BibRef
Batrakhanov, D.[Daniel],
Zolotarev, F.[Fedor],
Eerola, T.[Tuomas],
Lensu, L.[Lasse],
Kälviäinen, H.[Heikki],
Virtual sawing using generative adversarial networks,
IVCNZ21(1-6)
IEEE DOI
2201
Industries, Surface reconstruction, Image segmentation, Protocols,
Pipelines, Training data, Sawing, convolutional neural networks,
virtual sawing
BibRef
Pan, S.[Shenyi],
Fan, S.[Shuxian],
Wong, S.W.K.[Samuel W.K.],
Zidek, J.V.[James V.],
Rhodin, H.[Helge],
Ellipse Detection and Localization with Applications to Knots in Sawn
Lumber Images,
WACV21(3891-3900)
IEEE DOI
2106
Location awareness, Adaptation models, Visualization, Shape,
Atmospheric modeling, Object detection, Detectors
BibRef
Boscaini, D.[Davide],
Poiesi, F.[Fabio],
Messelodi, S.[Stefano],
Younes, A.[Ayman],
Grande, D.A.[Donato A.],
Localisation of Defects in Volumetric Computed Tomography Scans of
Valuable Wood Logs,
IML20(692-704).
Springer DOI
2103
BibRef
Liu, Y.,
Hou, M.,
Li, A.,
Dong, Y.,
Xie, L.,
Ji, Y.,
Automatic Detection of Timber-cracks In Wooden Architectural Heritage
Using Yolov3 Algorithm,
ISPRS20(B2:1471-1476).
DOI Link
2012
BibRef
Robert, M.,
Dallaire, P.,
Gigučre, P.,
Tree bark re-identification using a deep-learning feature descriptor,
CRV20(25-32)
IEEE DOI
2006
Deep Learning, Local feature descriptor,
Tree Bark, Instance retrieval, Metric learning
BibRef
Guarnera, F.,
Allegra, D.,
Giudice, O.,
Stanco, F.,
Battiato, S.,
A New Study On Wood Fibers Textures: Documents Authentication Through
LBP Fingerprint,
ICIP19(4594-4598)
IEEE DOI
1910
Paper fingerprint, Retrieval, Secure document.
BibRef
Martins, A.L.R.[Aurora L. R.],
Marcal, A.R.S.[André R. S.],
Pissarra, J.[José],
Modified DBSCAN Algorithm for Microscopic Image Analysis of Wood,
IbPRIA19(I:257-269).
Springer DOI
1910
BibRef
Zolotarev, F.[Fedor],
Eerola, T.[Tuomas],
Lensu, L.[Lasse],
Kälviäinen, H.[Heikki],
Haario, H.[Heikki],
Heikkinen, J.[Jere],
Kauppi, T.[Tomi],
Timber Tracing with Multimodal Encoder-Decoder Networks,
CAIP19(II:342-353).
Springer DOI
1909
BibRef
Shustrov, D.[Dmitrii],
Eerola, T.[Tuomas],
Lensu, L.[Lasse],
Kälviäinen, H.[Heikki],
Haario, H.[Heikki],
Fine-Grained Wood Species Identification Using Convolutional Neural
Networks,
SCIA19(67-77).
Springer DOI
1906
BibRef
Rudakov, N.[Nikolay],
Eerola, T.[Tuomas],
Lensu, L.[Lasse],
Kälviäinen, H.[Heikki],
Haario, H.[Heikki],
Detection of Mechanical Damages in Sawn Timber Using Convolutional
Neural Networks,
GCPR18(115-126).
Springer DOI
1905
BibRef
Reme, V.[Václav],
Haindl, M.[Michal],
Rotationally Invariant Bark Recognition,
SSSPR18(22-31).
Springer DOI
1810
BibRef
Boudra, S.[Safia],
Yahiaoui, I.[Itheri],
Behloul, A.[Ali],
Plant identification from bark: A texture description based on
Statistical Macro Binary Pattern,
ICPR18(1530-1535)
IEEE DOI
1812
BibRef
Earlier:
Statistical Radial Binary Patterns (SRBP) for Bark Texture
Identification,
ACIVS17(101-113).
Springer DOI
1712
Encoding, Prototypes, Quantization (signal), Histograms,
Image coding, Feature extraction, Image recognition
BibRef
Wang, H.F.[Hai-Feng],
Zhang, K.[Kun],
Li, Z.[Zhuang],
Characteristic extraction, classification and identification
algorithm based on two kinds of eaglewood micrographs,
ICIVC17(272-276)
IEEE DOI
1708
Active contours, Character recognition, Data mining,
Feature extraction, Image segmentation, Mathematical model, Shape,
characteristic extraction, classification, eaglewood micrograph, segmentation
BibRef
Antikainen, J.,
Wood cellular structure evaluation using image analysis methods,
MVA17(534-537)
DOI Link
1708
Filtering, Image analysis, Image edge detection, Manuals, Microscopy, Transforms
BibRef
Kruglov, A.V.,
The Algorithm of the Roundwood Volume Measurement via Photogrammetry,
DICTA16(1-5)
IEEE DOI
1701
Algorithm design and analysis
BibRef
Wu, T.C.A.[Tsung Chi-Ang],
A Study of 3D Digital Simulation Analysis of Fire Charring Degree of
Wood Construction of Chinese Traditional Architecture,
EuroMed16(I: 209-216).
Springer DOI
1611
BibRef
Schraml, R.[Rudolf],
Petutschnigg, A.[Alexander],
Uhl, A.[Andreas],
Validation and reliability of the discriminative power of geometric
wood log end features,
ICIP15(3665-3669)
IEEE DOI
1512
Biometric Log Traceability
BibRef
Schraml, R.[Rudolf],
Hofbauer, H.[Heinz],
Petutschnigg, A.[Alexander],
Uhl, A.[Andreas],
Tree Log Identification Based on Digital Cross-Section Images of Log
Ends Using Fingerprint and Iris Recognition Methods,
CAIP15(I:752-765).
Springer DOI
1511
BibRef
Hansson, M.[Mattias],
Enescu, A.[Alexandru],
Brandt, S.S.[Sami S.],
Knot detection in X-ray images of wood planks using dictionary
learning,
MVA15(497-500)
IEEE DOI
1507
Accuracy
BibRef
Hittawe, M.M.[Mohamad Mazen],
Muddamsetty, S.M.[Satya M.],
Sidibe, D.[Desire],
Meriaudeau, F.[Fabrice],
Multiple features extraction for timber defects detection and
classification using SVM,
ICIP15(427-431)
IEEE DOI
1512
BibRef
Earlier: A1, A3, A4, only:
Bag of words representation and SVM classifier for timber knots
detection on color images,
MVA15(287-290)
IEEE DOI
1507
Bag-of-words; Feature extraction; SVM; Wood defects.
Color
BibRef
Herbon, C.[Christopher],
Tonnies, K.D.[Klaus-Dietz],
Otte, B.[Benjamin],
Stock, B.[Bernd],
Mobile 3D wood pile surveying,
MVA15(422-425)
IEEE DOI
1507
Benchmark testing
BibRef
Norlander, R.[Rickard],
Grahn, J.[Josef],
Maki, A.[Atsuto],
Wooden Knot Detection Using ConvNet Transfer Learning,
SCIA15(263-274).
Springer DOI
1506
BibRef
Galsgaard, B.[Bo],
Lundtoft, D.H.[Dennis H.],
Nikolov, I.[Ivan],
Nasrollahi, K.[Kamal],
Moeslund, T.B.[Thomas B.],
Circular Hough Transform and Local Circularity Measure for Weight
Estimation of a Graph-Cut Based Wood Stack Measurement,
WACV15(686-693)
IEEE DOI
1503
Companies
BibRef
Schraml, R.[Rudolf],
Charwat-Pessler, J.[Johann],
Uhl, A.[Andreas],
Temporal and longitudinal variances in wood log cross-section image
analysis,
ICIP14(5706-5710)
IEEE DOI
1502
Biomedical imaging
BibRef
Herbon, C.[Christopher],
Otte, B.[Benjamin],
Tönnies, K.[Klaus],
Stock, B.[Bernd],
Detection of Clustered Objects in Sparse Point Clouds Through 2D
Classification and Quadric Filtering,
GCPR14(535-546).
Springer DOI
1411
BibRef
Herbon, C.[Christopher],
Tönnies, K.[Klaus],
Stock, B.[Bernd],
Detection and Segmentation of Clustered Objects by Using Iterative
Classification, Segmentation, and Gaussian Mixture Models and
Application to Wood Log Detection,
GCPR14(354-364).
Springer DOI
1411
BibRef
Knyaz, V.A.,
Maksimov, A.A.,
Photogrammetric Technique for Timber Stack Volume Contol,
PCV14(157-162).
DOI Link
1404
BibRef
Sulc, M.,
Matas, J.G.,
Kernel-mapped histograms of multi-scale LBPs for tree bark
recognition,
IVCNZ13(82-87)
IEEE DOI
1412
feature extraction
BibRef
Brunel, G.[Guilhem],
Borianne, P.[Philippe],
Subsol, G.[Gérard],
Jaeger, M.[Marc],
Simple-Graphs Fusion in Image Mosaic: Application to Automated Cell
Files Identification in Wood Slices,
SCIA13(34-43).
Springer DOI
1311
BibRef
Krähenbühl, A.,
Kerautret, B.,
Debled-Rennesson, I.,
Knot Segmentation in Noisy 3D Images of Wood,
DGCI13(383-394).
Springer DOI
1304
BibRef
Gutzeit, E.[Enrico],
Voskamp, J.[Jörg],
Automatic Segmentation of Wood Logs by Combining Detection and
Segmentation,
ISVC12(I: 252-261).
Springer DOI
1209
BibRef
Krähenbühl, A.[Adrien],
Roussel, J.R.[Jean-Romain],
Kerautret, B.[Bertrand],
Debled-Rennesson, I.[Isabelle],
Mothe, F.[Frédéric],
Longuetaud, F.[Fleur],
Robust Knot Segmentation by Knot Pith Tracking in 3D Tangential Images,
ICCVG16(581-593).
Springer DOI
1611
BibRef
Earlier: A1, A3, A4, A6, A5, Only:
Knot Detection in X-Ray CT Images of Wood,
ISVC12(II: 209-218).
Springer DOI
1209
BibRef
Borianne, P.,
Pernaudat, R.,
Subsol, G.,
Automated delineation of tree-rings in X-Ray Computed Tomography images
of wood,
ICIP11(437-440).
IEEE DOI
1201
BibRef
Ali, I.[Imtiaz],
Tougne, L.[Laure],
Unsupervised Video Analysis for Counting of Wood in River during Floods,
ISVC09(II: 578-587).
Springer DOI
0911
BibRef
Wu, H.J.[Hai-Jun],
Qi, D.W.[Da-Wei],
Jin, X.J.[Xue-Jing],
Liu, F.X.[Fu-Xiang],
A Method for Nondestructive Testing of Blockboard Based on
Morphological Double-Gradient Algorithm,
CISP09(1-4).
IEEE DOI
0910
BibRef
Yu, H.P.[Hai-Peng],
Cao, J.[Jun],
Liu, Y.X.[Yi-Xing],
Luo, W.[Wei],
Non-Equal Spacing Division of HSV Components for Wood Image Retrieval,
CISP09(1-3).
IEEE DOI
0910
BibRef
Mu, H.B.[Hong-Bo],
Qi, D.W.[Da-Wei],
Pattern Recognition of Wood Defects Types Based on Hu Invariant Moments,
CISP09(1-5).
IEEE DOI
0910
BibRef
Norell, K.[Kristin],
An Automatic Method for Counting Annual Rings in Noisy Sawmill Images,
CIAP09(307-316).
Springer DOI
0909
BibRef
Wernersson, E.L.G.[Erik L.G.],
Brun, A.[Anders],
Hendriks, C.L.L.[Cris L. Luengo],
Segmentation of Wood Fibres in 3D CT Images Using Graph Cuts,
CIAP09(92-102).
Springer DOI
0909
BibRef
Selig, B.[Bettina],
Hendriks, C.L.L.[Cris L. Luengo],
Bardage, S.[Stig],
Borgefors, G.[Gunilla],
Segmentation of Highly Lignified Zones in Wood Fiber Cross-Sections,
SCIA09(369-378).
Springer DOI
0906
BibRef
Paniagua, B.[Beatriz],
Green, P.[Patrick],
Chantler, M.[Mike],
Vega-Rodríguez, M.A.[Miguel A.],
Gómez-Pulido, J.A.[Juan A.],
Sánchez-Pérez, J.M.[Juan M.],
Perceptually Relevant Pattern Recognition Applied to Cork Quality
Detection,
ICIAR09(927-936).
Springer DOI
0907
BibRef
Paniagua, B.[Beatriz],
Vega-Rodríguez, M.A.[Miguel A.],
Chantler, M.[Mike],
Gómez-Pulido, J.A.[Juan A.],
Sánchez-Pérez, J.M.[Juan M.],
3D Textural Mapping and Soft-Computing Applied to Cork Quality
Inspection,
ISVC08(I: 743-752).
Springer DOI
0812
BibRef
Cerda, M.[Mauricio],
Hitschfeld-Kahler, N.[Nancy],
Mery, D.[Domingo],
Robust Tree-Ring Detection,
PSIVT07(575-585).
Springer DOI
0712
BibRef
López, M.[Marcos],
Matías, J.M.[José M.],
Vilán, J.A.[José A.],
Taboada, J.[Javier],
Functional Pattern Recognition of 3D Laser Scanned Images of Wood-Pulp
Chips,
IbPRIA07(I: 298-305).
Springer DOI
0706
BibRef
Dahl, A.B.[Anders Bjorholm],
Aanaes, H.[Henrik],
Effective image database search via dimensionality reduction,
InterNet08(1-6).
IEEE DOI
0806
BibRef
Padfield, D.,
Brooksby, G.,
Kaucic, R.,
Automatic Deformation Detection for Visual Post Inspection,
WACV07(57-57).
IEEE DOI
0702
BibRef
Thomas, L.,
Mili, L.,
Shaffer, C.A.,
Thomas, E.,
Defect detection on hardwood logs using high resolution three
dimensional laser scan data,
ICIP04(I: 243-246).
IEEE DOI
0505
BibRef
Flood, K.[Katarina],
Danielsson, P.E.[Per-Erik],
Seger, M.M.[Maria Magnusson],
On 3D Scanning, Reconstruction, Enhancement, and Segmentation of Logs,
SCIA03(733-740).
Springer DOI
0310
BibRef
Andreu, J.P.[Jean-Philippe],
Rinnhofer, A.[Alfred],
Modeling Knot Geometry in Norway Spruce from Industrial CT Images,
SCIA03(786-791).
Springer DOI
0310
BibRef
Andreu, J.P.,
Rinnhofer, A.,
Enhancement of annual rings on industrial CT images of logs,
ICPR02(III: 261-264).
IEEE DOI
0211
BibRef
Laitinen, J.,
A Method for Determination of Bark on Wood Chips,
SCIA99(Industrial Applications).
BibRef
9900
Alapuranen, P.,
Westman, T.,
Automatic Visual Inspection of Wood Surfaces,
ICPR92(I:371-374).
IEEE DOI
BibRef
9200
Rinnhofer, A.[Alfred], and
Deutschl, E.[Edwin],
An X-Ray Real Time System for Timber Automatic Grading,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Tsui, K.K.,
Using geometric processing in the visualization of ring features in
tomographic images of wood,
ICIP96(III: 547-550).
IEEE DOI
9610
BibRef
Abbott, A.L., and
Zhao, Y.,
Adaptive Quantization of Color Space for Recognition of
Finished Wooden Components,
WACV96(252-257).
IEEE DOI
9609
BibRef
Abbott, A.L.,
Yuan, B.[Bin],
Automatic classification of wooden cabinet doors,
WACV94(18-25).
IEEE Abstract.
0403
BibRef
Astrand, E.,
Astrom, A.,
A single chip multi-function sensor system for wood inspection,
ICPR94(C:300-304).
IEEE DOI
9410
BibRef
Silven, O.,
Kauppinen, H.,
Color vision based methodology for grading lumber,
ICPR94(A:787-790).
IEEE DOI
9410
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Defect Detection, Crack Detection .