10.11.6 Holographic Displays, Holograms, Three Dimensional Visualization

Chapter Contents (Back)
Display, Hologram. Visualization. 3-D Displays. Holograms.
See also Optical Interferometry, Moire Patterns.

Mishina, T., Okano, F., Yuyama, I.,
Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,
AppOpt(38), 1999, pp. 3703-3713
DOI Link
See also Study on Scanning Methods for a Field-Sequential Stereoscopic Display, A. BibRef 9900

Dovgard, R.,
Holographic Image Representation with Reduced Aliasing and Noise Effects,
IP(13), No. 7, July 2004, pp. 867-872.
IEEE DOI 0406
BibRef

Slinger, C., Cameron, C., Stanley, M.,
Computer-Generated Holography as a Generic Display Technology,
Computer(38), No. 8, August 2005, pp. 46-53.
IEEE DOI 0508
BibRef

Onural, L.[Levent], Ozaktas, H.M.[Haldun M.],
Signal processing issues in diffraction and holographic 3DTV,
SP:IC(22), No. 2, February 2007, pp. 169-177.
Elsevier DOI 0704
Diffraction; Holography; 3DTV; Sampling; Fractional Fourier transform BibRef

Onural, L.[Levent],
Signal Processing and 3DTV,
SPMag(27), No. 5, 2010, pp. 144-142.
IEEE DOI 1003
In the Spotlight article. Olympics broadcasts. BibRef

Onural, L.[Levent], Sikora, J.,
Introduction to the Special Section on 3DTV,
CirSysVideo(17), No. 11, November 2007, pp. 1566-1567.
IEEE DOI 0709
BibRef

Onural, L., Gotchev, A., Ozaktas, H.M., Stoykova, E.,
A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television,
CirSysVideo(17), No. 11, November 2007, pp. 1631-1646.
IEEE DOI 0709
BibRef

Onural, L., Yaras, F., Kang, H.,
Digital Holographic Three-Dimensional Video Displays,
PIEEE(99), No. 4, April 2011, pp. 576-589.
IEEE DOI 1103
BibRef

Seo, Y.H.[Young-Ho], Choi, H.J.[Hyun-Jun], Kim, D.W.[Dong-Wook],
3D scanning-based compression technique for digital hologram video,
SP:IC(22), No. 2, February 2007, pp. 144-156.
Elsevier DOI 0704
Digital hologram; Coding; Fringe patter; H.264; DCT BibRef

Frauel, Y., Naughton, T.J., Matoba, O., Tajahuerce, E., Javidi, B.,
Three-Dimensional Imaging and Processing Using Computational Holographic Imaging,
PIEEE(94), No. 3, March 2006, pp. 636-653.
IEEE DOI 0603
BibRef

Darakis, E., Soraghan, J.J.,
Use of Fresnelets for Phase-Shifting Digital Hologram Compression,
IP(15), No. 12, December 2006, pp. 3804-3811.
IEEE DOI 0611
BibRef

Nomura, T., Javidi, B., Murata, S., Nitanai, E., Numata, T.,
Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,
OptLett(32), No. 5, 2007, pp. 481-483.
DOI Link 1009
BibRef

Maycock, J.[Jonathan], Hennelly, B.M.[Bryan M.], McDonald, J.B.[John B.], Frauel, Y.[Yann], Castro, A.[Albertina], Javidi, B.[Bahram], Naughton, T.J.[Thomas J.],
Reduction of speckle in digital holography by discrete Fourier filtering,
JOSA-A(24), No. 6, June 2007, pp. 1617-1622.
WWW Link. 0801
BibRef
Earlier:
Speckle reduction using the discrete Fourier filtering technique,
IMVIP07(201-201).
IEEE DOI 0709
BibRef

Moon, I., Javidi, B.,
3-D Visualization and Identification of Biological Microorganisms Using Partially Temporal Incoherent Light In-Line Computational Holographic Imaging,
MedImg(27), No. 12, December 2008, pp. 1782-1790.
IEEE DOI 0812
BibRef

Tsiranidou, E.[Elsa], Bernikola, E.[Eirini], Tornari, V.[Vivi], Fankhauser, T.[Thomas], Läuchli, M.[Matthias], Palmbach, C.[Cornelius], Bäschlin, N.[Nathalie],
Holographic monitoring of transportation effects on canvas paintings,
SPIE(Newsroom), June 29, 2011
DOI Link 1107
Digital holographic speckle pattern interferometry is used to locate areas at risk of deterioration in paintings due to vibration. BibRef

Hwang, H.E.[Hone-Ene], Chang, H.T.[Hsuan T.], Lie, W.N.[Wen-Nung],
Lensless optical data embedding system using concealogram and cascaded digital Fresnel hologram,
JOSA-A(28), No. 7, July 2011, pp. 1453-1461.
WWW Link. 1107
BibRef

Yamamoto, K.[Kenji], Ichihashi, Y.[Yasuyuki], Senoh, T.[Takanori], Oi, R.[Ryutaro], Kurita, T.[Taiichiro],
3D visual system using electronic holography: Towards ultra-realistic communication,
SPIE(Newsroom), August 24, 2011.
DOI Link 1108
A combination of electronic holography and ray-based image sensors, such as integral photography and camera arrays, is a promising approach to a future 3D visual system. BibRef

Yamamoto, K.[Kenji],
Visual system using ray-based image sensors and electronic holography display toward ultra-realistic communication,
VCIP11(1-4).
IEEE DOI 1201
BibRef

Yamamoto, K., Ichihashi, Y., Senoh, T., Oi, R., Kurita, T.,
Development of electronic holography toward ultra-realistic communication,
SPIE(8043), 2011, pp. 804312
DOI Link 1108
BibRef

Yamamato, K., Oi, R., Senoh, T., Ichihashi, Y., Kurita, T.,
Holographic stereogram using camera array in dense arrangement,
SPIE(7957), 2011, pp. 795703.
DOI Link 1108
BibRef

Bove, V.M.,
Display Holography's Digital Second Act,
PIEEE(100), No. 4, April 2012, pp. 918-928.
IEEE DOI 1204
BibRef

Aggoun, A., Tsekleves, E., Swash, M.R., Zarpalas, D., Dimou, A., Daras, P., Nunes, P., Soares, L.D.,
Immersive 3D Holoscopic Video System,
MultMedMag(20), No. 1, 2013, pp. 28-37.
IEEE DOI 1303
BibRef

Memmolo, P.[Pasquale], Paturzo, M.[Melania], Finizio, A.[Andrea], Ferraro, P.[Pietro], Javidi, B.[Bahram],
Adaptive transformations for color hologram display,
SPIE(Newsroom), May 2013.
DOI Link 1305
A simple method for reconstructing digital color holograms, based on stretching techniques, yields good-quality synthetic holograms in which the constituent colors are multiplexed. BibRef

Gao, X.[Xiang], Li, C.[Chao], Fang, G.Y.[Guang-You],
Study of image reconstruction for terahertz indirect holography with quasi-optics receiver,
JOSA-A(30), No. 6, June 2013, pp. 1291-1296.
WWW Link. 1307
BibRef

Trujillo, C., Garcia-Sucerquia, J.,
Accelerated Numerical Processing of Electronically Recorded Holograms With Reduced Speckle Noise,
IP(22), No. 9, 2013, pp. 3528-3537.
IEEE DOI 1309
DH-HEMTs BibRef

Chacko, N.[Nikhil], Liebling, M.[Michael], Blu, T.[Thierry],
Discretization of continuous convolution operators for accurate modeling of wave propagation in digital holography,
JOSA-A(30), No. 10, October 2013, pp. 2012-2020.
WWW Link. 1310
BibRef

Ammari, H., Garnier, J., Millien, P.,
Backpropagation Imaging in Nonlinear Harmonic Holography in the Presence of Measurement and Medium Noises,
SIIMS(7), No. 1, 2014, pp. 239-276.
DOI Link 1404
BibRef

Sun, Z.Y.[Zhao-Yang], Li, C.[Chao], Gao, X.[Xiang], Fang, G.Y.[Guang-You],
Minimum-Entropy-Based Adaptive Focusing Algorithm for Image Reconstruction of Terahertz Single-Frequency Holography With Improved Depth of Focus,
GeoRS(53), No. 1, January 2015, pp. 519-526.
IEEE DOI 1410
Gaussian processes BibRef

Tahara, T.[Tatsuki], Takahashi, Y.[Yuki], Arai, Y.[Yasuhiko],
Digital holography for multidimensional sensing with a monochromatic image sensor,
SPIE(Newsroom), August 14, 2014
DOI Link 1410
A single-shot exposure of a commercial monochromatic image sensor can simultaneously record 3D spatial information as well as quantitative phase, multiwavelength, and polarization data. BibRef

Yamaguchi, M.[Masahiro],
Reproducing deep 3D images from captured light fields,
SPIE(Newsroom), December 17, 2014.
DOI Link 1501
A new method of high-resolution computational holography has been developed and experimentally demonstrated. BibRef

Hattay, J.[Jamel], Belaid, S.[Samir], Lebrun, D.[Denis], Naanaa, W.[Wady],
Digital in-line particle holography: Twin-image suppression using sparse blind source separation,
SIViP(9), No. 8, November 2015, pp. 1767-1774.
WWW Link. 1511
BibRef

Belaid, S.[Samir], Hattay, J.[Jamel], Naanaa, W.[Wady], Aguili, T.[Taoufik],
A new multi-scale framework for convolutive blind source separation,
SIViP(10), No. 7, October 2016, pp. 1203-1210.
Springer DOI 1609
BibRef

Zacharovas, S.[Stanislovas], Bakanas, R.[Ramunas], Stankauskas, A.[Algimantas],
Recording Denisyuk-type holograms with multi-pulse laser exposure,
SPIE(Newsroom), February 16, 2016
DOI Link 1602
Multi-pulse photomaterial exposure using a single longitudinal mode-pulsed red-green-blue laser achieves an image depth of up to 40cm for Denisyuk-type holograms. BibRef

Yoshikawa, H.[Hiroshi], Yamaguchi, T.[Takeshi], Uetake, H.[Hiroki],
Objective evaluation of computer-generated hologram image quality,
SPIE(Newsroom), March 3, 2016
DOI Link 1604
Diffraction efficiency and peak signal-to-noise for an amplitude hologram, phase hologram, and kinoform are used to assess the quality of a Fourier transform hologram in a new methodology. BibRef

Lee, M.[Munseob], Min, G.[Gihyeon], Kim, N.W.[Nac-Woo], Lee, B.T.[Byung Tak], Song, J.H.[Je-Ho],
Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography,
ETRI(38), No. 4, August 2016, pp. 599-605.
DOI Link 1608
BibRef

Krakovsky, M.[Marina],
Bringing Holography to Light,
CACM(59), No. 10, October 2016, pp. 13-15.
DOI Link 1610
While 3D technologies that make headlines are not truly holographic, holographic techniques are furthering advances in important applications such as biomedical imaging. BibRef

Shimobaba, T.[Tomoyoshi], Kakue, T.[Takashi], Ito, T.[Tomoyoshi],
Random phase-free computer holography,
SPIE(Newsroom), August 17, 2016
DOI Link 1610
A proposed technique provides a simple and computationally inexpensive method for enhancing the spatial resolution and reducing the speckle noise of reconstructed images. BibRef

Memmolo, P., Bianco, V., Paturzo, M., Ferraro, P.,
Numerical Manipulation of Digital Holograms for 3-D Imaging and Display: An Overview,
PIEEE(105), No. 5, May 2017, pp. 892-905.
IEEE DOI 1705
holography, 3-d display, 3-d imaging, digital holograms, digital holography, display technology, numerical manipulation, numerical solutions, solid-state sensors, DH-HEMTs, Holographic optical components, Holography, Image reconstruction, Optical imaging, 3-D imaging, Digital holography (DH), Display systems, Extended focus imaging, Image processing, Image, reconstruction, techniques BibRef

Matoba, O., Quan, X., Xia, P., Awatsuji, Y., Nomura, T.,
Multimodal Imaging Based on Digital Holography,
PIEEE(105), No. 5, May 2017, pp. 906-923.
IEEE DOI 1705
holography, image reconstruction, 3D recording, digital holographic microscope, multimodal imaging, numerical reconstruction, optical microscopes, physical parametric imaging techniques, Holographic optical components, Holography, Image reconstruction, Optical imaging, Optical propagation, Optical sensors, Digital holography, fluorescence, multimodal imaging, phase, phasepolarization, phasespectral, estimation BibRef

Yamaguchi, M.,
Full-Parallax Holographic Light-Field 3-D Displays and Interactive 3-D Touch,
PIEEE(105), No. 5, May 2017, pp. 947-959.
IEEE DOI 1705
calibration, cameras, holographic displays, image colour analysis, image reconstruction, image registration, image sensors, stereo image processing, touch sensitive screens, 3-D real image floating, 3D space, 3D touch detection, 3D touch-sensing display, HS, LFD, calibration camera, color image sensor, depth cues, full-parallax holographic light-field 3D display, holographic stereogram, human vision, image registration, interactive 3D touch interface, ray-based methods, real image reconstruction, real image reproduction, virtual image reconstruction, wavefront-based methods, Holography, Image reconstruction, Image resolution, Lenses, User interfaces, Visualization, 3-D touch, Holographic display, human-computer visual interface, light-field, display BibRef

Son, J.Y., Lee, H., Lee, B.R., Lee, K.H.,
Holographic and Light-Field Imaging as Future 3-D Displays,
PIEEE(105), No. 5, May 2017, pp. 789-804.
IEEE DOI 1705
holography, photography, 2-D point image array, 3-d displays, active 3-D imaging technologies, electroholographic displays, holographic imaging, light-field imaging, optical geometries, photography, Fatigue, Flat panel displays, Image resolution, Stereo image processing, TV, Continuous parallax, holographic imaging, light-field imaging, multiview imaging, point, image, array BibRef

Mori, Y.[Yutaka], Arai, Y.[Yuto],
Fast computer hologram generation by flexible-ratio adaptive point-spread spherical wave synthesis,
JOSA-A(34), No. 7, July 2017, pp. 1080-1084.
DOI Link 1708
Holography, Computer holography, Digital, holography BibRef

Pellizzari, C.J.[Casey J.], Spencer, M.F.[Mark F.], Bouman, C.A.[Charles A.],
Phase-error estimation and image reconstruction from digital-holography data using a Bayesian framework,
JOSA-A(34), No. 9, September 2017, pp. 1659-1669.
DOI Link 1709
Wave-front sensing, Image reconstruction-restoration, Inverse problems BibRef

Pellizzari, C.J.[Casey J.], Banet, M.T.[Matthias T.], Spencer, M.F.[Mark F.], Bouman, C.A.[Charles A.],
Demonstration of single-shot digital holography using a Bayesian framework,
JOSA-A(35), No. 1, January 2018, pp. 103-107.
DOI Link 1801
Wave-front sensing, Image reconstruction-restoration, Inverse problems BibRef

Pellizzari, C.J.[Casey J.], Spencer, M.F.[Mark F.], Bouman, C.A.[Charles A.],
Imaging through distributed-volume aberrations using single-shot digital holography,
JOSA-A(36), No. 2, February 2019, pp. A20-A33.
DOI Link 1912
Atmospheric turbulence, Diffraction limit, Discrete Fourier transforms, Reflection coefficient, Wave front sensing BibRef

Wang, J.[Jun], Wang, Q.H.[Qiong-Hua], Hu, Y.[Yuhen],
Unified and accurate diffraction calculation between two concentric cylindrical surfaces,
JOSA-A(35), No. 1, January 2018, pp. A45-A52.
DOI Link 1801
Diffraction theory, Computer holography, Wave propagation BibRef

Montresor, S.[Silvio], Picart, P.[Pascal], Karray, M.[Mayssa],
Reference-free metric for quantitative noise appraisal in holographic phase measurements,
JOSA-A(35), No. 1, January 2018, pp. A53-A60.
DOI Link 1801
Holographic interferometry, Image enhancement, Image quality assessment, Noise in imaging systems, Metrics BibRef

Peixeiro, J.P., Brites, C., Ascenso, J., Pereira, F.,
Holographic Data Coding: Benchmarking and Extending HEVC With Adapted Transforms,
MultMed(20), No. 2, February 2018, pp. 282-297.
IEEE DOI 1801
Benchmark testing, Encoding, Holography, Image coding, Interference, Standards, Transforms, Adapted transforms, HEVC extension, holographic representation format BibRef

Wang, W.[Wei], Wu, X.X.[Xing-Xing], Chen, G.C.[Guan-Chen], Chen, Z.Q.[Ze-Qiang],
Holo3DGIS: Leveraging Microsoft HoloLens in 3D Geographic Information,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Carpio, A., Dimiduk, T., Selgas, V., Vidal, P.,
Optimization Methods for In-Line Holography,
SIIMS(11), No. 2, 2018, pp. 923-956.
DOI Link 1807
BibRef

Bernardo, M.V.[Marco V.], Fernandes, P.[Pedro], Arrifano, A.[Angelo], Antonini, M.[Marc], Fonseca, E.[Elsa], Fiadeiro, P.T.[Paulo T.], Pinheiro, A.M.G.[António M.G.], Pereira, M.[Manuela],
Holographic representation: Hologram plane vs. object plane,
SP:IC(68), 2018, pp. 193-206.
Elsevier DOI 1810
Digital holography, HEVC codec, Numerical reconstruction of holograms, Hologram plane, Object plane BibRef

Edwards, C.[Chris],
Floating Voxels Provide New Hope for 3D Displays,
CACM(61), No. 10, October 2018, pp. 11-13.
DOI Link 1810
Implement the Star Wars movie 3D projection image. BibRef

Blinder, D.[David], Ahar, A.[Ayyoub], Bettens, S.[Stijn], Birnbaum, T.[Tobias], Symeonidou, A.[Athanasia], Ottevaere, H.[Heidi], Schretter, C.[Colas], Schelkens, P.[Peter],
Signal processing challenges for digital holographic video display systems,
SP:IC(70), 2019, pp. 114-130.
Elsevier DOI 1812
Digital holography, Computer generated holography, Holographic visualization, Holographic imaging, Quality assessment BibRef

Liu, Y., Dong, H., Zhang, L., Saddik, A.E.,
Technical Evaluation of HoloLens for Multimedia: A First Look,
MultMedMag(25), No. 4, October 2018, pp. 8-18.
IEEE DOI 1901
Magnetic heads, Cameras, Surface reconstruction, Lighting, Augmented reality, HoloLens, performance evaluation BibRef

Baba, T.[Takanobu], Watanabe, S.[Shinpei], Jessie-Jackin, B.[Boaz], Ootsu, K.[Kanemitsu], Ohkawa, T.[Takeshi], Yokota, T.[Takashi], Hayasaki, Y.[Yoshio], Yatagai, T.[Toyohiko],
Fast Computation with Efficient Object Data Distribution for Large-Scale Hologram Generation on a Multi-GPU Cluster,
IEICE(E102-D), No. 7, July 2019, pp. 1310-1320.
WWW Link. 1907
BibRef

Yu, H.Q.[Hong-Qiang], Jia, S.H.[Shu-Hai], Dong, J.[Jun], Huang, D.[Di], Xu, S.J.[Shun-Jian],
Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization,
JOSA-A(36), No. 12, December 2019, pp. D1-D6.
DOI Link 1912
Beam expanders, Digital image processing, Holographic microscopy, Phase shift, Phase unwrapping, White light interferometry BibRef

Rajora, S.[Sunaina], Butola, M.[Mansi], Khare, K.[Kedar],
Mean gradient descent: an optimization approach for single-shot interferogram analysis,
JOSA-A(36), No. 12, December 2019, pp. D7-D13.
DOI Link 1912
Computed tomography, Digital holographic imaging, Fourier transforms, Image reconstruction, Photons BibRef

Dong, J.[Jun], Jia, S.H.[Shu-Hai], Yu, H.Q.[Hong-Qiang],
Hybrid method for speckle noise reduction in digital holography,
JOSA-A(36), No. 12, December 2019, pp. D14-D22.
DOI Link 1912
Digital image processing, Image processing algorithms, Image quality, Speckle noise, Speckle patterns, Speckle reduction BibRef

Latychevskaia, T.[Tatiana],
Iterative phase retrieval for digital holography: tutorial,
JOSA-A(36), No. 12, December 2019, pp. D31-D40.
DOI Link 1912
Digital holographic imaging, Phase measurement, Phase retrieval, Phase shift, Scanning electron microscopy, Wave propagation BibRef

Thurman, S.T.[Samuel T.],
Phase-error correction in digital holography using single-shot data,
JOSA-A(36), No. 12, December 2019, pp. D47-D61.
DOI Link 1912
Distributed feedback lasers, Image quality, Liquid crystal modulators, Point spread function, Speckle reduction BibRef

Momey, F.[Fabien], Denis, L.[Loic], Olivier, T.[Thomas], Fournier, C.[Corinne],
From Fienup's phase retrieval techniques to regularized inversion for in-line holography: tutorial,
JOSA-A(36), No. 12, December 2019, pp. D62-D80.
DOI Link 1912
Image processing, Imaging systems, Imaging techniques, Inverse problems, Phase retrieval, Phase shift BibRef

Christopher, P.J.[Peter J.], Wang, Y.[Youchao], Wilkinson, T.D.[Timothy D.],
Predictive search algorithm for phase holography,
JOSA-A(36), No. 12, December 2019, pp. 2068-2075.
DOI Link 1912
Beam shaping, Fourier transforms, Image quality, Laser beams, Modulation techniques, Spatial light modulators BibRef

Christopher, P.J.[Peter J.], Lake, J.D.[Jamie D.], Dong, D.[Daoming], Joyce, H.J.[Hannah J.], Wilkinson, T.D.[Timothy D.],
Improving holographic search algorithms using sorted pixel selection,
JOSA-A(36), No. 9, September 2019, pp. 1456-1462.
DOI Link 1912
Beam shaping, Fast Fourier transforms, Image quality, Power spectral density, Spatial frequency, Spatial light modulators BibRef

Li, S.[Shengfu], Zhao, Y.[Yu], Ye, Y.[Yan],
Self-calibrated and SNR-enhanced particle holography,
JOSA-A(36), No. 8, August 2019, pp. 1395-1401.
DOI Link 1912
Fourier transforms, Holographic recording, Holographic techniques, Laser beams, Numerical simulation, Speckle noise BibRef

Jin, L.W.[Li-Wei], Li, H.W.[Hong-Wei], Zhao, C.Y.[Chao-Yue], Gao, W.[Wei],
Generation of Airy vortex beam arrays using computer-generated holography,
JOSA-A(36), No. 7, July 2019, pp. 1215-1220.
DOI Link 1912
Airy beams, Fresnel diffraction, Optical fields, Optical vortices, Spiral phase, Vortex beams BibRef

Zecca, R.[Roberto], Smith, D.R.[David R.], Marks, D.L.[Daniel L.],
Characterizing the information capacity of volume holograms with the Holevo bound,
JOSA-A(36), No. 5, May 2019, pp. 930-935.
DOI Link 1912
Holographic memory, Holographic techniques, In field scattering, Quantum communications, Volume holography BibRef

Deng, H.[Huan], Chen, C.[Cong], He, M.Y.[Min-Yang], Li, J.J.[Jiao-Jiao], Zhang, H.L.[Han-Le], Wang, Q.H.[Qiong-Hua],
High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element,
JOSA-A(36), No. 4, April 2019, pp. 588-593.
DOI Link 1912
Diffraction efficiency, Head mounted displays, Holographic displays, Holographic recording, Three dimensional displays BibRef

Malallah, R.[Ra'ed], Li, H.Y.[Hao-Yu], Qi, Y.[Yue], Cassidy, D.[Derek], Muniraj, I.[Inbarasan], Al-Attar, N.[Nebras], Sheridan, J.T.[John T.],
Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis,
JOSA-A(36), No. 3, March 2019, pp. 320-333.
DOI Link 1912
Extinction coefficients, Holographic optical elements, Holographic recording materials, Light intensity, Spatial frequency BibRef

Malallah, R.[Ra'ed], Li, H.Y.[Hao-Yu], Qi, Y.[Yue], Cassidy, D.[Derek], Muniraj, I.[Inbarasan], Al-Attar, N.[Nebras], Sheridan, J.T.[John T.],
Improving the uniformity of holographic recording using multi-layer photopolymer: Part II. Experimental results,
JOSA-A(36), No. 3, March 2019, pp. 334-344.
DOI Link 1912
Diffraction efficiency, Diffraction gratings, Effective refractive index, Holographic memory, Spatial frequency BibRef

Dardikman, G.[Gili], Shaked, N.T.[Natan T.],
Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?,
JOSA-A(36), No. 2, February 2019, pp. A1-A11.
DOI Link 1912
Digital holographic imaging, Holographic techniques, Phase imaging, Phase shift, Phase unwrapping, Spatial frequency BibRef

Kalenkov, S.G.[Sergey G.], Kalenkov, G.S.[Georgy S.], Shtanko, A.E.[Alexander E.],
Self-reference hyperspectral holographic microscopy,
JOSA-A(36), No. 2, February 2019, pp. A34-A38.
DOI Link 1912
Digital holographic imaging, Holographic microscopy, Holographic techniques, Spatial light modulators, Wave propagation BibRef

Vyas, S.I.[Sun-Il], Chia, Y.H.[Yu-Hsin], Luo, Y.[Yuan],
Volume holographic spatial-spectral imaging systems,
JOSA-A(36), No. 2, February 2019, pp. A47-A58.
DOI Link 1912
Holographic optical elements, Imaging systems, Imaging techniques, Medical imaging, Optical imaging, Three dimensional imaging BibRef

Montresor, S.[Silvio], Memmolo, P.[Pasquale], Bianco, V.[Vittorio], Ferraro, P.[Pietro], Picart, P.[Pascal],
Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry,
JOSA-A(36), No. 2, February 2019, pp. A59-A66.
DOI Link 1912
Spatial frequency, Speckle interferometry, Speckle noise, Speckle patterns, Speckle reduction, Synthetic aperture radar BibRef

Lopes, W.R., Medeiros, H.F.A., Santos, G.S., Araujo, T.C., Carvalho, J.F., dos Santos, P.V., de Araujo, M.T.,
Recording and erasure of photorefractive holograms in undoped BTO crystal at moderate to high intensities of 639.7nm laser under action of 532nm laser pre-illumination,
JOSA-A(35), No. 11, November 2018, pp. 1919-1928.
DOI Link 1912
Diffraction efficiency, Holographic gratings, Holographic recording, Holographic recording materials, Laser beams BibRef

Su, Y.F.[Yan-Feng], Cai, Z.J.[Zhi-Jian], Liu, Q.[Quan], Shi, L.Y.[Ling-Yan], Zhou, F.[Feng], Wu, J.H.[Jian-Hong],
Binocular holographic three-dimensional display using a single spatial light modulator and a grating,
JOSA-A(35), No. 8, August 2018, pp. 1477-1486.
DOI Link 1912
Diffraction gratings, Computer holography, Holographic display, Image reconstruction techniques, Time division multiplexing BibRef

Sulaiman, S.[Sennan], Gibson, S.[Steve], Spencer, M.[Mark],
Predictive dynamic digital holography and image sharpening,
JOSA-A(35), No. 6, June 2018, pp. 923-935.
DOI Link 1912
Aberration compensation, Image reconstruction-restoration, Phase retrieval, Imaging through turbulent media , Wavefront aberrations BibRef

Kim, Y.H.[Yong-Hae], Cho, S.M.[Seong M.], Choi, K.H.[Kyung-Hee], Hwang, C.Y.[Chi Young], Kim, G.H.[Gi Heon], Cheon, S.H.[Sang-Hoon], Hwang, C.S.[Chi-Sun],
Crafting a 1.5mu-m pixel pitch spatial light modulator using Ge2Sb2Te5 phase change material,
JOSA-A(36), No. 12, December 2019, pp. D23-D30.
DOI Link 1912
Electrooptical modulators, Holographic displays, Image processing, Optical components, Printed circuit boards, Thin film transistors BibRef

Soner, B., Ulusoy, E., Tekalp, A.M., Urey, H.,
Realizing a Low-Power Head-Mounted Phase-Only Holographic Display by Light-Weight Compression,
IP(29), 2020, pp. 4505-4515.
IEEE DOI 2003
Holography, augmented reality, displays, wearable computers, data compression BibRef

Sahin, E.[Erdem], Stoykova, E.[Elena], Makinen, J.[Jani], Gotchev, A.[Atanas],
Computer-Generated Holograms for 3D Imaging: A Survey,
Surveys(53), No. 2, March 2020, pp. xx-yy.
DOI Link 2007
Survey, Holograms. 3D displays, Computer-generated holograms, 3D imaging BibRef

Bruckstein, A.M.[Alfred Marcel], Ezerman, M.F.[Martianus Frederic], Fahreza, A.A.[Adamas Aqsa], Ling, S.[San],
Patch-Based Holographic Image Sensing,
SIIMS(14), No. 1, 2021, pp. 198-223.
DOI Link 2104
BibRef

Bernardo, M.V.[Marco V.], Fonseca, E.[Elsa], Pinheiro, A.M.G.[António M.G.], Fiadeiro, P.T.[Paulo T.], Pereira, M.[Manuela],
Efficient coding of experimental holograms using speckle denoising,
SP:IC(96), 2021, pp. 116306.
Elsevier DOI 2106
Digital Holography, Data compression, Coding efficiency, Speckle noise BibRef

Ahar, A.[Ayyoub], Birnbaum, T.[Tobias], Chlipala, M.[Maksymilian], Zaperty, W.[Weronika], Mahmoudpour, S.[Saeed], Kozacki, T.[Tomasz], Kujawinska, M.[Malgorzata], Schelkens, P.[Peter],
Comprehensive performance analysis of objective quality metrics for digital holography,
SP:IC(97), 2021, pp. 116361.
Elsevier DOI 2107
Digital holography, Fourier holography, Holographic display, Hologram quality assessment, Visual quality assessment, Visual quality metrics BibRef

Edwards, C.[Chris],
Holograms on the Horizon?,
CACM(64), No. 11, November 2021, pp. 14-16.
DOI Link 2111
machine learning to reduce the processing power needed to render convincing holographic images BibRef

Liu, B.N.[Bo-Ning], Zhao, Y.[Yan], Jiang, X.M.[Xiao-Meng], Wang, S.G.[Shi-Gang], Wei, J.[Jian],
3-D Epanechnikov Mixture Regression in integral imaging compression,
JVCIR(81), 2021, pp. 103332.
Elsevier DOI 2112
3-D Epanechnikov Kernel, 3-D Epanechnikov Mixture Regression, 3D holoscopic image compression, Image modeling BibRef

Sun, J.J.[Jian-Jun], Zhao, Y.[Yan], Wang, S.G.[Shi-Gang], Wei, J.[Jian],
3D Holoscopic Image Compression Based on Gaussian Mixture Model,
MultMed(25), 2023, pp. 1374-1389.
IEEE DOI 2305
Image coding, Gaussian distribution, Covariance matrices, Correlation, Prediction algorithms, three-dimensional distribution-rotation based decomposition BibRef


Shapovalov, R.[Roman], Kleiman, Y.[Yanir], Rocco, I.[Ignacio], Novotny, D.[David], Vedaldi, A.[Andrea], Chen, C.[Changan], Kokkinos, F.[Filippos], Graham, B.[Ben], Neverova, N.[Natalia],
Replay: Multi-modal Multi-view Acted Videos for Casual Holography,
ICCV23(20281-20291)
IEEE DOI 2401
BibRef

Madali, N.[Nabil], Gilles, A.[Antonin], Gioia, P.[Patrick], Morin, L.[Luce],
Self-Supervised Focus Measure Fusing for Depth Estimation from Computer-Generated Holograms,
ICIP23(2285-2289)
IEEE DOI 2312
BibRef

Jee, M.[Minkyu], Kim, H.[Hakdong], Yoon, M.[Minsung], Kim, C.[Cheongwon],
Hologram Super-Resolution Using Dual-Generator GAN,
ICIP22(2596-2600)
IEEE DOI 2211
Deep learning, Computational modeling, Superresolution, Interference, Predictive models, Generators, GAN BibRef

Wu, Z.[Zequn], Zhao, T.H.[Tian-Hao], Nguyen, C.[Chuong],
3D Reconstruction and Object Detection for HoloLens,
DICTA20(1-2)
IEEE DOI 2201
Object detection, Servers, Task analysis, Image reconstruction, Smart glasses, HoloLens, Mixed Reality, 3D Reconstruction, Object Detection BibRef

Sahin, E., Vagharshakyan, S., Mäkinen, J., Bregovic, R.[Robert], Gotchev, A.[Atanas],
Shearlet-domain light field reconstruction for holographic stereogram generation,
ICIP16(1479-1483)
IEEE DOI 1610
Cameras BibRef

Corda, R.[Roberto], Perra, C.[Cristian], Giusto, D.[Daniele],
Investigation of Coding Standards Performances on Optically Acquired and Synthetic Holograms,
ACIVS20(396-407).
Springer DOI 2003
BibRef

Mäkinen, J., Sahin, E., Gotchev, A.,
Analysis of Accommodation Cues in Holographic Stereograms,
3DTV-CON18(1-4)
IEEE DOI 1812
holography, image reconstruction, image resolution, image sampling, stereo image processing, hologram methods, HS, accommodation BibRef

Hong, K., Lim, Y., Kim, H., Park, M., Kim, J.,
Table-top electronic holographic display satisfying stereopsis along 360 degree,
IC3D17(1-5)
IEEE DOI 1804
electron holography, holographic displays, image reconstruction, mirrors, optical windows, time-division multiplexing BibRef

Soukup, D., Huber-Mörk, R.,
Mobile hologram verification with deep learning,
MVA17(169-172)
DOI Link 1708
Image color analysis, Light emitting diodes, Lighting, Machine learning, Mobile communication, Mobile handsets, Training BibRef

Dingli, A.[Alexiei], Mifsud, N.[Nicholas],
Holographic Humans,
VAMR16(299-307).
Springer DOI 1608
BibRef

Xing, Y., Kaaniche, M., Pesquet-Popescu, B., Dufaux, F.,
Sparse based adaptive non separable vector lifting scheme for holograms compression,
IC3D15(1-8)
IEEE DOI 1603
holographic storage BibRef

Gules, A.[Antonin], Gioia, P.[Patrick], Cozot, R.[Remi], Morin, L.[Luce],
Complex modulation computer-generated hologram by a fast hybrid point-source/wave-field approach,
ICIP15(4962-4966)
IEEE DOI 1512
Color holography BibRef

Viswanathan, K.[Kartik], Gioia, P.[Patrick], Morin, L.[Luce],
A framework for view-dependent hologram representation and adaptive reconstruction,
ICIP15(3334-3338)
IEEE DOI 1512
Digital holography BibRef

Yan, H.[Hao], Blinder, D.[David], Bettens, S.[Stijn], Ottevaere, H.[Heidi], Munteanu, A.[Adrian], Schelkens, P.[Peter],
CDF 9/7 wavelets as sparsifying operator in compressive holography,
ICIP15(2015-2019)
IEEE DOI 1512
CDF 9/7 wavelet BibRef

Lee, S., Chang, H., Nam, D.,
Analysis of radial symmetric interpolation in hologram generation,
3DTV-CON15(1-4)
IEEE DOI 1508
Holography BibRef

Park, J., Lee, S., Yoon, M.S., Kim, J., Choo, H.G., Kim, J., Kim, T.,
An optical reconstruction of hologram recorded by OSH using amplitude-only SLM and phase-only SLM,
3DTV-CON15(1-3)
IEEE DOI 1508
Holographic optical components BibRef

Sasaki, H., Wakunami, K., Ichihashi, Y., Oi, R., Senoh, T., Yamamoto, K.,
Electronic holography using tiled multiple spatial light modulators and its luminance compensation,
3DTV-CON15(1-4)
IEEE DOI 1508
Cameras BibRef

Swash, M.R., Aggoun, A., Abdulfatah, O., Fernandez, J.C., Alazawi, E., Tsekleves, E.,
Distributed pixel mapping for refining dark area in parallax barriers based holoscopic 3D Display,
IC3D13(1-4)
IEEE DOI 1503
image colour analysis BibRef

Kim, H.E.[Hyun-Eui], Park, M.[Minsik], Chae, B.G.[Byung Gyu], Hahn, J.[Joonku], Kim, H.[Hwi], Park, C.H.[Cheong Hee], Moon, K.[Kyungae], Kim, J.W.[Jin-Woong],
Large-scale color holographic display capable of steering view window,
IC3D13(1-4)
IEEE DOI 1503
holographic displays BibRef

Hwang, C.Y.[Chi-Young], Lee, B.R.[Beom-Ryeol], Hahn, J.[Joonku],
Off-axis complex hologram encoding method for holographic display with amplitude-only modulation,
IC3D13(1-4)
IEEE DOI 1503
amplitude modulation BibRef

Hong, K.[Keehoon], Yeom, J.[Jiwoon], Lee, B.[Byoungho],
Integral imaging using color multiplexed holographic optical element,
IC3D12(1-4)
IEEE DOI 1503
holographic optical elements BibRef

Cossairt, O., Matsuda, N., Gupta, M.,
Digital refocusing with incoherent holography,
ICCP14(1-9)
IEEE DOI 1411
cameras BibRef

Alazawi, E., Abbod, M., Aggoun, A., Swash, M.R., Fatah, O.A., Fernandez, J.,
Super depth-map rendering by converting holoscopic viewpoint to perspective projection,
3DTV-CON14(1-4)
IEEE DOI 1409
image processing BibRef

Swash, M.R., Fernandez, J.C., Aggoun, A., Abdulfatah, O., Tsekleves, E.,
Reference based holoscopic 3D camera aperture stitching for widening the overall viewing angle,
3DTV-CON14(1-3)
IEEE DOI 1409
holography BibRef

Xing, Y.[Yafei], Pesquet-Popescu, B., Dufaux, F.,
Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations,
3DTV-CON14(1-4)
IEEE DOI 1409
data compression BibRef

Agooun, A.[Amar], Fatah, O.A.[Obaidulah Abdul], Fernandez, J.C.[Juan C], Conti, C.[Caroline], Nunes, P.[Paulo], Soares, L.D.[Luis Ducla],
Acquisition, processing and coding of 3D holoscopic content for immersive video systems,
3DTV-CON13(1-4)
IEEE DOI 1309
3D holoscopic video BibRef

Thevar, T., Watson, J.,
Preliminary results in the development of a multi-colour pulsed laser for holography,
3DTV-CON13(1-3)
IEEE DOI 1309
BibRef

Finke, G.[Grzegorz], Kujawinska, M.[Malgorzata], Zaperty, W.[Weronika], Kozacki, T.[Tomasz],
Spatiotemporal multiplexing method for big images observation in wide angle holographic display,
3DTV-CON13(1-4)
IEEE DOI 1309
digital holography BibRef

Alazawi, E., Aggoun, A., Abbod, M., Swash, M.R., Fatah, O.A.[O. Abdul], Fernandez, J.,
Scene depth extraction from Holoscopic Imaging technology,
3DTV-CON13(1-4)
IEEE DOI 1309
3D Omni-directional Holoscopic Image BibRef

Agour, M.[Mostafa], Falldorf, C.[Claas], von Kopylow, C.[Christoph], Bergmann, R.B.[Ralf B.],
Speckle reduction in holographic projection using temporal-multiplexing of spatial frequencies,
3DTV-CON13(1-4)
IEEE DOI 1309
3D displays; Holographic displays; Holography; Spatial Light Modulators BibRef

Fatah, O.A.[O. Abdul], Aggoun, A., Swash, M.R., Alazawi, E., Li, B., Fernandez, J.C., Chen, D., Tsekleves, E.,
Generating stereoscopic 3D from holoscopic 3D,
3DTV-CON13(1-3)
IEEE DOI 1309
3D; EI; Holograms; Holoscopic; Integral; Rendering BibRef

Bove, V.M.[V. Michael], Barabas, J.[James], Jolly, S.[Sundeep], Smalley, D.[Daniel],
How to build a holographic television system,
3DTV-CON13(1-4)
IEEE DOI 1309
displays; holography; three-dimensional television BibRef

Swash, M.R., Aggoun, A., Abdulfatah, O., Li, B., Fernandez, J.C., Alazawi, E., Tsekleves, E.,
Pre-processing of holoscopic 3D image for autostereoscopic 3D displays,
IC3D13(1-5)
IEEE DOI 1503
cameras BibRef

Marks, D.L., Hahn, J.[Joonku], Horisaki, R., Brady, D.J.,
Computational photography and compressive holography,
ICCP10(1-8).
IEEE DOI 1208
BibRef

Jurik, J.[Joel], Burnett, T.[Thomas], Klug, M.[Michael], Debevec, P.[Paul],
Geometry-corrected light field rendering for creating a holographic stereogram,
CCD12(9-13).
IEEE DOI 1207
BibRef

Arima, Y.[Yasuaki], Matsushima, K.[Kyoji], Nakahara, S.[Sumio],
Spatial 3D imaging by synthetic and digitized holography,
3DTV11(1-4).
IEEE DOI 1105
BibRef

Yasuda, Y., Kitamura, M., Watanabe, M., Tsumuta, M., Yamaguchi, Y., Yoshikawa, H.,
Computer simulation of reconstructed image for computer-generated holograms,
SPIE(7233), 2009, pp. 72330H.1-72330H.11.
DOI Link BibRef 0900

Guo, J.[Jun], Zhang, P.F.[Peng-Fei], Pang, H.J.[Hao-Jun], Meng, C.[Chao], Wang, W.S.[Wen-Sheng],
A New Method of Digital Holographic Reconstruction Based on EALCD and CCD,
CISP09(1-5).
IEEE DOI 0910
BibRef

Sun, Y.[Ye],
Application of Digital Holography in Displacement Measurement,
CISP09(1-5).
IEEE DOI 0910
BibRef

Fan, Z.J.[Zhen-Jie], Pang, H.J.[Hao-Jun], Wang, W.S.[Wen-Sheng], Ning, C.D.[Cheng-Da], Guo, F.[Fei],
Three Dimensional Deformation Measurements with Digital Holography,
CISP09(1-5).
IEEE DOI 0910
BibRef

Liang, X.[Xinan], Xu, X.W.[Xue-Wu], Solanki, S.[Sanjeev], Pan, Y.C.[Yue-Chao], Tanjung, R.B.A.[Ridwan Bin Adrian], Tan, C.W.[Chi-Wei], Xu, B.X.[Bao-Xi], Chong, C.T.[Chong Tow],
3D holographic display with optically addressed spatial light modulator,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Agour, M.[Mostafa], Kreis, T.[Thomas],
Experimental investigation of holographic 3D-TV approach,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Chen, R.H.Y.[Rick H.Y.], Wilkinson, T.D.[Timothy D.],
Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Kang, H.[Hoonjong], Yaras, F.[Fahri], Onural, L.[Levent],
Quality comparison and acceleration for digital hologram generation method based on segmentation,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Yaras, F.[Fahri], Kang, H.[Hoonjong], Onural, L.[Levent],
Circularly configured multi-SLM holographic display system,
3DTV11(1-4).
IEEE DOI 1105
BibRef
Earlier:
Multi-SLM holographic display system with planar configuration,
3DTV10(1-4).
IEEE DOI 1006
BibRef
Earlier:
Real-time color holographic video display system,
3DTV09(1-4).
IEEE DOI 0905
BibRef

Kreis, T.[Thomas],
Digital Holography Methods in 3D-TV,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Hanak, I.[Ivo], Janda, M.[Martin], Skala, V.[Vaclav],
Full-Parallax Hologram Synthesis of Triangular Meshes using a Graphical Processing Unit,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Janda, M.[Martin], Hanak, I.[Ivo], Skala, V.[Vaclav],
HPO Hologram Synthesis for Full-Parallax Reconstruction Setup,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Petrova, T., Ivanov, B., Zdravkov, K., Nazarova, D., Stoykova, E., Minchev, G., Sainov, V.,
Basic Holographic Characteristics of Panchromatic Light Sensitive Material for Reflective Auto Stereoscopic 3D Display,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Lehtimaki, T.M.[Taina M.], Naughton, T.J.[Thomas J.],
Stereoscopic Viewing of Digital Holograms of Real-World Objects,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Hashimoto, N., Morikawa, S., Kitamura, K.,
Real-time holography using the high-resolution LCTV-SLM,
SPIE(1461), 1991, pp. 291-302.
DOI Link BibRef 9100

Chapter on Stereo: Three Dimensional Descriptions from Two or More Views, Binocular, Trinocular continues in
Haptic Systems, Haptic Displays, Haptic Analysis, Tactile Sensing .


Last update:Mar 16, 2024 at 20:36:19