Jiang, S.Q.[Shu-Qiang],
Huang, Q.M.[Qing-Ming],
Ye, Q.X.[Qi-Xiang],
Gao, W.[Wen],
An effective method to detect and categorize digitized traditional
Chinese paintings,
PRL(27), No. 7, May 2006, pp. 734-746.
Elsevier DOI
0604
Traditional Chinese painting; Image classification; Edge-size histogram
BibRef
Taylor, R.P.,
Guzman, R.,
Martin, T.P.,
Hall, G.D.R.,
Micolich, A.P.,
Jonas, D.,
Scannell, B.C.,
Fairbanks, M.S.,
Marlow, C.A.,
Authenticating Pollock paintings using fractal geometry,
PRL(28), No. 6, 15 April 2007, pp. 695-702.
Elsevier DOI
0703
Abstract art; Jackson Pollock; Authenticity; Fractals
BibRef
Postma, E.O.[Eric O.],
van den Herik, H.J.[H. Jaap],
van der Lubbe, J.[Jan],
Paintings and writings in the hands of scientists,
PRL(28), No. 6, 15 April 2007, pp. 671-672.
Elsevier DOI
0703
BibRef
Shen, J.L.[Jia-Lie],
Stochastic modeling western paintings for effective classification,
PR(42), No. 2, February 2009, pp. 293-301.
Elsevier DOI
0810
Classic western paintings; Identification; Image retrieval; Cultural heritage
BibRef
Wickramasinghe, W.A.P.,
Dharmarathne, A.T.,
Kodikara, N.D.,
A mathematical model for computational aesthetics,
IJCVR(1), No. 3, 2010, pp. 311-324.
DOI Link
1102
BibRef
Lee, J.W.[Joon-Whoan],
Park, E.J.[Eun-Jong],
Fuzzy Similarity-Based Emotional Classification of Color Images,
MultMed(13), No. 5, 2011, pp. 1031-1039.
IEEE DOI
1110
evaluating an emotional response to color images.
BibRef
Arabadjis, D.,
Rousopoulos, P.,
Papaodysseus, C.,
Exarhos, M.,
Panagopoulos, M.,
Papazoglou-Manioudaki, L.,
Optimization in Differentiable Manifolds in Order to Determine the
Method of Construction of Prehistoric Wall Paintings,
PAMI(33), No. 11, November 2011, pp. 2229-2244.
IEEE DOI
1110
Fit parametric curves to prehistoric wall painting.
BibRef
Libeks, J.[Janis],
Turnbull, D.[Douglas],
You Can Judge an Artist by an Album Cover:
Using Images for Music Annotation,
MultMedMag(18), No. 4, October-December 2011, pp. 30-37.
IEEE DOI
1112
BibRef
Xu, S.H.[Song-Hua],
Jiang, H.[Hao],
Lau, F.C.M.[Francis C.M.],
Pan, Y.H.[Yun-He],
Computationally Evaluating and Reproducing the Beauty of Chinese
Calligraphy,
IEEE_Int_Sys(27), No. 3, May-June 2012, pp. 63-72.
IEEE DOI
1208
BibRef
Hughes, J.M.[James M.],
Mao, D.[Dong],
Rockmore, D.N.[Daniel N.],
Wang, Y.[Yang],
Wu, Q.A.[Qi-Ang],
Empirical Mode Decomposition Analysis for Visual Stylometry,
PAMI(34), No. 11, November 2012, pp. 2147-2157.
IEEE DOI
1209
Measurement and comparisons of individual style in the visual arts.
BibRef
Rosin, P.[Paul],
Collomosse, J.P.[John P.], (Eds.)
Image and Video-based Artistic Stylisation,
Springer2013.
ISBN 978-1-4471-4518-9
Buy this book: Image and Video-based Artistic Stylisation (Computational Imaging and Vision)
WWW Link.
1211
Non-photorealistic rendering
BibRef
Lin, L.,
Zeng, K.,
Wang, Y.,
Xu, Y.Q.,
Zhu, S.C.,
Video Stylization:
Painterly Rendering and Optimization With Content Extraction,
CirSysVideo(23), No. 4, April 2013, pp. 577-590.
IEEE DOI
1304
BibRef
Xie, N.[Ning],
Hachiya, H.[Hirotaka],
Sugiyama, M.[Masashi],
Artist Agent: A Reinforcement Learning Approach to Automatic Stroke
Generation in Oriental Ink Painting,
IEICE(E96-D), No. 5, May 2013, pp. 1134-1144.
WWW Link.
1305
BibRef
Carneiro, G.,
Artistic Image Analysis Using Graph-Based Learning Approaches,
IP(22), No. 8, 2013, pp. 3168-3178.
IEEE DOI artistic image analysis; Content-based image retrieval
1307
BibRef
Sheng, J.C.[Jia-Chuan],
Jiang, J.M.[Jian-Min],
Recognition of Chinese artists via windowed and entropy balanced
fusion in classification of their authored ink and wash paintings
(IWPs),
PR(47), No. 2, 2014, pp. 612-622.
Elsevier DOI
1311
Analysis of ink wash paintings
BibRef
Cooper, B.[Bonnie],
Lee, B.B.[Barry B.],
Independence and interaction of luminance and chromatic contributions
to spatial hyperacuity performance,
JOSA-A(31), No. 4, April 2014, pp. A394-A400.
DOI Link
1404
Color vision; Psychophysics; Spatial discrimination
BibRef
Devinck, F.[Frederic],
Gerardin, P.[Peggy],
Dojat, M.[Michel],
Knoblauch, K.[Kenneth],
Spatial selectivity of the watercolor effect,
JOSA-A(31), No. 4, April 2014, pp. A1-A6.
DOI Link
1404
Vision, color, and visual optics
BibRef
Monroy Kuhn, J.A.[Juan Antonio],
Bell, P.[Peter],
Ommer, B.[Björn],
Morphological analysis for investigating artistic images,
IVC(32), No. 6-7, 2014, pp. 414-423.
Elsevier DOI
1406
BibRef
Earlier:
Shaping Art with Art:
Morphological Analysis for Investigating Artistic Reproductions,
VISART12(I: 571-580).
Springer DOI
1210
Shape analysis
BibRef
John Asmus: Optical techniques and the mysterious Mona Lisa,
SPIE(Newsroom), April 15, 2014
DOI Link
1407
A video interview.
A lifetime in lasers began with one of Maiman's originals at Caltech,
and has led this art-restoration pioneer to analyze and restore some
of the world's most famous artworks.
BibRef
Khan, F.S.[Fahad Shahbaz],
Beigpour, S.[Shida],
van de Weijer, J.[Joost],
Felsberg, M.[Michael],
Painting-91: a large scale database for computational painting
categorization,
MVA(25), No. 6, 2014, pp. 1385-1397.
Springer DOI
1408
BibRef
Jacobsen, C.R.[C. Robert],
Nielsen, M.[Morten],
Investigation of the Effects of Data Collection on Visual Stylometry,
IJIG(14), No. 04, 2014, pp. 1450019.
DOI Link
1412
analysing visual art by mathematical and statistical methods
BibRef
Condorovici, R.G.[Razvan George],
Florea, C.[Corneliu],
Vertan, C.[Constantin],
Automatically classifying paintings with perceptual inspired
descriptors,
JVCIR(26), No. 1, 2015, pp. 222-230.
Elsevier DOI
1502
BibRef
And:
Erratum:
JVCIR(29), No. 1, 2015, pp. 153-.
Elsevier DOI
1504
Painting
BibRef
Abry, P.,
Roux, S.,
Wendt, H.,
Messier, P.,
Klein, A.,
Tremblay, N.,
Borgnat, P.,
Jaffard, S.,
Vedel, B.,
Coddington, J.,
Daffner, L.,
Multiscale Anisotropic Texture Analysis and Classification of
Photographic Prints: Art scholarship meets image processing
algorithms,
SPMag(32), No. 4, July 2015, pp. 18-27.
IEEE DOI
1506
Anisotropic magnetoresistance
BibRef
Johnson, C.,
Sethares, W.,
Ellis, M.,
Haqqi, S.,
Hunting for Paper Moldmates Among Rembrandt's Prints:
Chain-line pattern matching,
SPMag(32), No. 4, July 2015, pp. 28-37.
IEEE DOI
1506
Art
BibRef
van Noord, N.,
Hendriks, E.,
Postma, E.,
Toward Discovery of the Artist's Style:
Learning to recognize artists by their artworks,
SPMag(32), No. 4, July 2015, pp. 46-54.
IEEE DOI
1506
Adaptive filters
BibRef
Ghaderi, M.[Mohammad],
Ruiz, F.[Francisco],
Agell, N.[Núria],
Understanding the impact of brand colour on brand image:
A preference disaggregation approach,
PRL(67, Part 1), No. 1, 2015, pp. 11-18.
Elsevier DOI
1511
Preference disaggregation
BibRef
Gbèhounou, S.[Syntyche],
Lecellier, F.[François],
Fernandez-Maloigne, C.[Christine],
Evaluation of local and global descriptors for emotional impact
recognition,
JVCIR(38), No. 1, 2016, pp. 276-283.
Elsevier DOI
1605
Images
BibRef
Xu, P.F.[Peng-Fei],
Zheng, X.[Xia],
Chang, X.J.[Xiao-Jun],
Miao, Q.G.[Qi-Guang],
Tang, Z.Y.[Zhan-Yong],
Chen, X.J.[Xiao-Jiang],
Fang, D.Y.[Ding-Yi],
Artistic information extraction from Chinese calligraphy works via
Shear-Guided filter,
JVCIR(40, Part B), No. 1, 2016, pp. 791-807.
Elsevier DOI
1610
Artistic information extraction
BibRef
Sun, T.C.[Tian-Cheng],
Wang, Y.L.[Yu-Long],
Yang, J.[Jian],
Hu, X.L.[Xiao-Lin],
Convolution Neural Networks With Two Pathways for Image Style
Recognition,
IP(26), No. 9, September 2017, pp. 4102-4113.
IEEE DOI
1708
feature extraction, image classification, image retrieval,
image texture, neural nets, AlexNet CNN,
ImageNet classification data set, VGG-19 CNN, artwork analysis,
BibRef
Nanni, L.[Loris],
Ghidoni, S.[Stefano],
How could a subcellular image, or a painting by Van Gogh, be similar
to a great white shark or to a pizza?,
PRL(85), No. 1, 2017, pp. 1-7.
Elsevier DOI
1612
Deep convolutional neural networks
BibRef
Puthenputhussery, A.[Ajit],
Liu, Q.F.[Qing-Feng],
Liu, C.J.[Cheng-Jun],
A Sparse Representation Model Using the Complete Marginal Fisher
Analysis Framework and Its Applications to Visual Recognition,
MultMed(19), No. 8, August 2017, pp. 1757-1770.
IEEE DOI
1708
BibRef
Earlier:
Sparse Representation Based Complete Kernel Marginal Fisher Analysis
Framework for Computational Art Painting Categorization,
ECCV16(VIII: 612-627).
Springer DOI
1611
Dictionaries, Encoding, Feature extraction, Null space, Optimization,
Sparse matrices, Visualization,
Discriminative sparse representation, column space,
complete marginal Fisher analysis (CMFA),
BibRef
Puthenputhussery, A.[Ajit],
Liu, Q.F.[Qing-Feng],
Liu, H.,
Liu, C.J.[Cheng-Jun],
Generative and Discriminative Sparse Coding for Image Classification
Applications,
WACV18(1824-1832)
IEEE DOI
1806
feature extraction, image classification, image coding,
image representation, learning (artificial intelligence),
Training
BibRef
Chu, W.,
Wu, Y.,
Image Style Classification Based on Learnt Deep Correlation Features,
MultMed(20), No. 9, September 2018, pp. 2491-2502.
IEEE DOI
1809
art, convolution, correlation methods, feature extraction,
feedforward neural nets, image classification, image texture,
learnt correlation features
BibRef
Jiang, S.H.[Shu-Hui],
Shao, M.[Ming],
Jia, C.C.[Cheng-Cheng],
Fu, Y.[Yun],
Learning Consensus Representation for Weak Style Classification,
PAMI(40), No. 12, December 2018, pp. 2906-2919.
IEEE DOI
1811
Visualization, Feature extraction, Data visualization,
Principal component analysis, Encoding, Deep learning,
auto-encoder
BibRef
Florea, C.[Corneliu],
Gieseke, F.[Fabian],
Artistic movement recognition by consensus of boosted SVM based
experts,
JVCIR(56), 2018, pp. 220-233.
Elsevier DOI
1811
Randomized boosted SVMs, Multi-scale topography,
Painting style recognition, Consensus of experts, Ensembles
BibRef
Yang, H.[Heekyung],
Min, K.[Kyungha],
Classification of basic artistic media based on a deep convolutional
approach,
VC(36), No. 3, March 2020, pp. 559-578.
WWW Link.
2002
BibRef
Garcia, N.[Noa],
Renoust, B.[Benjamin],
Nakashima, Y.[Yuta],
ContextNet: representation and exploration for painting classification
and retrieval in context,
MultInfoRetr(9), No. 1, March 2020, pp. 17-30.
WWW Link.
2003
BibRef
Silva, J.M.[Jorge Miguel],
Pratas, D.[Diogo],
Antunes, R.[Rui],
Matos, S.[Sérgio],
Pinho, A.J.[Armando J.],
Automatic analysis of artistic paintings using information-based
measures,
PR(114), 2021, pp. 107864.
Elsevier DOI
2103
Image analysis, Data compression, BDM, Artistic paintings,
Algorithmic information theory
BibRef
Ou, Y.J.[Yang-Jun],
Chen, Z.Z.[Zhen-Zhong],
Wu, F.[Feng],
Multimodal Local-Global Attention Network for Affective Video Content
Analysis,
CirSysVideo(31), No. 5, 2021, pp. 1901-1914.
IEEE DOI
2105
Predicting emotional responses of movie audiences.
BibRef
Zhu, Y.C.[Yao-Chen],
Chen, Z.Z.[Zhen-Zhong],
Wu, F.[Feng],
Affective Video Content Analysis via Multimodal Deep Quality
Embedding Network,
AffCom(13), No. 3, July 2022, pp. 1401-1415.
IEEE DOI
2209
Annotations, Feature extraction, Training, Neural networks,
Probabilistic logic, Noise measurement, Color,
deep neural networks
BibRef
Guo, W.Y.[Wen-Ya],
Zhang, Y.[Ying],
Cai, X.R.[Xiang-Rui],
Meng, L.[Lei],
Yang, J.F.[Ju-Feng],
Yuan, X.J.[Xiao-Jie],
LD-MAN: Layout-Driven Multimodal Attention Network for Online News
Sentiment Recognition,
MultMed(23), 2021, pp. 1785-1798.
IEEE DOI
2106
Sentiment analysis, Visualization, Layout, Feature extraction,
Analytical models, Neural networks, Image recognition,
article layout
BibRef
Wu, C.L.[Chun-Lei],
Wang, J.N.[Jiang-Nan],
Yuan, S.Z.[Shao-Zu],
Wang, L.Q.[Lei-Quan],
Zhang, W.S.[Wei-Shan],
Generate classical Chinese poems with theme-style from images,
PRL(149), 2021, pp. 75-82.
Elsevier DOI
2108
Image, Quatrain, Automatic generation, Theme, Style
BibRef
Pfister, J.[Jan],
Kobs, K.[Konstantin],
Hotho, A.[Andreas],
Self-Supervised Multi-Task Pretraining Improves Image Aesthetic
Assessment,
NTIRE21(816-825)
IEEE DOI
2109
Computational modeling,
Neural networks, Training data, Distortion, Data models
BibRef
Frank, S.J.[Steven J.],
State of the Art: This Convolutional Neural Network can Tell you
Whether a Painting is a Fake,
Spectrum(58), No. 9, September 2021, pp. 26-31.
IEEE DOI
2109
Painting
BibRef
Zhu, H.C.[Han-Cheng],
Li, L.D.[Lei-Da],
Wu, J.J.[Jin-Jian],
Zhao, S.C.[Si-Cheng],
Ding, G.G.[Gui-Guang],
Shi, G.M.[Guang-Ming],
Personalized Image Aesthetics Assessment via Meta-Learning With
Bilevel Gradient Optimization,
Cyber(52), No. 3, March 2022, pp. 1798-1811.
IEEE DOI
2203
Task analysis, Adaptation models, Optimization, Visualization,
Integrated circuit modeling, Training,
small sample learning (SSL)
BibRef
Zhu, H.C.[Han-Cheng],
Zhou, Y.[Yong],
Yao, R.[Rui],
Wang, G.C.[Guang-Cheng],
Yang, Y.Z.[Yu-Zhe],
Learning image aesthetic subjectivity from attribute-aware relational
reasoning network,
PRL(155), 2022, pp. 84-91.
Elsevier DOI
2203
Image aesthetics, Subjectivity, Attribute-aware, Uncertainty,
Relational reasoning
BibRef
Zhu, H.C.[Han-Cheng],
Zhou, Y.[Yong],
Li, Q.Y.[Qiao-Yue],
Shao, Z.W.[Zhi-Wen],
Personality modeling from image aesthetic attribute-aware graph
representation learning,
JVCIR(89), 2022, pp. 103675.
Elsevier DOI
2212
Social media, Personality modeling, Image aesthetics,
Attribute-aware graph, Convolutional neural network
BibRef
Zhang, Y.Q.[Ya-Qing],
Li, X.M.[Xue-Ming],
Li, X.W.[Xue-Wei],
Reinforcement learning cropping method based on comprehensive feature
and aesthetics assessment,
IET-IPR(16), No. 5, 2022, pp. 1415-1423.
DOI Link
2203
BibRef
Celona, L.[Luigi],
Leonardi, M.[Marco],
Napoletano, P.[Paolo],
Rozza, A.[Alessandro],
Composition and Style Attributes Guided Image Aesthetic Assessment,
IP(31), 2022, pp. 5009-5024.
IEEE DOI
2208
Semantics, Feature extraction, Task analysis, Image color analysis,
Convolutional neural networks, Predictive models, Training,
hypernetworks
BibRef
Wang, Y.Y.[Yuan-Yang],
Huang, Y.H.[Yi-Hua],
Chen, X.M.[Xiu-Min],
Li, L.D.[Lei-Da],
Shi, G.M.[Guang-Ming],
Modeling content-attribute preference for personalized image
esthetics assessment,
IVC(124), 2022, pp. 104505.
Elsevier DOI
2208
Image esthetics assessment, Esthetic preference, Personality
BibRef
Rubio, F.[Fernando],
Flores, M.J.[M. Julia],
Puerta, J.M.[Jose M.],
Ranking-based scores for the assessment of aesthetic quality in
photography,
SP:IC(108), 2022, pp. 116803.
Elsevier DOI
2209
Weakly Supervised Learning, Deep Learning, Transfer Learning,
Ranking, Aesthetics scores
BibRef
Shu, Y.Y.[Yang-Yang],
Li, Q.[Qian],
Liu, L.Q.[Ling-Qiao],
Xu, G.D.[Guan-Dong],
Privileged multi-task learning for attribute-aware aesthetic
assessment,
PR(132), 2022, pp. 108921.
Elsevier DOI
2209
Aesthetic assessment, Privileged information, Multi-task learning
BibRef
Shu, Y.Y.[Yang-Yang],
Li, Q.[Qian],
Liu, L.Q.[Ling-Qiao],
Xu, G.D.[Guan-Dong],
Semi-Supervised Adversarial Learning for Attribute-Aware Photo
Aesthetic Assessment,
MultMed(26), 2024, pp. 4086-4096.
IEEE DOI
2403
Generators, Task analysis, Training, Adversarial machine learning,
Image color analysis, Annotations, Semisupervised learning,
photo aesthetic assessment
BibRef
Castellano, G.[Giovanna],
Vessio, G.[Gennaro],
A Deep Learning Approach to Clustering Visual Arts,
IJCV(130), No. 11, November 2022, pp. 2590-2605.
Springer DOI
2210
BibRef
Jin, X.[Xin],
Lou, H.[Hao],
Huang, H.[Heng],
Li, X.N.[Xin-Ning],
Li, X.D.[Xiao-Dong],
Cui, S.[Shuai],
Zhang, X.K.[Xiao-Kun],
Li, X.[Xiqiao],
Pseudo-Labeling and Meta Reweighting Learning for Image Aesthetic
Quality Assessment,
ITS(23), No. 12, December 2022, pp. 25226-25235.
IEEE DOI
2212
Training, Feature extraction, Task analysis, Quality assessment,
Visualization, Path planning, Autonomous aerial vehicles, path planning
BibRef
Zhu, H.C.[Han-Cheng],
Zhou, Y.[Yong],
Li, L.[Leida],
Li, Y.Q.[Ya-Qian],
Guo, Y.D.[Yan-Dong],
Learning Personalized Image Aesthetics From Subjective and Objective
Attributes,
MultMed(25), 2023, pp. 179-190.
IEEE DOI
2301
Data models, Task analysis, Visualization, Adaptation models, Collaboration,
Social networking (online), Image color analysis, aesthetic preferences
BibRef
Wang, Y.T.[Yao-Ting],
Ke, Y.Z.[Yong-Zhen],
Wang, K.[Kai],
Guo, J.[Jing],
Yang, S.[Shuai],
Spatial-invariant convolutional neural network for photographic
composition prediction and automatic correction,
JVCIR(90), 2023, pp. 103751.
Elsevier DOI
2301
Image composition classification, Aesthetic optimization,
Space invariance, Deep learning
BibRef
Lv, P.[Pei],
Fan, J.Q.[Jian-Qi],
Nie, X.X.[Xi-Xi],
Dong, W.M.[Wei-Ming],
Jiang, X.H.[Xiao-Heng],
Zhou, B.[Bing],
Xu, M.L.[Ming-Liang],
Xu, C.S.[Chang-Sheng],
User-Guided Personalized Image Aesthetic Assessment Based on Deep
Reinforcement Learning,
MultMed(25), 2023, pp. 736-749.
IEEE DOI
2303
Image enhancement, Task analysis, Reinforcement learning,
Feature extraction, Visualization, Training, Neural networks,
user interaction
BibRef
Niu, Y.Z.[Yu-Zhen],
Chen, S.S.[Shan-Shan],
Song, B.[Bingrui],
Chen, Z.X.[Zhi-Xian],
Liu, W.X.[Wen-Xi],
Comment-Guided Semantics-Aware Image Aesthetics Assessment,
CirSysVideo(33), No. 3, March 2023, pp. 1487-1492.
IEEE DOI
2303
Semantics, Multitasking, Task analysis, Fuses, Visualization,
Streaming media, Predictive models, multi-task learning
BibRef
Ahmad, T.[Tasweer],
Schich, M.[Maximilian],
Toward cross-domain object detection in artwork images using improved
YoloV5 and XGBoosting,
IET-IPR(17), No. 8, 2023, pp. 2437-2449.
DOI Link
2306
Cross-domain object detection in style-images, clipart, watercolor,
and comic images.
object detection, neural nets
BibRef
Li, L.[Leida],
Huang, Y.[Yipo],
Wu, J.J.[Jin-Jian],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Guo, Y.D.[Yan-Dong],
Shi, G.M.[Guang-Ming],
Theme-Aware Visual Attribute Reasoning for Image Aesthetics
Assessment,
CirSysVideo(33), No. 9, September 2023, pp. 4798-4811.
IEEE DOI
2310
BibRef
Zhang, M.[Mingrui],
Li, M.[Mading],
Yu, J.H.[Jia-Hao],
Chen, L.[Li],
Aesthetic Photo Collage With Deep Reinforcement Learning,
MultMed(25), 2023, pp. 4653-4664.
IEEE DOI
2311
BibRef
Ni, S.[Shijia],
Shao, F.[Feng],
Chai, X.[Xiongli],
Chen, H.W.[Hang-Wei],
Ho, Y.S.[Yo-Sung],
Composition-Guided Neural Network for Image Cropping Aesthetic
Assessment,
MultMed(25), 2023, pp. 6836-6851.
IEEE DOI
2311
BibRef
Hou, J.W.[Jing-Wen],
Lin, W.S.[Wei-Si],
Yue, G.H.[Guang-Hui],
Liu, W.[Weide],
Zhao, B.Q.[Bao-Quan],
Interaction-Matrix Based Personalized Image Aesthetics Assessment,
MultMed(25), 2023, pp. 5263-5278.
IEEE DOI
2311
BibRef
Huang, J.[Jin],
Gong, Y.S.[Yong-Shun],
Zhang, L.[Lu],
Zhang, J.[Jian],
Nie, L.Q.[Li-Qiang],
Yin, Y.L.[Yi-Long],
Modeling Multiple Aesthetic Views for Series Photo Selection,
MultMed(26), 2024, pp. 1983-1995.
IEEE DOI
2402
Feature extraction, Transformers, Convolutional neural networks,
Quality assessment, Visualization, Task analysis,
graph neural network
BibRef
Zhang, X.D.[Xiao-Dan],
Xiao, Y.[Yuan],
Peng, J.Y.[Jin-Ye],
Gao, X.B.[Xin-Bo],
Hu, B.[Bo],
Confidence-based dynamic cross-modal memory network for image
aesthetic assessment,
PR(149), 2024, pp. 110227.
Elsevier DOI
2403
Image aesthetic assessment (IAA), Memory-based network,
Dynamical multi-modal fusion
BibRef
Zhang, K.W.[Kai-Wei],
Zhu, D.D.[Dan-Dan],
Min, X.K.[Xiong-Kuo],
Gao, Z.[Zhongpai],
Zhai, G.T.[Guang-Tao],
Synergetic Assessment of Quality and Aesthetic:
Approach and Comprehensive Benchmark Dataset,
CirSysVideo(34), No. 4, April 2024, pp. 2536-2549.
IEEE DOI
2404
Databases, Image quality, Distortion, Benchmark testing,
Feature extraction, Crowdsourcing, Visualization, channel diversity
BibRef
Stork, D.G.[David G.],
Computer Vision, ML, and AI in the Study of Fine Art,
CACM(67), No. 5, May 2024, pp. 68-75.
DOI Link
2405
Ongoing research in the analysis of art is building upon the vast store
of algorithms and knowledge from mainstream computer vision, deep
learning, and artificial intelligence.
BibRef
Yang, S.[Shuai],
Wang, Z.[Zibei],
Wang, G.[Guangao],
Ke, Y.Z.[Yong-Zhen],
Qin, F.[Fan],
Guo, J.[Jing],
Chen, L.M.[Li-Ming],
A self-supervised image aesthetic assessment combining masked image
modeling and contrastive learning,
JVCIR(101), 2024, pp. 104184.
Elsevier DOI
2406
Image aesthetic assessment, Self-supervised learning, Masked image modeling
BibRef
Wang, Y.[Yong],
Song, F.[Fanghao],
Liu, Y.[Yan],
Li, Y.[Yaying],
Wang, W.H.[Wei-Hao],
Huang, Q.Q.[Qi-Qi],
Hu, Y.[Yang],
Research on the Association Mechanism and Evaluation Model Between
fNIRS Data and Aesthetic Quality in Product Aesthetic Quality
Evaluation,
AffCom(15), No. 3, July 2024, pp. 1414-1426.
IEEE DOI
2409
Functional near-infrared spectroscopy, Visualization,
Product design, Painting, Faces, Mathematical models,
functional near-infrared spectroscopy (fNIRS)
BibRef
Li, L.[Leida],
Zhu, T.[Tong],
Chen, P.F.[Peng-Fei],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Lin, W.S.[Wei-Si],
Image Aesthetics Assessment with Attribute-Assisted Multimodal Memory
Network,
CirSysVideo(33), No. 12, December 2023, pp. 7413-7424.
IEEE DOI Code:
WWW Link.
2312
BibRef
Huang, Y.[Yipo],
Li, L.[Leida],
Chen, P.F.[Peng-Fei],
Wu, J.J.[Jin-Jian],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Shi, G.M.[Guang-Ming],
Coarse-to-Fine Image Aesthetics Assessment With Dynamic Attribute
Selection,
MultMed(26), 2024, pp. 9316-9329.
IEEE DOI
2409
Predictive models, Image color analysis, Task analysis,
Visualization, Feature extraction, Databases, Merging, model explainability
BibRef
Zhu, T.[Tong],
Li, L.[Leida],
Chen, P.F.[Peng-Fei],
Wu, J.J.[Jin-Jian],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Emotion-aware hierarchical interaction network for multimodal image
aesthetics assessment,
PR(154), 2024, pp. 110584.
Elsevier DOI
2406
Image aesthetics assessment, Multimodal learning, Image emotion analysis
BibRef
Yang, Z.C.[Zhi-Chao],
Li, L.[Leida],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Lin, W.S.[Wei-Si],
Multi-Level Transitional Contrast Learning for Personalized Image
Aesthetics Assessment,
MultMed(26), 2024, pp. 1944-1956.
IEEE DOI
2402
Task analysis, Feature extraction, Databases, Standards,
Videos, Training, aesthetic preferences
BibRef
Lan, G.P.[Gui-Peng],
Xiao, S.[Shuai],
Yang, J.C.[Jia-Chen],
Zhou, Y.S.[Yan-Shuang],
Wen, J.[Jiabao],
Lu, W.[Wen],
Gao, X.B.[Xin-Bo],
Image Aesthetics Assessment Based on Hypernetwork of Emotion Fusion,
MultMed(26), 2024, pp. 3640-3650.
IEEE DOI
2402
Task analysis, Visualization, Transformers, Semantics,
Feature extraction, Psychology, Videos,
image emotion
BibRef
Zhang, X.Y.[Xin-Yue],
Wang, Z.X.[Zhao-Xia],
Cao, G.T.[Gui-Tao],
Ho, S.B.[Seng-Beng],
Joint Weakly Supervised Image Emotion Analysis Based on Interclass
Discrimination and Intraclass Correlation,
IEEE_Int_Sys(39), No. 5, September 2024, pp. 82-89.
IEEE DOI
2410
Visualization, Adaptation models, Correlation, Machine learning,
Feature extraction, Proposals, Intelligent systems,
Learning systems
BibRef
Cotogni, M.[Marco],
Arazzi, M.[Marco],
Cusano, C.[Claudio],
PhotoStyle60: A Photographic Style Dataset for Photo Authorship
Attribution and Photographic Style Transfer,
MultMed(26), 2024, pp. 10573-10584.
IEEE DOI
2411
Image recognition, Task analysis, Painting, Image color analysis,
Feature extraction, Visualization, Digital photography, Dataset,
photographic style
BibRef
Bleidt, T.[Tibor],
Eslami, S.[Sedigheh],
de Melo, G.[Gerard],
ArtQuest: Countering Hidden Language Biases in ArtVQA,
WACV24(7311-7320)
IEEE DOI Code:
WWW Link.
2404
Visualization, Art, Pipelines, Benchmark testing, Linguistics,
Question answering (information retrieval), Applications,
Datasets and evaluations
BibRef
Penzel, N.[Niklas],
Denzler, J.[Joachim],
Interpreting Art by Leveraging Pre-Trained Models,
MVA23(1-6)
DOI Link
2403
Training, Measurement, Analytical models, Art, Statistical analysis,
Computational modeling, Machine vision
BibRef
Gao, S.Q.[Si Qi],
A Research on Traditional Tangka Image Classification Based on Visual
Features,
CVIDL23(13-16)
IEEE DOI
2403
Tibetian art.
Deep learning, Visualization, Image color analysis, Filtering,
Support Vector Machine
BibRef
Springstein, M.[Matthias],
Schneider, S.[Stefanie],
Rahnama, J.[Javad],
Stalter, J.[Julian],
Kristen, M.[Maximilian],
Müller-Budack, E.[Eric],
Ewerth, R.[Ralph],
Visual Narratives: Large-scale Hierarchical Classification of
Art-historical Images,
WACV24(7195-7205)
IEEE DOI
2404
Visualization, Taxonomy, Transformers, Data models, Decoding, Thesauri,
Applications, Arts / games / social media, Algorithms,
Vision + language and/or other modalities
BibRef
He, S.[Shuai],
Ming, A.[Anlong],
Li, Y.Q.[Ya-Qi],
Sun, J.[Jinyuan],
Zheng, S.[ShunTian],
Ma, H.D.[Hua-Dong],
Thinking Image Color Aesthetics Assessment:
Models, Datasets and Benchmarks,
ICCV23(21781-21790)
IEEE DOI
2401
BibRef
Shi, T.F.[Teng-Fei],
Chen, C.[Chenglizhao],
He, Y.B.[Yuan-Bo],
Song, W.F.[Wen-Feng],
Hao, A.[Aimin],
Joint Probability Distribution Regression for Image Cropping,
ICIP23(990-994)
IEEE DOI Code:
WWW Link.
2312
BibRef
Dutta, U.K.[Ujjal Kr],
Fuse and Attend: Generalized Embedding Learning for Art and Sketches,
Drawings22(167-183).
Springer DOI
2304
BibRef
Yi, R.[Ran],
Tian, H.Y.[Hao-Yuan],
Gu, Z.H.[Zhi-Hao],
Lai, Y.K.[Yu-Kun],
Rosin, P.L.[Paul L.],
Towards Artistic Image Aesthetics Assessment:
A Large-scale Dataset and a New Method,
CVPR23(22388-22397)
IEEE DOI
2309
BibRef
Ke, J.J.[Jun-Jie],
Ye, K.[Keren],
Yu, J.[Jiahui],
Wu, Y.H.[Yong-Hui],
Milanfar, P.[Peyman],
Yang, F.[Feng],
VILA: Learning Image Aesthetics from User Comments with
Vision-Language Pretraining,
CVPR23(10041-10051)
IEEE DOI
2309
BibRef
Yang, Y.C.[Yu-Chao],
Yang, Y.F.[Yu-Fan],
Danzeng, X.[Xire],
Zhao, Q.J.[Qi-Jun],
Danzeng, P.[Pubu],
Li, X.S.[Xin-Sheng],
Duoji, G.[Gesang],
Gao, D.G.[Ding-Guo],
Learning Multi-Granularity Features for Re-Identifying Figures in
Portrait Thangka Images,
ICPR22(1643-1649)
IEEE DOI
2212
Nepal, prayer flags.
Representation learning, Visualization, Codes, Convolution,
Message passing, Image retrieval, Feature extraction
BibRef
Yang, Y.Z.[Yu-Zhe],
Xu, L.[Liwu],
Li, L.[Leida],
Qie, N.[Nan],
Li, Y.Q.[Ya-Qian],
Zhang, P.[Peng],
Guo, Y.D.[Yan-Dong],
Personalized Image Aesthetics Assessment with Rich Attributes,
CVPR22(19829-19837)
IEEE DOI
2210
Photography, Databases, Annotations, Computational modeling,
Next generation networking,
Datasets and evaluation
BibRef
Li, H.T.[Hao-Tang],
Guo, S.T.[Sheng-Tao],
Lyu, K.L.[Kai-Lin],
Yang, X.[Xiao],
Chen, T.C.[Tian-Chen],
Zhu, J.Q.[Jian-Qing],
Zeng, H.Q.[Huan-Qiang],
A Challenging Benchmark of Anime Style Recognition,
VDU22(4720-4729)
IEEE DOI
2210
Protocols, Face recognition, Semantics, Benchmark testing, Metadata,
Feature extraction, Transformers
BibRef
Xie, X.[Xin],
Li, Y.[Yi],
Huang, H.B.[Huai-Bo],
Fu, H.Y.[Hai-Yan],
Wang, W.[Wanwan],
Guo, Y.Q.[Yan-Qing],
Artistic Style Discovery with Independent Components,
CVPR22(19838-19847)
IEEE DOI
2210
Photography, Deep learning, Codes,
Aerospace electronics, Controllability, Machine learning
BibRef
Pistola, T.[Theodora],
Georgakopoulou, N.[Nefeli],
Shvets, A.[Alexander],
Chatzistavros, K.[Konstantinos],
Xefteris, V.R.[Vasileios-Rafail],
García, A.T.[Alba Táboas],
Koulalis, I.[Ilias],
Diplaris, S.[Sotiris],
Wanner, L.[Leo],
Vrochidis, S.[Stefanos],
Kompatsiaris, I.[Ioannis],
Imageability-Based Multi-modal Analysis of Urban Environments for
Architects and Artists,
FAPER22(198-209).
Springer DOI
2208
BibRef
Withöft, A.[Ani],
Abdenebaoui, L.[Larbi],
Boll, S.[Susanne],
ILMICA - Interactive Learning Model of Image Collage Assessment:
A Transfer Learning Approach for Aesthetic Principles,
MMMod22(II:84-96).
Springer DOI
2203
BibRef
Fiske, L.D.,
Katsaggelos, A.K.,
Aalders, M.C.G.,
Alfeld, M.,
Walton, M.,
Cossairt, O.,
A Data Fusion Method for the Delayering of X-Ray Fluorescence Images
of Painted Works of Art,
ICIP21(3458-3462)
IEEE DOI
2201
Reflectivity, Art, Image processing, Imaging, Data integration,
Fluorescence, XRF, RIS, Hyperspectral imaging, Data Fusion,
Cultural Heritage Science
BibRef
David, L.O.[Lucas Oliveira],
Pedrini, H.[Helio],
Dias, Z.[Zanoni],
Rocha, A.[Anderson],
Authentication of Vincent van Gogh's Work,
CAIP21(II:371-380).
Springer DOI
2112
BibRef
Holinaty, J.[Josh],
Jacobson, A.[Alec],
Chevalier, F.[Fanny],
Supporting Reference Imagery for Digital Drawing,
SHE21(2434-2442)
IEEE DOI
2112
Layout, Tools, Distortion, Probes, Interviews
BibRef
She, D.Y.[Dong-Yu],
Lai, Y.K.[Yu-Kun],
Yi, G.X.[Gao-Xiong],
Xu, K.[Kun],
Hierarchical Layout-Aware Graph Convolutional Network for Unified
Aesthetics Assessment,
CVPR21(8471-8480)
IEEE DOI
2111
Convolutional codes, Image quality, Visualization,
Computational modeling, Layout, Neural networks, Psychology
BibRef
Agrawal, R.[Rishabh],
Sivaprasad, S.[Sarath],
Pedanekar, N.[Niranjan],
Color Me Good: Branding in the Coloring Style of Movie Posters,
CVFAD21(3894-3898)
IEEE DOI
2109
Image segmentation, Visualization,
Image color analysis, Semantics, Brightness
BibRef
Conde, M.V.[Marcos V.],
Turgutlu, K.[Kerem],
CLIP-Art: Contrastive Pre-training for Fine-Grained Art
Classification,
CVFAD21(3951-3955)
IEEE DOI
2109
Training, Art, Image recognition, Databases,
Natural languages, Neural networks
BibRef
Santana, P.S.[Priscila Sánchez],
Roman-Rangel, E.[Edgar],
Quantifying Visual Similarity for Artistic Styles,
MCPR21(187-197).
Springer DOI
2108
BibRef
Zhang, L.[Lili],
Research on Chinese Traditional Garden Immersive Aesthetic Experience
in the Era of Artificial Intelligence,
DHM21(II:415-427).
Springer DOI
2108
BibRef
Lanitis, A.,
Theodosiou, Z.,
Partaourides, H.,
Artwork Identification in a Museum Environment: A Quantitative
Evaluation of Factors Affecting Identification Accuracy,
EuroMed20(588-595).
Springer DOI
2106
BibRef
Karimi, A.[Akbar],
Rossi, L.[Leonardo],
Prati, A.[Andrea],
Adversarial Training for Aspect-Based Sentiment Analysis with BERT,
ICPR21(8797-8803)
IEEE DOI
2105
Training, Sentiment analysis, Bit error rate, Neural networks,
Task analysis, Software development management
BibRef
Thao, H.T.P.[Ha Thi Phuong],
Balamurali, B.T.,
Herremans, D.[Dorien],
Roig, G.[Gemma],
AttendAffectNet: Self-Attention based Networks for Predicting
Affective Responses from Movies,
ICPR21(8719-8726)
IEEE DOI
2105
Training, Annotations, Neural networks, Streaming media,
Predictive models, Motion pictures, Feature extraction
BibRef
Fahn, C.S.[Chin-Shyurng],
Wu, M.L.[Meng-Luen],
Tsau, S.K.[Sheng-Kuei],
An Intelligent Photographing Guidance System Based on Compositional
Deep Features and Intepretable Machine Learning Model,
ICPR21(7723-7729)
IEEE DOI
2105
Photography, Computational modeling, Machine learning,
Predictive models, Feature extraction, Cameras,
preference prediction
BibRef
Castellano, G.[Giovanna],
Vessio, G.[Gennaro],
Deep Convolutional Embedding for Digitized Painting Clustering,
ICPR21(2708-2715)
IEEE DOI
2105
Measurement, Visualization, Semantics, Metadata, Feature extraction,
Knowledge discovery
BibRef
Dai, Y.[Ying],
CNN-based repetitive self-revised learning for photos' aesthetics
imbalanced classification,
ICPR21(331-338)
IEEE DOI
2105
Training data, photo aesthetic assessment,
repetitive self-revised deep learning, dropping out sample,
highlight
BibRef
Castellano, G.[Giovanna],
Vessio, G.[Gennaro],
A Brief Overview of Deep Learning Approaches to Pattern Extraction and
Recognition in Paintings and Drawings,
FAPER20(487-501).
Springer DOI
2103
BibRef
Jain, N.[Nitisha],
Bartz, C.[Christian],
Bredow, T.[Tobias],
Metzenthin, E.[Emanuel],
Otholt, J.[Jona],
Krestel, R.[Ralf],
Semantic Analysis of Cultural Heritage Data: Aligning Paintings and
Descriptions in Art-historic Collections,
FAPER20(517-530).
Springer DOI
2103
BibRef
Lin, H.[Hubert],
van Zuijlen, M.[Mitchell],
Wijntjes, M.W.A.[Maarten W. A.],
Pont, S.C.[Sylvia C.],
Bala, K.[Kavita],
Insights from a Large-scale Database of Material Depictions in
Paintings,
FAPER20(531-545).
Springer DOI
2103
BibRef
Gonthier, N.[Nicolas],
Gousseau, Y.[Yann],
Ladjal, S.[Saïd],
An Analysis of the Transfer Learning of Convolutional Neural Networks
for Artistic Images,
FAPER20(546-561).
Springer DOI
2103
BibRef
Roychowdhury, S.[Shounak],
Color Space Exploration of Paintings Using a Novel Probabilistic
Divergence,
FAPER20(577-588).
Springer DOI
2103
BibRef
Aslan, S.[Sinem],
Steels, L.[Luc],
Identifying Centres of Interest in Paintings Using Alignment and Edge
Detection,
FAPER20(589-603).
Springer DOI
2103
BibRef
Teruggi, S.[Simone],
Fassi, F.[Francesco],
Machines Learning for Mixed Reality,
FAPER20(613-627).
Springer DOI
2103
BibRef
Barra, P.[Paola],
Barra, S.[Silvio],
Narducci, F.[Fabio],
From Fully Supervised to Blind Digital Anastylosis on Dafne Dataset,
FAPER20(628-642).
Springer DOI
2103
BibRef
Olague, G.[Gustavo],
Ibarra-Vázquez, G.[Gerardo],
Chan-Ley, M.[Mariana],
Puente, C.[Cesar],
Soubervielle-Montalvo, C.[Carlos],
Martinez, A.[Axel],
A Deep Genetic Programming Based Methodology for Art Media
Classification Robust to Adversarial Perturbations,
ISVC20(I:68-79).
Springer DOI
2103
BibRef
Sindel, A.,
Maier, A.,
Christlein, V.,
Art2Contour: Salient Contour Detection in Artworks Using Generative
Adversarial Networks,
ICIP20(788-792)
IEEE DOI
2011
Task analysis, Generative adversarial networks, Painting,
Image edge detection, Generators, Training,
Artworks
BibRef
Cormier, M.,
Park, S.,
Beck, L.,
Automatic Classification of Woodcuts and Copperplate Engravings,
CRV20(85-92)
IEEE DOI
2006
Classification, art, illustrations
BibRef
Fu, C.P.[Cheng-Peng],
Wang, J.Q.[Jin-Qiang],
Sang, J.[Jitao],
Yu, J.[Jian],
Xu, C.S.[Chang-Sheng],
Beyond Literal Visual Modeling: Understanding Image Metaphor Based on
Literal-implied Concept Mapping,
MMMod20(I:111-123).
Springer DOI
2003
BibRef
Kim, J.,
Jun, J.Y.,
Hong, M.,
Shim, H.,
Ahn, J.,
Classification of Oil Painting Using Machine Learning With Visualized
Depth Information,
CIPA19(617-623).
DOI Link
1912
BibRef
Wei, H.,
Gao, G.,
A Holistic Recognition Approach for Woodblock-Print Mongolian Words
Based on Convolutional Neural Network,
ICIP19(2726-2730)
IEEE DOI
1910
Convolutional neural network, woodblock-print,
classical Mongolian, imbalance distribution of samples, synthetic samples
BibRef
Goeting, M.[Marijke],
Seeing the World Through Machinic Eyes:
Reflections on Computer Vision in the Arts,
CVAA18(II:653-670).
Springer DOI
1905
BibRef
Lang, S.[Sabine],
Ommer, B.[Björn],
Reflecting on How Artworks Are Processed and Analyzed by Computer
Vision,
CVAA18(II:647-652).
Springer DOI
1905
BibRef
Sabatelli, M.[Matthia],
Kestemont, M.[Mike],
Daelemans, W.[Walter],
Geurts, P.[Pierre],
Deep Transfer Learning for Art Classification Problems,
CVAA18(II:631-646).
Springer DOI
1905
BibRef
Jangtjik, K.A.,
Ho, T.T.,
Yeh, M.C.,
Hua, K.L.,
A CNN-LSTM framework for authorship classification of paintings,
ICIP17(2866-2870)
IEEE DOI
1803
Adaptation models, Correlation, Logic gates, Painting,
Recurrent neural networks, Task analysis, Training,
multiscale pyramid representation
BibRef
van Noord, N.,
Postma, E.,
A Learned Representation of Artist-Specific Colourisation,
eHeritage17(2907-2915)
IEEE DOI
1802
Art, Decoding, Image color analysis, Painting, Training, Visualization
BibRef
Bianco, S.[Simone],
Mazzini, D.[Davide],
Schettini, R.[Raimondo],
Deep Multibranch Neural Network for Painting Categorization,
CIAP17(I:414-423).
Springer DOI
1711
BibRef
Florea, C.,
Toca, C.,
Gieseke, F.,
Artistic Movement Recognition by Boosted Fusion of Color Structure
and Topographic Description,
WACV17(569-577)
IEEE DOI
1609
Art, Databases, Image color analysis, Kernel, Painting,
Support vector machines, Training
BibRef
Florea, C.[Corneliu],
Badea, M.[Mihai],
Florea, L.[Laura],
Vertan, C.[Constantin],
Domain Transfer for Delving into Deep Networks Capacity to De-Abstract
Art,
SCIA17(I: 337-349).
Springer DOI
1706
BibRef
Vitorino, T.[Tatiana],
Casini, A.[Andrea],
Cucci, C.[Costanza],
Picollo, M.[Marcello],
Stefani, L.[Lorenzo],
When It Is Not Only About Color: The Importance of Hyperspectral
Imaging Applied to the Investigation of Paintings,
CCIW17(175-183).
Springer DOI
1704
BibRef
Bianco, S.[Simone],
Cusano, C.[Claudio],
Schettini, R.[Raimondo],
Artistic Photo Filtering Recognition Using CNNs,
CCIW17(249-258).
Springer DOI
1704
BibRef
Seguin, B.[Benoit],
Striolo, C.[Carlotta],
di Lenardo, I.[Isabella],
Kaplan, F.[Frederic],
Visual Link Retrieval in a Database of Paintings,
CVAA16(I: 753-767).
Springer DOI
1611
retrieve common visual patterns shared by series of paintings.
BibRef
Folego, G.,
Gomes, O.,
Rocha, A.,
From impressionism to expressionism: Automatically identifying van
Gogh's paintings,
ICIP16(141-145)
IEEE DOI
1610
Art
BibRef
Kim, N.[Namil],
Choi, Y.[Yukyung],
Hwang, S.[Soonmin],
Kweon, I.S.[In So],
Artrieval: Painting retrieval without expert knowledge,
ICIP15(1339-1343)
IEEE DOI
1512
color clustering
BibRef
Fried, O.[Ohad],
Shechtman, E.[Eli],
Goldman, D.B.[Dan B.],
Finkelstein, A.[Adam],
Finding distractors in images,
CVPR15(1703-1712)
IEEE DOI
1510
regions of an image that draw attention away from the main subjects.
Remove them with inpainting.
BibRef
Gao, Z.[Zhi],
Shan, M.[Mo],
Cheong, L.F.[Loong-Fah],
Li, Q.Q.[Qing-Quan],
Adaptive Sparse Coding for Painting Style Analysis,
ACCV14(II: 102-117).
Springer DOI
1504
BibRef
Bar, Y.[Yaniv],
Levy, N.[Noga],
Wolf, L.B.[Lior B.],
Classification of Artistic Styles Using Binarized Features Derived from
a Deep Neural Network,
VISART14(71-84).
Springer DOI
1504
BibRef
Chen, Q.[Qian],
Carneiro, G.[Gustavo],
Artistic Image Analysis Using the Composition of Human Figures,
VISART14(117-132).
Springer DOI
1504
BibRef
Agarwal, S.[Siddharth],
Karnick, H.[Harish],
Pant, N.[Nirmal],
Patel, U.[Urvesh],
Genre and Style Based Painting Classification,
WACV15(588-594)
IEEE DOI
1503
Accuracy
BibRef
Blažek, J.[Jan],
Soukup, J.[Jindrich],
Zitová, B.[Barbara],
Flusser, J.[Jan],
Hradilová, J.[Janka],
Hradil, D.[David],
Tichý, T.[Tomáš],
M3art: A Database of Models of Canvas Paintings,
EuroMed14(176-185).
Springer DOI
1412
BibRef
Solina, F.[Franc],
Majcen, G.[Gregor],
Bovcon, N.[Narvika],
Batagelj, B.[Borut],
Preservation of a Computer-Based Art Installation,
EuroMed14(643-650).
Springer DOI
1412
BibRef
Falvo, P.G.[Perla Gianni],
The Madonna of the Goldfinch by Raphael: Chamera of Perception,
EuroMed14(706-715).
Springer DOI
1412
BibRef
Stout, S.[Samantha],
Cosentino, A.[Antonino],
Scandurra, C.[Carmelo],
Non-invasive Materials Analysis Using Portable X-ray Fluorescence (XRF)
in the Examination of Two Mural Paintings in the Catacombs of San
Giovanni, Syracuse,
EuroMed14(697-705).
Springer DOI
1412
BibRef
Xiong, B.[Bo],
Grauman, K.[Kristen],
Detecting Snap Points in Egocentric Video with a Web Photo Prior,
ECCV14(V: 282-298).
Springer DOI
1408
Those points that look like composed photos.
BibRef
Ghorai, M.,
Chanda, B.,
A robust faint line detection and enhancement algorithm for mural
images,
NCVPRIPG13(1-4)
IEEE DOI
1408
art
BibRef
Deborah, H.[Hilda],
George, S.[Sony],
Hardeberg, J.Y.[Jon Yngve],
Pigment Mapping of the Scream (1893) Based on Hyperspectral Imaging,
ICISP14(247-256).
Springer DOI
1406
BibRef
Baltazar, A.[Aurélie],
Baltazar, P.[Pascal],
Frisson, C.[Christian],
An Interactive Device for Exploring Thematically Sorted Artworks,
MMMod14(II: 34-43).
Springer DOI
1405
BibRef
Liu, D.W.[Dong-Wei],
Klette, R.[Reinhard],
Inverse Skeletal Strokes,
PSIVTWS13(1-11).
Springer DOI
1402
BibRef
Wu, T.[Tong],
Polatkan, G.[Gungor],
Steel, D.[David],
Brown, W.[William],
Daubechies, I.[Ingrid],
Calderbank, R.[Robert],
Painting analysis using wavelets and probabilistic topic models,
ICIP13(3264-3268)
IEEE DOI
1402
Hidden Markov Trees
BibRef
Guo, X.Y.[Xiao-Ying],
Kurita, T.[Takio],
Asano, C.M.[Chie Muraki],
Asano, A.[Akira],
Visual complexity assessment of painting images,
ICIP13(388-392)
IEEE DOI
1402
Accuracy
BibRef
Condorovici, R.G.[Razvan George],
Florea, C.[Corneliu],
Vertan, C.[Constantin],
Painting Scene Recognition Using Homogenous Shapes,
ACIVS13(262-273).
Springer DOI
1311
BibRef
Condorovici, R.G.[Razvan George],
Florea, C.[Corneliu],
Vrânceanu, R.[Ruxandra],
Vertan, C.[Constantin],
Perceptually-Inspired Artistic Genre Identification System in Digitized
Painting Collections,
SCIA13(687-696).
Springer DOI
1311
BibRef
Abe, K.[Kanako],
Saleh, B.[Babak],
Elgammal, A.[Ahmed],
An Early Framework for Determining Artistic Influence,
MM4CH13(198-207).
Springer DOI
1309
BibRef
Zhang, M.[Min],
Atkinson, S.[Sarah],
Alechina, N.[Natasha],
Qiu, G.P.[Guo-Ping],
'A Is for Art': My Drawings, Your Paintings,
MM4CH13(308-317).
Springer DOI
1309
BibRef
Mallik, A.[Anupama],
Chaudhury, S.[Santanu],
Madan, S.[Shipra],
Dinesh, T.B.,
Chandru, U.V.[Uma V.],
Archiving Mural Paintings Using an Ontology Based Approach,
eHeritage12(II:37-48).
Springer DOI
1304
BibRef
Tanimoto, T.[Tetsushi],
Horiuchi, T.[Takahiko],
Tominaga, S.[Shoji],
Precise Estimation of Painting Surfaces for Digital Archiving,
CCIW13(171-183).
Springer DOI
1304
BibRef
Yamagishi, M.[Misako],
Kubo, C.[Chiho],
Yamaba, K.[Kazuo],
Considerations of the Affective Factors for Appreciating a
Printed-Color Picture,
CCIW13(80-89).
Springer DOI
1304
BibRef
Okazawa, G.[Gouki],
Komatsu, H.[Hidehiko],
Image Statistics for Golden Appearance of a Painting by a Japanese
Edo-era Artist Jakuchu Ito,
CCIW13(68-79).
Springer DOI
1304
BibRef
Wang, Y.[Ying],
Takatsuka, M.,
A Framework Towards Quantified Artistic Influences Analysis,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Arora, R.S.[Ravneet Singh],
Elgammal, A.[Ahmed],
Towards automated classification of fine-art painting style:
A comparative study,
ICPR12(3541-3544).
WWW Link.
1302
BibRef
Sener, F.[Fadime],
Samet, N.[Nermin],
Sahin, P.D.[Pinar Duygulu],
Identification of Illustrators,
VISART12(I: 589-597).
Springer DOI
1210
BibRef
Gancarczyk, J.[Joanna],
Feature Vector Definition for a Decision Tree Based Craquelure
Identification in Old Paintings,
VISART12(I: 542-550).
Springer DOI
1210
BibRef
Carneiro, G.[Gustavo],
da Silva, N.P.[Nuno Pinho],
del Bue, A.[Alessio],
Costeira, J.P.[João Paulo],
Artistic Image Classification: An Analysis on the PRINTART Database,
ECCV12(IV: 143-157).
Springer DOI
1210
BibRef
Constable, M.,
Zhang, X.Y.[Xiao-Yan],
Depth-based Analyses of Landscape Paintings and Photographs According
to Itten's Contrasts,
PSIVT10(481-486).
IEEE DOI
1011
BibRef
Sun, Y.H.[Yu-Hong],
Wang, J.[Jiatao],
Representation of watercolor based on regions,
IASP11(496-500).
IEEE DOI
1112
BibRef
Landi, M.[Marco],
Maino, G.[Giuseppe],
Multispectral Imaging and Digital Restoration for Paintings
Documentation,
CIAP11(II: 464-474).
Springer DOI
1109
BibRef
Monti, M.[Mariapaola],
Maino, G.[Giuseppe],
Image Processing and a Virtual Restoration Hypothesis for Mosaics and
Their Cartoons,
CIAP11(II: 486-495).
Springer DOI
1109
BibRef
Barazzetti, L.,
Scaioni, M.,
Brumana, R.,
Remondino, F.,
Rizzi, A.,
Lo Brutto, M.,
Geometric and Radiometric Analysis of Paintings,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Schmidt, N.,
Schütze, R.[Rainer],
Boochs, F.[Frank],
3D-Sutra: Interactive Analysis Tool For A Web-Atlas of Scanned Sutra
Inscriptions In China,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Yao, L.[Lei],
Li, J.[Jia],
Wang, J.Z.[James Z.],
Characterizing elegance of curves computationally for distinguishing
Morrisseau paintings and the imitations,
ICIP09(73-76).
IEEE DOI
0911
BibRef
Zhang, Q.[Qing],
Virtual Presenting a Famous Chinese Landscape Painting Based on
Textured 3-D Model,
CISP09(1-4).
IEEE DOI
0910
BibRef
Tanaka, N.,
Tominaga, S.,
Multispectral Analysis of Oil Paintings and Data Compression,
Southwest06(158-162).
IEEE DOI
0603
BibRef
Tominaga, S.,
Tanaka, N.,
Komada, T.,
Estimation of surface properties of art paintings using a multi-band
camera,
ICPR04(I: 92-95).
IEEE DOI
0409
BibRef
And:
Imaging and rendering of oil paintings using a multi-band camera,
Southwest04(6-10).
IEEE DOI
0411
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Brush Stroke Analysis .