Pong, T.C.,
Haralick, R.M.,
Craig, J.R.,
Yoon, R.H.,
Choi, W.Z.,
The Application of Image Analysis Techniques to Mineral Processing,
PRL(2), 1983, pp. 117-123.
BibRef
8300
Larsen, R.[Rasmus],
Nielsen, A.A.[Allan Aasbjerg],
Flesche, H.[Harald],
Sensitivity study of a semi-automatic training set generator,
PRL(21), No. 13-14, December 2000, pp. 1175-1182.
0011
BibRef
Earlier:
Sensitivity Study of a Semi-automatic Supervised Classifier Applied to
Minerals from X-Ray Mapping Images,
SCIA99(Statistical Methods).
BibRef
Nielsen, A.A.[Allan A.],
Larsen, R.[Rasmus],
Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data,
SCIA17(II: 147-158).
Springer DOI
1706
BibRef
Larsen, R.[Rasmus],
Hilger, K.B.[Klaus Baggesen],
Probabilistic Generative Modelling,
SCIA03(861-868).
Springer DOI
0310
BibRef
Hilger, K.B.,
Nielsen, A.A.,
Larsen, R.,
A Scheme for Initial Exploratory Data Analysis of Multivariate Image
Data,
SCIA01(O-Tu4A).
0206
BibRef
Ross, B.J.,
Fueten, F.,
Yashkir, D.Y.,
Automatic mineral identification using genetic programming,
MVA(13), No. 2 2001, pp. 61-69.
Springer DOI
0201
BibRef
Galvao, L.S.[Lenio Soares],
Formaggio, A.R.[Antonio Roberto],
Couto, E.G.[Eduardo Guimaraes],
Roberts, D.A.[Dar A.],
Relationships between the mineralogical and chemical composition of
tropical soils and topography from hyperspectral remote sensing data,
PandRS(63), No. 2, March 2008, pp. 259-271.
Elsevier DOI
0803
Hyperspectral remote sensing; Tropical soils; AVIRIS; Topography;
Mineral identification
BibRef
Zaini, N.,
van der Meer, F.,
van der Werff, H.,
Effect of Grain Size and Mineral Mixing on Carbonate Absorption
Features in the SWIR and TIR Wavelength Regions,
RS(4), No. 4, April 2012, pp. 987-1003.
DOI Link
1202
BibRef
van der Werff, H.[Harald],
van der Meer, F.[Freek],
Sentinel-2 for Mapping Iron Absorption Feature Parameters,
RS(7), No. 10, 2015, pp. 12635.
DOI Link
1511
BibRef
Murphy, R.J.[Richard J.],
Monteiro, S.T.[Sildomar T.],
Mapping the distribution of ferric iron minerals on a vertical mine
face using derivative analysis of hyperspectral imagery
(430-970 nm),
PandRS(75), No. 1, January 2013, pp. 29-39.
Elsevier DOI
1301
Mining; Iron ore; Remote sensing; Hyperspectral; Derivative analysis;
Banded iron formation
BibRef
de Q. da Silva, A.[Arnaldo],
Paradella, W.R.[Waldir R.],
Freitas, C.C.[Corina C.],
Oliveira, C.G.[Cleber G.],
Evaluation of Digital Classification of Polarimetric SAR Data for
Iron-Mineralized Laterites Mapping in the Amazon Region,
RS(5), No. 6, 2013, pp. 3101-3122.
DOI Link
1307
BibRef
Liu, L.[Lei],
Zhou, J.[Jun],
Jiang, D.[Dong],
Zhuang, D.[Dafang],
Mansaray, L.R.[Lamin R.],
Zhang, B.[Bing],
Targeting Mineral Resources with Remote Sensing and Field Data in the
Xiemisitai Area, West Junggar, Xinjiang, China,
RS(5), No. 7, 2013, pp. 3156-3171.
DOI Link
1307
BibRef
Murphy, R.J.,
Schneider, S.,
Monteiro, S.T.,
Consistency of Measurements of Wavelength Position From Hyperspectral
Imagery: Use of the Ferric Iron Crystal Field Absorption at sim900 nm
as an Indicator of Mineralogy,
GeoRS(52), No. 5, May 2014, pp. 2843-2857.
IEEE DOI
1403
Geology
BibRef
Chen, J.,
Richard, C.,
Honeine, P.,
Nonlinear Estimation of Material Abundances in Hyperspectral Images
With L_1-Norm Spatial Regularization,
GeoRS(52), No. 5, May 2014, pp. 2654-2665.
IEEE DOI
1403
L_1 -norm regularization
BibRef
Mielke, C.[Christian],
Boesche, N.K.[Nina Kristine],
Rogass, C.[Christian],
Kaufmann, H.[Hermann],
Gauert, C.[Christoph],
de Wit, M.[Maarten],
Spaceborne Mine Waste Mineralogy Monitoring in South Africa,
Applications for Modern Push-Broom Missions: Hyperion/OLI and
EnMAP/Sentinel-2,
RS(6), No. 8, 2014, pp. 6790-6816.
DOI Link
1410
BibRef
Schneider, S.[Sven],
Murphy, R.J.[Richard J.],
Melkumyan, A.[Arman],
Evaluating the performance of a new classifier: the GP-OAD: A
comparison with existing methods for classifying rock type and
mineralogy from hyperspectral imagery,
PandRS(98), No. 1, 2014, pp. 145-156.
Elsevier DOI
1411
Hyperspectral
BibRef
Huo, H.Y.[Hong-Yuan],
Ni, Z.[Zhuoya],
Jiang, X.G.[Xiao-Guang],
Zhou, P.[Ping],
Liu, L.[Liang],
Mineral Mapping and Ore Prospecting with HyMap Data over Eastern Tien
Shan, Xinjiang Uyghur Autonomous Region,
RS(6), No. 12, 2014, pp. 11829-11851.
DOI Link
1412
BibRef
Cochrane, C.J.,
Blacksberg, J.,
A Fast Classification Scheme in Raman Spectroscopy for the
Identification of Mineral Mixtures Using a Large Database With
Correlated Predictors,
GeoRS(53), No. 8, August 2015, pp. 4259-4274.
IEEE DOI
1506
Raman spectra
BibRef
Wang, D.,
Bischof, L.,
Lagerstrom, R.,
Hilsenstein, V.,
Hornabrook, A.,
Hornabrook, G.,
Automated Opal Grading by Imaging and Statistical Learning,
SMCS(46), No. 2, February 2016, pp. 185-201.
IEEE DOI
1601
Ash
BibRef
Schreiner, S.[Simon],
Buddenbaum, H.[Henning],
Emmerling, C.[Christoph],
Steffens, M.[Markus],
VNIR/SWIR Laboratory Imaging Spectroscopy for Wall-to-Wall Mapping of
Elemental Concentrations in Soil Cores,
PFG(2015), No. 6, 2015, pp. 423-435.
DOI Link
1601
BibRef
Hecker, C.,
Riley, D.,
van der Meijde, M.,
van der Meer, F.D.,
Noise Simulation and Correction in Synthetic Airborne TIR Data for
Mineral Quantification,
GeoRS(54), No. 3, March 2016, pp. 1545-1553.
IEEE DOI
1603
Data models
BibRef
Mielke, C.[Christian],
Rogass, C.[Christian],
Boesche, N.[Nina],
Segl, K.[Karl],
Altenberger, U.[Uwe],
EnGeoMAP 2.0: Automated Hyperspectral Mineral Identification for the
German EnMAP Space Mission,
RS(8), No. 2, 2016, pp. 127.
DOI Link
1603
BibRef
Price, M.A.[Mark A.],
Ramsey, M.S.[Michael S.],
Crown, D.A.[David A.],
Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits:
A Terrestrial Analog for Mantled Lava Flows on Mars,
RS(8), No. 2, 2016, pp. 152.
DOI Link
1603
With IR data.
BibRef
Yokoya, N.[Naoto],
Chan, J.C.W.[Jonathan Cheung-Wai],
Segl, K.[Karl],
Potential of Resolution-Enhanced Hyperspectral Data for Mineral
Mapping Using Simulated EnMAP and Sentinel-2 Images,
RS(8), No. 3, 2016, pp. 172.
DOI Link
1604
BibRef
Aligholi, S.[Saeed],
Lashkaripour, G.R.[Gholam Reza],
Khajavi, R.[Reza],
Razmara, M.[Morteza],
Automatic mineral identification using color tracking,
PR(65), No. 1, 2017, pp. 164-174.
Elsevier DOI
1702
Automated mineral identification
BibRef
Adep, R.N.[Ramesh Nityanand],
shetty, A.[Amba],
Ramesh, H.,
EXhype: A tool for mineral classification using hyperspectral data,
PandRS(124), No. 1, 2017, pp. 106-118.
Elsevier DOI
1702
Artificial neural network
BibRef
Liu, H.J.[Hua-Jian],
Lee, S.H.[Sang-Heon],
Chahl, J.S.[Javaan Singh],
Transformation of a high-dimensional color space for material
classification,
JOSA-A(34), No. 4, April 2017, pp. 523-532.
DOI Link
1704
Image processing; Machine vision; Remote sensing and sensors
BibRef
Kopacková, V.[Veronika],
Koucká, L.[Lucie],
Integration of Absorption Feature Information from Visible to
Longwave Infrared Spectral Ranges for Mineral Mapping,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Hoang, N.T.[Nguyen Tien],
Koike, K.[Katsuaki],
Transformation of Landsat imagery into pseudo-hyperspectral imagery
by a multiple regression-based model with application to metal
deposit-related minerals mapping,
PandRS(133), No. Supplement C, 2017, pp. 157-173.
Elsevier DOI
1711
Pseudo-band reflectance, Multiple linear regression,
Bayesian model averaging, Hyperion image, Landsat ETM+ image, Cuprite
BibRef
Xue, J.,
Zhang, H.,
Dana, K.,
Nishino, K.,
Differential Angular Imaging for Material Recognition,
CVPR17(6940-6949)
IEEE DOI
1711
Cameras, Databases, Image capture, Image recognition, Lighting, Robots
BibRef
Wang, Y.B.[Yue-Bin],
Mei, J.[Jie],
Zhang, L.Q.[Li-Qiang],
Zhang, B.[Bing],
Li, A.J.[An-Jian],
Zheng, Y.B.[Yi-Bo],
Zhu, P.P.[Pan-Pan],
Self-Supervised Low-Rank Representation (SSLRR) for Hyperspectral
Image Classification,
GeoRS(56), No. 10, October 2018, pp. 5658-5672.
IEEE DOI
1810
Manifolds, Linear programming, Hyperspectral imaging, Dictionaries,
Semantics, Iterative methods,
self-supervised
BibRef
Lin, J.[Jie],
Huang, T.Z.[Ting-Zhu],
Zhao, X.L.[Xi-Le],
Jiang, T.X.[Tai-Xiang],
Zhuang, L.[Lina],
A Tensor Subspace Representation-Based Method for Hyperspectral Image
Denoising,
GeoRS(59), No. 9, September 2021, pp. 7739-7757.
IEEE DOI
2109
Tensors, Gaussian noise, Computational modeling, Noise reduction,
Minimization, Computational complexity, Hyperspectral imaging,
tensor subspace representation (TenSR)
BibRef
Gao, L.R.[Lian-Ru],
Yao, D.[Dan],
Li, Q.T.[Qing-Ting],
Zhuang, L.[Lina],
Zhang, B.[Bing],
Bioucas-Dias, J.M.[José M.],
A New Low-Rank Representation Based Hyperspectral Image Denoising
Method for Mineral Mapping,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Zhuang, L.[Lina],
Gao, L.R.[Lian-Ru],
Zhang, B.[Bing],
Fu, X.Y.[Xi-You],
Bioucas-Dias, J.M.[José M.],
Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank
and Sparse Representations,
GeoRS(60), 2022, pp. 1-17.
IEEE DOI
2112
Noise reduction, Hyperspectral imaging, Anomaly detection,
Correlation, Image resolution, Dictionaries,
self-similarity
BibRef
Wang, Y.B.[Yue-Bin],
Mei, J.[Jie],
Zhang, L.Q.[Li-Qiang],
Zhang, B.[Bing],
Zhu, P.P.[Pan-Pan],
Li, Y.[Yang],
Li, X.G.[Xin-Gang],
Self-Supervised Feature Learning with CRF Embedding for Hyperspectral
Image Classification,
GeoRS(57), No. 5, May 2019, pp. 2628-2642.
IEEE DOI
1905
backpropagation, convolutional neural nets, feature extraction,
geophysical image processing, hyperspectral imaging,
self-supervision
BibRef
Cao, Y.[Yun],
Wang, Y.B.[Yue-Bin],
Peng, J.H.[Jun-Huan],
Qiu, C.P.[Chun-Ping],
Ding, L.[Lei],
Zhu, X.X.[Xiao Xiang],
SDFL-FC: Semisupervised Deep Feature Learning With Feature
Consistency for Hyperspectral Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10488-10502.
IEEE DOI
2112
Feature extraction, Image reconstruction,
Generative adversarial networks, Training, Optimization,
optimization
BibRef
Martínez, J.[Julián],
Montiel, V.[Violeta],
Rey, J.[Javier],
Cańadas, F.[Francisco],
Vera, P.[Pedro],
Utilization of Integrated Geophysical Techniques to Delineate the
Extraction of Mining Bench of Ornamental Rocks (Marble),
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Huang, H.G.[Hua-Guo],
Accelerated RAPID Model Using Heterogeneous Porous Objects,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
3D radiative transfer model. (Porous object: tree crown.)
BibRef
Pei, J.[Jie],
Wang, L.[Li],
Huang, N.[Ni],
Geng, J.[Jing],
Cao, J.H.[Jian-Hua],
Niu, Z.[Zheng],
Analysis of Landsat-8 OLI Imagery for Estimating Exposed Bedrock
Fractions in Typical Karst Regions of Southwest China Using a Karst
Bare-Rock Index,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Boubanga-Tombet, S.[Stephane],
Huot, A.[Alexandrine],
Vitins, I.[Iwan],
Heuberger, S.[Stefan],
Veuve, C.[Christophe],
Eisele, A.[Andreas],
Hewson, R.[Rob],
Guyot, E.[Eric],
Marcotte, F.[Frédérick],
Chamberland, M.[Martin],
Thermal Infrared Hyperspectral Imaging for Mineralogy Mapping of a
Mine Face,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Xu, Y.J.[Yuan-Jin],
Chen, J.G.[Jian-Guo],
Meng, P.Y.[Peng-Yan],
Detection of alteration zones using hyperspectral remote sensing data
from Dapingliang skarn copper deposit and its surrounding area,
Shanshan County, Xinjiang Uygur autonomous region, China,
JVCIR(58), 2019, pp. 67-78.
Elsevier DOI
1901
Hyperspectral remote sensing, Detection of alteration zones,
Dapingliang skarn copper deposit, Spectral matching
BibRef
Shan, P.F.[Peng-Fei],
Lai, X.P.[Xing-Ping],
Mesoscopic structure PFC~2D model of soil rock mixture based on
digital image,
JVCIR(58), 2019, pp. 407-415.
Elsevier DOI
1901
Soil rock mixture, PFC~2D model, Particle flow simulation,
Meso mechanical properties
BibRef
Shan, P.F.[Peng-Fei],
Lai, X.P.[Xing-Ping],
Influence of CT scanning parameters on rock and soil images,
JVCIR(58), 2019, pp. 642-650.
Elsevier DOI
1901
Digital image processing, Relative standard deviation,
Parameters, Geotechnical CT image
BibRef
Lorenz, S.[Sandra],
Beyer, J.[Jan],
Fuchs, M.[Margret],
Seidel, P.[Peter],
Turner, D.[David],
Heitmann, J.[Johannes],
Gloaguen, R.[Richard],
The Potential of Reflectance and Laser Induced Luminescence
Spectroscopy for Near-Field Rare Earth Element Detection in Mineral
Exploration,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Huang, S.[Shuang],
Chen, S.B.[Sheng-Bo],
Zhang, Y.Z.[Yuan-Zhi],
Comparison of altered mineral information extracted from ETM+, ASTER
and Hyperion data in Águas Claras iron ore, Brazil,
IET-IPR(13), No. 2, February 2019, pp. 355-364.
DOI Link
1902
BibRef
Kurata, K.[Kana],
Yamaguchi, Y.S.[Yasu-Shi],
Integration and Visualization of Mineralogical and Topographical
Information Derived from ASTER and DEM Data,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Xu, Y.J.[Yuan-Jin],
Meng, P.Y.[Peng-Yan],
Chen, J.G.[Jian-Guo],
Study on clues for gold prospecting in the Maizijing-Shulonggou area,
Ningxia Hui autonomous region, China, using ALI, ASTER and
WorldView-2 imagery,
JVCIR(60), 2019, pp. 192-205.
Elsevier DOI
1903
Remote sensing, Mineral prospecting, Fracture,
Hydrothermal alteration, Gold mineralization, Maizijing-Shulonggou area
BibRef
Noori, L.[Lida],
Pour, A.B.[Amin Beiranvand],
Askari, G.[Ghasem],
Taghipour, N.[Nader],
Pradhan, B.[Biswajeet],
Lee, C.W.[Chang-Wook],
Honarmand, M.[Mehdi],
Comparison of Different Algorithms to Map Hydrothermal Alteration
Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore
Exploration: Toroud-Chahshirin Magmatic Belt (TCMB), North Iran,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhou, C.[Chao],
Zhang, Y.Z.[Yuan-Zhi],
Chen, S.B.[Sheng-Bo],
Zhu, B.X.[Bing-Xue],
Analyzing the Magnesium (Mg) Number of Olivine on the Lunar Surface
and Its Geological Significance,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zoheir, B.[Basem],
Emam, A.[Ashraf],
Abdel-Wahed, M.[Mohamed],
Soliman, N.[Nehal],
Multispectral and Radar Data for the Setting of Gold Mineralization
in the South Eastern Desert, Egypt,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Guo, C.,
Ling, B.,
Mavko, G.,
Liu, R.,
Effect of Microgeometry on Modeling Accuracy of Fluid-Saturated Rock
Using Dielectric Permittivity,
GeoRS(57), No. 9, September 2019, pp. 7294-7299.
IEEE DOI
1909
Permittivity, Dielectrics, Numerical models, Rocks,
Analytical models, Solid modeling, Geometry,
numerical simulation
BibRef
Xu, K.[Kai],
Wang, X.F.[Xiao-Feng],
Kong, C.F.[Chun-Fang],
Feng, R.[Ruyi],
Liu, G.[Gang],
Wu, C.L.[Chong-Long],
Identification of Hydrothermal Alteration Minerals for Exploring Gold
Deposits Based on SVM and PCA Using ASTER Data: A Case Study of
Gulong,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Krówczynska, M.[Malgorzata],
Raczko, E.[Edwin],
Staniszewska, N.[Natalia],
Wilk, E.[Ewa],
Asbestos-Cement Roofing Identification Using Remote Sensing and
Convolutional Neural Networks (CNNs),
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Gately, J.[Jacob],
Liang, Y.[Ying],
Wright, M.K.[Matthew Kolessar],
Banerjee, N.K.[Natasha Kholgade],
Banerjee, S.[Sean],
Dey, S.[Soumyabrata],
Automatic Material Classification Using Thermal Finger Impression,
MMMod20(I:239-250).
Springer DOI
2003
BibRef
Ducasse, E.[Etienne],
Adeline, K.[Karine],
Briottet, X.[Xavier],
Hohmann, A.[Audrey],
Bourguignon, A.[Anne],
Grandjean, G.[Gilles],
Montmorillonite Estimation in Clay-Quartz-Calcite Samples from
Laboratory SWIR Imaging Spectroscopy: A Comparative Study of Spectral
Preprocessings and Unmixing Methods,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kasmaeeyazdi, S.[Sara],
Mandanici, E.[Emanuele],
Balomenos, E.[Efthymios],
Tinti, F.[Francesco],
Bonduŕ, S.[Stefano],
Bruno, R.[Roberto],
Mapping of Aluminum Concentration in Bauxite Mining Residues Using
Sentinel-2 Imagery,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yousefi, B.[Bardia],
Ibarra-Castanedo, C.[Clemente],
Chamberland, M.[Martin],
Maldague, X.P.V.[Xavier P. V.],
Beaudoin, G.[Georges],
Unsupervised Identification of Targeted Spectra Applying Rank1-NMF
and FCC Algorithms in Long-Wave Hyperspectral Infrared Imagery,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
FCC: False Color Composites.
BibRef
Acosta, I.C.C.[Isabel Cecilia Contreras],
Khodadadzadeh, M.[Mahdi],
Gloaguen, R.[Richard],
Resolution Enhancement for Drill-Core Hyperspectral Mineral Mapping,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Earlier:
Multi-label Classification for Drill-core Hyperspectral Mineral Mapping,
ISPRS20(B3:383-388).
DOI Link
2012
BibRef
Duan, P.[Puhong],
Lai, J.[Jibao],
Ghamisi, P.[Pedram],
Kang, X.D.[Xu-Dong],
Jackisch, R.[Robert],
Kang, J.[Jian],
Gloaguen, R.[Richard],
Component Decomposition-Based Hyperspectral Resolution Enhancement
for Mineral Mapping,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Lin, C.H.[Chuen-Horng],
Wang, T.Y.[Ting-You],
A novel convolutional neural network architecture of multispectral
remote sensing images for automatic material classification,
SP:IC(97), 2021, pp. 116329.
Elsevier DOI
2107
Terrain reconstruction, Remote sensing image,
Multispectral image, Convolutional neural network, Material classification
BibRef
Wu, M.J.[Meng-Juan],
Wang, J.L.[Jin-Lin],
Wang, Q.[Quan],
Zhou, K.[Kefa],
Zhang, Z.X.[Zhi-Xin],
Ma, X.M.[Xiu-Mei],
Chen, W.T.[Wei-Tao],
Retrieval of Particle Size of Natural Granite From Multiangular
Bidirectional Reflectance Spectra Using the Hapke Model (June 2020),
GeoRS(59), No. 8, August 2021, pp. 6537-6548.
IEEE DOI
2108
Minerals, Atmospheric measurements, Particle measurements,
Atmospheric modeling, Scattering, Mathematical model, Rocks,
the single-scattering albedo (SSA)
BibRef
Zhou, P.[Ping],
Zhao, Z.[Zhe],
Huo, H.Y.[Hong-Yuan],
Liu, Z.[Zhansheng],
Retrieval of Photometric Parameters of Minerals Using a Self-Made
Multi-Angle Spectrometer Based on the Hapke Radiative Transfer Model,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Liu, C.Q.[Chang-Qing],
Ling, Z.C.[Zong-Cheng],
Zhang, J.[Jiang],
Wu, Z.C.[Zhong-Chen],
Bai, H.C.[Hong-Chun],
Liu, Y.H.[Yi-Heng],
A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System
Applicable for Martian Rocks Studies,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Fu, L.[Lan],
Yu, H.K.[Hong-Kai],
Li, X.G.[Xiao-Guang],
Przybyla, C.P.[Craig P.],
Wang, S.[Song],
Deep Learning for Object Detection in Materials-Science Images:
A Tutorial,
SPMag(39), No. 1, January 2022, pp. 78-88.
IEEE DOI
2201
Deep learning, Training data, Tutorials, Microscopy,
Materials science, Object detection
BibRef
Xue, J.[Jia],
Zhang, H.[Hang],
Nishino, K.[Ko],
Dana, K.J.[Kristin J.],
Differential Viewpoints for Ground Terrain Material Recognition,
PAMI(44), No. 3, March 2022, pp. 1205-1218.
IEEE DOI
2202
Databases, Image recognition, Cameras, Robots, Lighting, Image capture,
Material recognition, deep convolutional neural networks,
robot navigation
BibRef
Song, X.Y.[Xiao-Ying],
Chai, L.[Li],
Zhang, J.X.[Jing-Xin],
Graph Signal Processing Approach to QSAR/QSPR Model Learning of
Compounds,
PAMI(44), No. 4, April 2022, pp. 1963-1973.
IEEE DOI
2203
Compounds, Analytical models, Mathematical model,
Biological system modeling, Chemicals, Predictive models, Indexes,
multidimensional signal
BibRef
Persico, R.[Raffaele],
Farhat, I.[Iman],
Farrugia, L.[Lourdes],
Sammut, C.[Charles],
A Numerical Investigation of the Dispersion Law of Materials by Means
of Multi-Length TDR Data,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Qin, L.[Lang],
Wu, X.[Xing],
Huang, L.Y.[Li-Ying],
Liu, Y.[Yang],
Zou, Y.L.[Yong-Liao],
Spectroscopic and Petrographic Investigations of Lunar Mg-Suite
Meteorite Northwest Africa 8687,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Jin, G.B.[Guo-Bin],
Wu, Z.C.[Zhong-Chen],
Ling, Z.C.[Zong-Cheng],
Liu, C.Q.[Chang-Qing],
Liu, W.[Wang],
Chen, W.X.[Wen-Xi],
Zhang, L.[Li],
A New Spectral Transformation Approach and Quantitative Analysis for
MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sathyaseelan, C.[Chakkarai],
Patro, L.P.P.[L Ponoop Prasad],
Rathinavelan, T.[Thenmalarchelvi],
Sequence patterns and HMM profiles to predict proteome wide zinc
finger motifs,
PR(135), 2023, pp. 109134.
Elsevier DOI
2212
Zinc finger classification, Zinc finger motif,
Zinc finger proteome, Pfam HMM profile, Zinc finger prediction
BibRef
Alpers, A.[Andreas],
Fiedler, M.[Maximilian],
Gritzmann, P.[Peter],
Klemm, F.[Fabian],
Turning Grain Maps into Diagrams,
SIIMS(16), No. 1, 2023, pp. 223-249.
DOI Link
2302
BibRef
Yang, X.[Xu],
Chen, J.G.[Jian-Guo],
Chen, Z.J.[Zhi-Jun],
Classification of Alteration Zones Based on Drill Core Hyperspectral
Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in
Pulang Porphyry Copper Deposit, China,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Li, N.[Na],
Gong, C.G.[Chen-Geng],
Zhao, H.J.[Hui-Jie],
Ma, Y.[Yun],
Space Target Material Identification Based on Graph Convolutional
Neural Network,
RS(15), No. 7, 2023, pp. 1937.
DOI Link
2304
BibRef
Kouremadas, G.[Georgios],
Christodoulakis, J.[John],
Varotsos, C.[Costas],
Xue, Y.[Yong],
Satellite Sensed Data-Dose Response Functions: A Totally New Approach
for Estimating Materials' Deterioration from Space,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Yu, Y.[Yan],
Yao, M.[Meibao],
When Convolutional Neural Networks Meet Laser-Induced Breakdown
Spectroscopy: End-to-End Quantitative Analysis Modeling of ChemCam
Spectral Data for Major Elements Based on Ensemble Convolutional
Neural Networks,
RS(15), No. 13, 2023, pp. 3422.
DOI Link
2307
BibRef
Liu, Z.[Ziyi],
Li, L.[Luning],
Xu, W.M.[Wei-Ming],
Xu, X.[Xuesen],
Cui, Z.C.[Zhi-Cheng],
Jia, L.C.[Liang-Chen],
Lv, W.H.[Wen-Hao],
Shen, Z.H.[Zhi-Hui],
Shu, R.[Rong],
Investigation into the Affect of Chemometrics and Spectral Data
Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy
Quantification Accuracy Based on MarSCoDe Laboratory Model and
MarSDEEP Equipment,
RS(15), No. 13, 2023, pp. 3311.
DOI Link
2307
BibRef
Guo, S.[Senmiao],
Jiang, Q.G.[Qi-Gang],
Improving Rock Classification with 1D Discrete Wavelet Transform
Based on Laboratory Reflectance Spectra and Gaofen-5 Hyperspectral
Data,
RS(15), No. 22, 2023, pp. 5334.
DOI Link
2311
BibRef
Peng, W.[Weili],
Zhou, T.[Tao],
Chen, Y.Y.[Yuan-Yuan],
Enhancing mass spectrometry data analysis: A novel framework for
calibration, outlier detection, and classification,
PRL(182), 2024, pp. 1-8.
Elsevier DOI
2405
Mass spectrometry, Data analysis framework, Data calibration,
Outlier detection, Ensemble learning
BibRef
Anifadi, A.[Alexandra],
Sykioti, O.[Olga],
Koutroumbas, K.[Konstantinos],
Vassilakis, E.[Emmanuel],
Vasilatos, C.[Charalampos],
Georgiou, E.[Emil],
Discrimination of Fe-Ni-Laterites from Bauxites Using a Novel Support
Vector Machines-Based Methodology on Sentinel-2 Data,
RS(16), No. 13, 2024, pp. 2295.
DOI Link
2407
BibRef
Rizaldy, A.[Aldino],
Afifi, A.J.[Ahmed Jamal],
Ghamisi, P.[Pedram],
Gloaguen, R.[Richard],
Improving Mineral Classification Using Multimodal Hyperspectral Point
Cloud Data and Multi-Stream Neural Network,
RS(16), No. 13, 2024, pp. 2336.
DOI Link
2407
BibRef
Akbar, S.[Somaieh],
Abdolmaleki, M.[Mehdi],
Ghadernejad, S.[Saleh],
Esmaeili, K.[Kamran],
Applying Knowledge-Based and Data-Driven Methods to Improve Ore Grade
Control of Blast Hole Drill Cuttings Using Hyperspectral Imaging,
RS(16), No. 15, 2024, pp. 2823.
DOI Link
2408
BibRef
Cui, S.C.[Shi-Chao],
Jiang, G.[Guo],
Bai, Y.[Yong],
Rapid Prediction of the Lithium Content in Plants by Combining
Fractional-Order Derivative Spectroscopy and Wavelet Transform
Analysis,
RS(16), No. 16, 2024, pp. 3071.
DOI Link
2408
BibRef
Gao, L.[Likun],
Hu, H.M.[Hai-Miao],
Xue, X.[Xinhui],
Hu, H.X.[Hao-Xin],
From Appearance to Inherence: A Hyperspectral Image Dataset and
Benchmark of Material Classification for Surveillance,
MultMed(26), 2024, pp. 8569-8580.
IEEE DOI
2408
Hyperspectral imaging, Surveillance, Image classification,
Feature extraction, Task analysis, Benchmark testing, Labeling,
Convolutional neural networks
BibRef
Drehwald, M.S.[Manuel S.],
Eppel, S.[Sagi],
Li, J.[Jolina],
Hao, H.[Han],
Aspuru-Guzik, A.[Alan],
One-shot recognition of any material anywhere using contrastive
learning with physics-based rendering,
ICCV23(23467-23476)
IEEE DOI Code:
WWW Link.
2401
BibRef
Pace, C.D.[Cesare Davide],
Bria, A.[Alessandro],
Focareta, M.[Mariano],
Lozupone, G.[Gabriele],
Marrocco, C.[Claudio],
Meoli, G.[Giuseppe],
Molinara, M.[Mario],
End-to-end Asbestos Roof Detection on Orthophotos Using
Transformer-based Yolo Deep Neural Network,
CIAP23(I:232-244).
Springer DOI
2312
BibRef
Dashpute, A.[Aniket],
Saragadam, V.[Vishwanath],
Alexander, E.[Emma],
Willomitzer, F.[Florian],
Katsaggelos, A.[Aggelos],
Veeraraghavan, A.[Ashok],
Cossairt, O.[Oliver],
Thermal Spread Functions (TSF):
Physics-Guided Material Classification,
CVPR23(1641-1650)
IEEE DOI
2309
BibRef
Rodriguez-Pardo, C.[Carlos],
Dominguez-Elvira, H.[Henar],
Pascual-Hernandez, D.[David],
Garces, E.[Elena],
UMat: Uncertainty-Aware Single Image High Resolution Material Capture,
CVPR23(5764-5774)
IEEE DOI
2309
BibRef
Chhipa, P.C.[Prakash Chandra],
Upadhyay, R.[Richa],
Saini, R.[Rajkumar],
Lindqvist, L.[Lars],
Nordenskjold, R.[Richard],
Uchida, S.[Seiichi],
Liwicki, M.[Marcus],
Depth Contrast: Self-supervised Pretraining on 3dpm Images for Mining
Material Classification,
CVCivil22(212-227).
Springer DOI
2304
BibRef
Qiao, D.[Dexin],
Zhang, X.Y.[Xiao-Yu],
Ren, Y.[Yili],
Liang, J.[Jia],
Comparison of the Rock Core Image Segmentation Algorithm,
ICIVC22(335-339)
IEEE DOI
2301
Geological data in oil field exploration.
Image segmentation, Oils, Image edge detection, Semantics, Rocks,
Reservoirs, Inference algorithms, image segmentation, K-means algorithm
BibRef
Li, Y.C.[Yu-Chen],
Upadhyay, U.[Ujjwal],
Slim, H.[Habib],
Abdelreheem, A.[Ahmed],
Prajapati, A.[Arpit],
Pothigara, S.[Suhail],
Wonka, P.[Peter],
Elhoseiny, M.[Mohamed],
3D CoMPaT: Composition of Materials on Parts of 3D Things,
ECCV22(VIII:110-127).
Springer DOI
2211
BibRef
Yao, Y.[Yao],
Zhang, J.Y.[Jing-Yang],
Liu, J.B.[Jing-Bo],
Qu, Y.H.[Yi-Hang],
Fang, T.[Tian],
McKinnon, D.[David],
Tsin, Y.H.[Yang-Hai],
Quan, L.[Long],
NeILF: Neural Incident Light Field for Physically-based Material
Estimation,
ECCV22(XXXI:700-716).
Springer DOI
2211
BibRef
Velasco-Mata, A.[Alberto],
Vallez, N.[Noelia],
Ruiz-Santaquiteria, J.[Jesus],
Pedraza, A.[Anibal],
Deniz, O.[Oscar],
Bueno, G.[Gloria],
Hyperdeep: Comparison of AI-Based Methods for Predicting Chemical
Components in Hyperspectral Images,
ICIP22(4287-4291)
IEEE DOI
2211
Support vector machines, Parameter estimation, Neural networks,
Data preprocessing, Estimation, Production, Hyperspectral,
support vector regression
BibRef
Liang, Y.P.[Yu-Peng],
Wakaki, R.[Ryosuke],
Nobuhara, S.[Shohei],
Nishino, K.[Ko],
Multimodal Material Segmentation,
CVPR22(19768-19776)
IEEE DOI
2210
Photography, Image segmentation, Visualization, Shape, Semantics,
Information filters, Computational photography,
grouping and shape analysis
BibRef
Zenati, T.[Tarek],
Figliuzzi, B.[Bruno],
Ham, S.H.[Shu Hui],
Surface Oxide Detection and Characterization Using Sparse Unmixing on
Hyperspectral Images,
ISHAPE22(291-302).
Springer DOI
2208
BibRef
Otani, H.[Haru],
Komuro, T.[Takashi],
BRDF Measurement of Real Materials Using Handheld Cameras,
ISVC21(I:65-77).
Springer DOI
2112
BibRef
Shi, F.M.[Feng-Min],
Guo, J.[Jie],
Zhang, H.[Haonan],
Yang, S.[Shan],
Wang, X.[Xiying],
Guo, Y.[Yanwen],
GLAVNet: Global-Local Audio-Visual Cues for Fine-Grained Material
Recognition,
CVPR21(14428-14437)
IEEE DOI
2111
Geometry, Deep learning, Visualization,
Feature extraction, Pattern recognition, Task analysis
BibRef
Brorsson, A.[Andreas],
Nordberg, M.[Markus],
Gustafsson, D.[David],
Reconstruction of CASSI-Raman Images with Machine-Learning,
PBVS21(4383-4390)
IEEE DOI
2109
Raman spectroscopy.
Training, Surface reconstruction, TV, Reconstruction algorithms,
Time measurement, Convolutional neural networks, Spatial resolution
BibRef
Noh, D.[Donghun],
Nam, H.W.[Hyun-Woo],
Ahn, M.S.[Min Sung],
Chae, H.[Hosik],
Lee, S.J.[Sang-Joon],
Gillespie, K.[Kyle],
Hong, D.[Dennis],
Surface Material Dataset for Robotics Applications (SMDRA): A Dataset
with Friction Coefficient and RGB-D for Surface Segmentation,
ICPR21(6275-6281)
IEEE DOI
2105
Legged locomotion, Training, Image segmentation,
Friction, Neural networks, Color
BibRef
Lim, S.[Sangrak],
Lee, Y.O.[Yong Oh],
Predicting Chemical Properties using Self-Attention Multi-task
Learning based on SMILES Representation,
ICPR21(3146-3153)
IEEE DOI
2105
Uniform resource locators, Learning systems,
Computational modeling, Predictive models
BibRef
Wang, Y.L.[Yun-Long],
Zhang, K.[Kunbo],
Sun, Z.A.[Zhen-An],
A Novel Deep-learning Pipeline for Light Field Image Based Material
Recognition,
ICPR21(2422-2429)
IEEE DOI
2105
Dimensionality reduction, Image segmentation, Visualization,
Image edge detection, Pipelines, Semantics
BibRef
Asselin, L.P.,
Laurendeau, D.,
Lalonde, J.F.,
Deep SVBRDF Estimation on Real Materials,
3DV20(1157-1166)
IEEE DOI
2102
Estimation, Deep learning, Cameras, Light sources, Training,
Rendering (computer graphics), Lighting
BibRef
Sixiang, X.,
Damien, M.,
Alain, T.,
Robert, L.,
Confidence-based Local Feature Selection for Material Classification,
IVCNZ20(1-6)
IEEE DOI
2012
Feature extraction,
Calibration, Convolutional neural networks, Image classification,
Material Classification
BibRef
Xie, B.S.,
Zhou, S.Y.,
Wu, L.X.,
An Integrated Mineral Spectral Library Using Shared Data For
Hyperspectral Remote Sensing and Geological Mapping,
ISPRS20(B5:69-75).
DOI Link
2012
BibRef
Gallwey, J.,
Yeomans, C.,
Tonkins, M.,
Coggan, J.,
Vogt, D.,
Eyre, M.,
Using Deep Learning and Hough Transformations to Infer Mineralised
Veins From Lidar Data Over Historic Mining Areas,
ISPRS20(B2:1561-1568).
DOI Link
2012
BibRef
Tsunomura, M.[Mari],
Shishikura, M.[Masami],
Ishii, T.[Toru],
Takahashi, R.[Ryo],
Tsumura, N.[Norimichi],
Segmentation of Microscopic Image of Colorants Using U-net Based Deep
Convolutional Networks for Material Appearance Design,
ICISP20(197-204).
Springer DOI
2009
BibRef
Wang, J.,
Ma, C.,
Zhang, Z.,
Wang, Y.,
Peng, M.,
Wan, W.,
Feng, X.,
Wang, X.,
He, X.,
You, Y.,
Lunar Surface Sampling Feasibility Evaluation Method for Chang'e-5
Mission,
PRSM19(1463-1469).
DOI Link
1912
BibRef
Bo, Z.,
Wan, W.,
Liu, C.,
Di, K.,
Liu, Z.,
Peng, M.,
Wang, Y.,
Coaxiality Calculation Method for Dropping Operation of Lunar Surface
Sampling Mission Based on Monocular Vision Using Ellipse and Line
Features,
ISPRS20(B3:1099-1104).
DOI Link
2012
BibRef
Alfarrarjeh, A.,
Trivedi, D.,
Kim, S.H.,
Park, H.,
Huang, C.,
Shahabi, C.,
Recognizing Material of a Covered Object: A Case Study With Graffiti,
ICIP19(2491-2495)
IEEE DOI
1910
Surface Material, Covered Material Recognition,
Material Classification, Graffiti
BibRef
Qi, L.,
Xu, Y.,
Shang, X.,
Dong, J.,
Fusing Visual Saliency for Material Recognition,
Cognitive18(2046-20463)
IEEE DOI
1812
Computational modeling, Visualization,
Data models, Task analysis, Training, Pattern recognition
BibRef
Badreddine, D.[Dalal],
Beck, K.[Kévin],
Brunetaud, X.[Xavier],
Chaaba, A.[Ali],
Al-Mukhtar, M.[Muzahim],
Study of Effectiveness of Treatment by Nanolime of the Altered
Calcarenite Stones of the Archeological Site of Volubilis Site
(Morocco),
EuroMed18(I:248-258).
Springer DOI
1811
BibRef
Gürgey, K.,
Canbolat, S.,
Application of Multivariate Statistical Analysis to Biomarkers In
Se-turkey Crude Oils,
GeoAdvances17(63-65).
DOI Link
1805
BibRef
Put, J.[Jeroen],
Michiels, N.[Nick],
Material-Specific Chromaticity Priors,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Blasinski, H.,
Farrell, J.,
Wandell, B.,
Designing Illuminant Spectral Power Distributions for Surface
Classification,
CVPR17(2682-2691)
IEEE DOI
1711
Algorithm design and analysis, Cameras, Image color analysis,
Lighting, Power distribution, Principal, component, analysis
BibRef
Patel, A.K.,
Chatterjee, S.,
Gorai, A.K.,
Development of online machine vision system using support vector
regression (SVR) algorithm for grade prediction of iron ores,
MVA17(149-152)
DOI Link
1708
Feature extraction, Image color analysis, Iron, Machine vision, Ores,
Support vector machines, Training
BibRef
Georgoulis, S.,
Vanweddingen, V.,
Proesmans, M.,
Van Gool, L.J.,
Material Classification under Natural Illumination Using Reflectance
Maps,
WACV17(244-253)
IEEE DOI
1609
Cameras, Context, Lighting, Manifolds, Metals, Shape, Three-dimensional, displays
BibRef
Su, S.C.[Shuo-Chen],
Heide, F.[Felix],
Swanson, R.[Robin],
Klein, J.[Jonathan],
Callenberg, C.[Clara],
Hullin, M.[Matthias],
Heidrich, W.[Wolfgang],
Material Classification Using Raw Time-of-Flight Measurements,
CVPR16(3503-3511)
IEEE DOI
1612
BibRef
Oyen, D.,
Lanza, N.,
Porter, R.,
Discovering compositional trends in Mars rock targets from ChemCam
spectroscopy and remote imaging,
AIPR15(1-8)
IEEE DOI
1605
Mars
BibRef
Bianconi, F.[Francesco],
Bello, R.[Raquel],
Fernández, A.[Antonio],
González, E.[Elena],
On Comparing Colour Spaces From a Performance Perspective:
Application to Automated Classification of Polished Natural Stones,
CMTR15(71-78).
Springer DOI
1511
BibRef
Baklanova, O.,
Shvets, O.,
Cluster analysis methods for recognition of mineral rocks in the
mining industry,
IPTA14(1-5)
IEEE DOI
1503
image colour analysis
BibRef
Baklanova, O.E.[Olga E.],
Shvets, O.Y.[Olga Ya.],
Development of Methods and Algorithms of Reduction for Image
Recognition to Assess the Quality of the Mineral Species in the Mining
Industry,
ICCVG14(75-83).
Springer DOI
1410
BibRef
Catakli, A.[Aycan],
Mahdi, H.[Hanan],
Al-Shukri, H.[Haydar],
Attribute analyses of GPR data for heavy minerals exploration,
AIPR12(1-9)
IEEE DOI
1307
BibRef
Earlier:
Texture analysis of GPR data as a tool for depicting soil mineralogy,
AIPR11(1-8).
IEEE DOI
1204
geophysical prospecting
BibRef
Zhou, L.L.[Lin-Li],
Hu, G.D.[Guang-Dao],
Mineralization Information Extraction Using ETM Remote Sensing Image,
CISP09(1-3).
IEEE DOI
0910
BibRef
Wang, W.X.[Wei-Xing],
Li, L.[Lei],
Pattern Recognition and Computer vision for Mineral Froth,
ICPR06(IV: 622-625).
IEEE DOI
0609
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Automated Measurement Systems, Close Range Photogrammetry .