20.7.3.13.1 Hyperspectral Imagery for Mineral Composition Analysis, Material Composition

Chapter Contents (Back)
Application, Minerals. Minerals. Hyperspectral. Material. 2507
Also:
See also High Dimensional Data, Hyperspectral Data, Hyper-Spectral Data Classification.
See also Geologic Mapping, Geology Analysis, Mineralogy, Fault Zones.
See also Geological Analysis, Rocks.

Healey, G., Slater, D.A.,
Models and Methods for Automated Material Indentification in Hyperspectral Imagery Acquired under Unknown Illumination and Atmospheric Conditions,
GeoRS(37), No. 6, November 1999, pp. 2707-2717.
IEEE Top Reference. BibRef 9911

Suen, P., Healey, G., Slater, D.A.,
The impact of viewing geometry on material discriminability in hyperspectral images,
GeoRS(39), No. 7, July 2001, pp. 1352-1359.
IEEE Top Reference. 0108
BibRef

Thai, B.[Bea], Healey, G.[Glenn],
Invariant subpixel material detection in hyperspectral imagery,
GeoRS(40), No. 3, March 2002, pp. 599-608.
IEEE Top Reference. 0206
BibRef
And:
Invariant Subpixel Material Identification in Hyperspectral Imagery,
DARPA98(809-814). BibRef
Earlier:
Using a Linear Subspace Approach for Invariant Subpixel Material Identification in Airborne Hyperspectral Imagery,
CVPR99(I: 567-572).
IEEE DOI BibRef

Tatzer, P.[Petra], Wolf, M.[Markus], Panner, T.[Thomas],
Industrial application for inline material sorting using hyperspectral imaging in the NIR range,
RealTimeImg(11), No. 2, April 2005, pp. 99-107.
Elsevier DOI 0506
BibRef

Zhang, Q.A.[Qi-Ang], Wang, H.[Han], Plemmons, R.J.[Robert J.], Pauca, V.P.[V. Paul],
Tensor methods for hyperspectral data analysis: A space object material identification study,
JOSA-A(25), No. 12, December 2008, pp. 3001-3012.
WWW Link. 0804
BibRef

Liu, X.W.[Xiu-Wen], Zhang, Q.A.[Qi-Ang],
Spectral histogram representations for visual modeling,
AIPR03(199-204).
IEEE DOI 0310
BibRef

Bue, B.D., Merenyi, E., Csatho, B.,
Automated Labeling of Materials in Hyperspectral Imagery,
GeoRS(48), No. 11, November 2010, pp. 4059-4070.
IEEE DOI 1011
BibRef

Galvao, L.S.[Lenio Soares], Formaggio, A.R.[Antonio Roberto], Couto, E.G.[Eduardo Guimaraes], Roberts, D.A.[Dar A.],
Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data,
PandRS(63), No. 2, March 2008, pp. 259-271.
Elsevier DOI 0803
Hyperspectral remote sensing; Tropical soils; AVIRIS; Topography; Mineral identification BibRef

Murphy, R.J.[Richard J.], Monteiro, S.T.[Sildomar T.],
Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430-970 nm),
PandRS(75), No. 1, January 2013, pp. 29-39.
Elsevier DOI 1301
Mining; Iron ore; Remote sensing; Hyperspectral; Derivative analysis; Banded iron formation BibRef

Murphy, R.J., Schneider, S., Monteiro, S.T.,
Consistency of Measurements of Wavelength Position From Hyperspectral Imagery: Use of the Ferric Iron Crystal Field Absorption at sim900 nm as an Indicator of Mineralogy,
GeoRS(52), No. 5, May 2014, pp. 2843-2857.
IEEE DOI 1403
Geology BibRef

Schneider, S.[Sven], Murphy, R.J.[Richard J.], Melkumyan, A.[Arman],
Evaluating the performance of a new classifier: the GP-OAD: A comparison with existing methods for classifying rock type and mineralogy from hyperspectral imagery,
PandRS(98), No. 1, 2014, pp. 145-156.
Elsevier DOI 1411
Hyperspectral BibRef

Cui, J., Li, X., Zhao, L.,
Linear Mixture Analysis for Hyperspectral Imagery in the Presence of Less Prevalent Materials,
GeoRS(51), No. 7, 2013, pp. 4019-4031.
IEEE DOI 1307
Convex geometry; endmember extraction; nonnegative matrix factorization (NMF) BibRef

Chen, J., Richard, C., Honeine, P.,
Nonlinear Estimation of Material Abundances in Hyperspectral Images With L_1-Norm Spatial Regularization,
GeoRS(52), No. 5, May 2014, pp. 2654-2665.
IEEE DOI 1403
L_1 -norm regularization BibRef

Bauer, S.[Sebastian], León, F.P.[Fernando Puente],
Hyperspectral fluorescence imaging for mineral classification,
30 July 2015, SPIE Newsroom. DOI: SPIE(Newsroom), July 30, 2015
DOI Link 1511
A novel approach can be used for industrial sorting and presents several advantages over conventional hyperspectral imaging techniques. BibRef

Mielke, C.[Christian], Rogass, C.[Christian], Boesche, N.[Nina], Segl, K.[Karl], Altenberger, U.[Uwe],
EnGeoMAP 2.0: Automated Hyperspectral Mineral Identification for the German EnMAP Space Mission,
RS(8), No. 2, 2016, pp. 127.
DOI Link 1603
BibRef

Yokoya, N.[Naoto], Chan, J.C.W.[Jonathan Cheung-Wai], Segl, K.[Karl],
Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images,
RS(8), No. 3, 2016, pp. 172.
DOI Link 1604
BibRef

Adep, R.N.[Ramesh Nityanand], shetty, A.[Amba], Ramesh, H.,
EXhype: A tool for mineral classification using hyperspectral data,
PandRS(124), No. 1, 2017, pp. 106-118.
Elsevier DOI 1702
Artificial neural network BibRef

Hoang, N.T.[Nguyen Tien], Koike, K.[Katsuaki],
Transformation of Landsat imagery into pseudo-hyperspectral imagery by a multiple regression-based model with application to metal deposit-related minerals mapping,
PandRS(133), No. Supplement C, 2017, pp. 157-173.
Elsevier DOI 1711
Pseudo-band reflectance, Multiple linear regression, Bayesian model averaging, Hyperion image, Landsat ETM+ image, Cuprite BibRef

Wang, Y.B.[Yue-Bin], Mei, J.[Jie], Zhang, L.Q.[Li-Qiang], Zhang, B.[Bing], Li, A.J.[An-Jian], Zheng, Y.B.[Yi-Bo], Zhu, P.P.[Pan-Pan],
Self-Supervised Low-Rank Representation (SSLRR) for Hyperspectral Image Classification,
GeoRS(56), No. 10, October 2018, pp. 5658-5672.
IEEE DOI 1810
Manifolds, Linear programming, Hyperspectral imaging, Dictionaries, Semantics, Iterative methods, self-supervised BibRef

Zhuang, L.[Lina], Gao, L.R.[Lian-Ru], Zhang, B.[Bing], Fu, X.Y.[Xi-You], Bioucas-Dias, J.M.[José M.],
Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations,
GeoRS(60), 2022, pp. 1-17.
IEEE DOI 2112
Noise reduction, Hyperspectral imaging, Anomaly detection, Correlation, Image resolution, Dictionaries, self-similarity BibRef

Gao, L.R.[Lian-Ru], Yao, D.[Dan], Li, Q.T.[Qing-Ting], Zhuang, L.[Lina], Zhang, B.[Bing], Bioucas-Dias, J.M.[José M.],
A New Low-Rank Representation Based Hyperspectral Image Denoising Method for Mineral Mapping,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Wang, Y.B.[Yue-Bin], Mei, J.[Jie], Zhang, L.Q.[Li-Qiang], Zhang, B.[Bing], Zhu, P.P.[Pan-Pan], Li, Y.[Yang], Li, X.G.[Xin-Gang],
Self-Supervised Feature Learning with CRF Embedding for Hyperspectral Image Classification,
GeoRS(57), No. 5, May 2019, pp. 2628-2642.
IEEE DOI 1905
backpropagation, convolutional neural nets, feature extraction, geophysical image processing, hyperspectral imaging, self-supervision BibRef

Cao, Y.[Yun], Wang, Y.B.[Yue-Bin], Peng, J.H.[Jun-Huan], Qiu, C.P.[Chun-Ping], Ding, L.[Lei], Zhu, X.X.[Xiao Xiang],
SDFL-FC: Semisupervised Deep Feature Learning With Feature Consistency for Hyperspectral Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10488-10502.
IEEE DOI 2112
Feature extraction, Image reconstruction, Generative adversarial networks, Training, Optimization, optimization BibRef

Yue, J.[Jun], Fang, L.Y.[Le-Yuan], He, M.[Min],
Spectral-Spatial Latent Reconstruction for Open-Set Hyperspectral Image Classification,
IP(31), 2022, pp. 5227-5241.
IEEE DOI 2208
Feature extraction, Image reconstruction, Training, Hyperspectral imaging, Calibration, Convolution, open-set environment BibRef

Tu, B.[Bing], Kuang, W., Zhao, G., Fei, H.Y.[Hong-Yan],
Hyperspectral Image Classification via Superpixel Spectral Metrics Representation,
SPLetters(25), No. 10, October 2018, pp. 1520-1524.
IEEE DOI 1810
Training, Measurement, Image segmentation, Entropy, Hyperspectral imaging, Shape, Hyperspectral image (HSI), spectral information divergence (SID) BibRef

Tu, B.[Bing], Li, N.Y.[Nan-Ying], Fang, L.Y.[Le-Yuan], Fei, H.Y.[Hong-Yan], He, D.B.[Dan-Bing],
Classification of Hyperspectral Images via Weighted Spatial Correlation Representation,
JVCIR(56), 2018, pp. 160-166.
Elsevier DOI 1811
Hyperspectral image, Superpixel, Joint sparse representation, Correlation coefficient BibRef

Fang, L.Y.[Le-Yuan], Li, S.T.[Shu-Tao], Duan, W.[Wuhui], Ren, J.C.[Jin-Chang], Benediktsson, J.A.[Jón Atli],
Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels,
GeoRS(53), No. 12, December 2015, pp. 6663-6674.
IEEE DOI 1512
geophysical image processing BibRef

Fang, L.Y.[Le-Yuan], Li, S.T.[Shu-Tao], Kang, X.D.[Xu-Dong], Benediktsson, J.A.[Jón Atli],
Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation,
GeoRS(52), No. 12, December 2014, pp. 7738-7749.
IEEE DOI 1410
geophysical image processing
See also Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification. BibRef

Duan, P.[Puhong], Ghamisi, P.[Pedram], Kang, X.D.[Xu-Dong], Rasti, B.[Behnood], Li, S.T.[Shu-Tao], Gloaguen, R.[Richard],
Fusion of Dual Spatial Information for Hyperspectral Image Classification,
GeoRS(59), No. 9, September 2021, pp. 7726-7738.
IEEE DOI 2109
Support vector machines, Smoothing methods, Fuses, Imaging, Feature extraction, Minerals, Task analysis, Decision fusion, structural profile (SP) BibRef

Tu, B.[Bing], Li, N.Y.[Nan-Ying], Fang, L.Y.[Le-Yuan], Yang, X.C.[Xian-Chang], Wu, J.H.[Jian-Hui],
Hyperspectral Image Classification with a Class-Dependent Spatial-Spectral Mixed Metric,
PRL(123), 2019, pp. 16-22.
Elsevier DOI 1906
Hyperspectral image, Spectral angle mapper, Spectral information divergence, Joint sparse representation, Local mean-based nearest neighbors BibRef

Zhang, S.Z.[Shu-Zhen], Li, S.T.[Shu-Tao], Fu, W.[Wei], Fang, L.Y.[Lei-Yuan],
Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Jackisch, R.[Robert], Madriz, Y.[Yuleika], Zimmermann, R.[Robert], Pirttijärvi, M.[Markku], Saartenoja, A.[Ari], Heincke, B.H.[Björn H.], Salmirinne, H.[Heikki], Kujasalo, J.P.[Jukka-Pekka], Andreani, L.[Louis], Gloaguen, R.[Richard],
Drone-Borne Hyperspectral and Magnetic Data Integration: Otanmäki Fe-Ti-V Deposit in Finland,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Sun, L.[Lei], Khan, S.[Shuhab], Shabestari, P.[Peter],
Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Sousa, F.J.[Francis J.], Sousa, D.J.[Daniel J.],
Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Pal, M.[Mahendra], Rasmussen, T.[Thorkild], Porwal, A.[Alok],
Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Chung, B.[Baru], Yu, J.H.[Jae-Hyung], Wang, L.[Lei], Kim, N.H.[Nam Hoon], Lee, B.H.[Bum Han], Koh, S.[Sangmo], Lee, S.[Sangin],
Detection of Magnesite and Associated Gangue Minerals using Hyperspectral Remote Sensing: A Laboratory Approach,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Notesco, G.[Gila], Weksler, S.[Shahar], Ben-Dor, E.[Eyal],
Application of Hyperspectral Remote Sensing in the Longwave Infrared Region to Assess the Influence of Dust from the Desert on Soil Surface Mineralogy,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Lin, H.L.[Hong-Lei], Lin, Y.T.[Yang-Ting], Wei, Y.[Yong], Xu, R.[Rui], Liu, Y.[Yang], Yang, Y.Z.[Ya-Zhou], Hu, S.[Sen], Yang, W.[Wei], He, Z.P.[Zhi-Ping],
Estimation of Noise in the In Situ Hyperspectral Data Acquired by Chang'E-4 and Its Effects on Spectral Analysis of Regolith,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Cui, L.J.[Li-Juan], Dou, Z.G.[Zhi-Guo], Liu, Z.J.[Zhi-Jun], Zuo, X.Y.[Xue-Yan], Lei, Y.R.[Yin-Ru], Li, J.[Jing], Zhao, X.S.[Xin-Sheng], Zhai, X.J.[Xia-Jie], Pan, X.[Xu], Li, W.[Wei],
Hyperspectral Inversion of Phragmites Communis Carbon, Nitrogen, and Phosphorus Stoichiometry Using Three Models,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Siebels, K., Goïta, K., Germain, M.,
Estimation of Mineral Abundance From Hyperspectral Data Using a New Supervised Neighbor-Band Ratio Unmixing Approach,
GeoRS(58), No. 10, October 2020, pp. 6754-6766.
IEEE DOI 2009
Minerals, Mathematical model, Hyperspectral imaging, Data models, Frequency modulation, Lighting, Hyperspectral, mapping, minerals, spectral unmixing BibRef

Lin, J.[Jie], Huang, T.Z.[Ting-Zhu], Zhao, X.L.[Xi-Le], Jiang, T.X.[Tai-Xiang], Zhuang, L.[Lina],
A Tensor Subspace Representation-Based Method for Hyperspectral Image Denoising,
GeoRS(59), No. 9, September 2021, pp. 7739-7757.
IEEE DOI 2109
Tensors, Gaussian noise, Computational modeling, Noise reduction, Minimization, Computational complexity, Hyperspectral imaging, tensor subspace representation (TenSR) BibRef

Boubanga-Tombet, S.[Stephane], Huot, A.[Alexandrine], Vitins, I.[Iwan], Heuberger, S.[Stefan], Veuve, C.[Christophe], Eisele, A.[Andreas], Hewson, R.[Rob], Guyot, E.[Eric], Marcotte, F.[Frédérick], Chamberland, M.[Martin],
Thermal Infrared Hyperspectral Imaging for Mineralogy Mapping of a Mine Face,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Xu, Y.J.[Yuan-Jin], Chen, J.G.[Jian-Guo], Meng, P.Y.[Peng-Yan],
Detection of alteration zones using hyperspectral remote sensing data from Dapingliang skarn copper deposit and its surrounding area, Shanshan County, Xinjiang Uygur autonomous region, China,
JVCIR(58), 2019, pp. 67-78.
Elsevier DOI 1901
Hyperspectral remote sensing, Detection of alteration zones, Dapingliang skarn copper deposit, Spectral matching BibRef

Yousefi, B.[Bardia], Ibarra-Castanedo, C.[Clemente], Chamberland, M.[Martin], Maldague, X.P.V.[Xavier P. V.], Beaudoin, G.[Georges],
Unsupervised Identification of Targeted Spectra Applying Rank1-NMF and FCC Algorithms in Long-Wave Hyperspectral Infrared Imagery,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
FCC: False Color Composites. BibRef

Acosta, I.C.C.[Isabel Cecilia Contreras], Khodadadzadeh, M.[Mahdi], Gloaguen, R.[Richard],
Resolution Enhancement for Drill-Core Hyperspectral Mineral Mapping,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef
Earlier:
Multi-label Classification for Drill-core Hyperspectral Mineral Mapping,
ISPRS20(B3:383-388).
DOI Link 2012
BibRef

Duan, P.[Puhong], Lai, J.[Jibao], Ghamisi, P.[Pedram], Kang, X.D.[Xu-Dong], Jackisch, R.[Robert], Kang, J.[Jian], Gloaguen, R.[Richard],
Component Decomposition-Based Hyperspectral Resolution Enhancement for Mineral Mapping,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Guha, A.[Arindam], Ghosh, U.K.[Uday Kumar], Sinha, J.[Joyasree], Pour, A.B.[Amin Beiranvand], Bhaisal, R.[Ratnakar], Chatterjee, S.[Snehamoy], Baranval, N.K.[Nikhil Kumar], Rani, N.[Nisha], Kumar, K.V.[K. Vinod], Rao, P.V.N.[Pamaraju V. N.],
Potentials of Airborne Hyperspectral AVIRIS-NG Data in the Exploration of Base Metal Deposit: A Study in the Parts of Bhilwara, Rajasthan,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Huynh, H.H.[Huy Hoa], Yu, J.[Jaehung], Wang, L.[Lei], Kim, N.H.[Nam Hoon], Lee, B.H.[Bum Han], Koh, S.M.[Sang-Mo], Cho, S.[Sehyun], Pham, T.H.[Trung Hieu],
Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Lobo, A.[Agustin], Garcia, E.[Emma], Barroso, G.[Gisela], Martí, D.[David], Fernandez-Turiel, J.L.[Jose-Luis], Ibáñez-Insa, J.[Jordi],
Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin-Tungsten Deposits: Simulation under Indoor Conditions,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Pattathal, V.A.[V. Arun], Sahoo, M.M.[Maitreya Mohan], Porwal, A.[Alok], Karnieli, A.[Arnon],
Deep-learning-based latent space encoding for spectral unmixing of geological materials,
PandRS(183), 2022, pp. 307-320.
Elsevier DOI 2201
Spectral unmixing, Airborne hyperspectral remote sensing, Deep learning, Denoising, Convolutional neural network, Geological application BibRef

Thiele, S.T.[Samuel T.], Bnoulkacem, Z.[Zakaria], Lorenz, S.[Sandra], Bordenave, A.[Aurélien], Menegoni, N.[Niccolò], Madriz, Y.[Yuleika], Dujoncquoy, E.[Emmanuel], Gloaguen, R.[Richard], Kenter, J.[Jeroen],
Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Oh, T.M.[Tae-Min], Baek, S.[Seungil], Kong, T.H.[Tae-Hyun], Koh, S.[Sooyoon], Ahn, J.H.[Jae-Hun], Kim, W.[Wonkook],
Hyperspectral Remote Sensing of TiO2 Concentration in Cementitious Material Based on Machine Learning Approaches,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Ren, Z.L.[Zhong-Liang], Zhai, Q.P.[Qiu-Ping], Sun, L.[Lin],
A Novel Method for Hyperspectral Mineral Mapping Based on Clustering-Matching and Nonnegative Matrix Factorization,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhang, C.[Chuan], Yi, M.[Min], Ye, F.[Fawang], Xu, Q.J.[Qing-Jun], Li, X.C.[Xin-Chun], Gan, Q.Q.[Qing-Qing],
Application and Evaluation of Deep Neural Networks for Airborne Hyperspectral Remote Sensing Mineral Mapping: A Case Study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Yang, X.[Xu], Chen, J.G.[Jian-Guo], Chen, Z.J.[Zhi-Jun],
Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Guo, S.[Senmiao], Jiang, Q.G.[Qi-Gang],
Improving Rock Classification with 1D Discrete Wavelet Transform Based on Laboratory Reflectance Spectra and Gaofen-5 Hyperspectral Data,
RS(15), No. 22, 2023, pp. 5334.
DOI Link 2311
BibRef

Chen, L.[Li], Sui, X.X.[Xin-Xin], Liu, R.Y.[Rong-Yuan], Chen, H.[Hong], Li, Y.[Yu], Zhang, X.[Xian], Chen, H.M.[Hao-Min],
Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas,
RS(15), No. 14, 2023, pp. 3590.
DOI Link 2307
BibRef

Ding, W.Q.[Wen-Qing], Ding, L.[Lin], Li, Q.[Qingting], Li, J.X.[Jin-Xiang], Zhang, L.Y.[Li-Yun],
Lithium-Rich Pegmatite Detection Integrating High-Resolution and Hyperspectral Satellite Data in Zhawulong Area, Western Sichuan, China,
RS(15), No. 16, 2023, pp. 3969.
DOI Link 2309
BibRef

Habashi, J.[Jabar], Moghadam, H.J.[Hadi Jamshid], Oskouei, M.M.[Majid Mohammady], Pour, A.B.[Amin Beiranvand], Hashim, M.[Mazlan],
PRISMA Hyperspectral Remote Sensing Data for Mapping Alteration Minerals in Sar-e-Ch¢h-e-Shur Region, Birjand, Iran,
RS(16), No. 7, 2024, pp. 1277.
DOI Link 2404
BibRef

Qasim, M.[Muhammad], Khan, S.D.[Shuhab D.], Sisson, V.[Virginia], Greer, P.[Presley], Xia, L.[Lin], Okyay, U.[Unal], Franco, N.[Nicole],
Identifying Rare Earth Elements Using a Tripod and Drone-Mounted Hyperspectral Camera: A Case Study of the Mountain Pass Birthday Stock and Sulphide Queen Mine Pit, California,
RS(16), No. 17, 2024, pp. 3353.
DOI Link 2409
BibRef

Ghadernejad, S.[Saleh], Esmaeili, K.[Kamran],
Predicting Rock Hardness and Abrasivity Using Hyperspectral Imaging Data and Random Forest Regressor Model,
RS(16), No. 20, 2024, pp. 3778.
DOI Link 2411
BibRef

Ke, T.[Tian], Zhong, Y.F.[Yan-Fei], Song, M.[Mi], Wang, X.Y.[Xin-Yu], Zhang, L.P.[Liang-Pei],
Mineral detection based on hyperspectral remote sensing imagery on Mars: From detection methods to fine mapping,
PandRS(218), 2024, pp. 761-780.
Elsevier DOI Code:
HTML Version. 2412
Martian mineral, Hyperspectral remote sensing, Detection methods, Spectral unmixing, Mars mapping BibRef

Rizaldy, A.[Aldino], Afifi, A.J.[Ahmed Jamal], Ghamisi, P.[Pedram], Gloaguen, R.[Richard],
Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network,
RS(16), No. 13, 2024, pp. 2336.
DOI Link 2407
BibRef

Akbar, S.[Somaieh], Abdolmaleki, M.[Mehdi], Ghadernejad, S.[Saleh], Esmaeili, K.[Kamran],
Applying Knowledge-Based and Data-Driven Methods to Improve Ore Grade Control of Blast Hole Drill Cuttings Using Hyperspectral Imaging,
RS(16), No. 15, 2024, pp. 2823.
DOI Link 2408
BibRef

Gao, L.[Likun], Hu, H.M.[Hai-Miao], Xue, X.[Xinhui], Hu, H.X.[Hao-Xin],
From Appearance to Inherence: A Hyperspectral Image Dataset and Benchmark of Material Classification for Surveillance,
MultMed(26), 2024, pp. 8569-8580.
IEEE DOI 2408
Hyperspectral imaging, Surveillance, Image classification, Feature extraction, Task analysis, Benchmark testing, Labeling, Convolutional neural networks BibRef

Ghadernejad, S.[Saleh], Esmaeili, K.[Kamran], Consens, M.P.[Mariano P.],
Sensor-Based Rock Hardness Characterization in a Gold Mine Using Hyperspectral Imaging and Portable X-Ray Fluorescence Technologies,
RS(17), No. 12, 2025, pp. 2062.
DOI Link 2506
BibRef

de Luca, G.[Giandomenico], Pancorbo, J.L.[Jose Luis], Carotenuto, F.[Federico], Gioli, B.[Beniamino], Modica, G.[Giuseppe], Genesio, L.[Lorenzo],
PRISMA imaging for land covers and surface materials composition in urban and rural areas adopting multiple endmember spectral mixture analysis (MESMA),
PandRS(225), 2025, pp. 196-220.
Elsevier DOI 2505
spectral mixture analysis (SMA), Endmemebers selection, Land cover classification, Satellite hyperspectral, Spatial resolution BibRef

Elhaei, Y.[Yasmin], Asadzadeh, S.[Saeid],
Mapping the Mineralogical Footprints of Petroleum Microseepage Systems in Redbeds of the Qom Region (Iran) Using EnMAP Hyperspectral Data,
RS(17), No. 12, 2025, pp. 2088.
DOI Link 2506
BibRef


Heng, Y.[Yuwen], Wu, Y.H.[Yi-Hong], Dasmahapatra, S.[Srinandan], Kim, H.S.[Han-Sung],
MatSpectNet: Material Segmentation Network with Domain-Aware and Physically-Constrained Hyperspectral Reconstruction,
WACV25(8090-8100)
IEEE DOI Code:
WWW Link. 2505
Image segmentation, Accuracy, Surface waves, Wavelength measurement, Lighting, Materials reliability, Cameras, scene understanding BibRef

Perez, F.[Fabian], Rueda-Chacón, H.[Hoover],
Beyond Appearances: Material Segmentation with Embedded Spectral Information from RGB-D imagery,
LXCV24(293-301)
IEEE DOI Code:
WWW Link. 2410
Deep learning, Training, Image segmentation, Visualization, Lighting, Material Segmentation, RGB-D, Hyperspectral Images, LiDAR, Material Recognition BibRef

Velasco-Mata, A.[Alberto], Vallez, N.[Noelia], Ruiz-Santaquiteria, J.[Jesus], Pedraza, A.[Anibal], Deniz, O.[Oscar], Bueno, G.[Gloria],
Hyperdeep: Comparison of AI-Based Methods for Predicting Chemical Components in Hyperspectral Images,
ICIP22(4287-4291)
IEEE DOI 2211
Support vector machines, Parameter estimation, Neural networks, Data preprocessing, Estimation, Production, Hyperspectral, support vector regression BibRef

Zenati, T.[Tarek], Figliuzzi, B.[Bruno], Ham, S.H.[Shu Hui],
Surface Oxide Detection and Characterization Using Sparse Unmixing on Hyperspectral Images,
ISHAPE22(291-302).
Springer DOI 2208
BibRef

Schläpfer, D., Richter, R., Popp, C., Nygren, P.,
Droacor® Reflectance Retrieval for Hyperspectral Mineral Exploration Using a Ground-based Rotating Platform,
ISPRS21(B3-2021: 209-214).
DOI Link 2201
BibRef

Gao, A.F.[Angela F.], Rasmussen, B.[Brandon], Kulits, P.[Peter], Scheller, E.L.[Eva L.], Greenberger, R.[Rebecca], Ehlmann, B.L.[Bethany L.],
Generalized Unsupervised Clustering of Hyperspectral Images of Geological Targets in the Near Infrared,
PBVS21(4289-4298)
IEEE DOI 2109
Mars, Pipelines, Memory management, Semisupervised learning, Feature extraction, Minerals BibRef

Xie, B.S., Zhou, S.Y., Wu, L.X.,
An Integrated Mineral Spectral Library Using Shared Data For Hyperspectral Remote Sensing and Geological Mapping,
ISPRS20(B5:69-75).
DOI Link 2012
BibRef

Pozo Ledesma, C., Martínez Corrales, L.F., Sánchez Fernández, M., Aguilar Mateos, P.L., Tejado, J.J.,
Results of Hyperspectral Analysis for The Characterization of Mudwall. Comparison Based On Normalization,
CIPA19(929-935).
DOI Link 1912
The material BibRef

Ullah, S., Iqbal, A.,
Application of Hyperspectral Thermal Emission Spectrometer (Hytes) Data For Hyspiri Optimal Band Positioning to Characterize Surface Minerals,
HyperMLPA19(1893-1897).
DOI Link 1912
BibRef

Zhang, Y., Huynh, C.P., Habili, N., Ngan, K.N.,
Material segmentation in hyperspectral images with minimal region perimeters,
ICIP16(834-838)
IEEE DOI 1610
Hyperspectral imaging BibRef

Aghagolzadeh, M., Radha, H.,
Hyperspectral material classification under monochromatic and trichromatic sampling rates,
ICIP16(2192-2196)
IEEE DOI 1610
Cameras BibRef

Chisense, C.,
Classification of Roof Materials Using Hyperspectral Data,
ISPRS12(XXXIX-B7:103-107).
DOI Link 1209
BibRef

Maree, R.[Raphael], Stevens, B.[Benjamin], Geurts, P.[Pierre], Guern, Y.[Yves], Mack, P.[Philippe],
A machine learning approach for material detection in hyperspectral images,
OTCBVS09(106-111).
IEEE DOI 0906
BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Automated Measurement Systems, Close Range Photogrammetry .


Last update:Oct 20, 2025 at 16:58:17