Shan, Y.H.[Yan-Hu],
Zhang, Z.[Zhang],
Yang, P.P.[Pei-Pei],
Huang, K.Q.[Kai-Qi],
Adaptive Slice Representation for Human Action Classification,
CirSysVideo(25), No. 10, October 2015, pp. 1624-1636.
IEEE DOI
1511
BibRef
Earlier: A1, A2, A4, Only:
Learning Skeleton Stream Patterns with Slow Feature Analysis for Action
Recognition,
Re-Id14(111-121).
Springer DOI
1504
feature extraction
See also Slow Feature Analysis for Human Action Recognition.
BibRef
Shan, Y.H.[Yan-Hu],
Zhang, Z.[Zhang],
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
Wu, N.[Na],
Hyun, O.S.[Oh Se],
Interest Point Selection with Spatio-temporal Context for Realistic
Action Recognition,
AVSS12(94-99).
IEEE DOI
1211
BibRef
Zhou, Z.L.[Zhuo-Li],
Song, M.L.[Ming-Li],
Zhang, L.M.[Lu-Ming],
Tao, D.C.[Da-Cheng],
Bu, J.J.[Jia-Jun],
Chen, C.[Chun],
kPose: A New Representation For Action Recognition,
ACCV10(III: 436-447).
Springer DOI
1011
BibRef
Shao, L.[Ling],
Ji, L.[Ling],
Liu, Y.[Yan],
Zhang, J.G.[Jian-Guo],
Human action segmentation and recognition via motion and shape analysis,
PRL(33), No. 4, March 2012, pp. 438-445.
Elsevier DOI
1201
Human action segmentation; Motion analysis; PCOG; Motion history
image; Human action recognition
BibRef
Wu, D.[Di],
Shao, L.[Ling],
Silhouette Analysis-Based Action Recognition Via Exploiting Human Poses,
CirSysVideo(23), No. 2, February 2013, pp. 236-243.
IEEE DOI
1301
BibRef
And:
Leveraging Hierarchical Parametric Networks for Skeletal Joints Based
Action Segmentation and Recognition,
CVPR14(724-731)
IEEE DOI
1409
See also Deep Dynamic Neural Networks for Gesture Segmentation and Recognition.
BibRef
Chaaraoui, A.A.[Alexandros Andre],
Climent-Pérez, P.[Pau],
Flórez-Revuelta, F.[Francisco],
Silhouette-based human action recognition using sequences of key
poses,
PRL(34), No. 15, 2013, pp. 1799-1807.
Elsevier DOI
1309
Human action recognition
BibRef
Chaaraoui, A.A.[Alexandros Andre],
Padilla-Lopez, J.R.,
Flórez-Revuelta, F.[Francisco],
Fusion of Skeletal and Silhouette-Based Features for Human Action
Recognition with RGB-D Devices,
CDC4CV13(91-97)
IEEE DOI
1403
feature extraction
BibRef
Anwer, R.M.[Rao Muhammad],
Khan, F.S.[Fahad Shahbaz],
van de Weijer, J.[Joost],
Laaksonen, J.T.[Jorma T.],
Top-Down Deep Appearance Attention for Action Recognition,
SCIA17(I: 297-309).
Springer DOI
1706
BibRef
Khan, F.S.[Fahad Shahbaz],
Anwer, R.M.[Rao Muhammad],
van de Weijer, J.[Joost],
Felsberg, M.[Michael],
Laaksonen, J.T.[Jorma T.],
Deep Semantic Pyramids for Human Attributes and Action Recognition,
SCIA15(341-353).
Springer DOI
1506
BibRef
Khan, F.S.[Fahad Shahbaz],
van de Weijer, J.[Joost],
Anwer, R.M.[Rao Muhammad],
Felsberg, M.[Michael],
Gatta, C.,
Semantic Pyramids for Gender and Action Recognition,
IP(23), No. 8, August 2014, pp. 3633-3645.
IEEE DOI
1408
computer vision
BibRef
Khan, F.S.[Fahad Shahbaz],
van de Weijer, J.[Joost],
Anwer, R.M.[Rao Muhammad],
Bagdanov, A.D.[Andrew D.],
Felsberg, M.[Michael],
Laaksonen, J.T.[Jorma T.],
Scale coding bag of deep features for human attribute and action
recognition,
MVA(29), No. 1, January 2018, pp. 55-71.
Springer DOI
1801
BibRef
Earlier: A1, A2, A4, A5, Only:
Scale Coding Bag-of-Words for Action Recognition,
ICPR14(1514-1519)
IEEE DOI
1412
Encoding
BibRef
Khan, F.S.[Fahad Shahbaz],
Xu, J.L.[Jiao-Long],
van de Weijer, J.[Joost],
Bagdanov, A.D.[Andrew D.],
Anwer, R.M.,
Lopez, A.M.,
Recognizing Actions Through Action-Specific Person Detection,
IP(24), No. 11, November 2015, pp. 4422-4432.
IEEE DOI
1509
computer vision
BibRef
Ofli, F.[Ferda],
Chaudhry, R.[Rizwan],
Kurillo, G.[Gregorij],
Vidal, R.[René],
Bajcsy, R.[Ruzena],
Sequence of the most informative joints (SMIJ):
A new representation for human skeletal action recognition,
JVCIR(25), No. 1, 2014, pp. 24-38.
Elsevier DOI
1502
BibRef
Earlier:
HAU3D12(8-13).
IEEE DOI
1207
Human action representation
BibRef
Pazhoumand-Dar, H.[Hossein],
Lam, C.P.[Chiou-Peng],
Masek, M.[Martin],
Joint movement similarities for robust 3D action recognition using
skeletal data,
JVCIR(30), No. 1, 2015, pp. 10-21.
Elsevier DOI
1507
Human action recognition
BibRef
Amor, B.B.,
Su, J.,
Srivastava, A.,
Action Recognition Using Rate-Invariant Analysis of Skeletal Shape
Trajectories,
PAMI(38), No. 1, January 2016, pp. 1-13.
IEEE DOI
1601
Hidden Markov models
BibRef
Cai, X.,
Zhou, W.,
Wu, L.,
Luo, J.,
Li, H.,
Effective Active Skeleton Representation for Low Latency Human Action
Recognition,
MultMed(18), No. 2, February 2016, pp. 141-154.
IEEE DOI
1601
Acceleration
BibRef
Azis, N.A.,
Jeong, Y.S.,
Choi, H.J.,
Iraqi, Y.,
Weighted averaging fusion for multi-view skeletal data and its
application in action recognition,
IET-CV(10), No. 2, 2016, pp. 134-142.
DOI Link
1603
feature extraction
BibRef
Du, Y.[Yong],
Fu, Y.,
Wang, L.[Liang],
Representation Learning of Temporal Dynamics for Skeleton-Based
Action Recognition,
IP(25), No. 7, July 2016, pp. 3010-3022.
IEEE DOI
1606
bone
BibRef
Si, C.Y.[Chen-Yang],
Jing, Y.[Ya],
Wang, W.[Wei],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Skeleton-based action recognition with hierarchical spatial reasoning
and temporal stack learning network,
PR(107), 2020, pp. 107511.
Elsevier DOI
2008
BibRef
Earlier:
Skeleton-Based Action Recognition with Spatial Reasoning and Temporal
Stack Learning,
ECCV18(I: 106-121).
Springer DOI
1810
Skeleton-based action recognition,
Hierarchical spatial reasoning, Temporal stack learning,
Clip-based incremental loss
BibRef
Si, C.Y.[Chen-Yang],
Chen, W.T.[Wen-Tao],
Wang, W.[Wei],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
An Attention Enhanced Graph Convolutional LSTM Network for
Skeleton-Based Action Recognition,
CVPR19(1227-1236).
IEEE DOI
2002
BibRef
Song, Y.F.[Yi-Fan],
Zhang, Z.[Zhang],
Shan, C.[Caifeng],
Wang, L.[Liang],
Richly Activated Graph Convolutional Network for Robust
Skeleton-Based Action Recognition,
CirSysVideo(31), No. 5, 2021, pp. 1915-1925.
IEEE DOI
2105
BibRef
Earlier: A1, A2, A4, Only:
Richly Activated Graph Convolutional Network for Action Recognition
with Incomplete Skeletons,
ICIP19(1-5)
IEEE DOI
1910
Action Recognition, Skeleton Data, Graph Convolutional Network,
Activation Maps, Occlusion
BibRef
Jing, Y.[Ya],
Wang, J.[Junbo],
Wang, W.[Wei],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Relational graph neural network for situation recognition,
PR(108), 2020, pp. 107544.
Elsevier DOI
2008
Situation recognition, Relationship modeling,
Graph neural network, Reinforcement learning
BibRef
Du, Y.[Yong],
Wang, W.[Wei],
Wang, L.[Liang],
Hierarchical Recurrent Neural Network for Skeleton Based Action
Recognition,
CVPR15(1110-1118)
IEEE DOI
1510
BibRef
Wang, H.S.[Hong-Song],
Wang, L.[Liang],
Beyond Joints: Learning Representations From Primitive Geometries for
Skeleton-Based Action Recognition and Detection,
IP(27), No. 9, September 2018, pp. 4382-4394.
IEEE DOI
1807
feature extraction, image classification, image motion analysis,
image representation, learning (artificial intelligence),
viewpoint transformation
BibRef
Wang, P.[Peng],
Wen, J.[Jun],
Si, C.Y.[Chen-Yang],
Qian, Y.T.[Yun-Tao],
Wang, L.[Liang],
Contrast-Reconstruction Representation Learning for Self-Supervised
Skeleton-Based Action Recognition,
IP(31), 2022, pp. 6224-6238.
IEEE DOI
2210
Skeleton, Dynamics, Representation learning, Image reconstruction,
Task analysis, Computational modeling, Visualization,
contrastive learning
BibRef
Jung, H.J.[Hyun-Joo],
Hong, K.S.[Ki-Sang],
Modeling temporal structure of complex actions using
Bag-of-Sequencelets,
PRL(85), No. 1, 2017, pp. 21-28.
Elsevier DOI
1612
BibRef
Earlier:
Enhanced Sequence Matching for Action Recognition from 3D Skeletal Data,
ACCV14(V: 226-240).
Springer DOI
1504
Action recognition
BibRef
Jung, H.J.[Hyun-Joo],
Hong, K.S.[Ki-Sang],
Versatile Model for Activity Recognition: Sequencelet Corpus Model,
FG18(325-332)
IEEE DOI
1806
Activity recognition, Indexes, Semantics, Support vector machines,
Task analysis, Training, Training data, activity recognition, sequencelet
BibRef
Qiao, R.Z.[Rui-Zhi],
Liu, L.Q.[Ling-Qiao],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Learning discriminative trajectorylet detector sets for accurate
skeleton-based action recognition,
PR(66), No. 1, 2017, pp. 202-212.
Elsevier DOI
1704
Action recognition
BibRef
Liu, M.Y.[Meng-Yuan],
Liu, H.[Hong],
Chen, C.[Chen],
Enhanced skeleton visualization for view invariant human action
recognition,
PR(68), No. 1, 2017, pp. 346-362.
Elsevier DOI
1704
Human action recognition
BibRef
Hu, L.Z.[Li-Zhang],
Xu, J.H.[Jin-Hua],
Learning Discriminative Representation for Skeletal Action Recognition
Using LSTM Networks,
CAIP17(II: 94-104).
Springer DOI
1708
BibRef
Weng, J.,
Weng, C.,
Yuan, J.,
Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for
Skeleton-Based Action Recognition,
CVPR17(445-454)
IEEE DOI
1711
Benchmark testing, Image recognition,
Pattern recognition, Skeleton, Videos
BibRef
Rahmani, H.,
Mian, A.,
Shah, M.,
Learning a Deep Model for Human Action Recognition from Novel
Viewpoints,
PAMI(40), No. 3, March 2018, pp. 667-681.
IEEE DOI
1802
Knowledge transfer, Solid modeling,
Training, Trajectory, Videos, Cross-view,
view knowledge transfer
BibRef
Rahmani, H.,
Bennamoun, M.,
Learning Action Recognition Model from Depth and Skeleton Videos,
ICCV17(5833-5842)
IEEE DOI
1802
human computer interaction, image motion analysis,
image representation, image sensors,
Videos
BibRef
Cao, C.Q.[Cong-Qi],
Zhang, Y.F.[Yi-Fan],
Zhang, C.,
Lu, H.Q.[Han-Qing],
Body Joint Guided 3-D Deep Convolutional Descriptors for Action
Recognition,
Cyber(48), No. 3, March 2018, pp. 1095-1108.
IEEE DOI
1802
Convolution, Estimation, Feature extraction, Kernel, Optical imaging,
Skeleton, Trajectory, Action recognition, body joints,
two-stream bilinear model
BibRef
Li, C.L.[Chao-Long],
Cui, Z.[Zhen],
Zheng, W.M.[Wen-Ming],
Xu, C.Y.[Chun-Yan],
Ji, R.R.[Rong-Rong],
Yang, J.[Jian],
Action-Attending Graphic Neural Network,
IP(27), No. 7, July 2018, pp. 3657-3670.
IEEE DOI
1805
Dynamics, Feature extraction, Hidden Markov models, Joints,
Neural networks, skeleton-based action recognition
BibRef
Li, R.[Rui],
Liu, Z.Y.[Zhen-Yu],
Tan, J.R.[Jian-Rong],
Human motion segmentation using collaborative representations of 3D
skeletal sequences,
IET-CV(12), No. 4, June 2018, pp. 434-442.
DOI Link
1805
BibRef
Wang, H.S.[Hong-Song],
Wang, L.[Liang],
Learning content and style: Joint action recognition and person
identification from human skeletons,
PR(81), 2018, pp. 23-35.
Elsevier DOI
1806
Content and style, Action recognition,
Person identification from motions, Skeleton transformation, Multi-task RNN
BibRef
Chang, J.Y.[Ju Yong],
Heo, Y.S.[Yong Seok],
Data Augmented Dynamic Time Warping for Skeletal Action Classification,
IEICE(E101-D), No. 6, June 2018, pp. 1562-1571.
WWW Link.
1806
BibRef
Pham, H.H.[Huy-Hieu],
Khoudour, L.[Louahdi],
Crouzil, A.[Alain],
Zegers, P.[Pablo],
Velastin, S.A.[Sergio A.],
Exploiting deep residual networks for human action recognition from
skeletal data,
CVIU(170), 2018, pp. 51-66.
Elsevier DOI
1806
3D Action recognition, Deep residual networks, Skeletal data
BibRef
Pham, H.H.[Huy Hieu],
Salmane, H.[Houssam],
Khoudour, L.[Louahdi],
Crouzil, A.[Alain],
Zegers, P.[Pablo],
Velastin, S.A.[Sergio A.],
A Deep Learning Approach for Real-Time 3D Human Action Recognition from
Skeletal Data,
ICIAR19(I:18-32).
Springer DOI
1909
BibRef
Xu, Y.Y.[Yang-Yang],
Cheng, J.[Jun],
Wang, L.[Lei],
Xia, H.Y.[Hai-Ying],
Liu, F.[Feng],
Tao, D.P.[Da-Peng],
Ensemble One-Dimensional Convolution Neural Networks for
Skeleton-Based Action Recognition,
SPLetters(25), No. 7, July 2018, pp. 1044-1048.
IEEE DOI
1807
bone, convolution, feature extraction, image motion analysis,
image recognition, learning (artificial intelligence),
skeleton
BibRef
Papadopoulos, G.T.[Georgios T.],
Daras, P.[Petros],
Human Action Recognition Using 3D Reconstruction Data,
CirSysVideo(28), No. 8, August 2018, pp. 1807-1823.
IEEE DOI
1808
BibRef
Earlier:
Local descriptions for human action recognition from 3D
reconstruction data,
ICIP14(2814-2818)
IEEE DOI
1502
Shape, Feature extraction, Robustness,
Estimation, Histograms, Videos, 3D flow, 3D reconstruction, 3D shape,
action recognition.
BibRef
Papadopoulos, G.T.[Georgios T.],
Axenopoulos, A.[Apostolos],
Daras, P.[Petros],
Real-Time Skeleton-Tracking-Based Human Action Recognition Using Kinect
Data,
MMMod14(I: 473-483).
Springer DOI
1405
BibRef
Zhang, Y.[Yong],
Shen, B.W.[Bo-Wei],
Wang, S.F.[Shao-Fan],
Kong, D.[Dehui],
Yin, B.C.[Bao-Cai],
L0-regularization-based skeleton optimization from consecutive point
sets of kinetic human body,
PandRS(143), 2018, pp. 124-133.
Elsevier DOI
1808
minimization, Skeleton optimization, Consecutive point sets, Kinetic human body
BibRef
Zhang, S.Y.[Song-Yang],
Yang, Y.[Yang],
Xiao, J.[Jun],
Liu, X.M.[Xiao-Ming],
Yang, Y.[Yi],
Xie, D.[Di],
Zhuang, Y.T.[Yue-Ting],
Fusing Geometric Features for Skeleton-Based Action Recognition Using
Multilayer LSTM Networks,
MultMed(20), No. 9, September 2018, pp. 2330-2343.
IEEE DOI
1809
BibRef
Earlier: A1, A4, A3, Only:
On Geometric Features for Skeleton-Based Action Recognition Using
Multilayer LSTM Networks,
WACV17(148-157)
IEEE DOI
1609
feature extraction, image recognition, optimisation,
recurrent neural nets, recurrent neural network models,
score fusion.
Computational modeling, Logic gates,
Neurons, Nonhomogeneous media, Skeleton.
BibRef
Boulahia, S.Y.[Said Yacine],
Anquetil, E.[Eric],
Multon, F.[Franck],
Kulpa, R.[Richard],
CuDi3D: Curvilinear displacement based approach for online 3D action
detection,
CVIU(174), 2018, pp. 57-69.
Elsevier DOI
1812
BibRef
Earlier: A1, A2, A4, A3:
HIF3D: Handwriting-Inspired Features for 3D skeleton-based action
recognition,
ICPR16(985-990)
IEEE DOI
1705
Online action recognition, Skeleton-based approach,
Human action detection, Curvilinear displacement,
Skeleton data stream.
Feature extraction, Handwriting recognition,
HIF3D, Handwriting-Inspired Features, Human action recognition,
Joint trajectory modelling, RGB-D data, Skeleton-based, features
BibRef
Min, W.D.[Wei-Dong],
Yao, L.Y.[Lei-Yue],
Lin, Z.R.[Zhen-Rong],
Liu, L.[Li],
Support vector machine approach to fall recognition based on simplified
expression of human skeleton action and fast detection of start key
frame using torso angle,
IET-CV(12), No. 8, December 2018, pp. 1133-1140.
DOI Link
1812
BibRef
Ghorbel, E.[Enjie],
Boonaert, J.[Jacques],
Boutteau, R.[Rémi],
Lecoeuche, S.[Stéphane],
Savatier, X.[Xavier],
An extension of kernel learning methods using a modified
Log-Euclidean distance for fast and accurate skeleton-based Human
Action Recognition,
CVIU(175), 2018, pp. 32-43.
Elsevier DOI
1812
Kernel methods, Symmetric positive semi-definite matrices,
Human action recognition, SVM, Covariance matrices,
Log-Euclidean distance
BibRef
Weng, J.,
Weng, C.,
Yuan, J.,
Liu, Z.,
Discriminative Spatio-Temporal Pattern Discovery for 3D Action
Recognition,
CirSysVideo(29), No. 4, April 2019, pp. 1077-1089.
IEEE DOI
1904
Mutual information,
Pattern recognition, Solid modeling, Skeleton, Target recognition,
discriminative skeleton-based action recognition
BibRef
Pham, H.H.[Huy-Hieu],
Khoudour, L.[Louahdi],
Crouzil, A.[Alain],
Zegers, P.[Pablo],
Velastin, S.A.[Sergio A.],
Learning to recognise 3D human action from a new skeleton-based
representation using deep convolutional neural networks,
IET-CV(13), No. 3, April 2019, pp. 319-328.
DOI Link
1904
BibRef
Earlier:
Skeletal Movement to Color Map: A Novel Representation for 3D Action
Recognition with Inception Residual Networks,
ICIP18(3483-3487)
IEEE DOI
1809
Skeleton, Image color analysis,
Training, Task analysis, Hidden Markov models, Feature extraction,
CNNs
BibRef
Cavazza, J.[Jacopo],
Morerio, P.[Pietro],
Murino, V.[Vittorio],
Scalable and compact 3D action recognition with approximated RBF
kernel machines,
PR(93), 2019, pp. 25-35.
Elsevier DOI
1906
Kernel machines, Kernel approximation, Action recognition,
Skeletal joints, Covariance representation
BibRef
Men, Q.H.[Qian-Hui],
Leung, H.[Howard],
Retrieval of spatial-temporal motion topics from 3D skeleton data,
VC(35), No. 6-8, June 2018, pp. 973-984.
WWW Link.
1906
BibRef
Zhang, P.F.[Peng-Fei],
Lan, C.L.[Cui-Ling],
Xing, J.L.[Jun-Liang],
Zeng, W.J.[Wen-Jun],
Xue, J.R.[Jian-Ru],
Zheng, N.N.[Nan-Ning],
View Adaptive Neural Networks for High Performance Skeleton-Based
Human Action Recognition,
PAMI(41), No. 8, August 2019, pp. 1963-1978.
IEEE DOI
1907
Skeleton, Adaptation models,
Adaptive systems, Recurrent neural networks, Cameras,
consistent
BibRef
Zhang, P.F.[Peng-Fei],
Xue, J.R.[Jian-Ru],
Lan, C.L.[Cui-Ling],
Zeng, W.J.[Wen-Jun],
Gao, Z.N.[Zhan-Ning],
Zheng, N.N.[Nan-Ning],
Adding Attentiveness to the Neurons in Recurrent Neural Networks,
ECCV18(IX: 136-152).
Springer DOI
1810
BibRef
Zhang, P.F.[Peng-Fei],
Lan, C.L.[Cui-Ling],
Xing, J.L.[Jun-Liang],
Zeng, W.J.[Wen-Jun],
Xue, J.R.[Jian-Ru],
Zheng, N.N.[Nan-Ning],
View Adaptive Recurrent Neural Networks for High Performance Human
Action Recognition from Skeleton Data,
ICCV17(2136-2145)
IEEE DOI
1802
image motion analysis, image recognition, recurrent neural nets,
3D skeleton data, LSTM architecture,
BibRef
Nie, Q.,
Wang, J.,
Wang, X.,
Liu, Y.,
View-Invariant Human Action Recognition Based on a 3D Bio-Constrained
Skeleton Model,
IP(28), No. 8, August 2019, pp. 3959-3972.
IEEE DOI
1907
bone, feature extraction, gesture recognition,
image motion analysis, image recognition, image representation,
bio-constrained skeleton model
BibRef
Meng, F.,
Liu, H.,
Liang, Y.,
Tu, J.,
Liu, M.,
Sample Fusion Network: An End-to-End Data Augmentation Network for
Skeleton-Based Human Action Recognition,
IP(28), No. 11, November 2019, pp. 5281-5295.
IEEE DOI
1909
Skeleton, Training, Testing, Deep learning, Transforms,
Neural networks, Task analysis, Human action recognition,
LSTM
BibRef
Tu, J.,
Liu, H.,
Meng, F.,
Liu, M.,
Ding, R.,
Spatial-Temporal Data Augmentation Based on LSTM Autoencoder Network
for Skeleton-Based Human Action Recognition,
ICIP18(3478-3482)
IEEE DOI
1809
Skeleton, Training, Data models, Decoding,
Neurons, Protocols, 3D Action Recognition, Long Short-Term Memory,
Autoencoder
BibRef
Li, Q.M.[Qi-Ming],
Lin, W.X.[Wen-Xiong],
Li, J.[Jun],
Human activity recognition using dynamic representation and matching
of skeleton feature sequences from RGB-D images,
SP:IC(68), 2018, pp. 265-272.
Elsevier DOI
1810
Human activity recognition,
Dynamic representation and matching, Shape dynamic time warping
BibRef
Yang, Z.Y.[Zheng-Yuan],
Li, Y.C.[Yun-Cheng],
Yang, J.C.[Jian-Chao],
Luo, J.B.[Jie-Bo],
Action Recognition With Spatio-Temporal Visual Attention on Skeleton
Image Sequences,
CirSysVideo(29), No. 8, August 2019, pp. 2405-2415.
IEEE DOI
1908
BibRef
Earlier:
Action Recognition with Visual Attention on Skeleton Images,
ICPR18(3309-3314)
IEEE DOI
1812
Skeleton, Visualization, Optical imaging,
Image recognition, Image sequences,
visual attention.
Pattern recognition, Semantics
BibRef
Wei, P.,
Sun, H.,
Zheng, N.,
Learning Composite Latent Structures for 3D Human Action
Representation and Recognition,
MultMed(21), No. 9, September 2019, pp. 2195-2208.
IEEE DOI
1909
Skeleton, Semantics,
Hidden Markov models, Deep learning, Sun, Solid modeling,
composite latent structure
BibRef
Ke, Q.,
Bennamoun, M.,
Rahmani, H.,
An, S.,
Sohel, F.A.,
Boussaid, F.,
Learning Latent Global Network for Skeleton-Based Action Prediction,
IP(29), No. 1, 2020, pp. 959-970.
IEEE DOI
1910
Skeleton, Videos, Australia,
Recurrent neural networks, Lighting, Video sequences,
convolutional neural networks
BibRef
Cao, C.Q.[Cong-Qi],
Lan, C.L.[Cui-Ling],
Zhang, Y.F.[Yi-Fan],
Zeng, W.J.[Wen-Jun],
Lu, H.Q.[Han-Qing],
Zhang, Y.N.[Yan-Ning],
Skeleton-Based Action Recognition With Gated Convolutional Neural
Networks,
CirSysVideo(29), No. 11, November 2019, pp. 3247-3257.
IEEE DOI
1911
Skeleton, Logic gates, Task analysis, Recurrent neural networks,
Matrix converters, convolutional neural networks
See also Egocentric Gesture Recognition Using Recurrent 3D Convolutional Neural Networks with Spatiotemporal Transformer Modules.
BibRef
Shi, L.[Lei],
Zhang, Y.F.[Yi-Fan],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Decoupled Spatial-temporal Attention Network for Skeleton-based
Action-gesture Recognition,
ACCV20(V:38-53).
Springer DOI
2103
BibRef
Cheng, K.[Ke],
Zhang, Y.F.[Yi-Fan],
He, X.Y.[Xiang-Yu],
Chen, W.H.[Wei-Han],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Skeleton-Based Action Recognition With Shift Graph Convolutional
Network,
CVPR20(180-189)
IEEE DOI
2008
Skeleton, Kernel, Convolutional codes, Computational modeling,
Adaptation models, Pattern recognition
BibRef
Shi, L.[Lei],
Zhang, Y.F.[Yi-Fan],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph
Convolutional Networks,
IP(29), 2020, pp. 9532-9545.
IEEE DOI
2011
BibRef
Earlier:
Skeleton-Based Action Recognition With Directed Graph Neural Networks,
CVPR19(7904-7913).
IEEE DOI
2002
BibRef
And:
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based
Action Recognition,
CVPR19(12018-12027).
IEEE DOI
2002
Adaptation models, Joints, Data models, Bones,
Spatiotemporal phenomena, Task analysis,
multi-stream network
BibRef
Shi, L.[Lei],
Zhang, Y.F.[Yi-Fan],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Action recognition via pose-based graph convolutional networks with
intermediate dense supervision,
PR(121), 2022, pp. 108170.
Elsevier DOI
2109
Action recognition, Skeleton
BibRef
Cheng, K.[Ke],
Zhang, Y.F.[Yi-Fan],
He, X.Y.[Xiang-Yu],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Extremely Lightweight Skeleton-Based Action Recognition with
ShiftGCN++,
IP(30), 2021, pp. 7333-7348.
IEEE DOI
2108
Skeleton, Convolutional codes, Image recognition,
Computational modeling, Adaptation models,
shift network
BibRef
Cheng, K.[Ke],
Zhang, Y.F.[Yi-Fan],
Cao, C.Q.[Cong-Qi],
Shi, L.[Lei],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Decoupling GCN with Dropgraph Module for Skeleton-based Action
Recognition,
ECCV20(XXIV:536-553).
Springer DOI
2012
BibRef
Zhu, K.J.[Kai-Jun],
Wang, R.X.[Ru-Xin],
Zhao, Q.S.[Qing-Song],
Cheng, J.[Jun],
Tao, D.P.[Da-Peng],
A Cuboid CNN Model with an Attention Mechanism for Skeleton-Based
Action Recognition,
MultMed(22), No. 11, November 2020, pp. 2977-2989.
IEEE DOI
2010
Feature extraction, Skeleton, Sensors,
Spatiotemporal phenomena, Hidden Markov models, Neural networks,
feature cuboid
BibRef
Ghazal, S.[Sumaira],
Khan, U.S.[Umar S.],
Saleem, M.M.[Muhammad Mubasher],
Rashid, N.[Nasir],
Iqbal, J.[Javaid],
Human activity recognition using 2D skeleton data and supervised
machine learning,
IET-IPR(13), No. 13, November 2019, pp. 2572-2578.
DOI Link
1911
BibRef
Liu, J.[Jun],
Ding, H.H.[Heng-Hui],
Shahroudy, A.[Amir],
Duan, L.Y.[Ling-Yu],
Jiang, X.D.[Xu-Dong],
Wang, G.[Gang],
Kot, A.C.[Alex C.],
Feature Boosting Network For 3D Pose Estimation,
PAMI(42), No. 2, February 2020, pp. 494-501.
IEEE DOI
2001
Pose estimation, Boosting, Logic gates, Reliability,
context consistency gate
BibRef
Liu, J.[Jun],
Shahroudy, A.[Amir],
Xu, D.[Dong],
Kot, A.C.,
Wang, G.[Gang],
Skeleton-Based Action Recognition Using Spatio-Temporal LSTM Network
with Trust Gates,
PAMI(40), No. 12, December 2018, pp. 3007-3021.
IEEE DOI
1811
BibRef
Earlier: A1, A2, A3, A5, Only:
Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition,
ECCV16(III: 816-833).
Springer DOI
1611
Recurrent neural networks, Spatiotemporal phenomena,
Feature extraction,
skeleton sequence
BibRef
Liu, J.H.[Jia-Heng],
Xu, D.[Dong],
GeometryMotion-Net:
A Strong Two-Stream Baseline for 3D Action Recognition,
CirSysVideo(31), No. 12, December 2021, pp. 4711-4721.
IEEE DOI
2112
Feature extraction, Geometry,
Cloud computing, Skeleton, Data mining, Deep learning, Point cloud,
two-stream
BibRef
Liu, J.[Jun],
Shahroudy, A.[Amir],
Wang, G.[Gang],
Duan, L.Y.[Ling-Yu],
Kot, A.C.[Alex C.],
Skeleton-Based Online Action Prediction Using Scale Selection Network,
PAMI(42), No. 6, June 2020, pp. 1453-1467.
IEEE DOI
2005
Skeleton,
Task analysis, Videos, Real-time systems, Pattern recognition,
skeleton data
BibRef
Liu, J.[Jun],
Shahroudy, A.[Amir],
Wang, G.[Gang],
Duan, L.Y.[Ling-Yu],
Kot, A.C.[Alex C.],
SSNet: Scale Selection Network for Online 3D Action Prediction,
CVPR18(8349-8358)
IEEE DOI
1812
Convolution, Skeleton, Task analysis, Predictive models, Real-time systems
BibRef
Qin, Y.[Yang],
Mo, L.F.[Ling-Fei],
Li, C.Y.[Chen-Yang],
Luo, J.Y.[Jia-Yi],
Skeleton-Based Action Recognition by Part-Aware Graph Convolutional
Networks,
VC(36), No. 3, March 2020, pp. 621-631.
WWW Link.
2002
BibRef
Ding, W.W.[Wen-Wen],
Li, X.[Xiao],
Li, G.[Guang],
Wei, Y.S.[Yue-Song],
Global relational reasoning with spatial temporal graph interaction
networks for skeleton-based action recognition,
SP:IC(83), 2020, pp. 115776.
Elsevier DOI
2003
Deep learning, Graph convolutional network,
Convolutional neural networks, Spatio-temporal graph, Message passing
BibRef
Ding, W.W.[Wen-Wen],
Zhou, G.H.[Guang-Hui],
Ding, C.Y.[Chong-Yang],
Li, G.[Guang],
Liu, K.[Kai],
Graph-based relational reasoning in a latent space for skeleton-based
action recognition,
JVCIR(83), 2022, pp. 103410.
Elsevier DOI
2202
Deep learning, Graph neural networks,
Graph convolutional network, Message passing,
Grassmannian geometry
BibRef
Franco, A.[Annalisa],
Magnani, A.[Antonio],
Maio, D.[Dario],
A multimodal approach for human activity recognition based on
skeleton and RGB data,
PRL(131), 2020, pp. 293-299.
Elsevier DOI
2004
Human activity recognition, Kinect sensor, Temporal images
BibRef
Brighi, M.[Marco],
Franco, A.[Annalisa],
Maio, D.[Dario],
ActivityExplorer: A semi-supervised approach to discover unknown
activity classes in HAR systems,
PRL(151), 2021, pp. 340-347.
Elsevier DOI
2110
Human Activity Recognition, Semi-supervised learning, Metric Learning
BibRef
Franco, A.[Annalisa],
Magnani, A.[Antonio],
Maio, D.[Dario],
Joint Orientations from Skeleton Data for Human Activity Recognition,
CIAP17(I:152-162).
Springer DOI
1711
BibRef
Li, G.[Gang],
Li, C.Y.[Chun-Yu],
Learning skeleton information for human action analysis using Kinect,
SP:IC(84), 2020, pp. 115814.
Elsevier DOI
2004
Human action recognition, Kinect sensor, Depth image, Human skeleton information
BibRef
Li, Y.S.[Yan-Shan],
Xia, R.J.[Rong-Jie],
Liu, X.[Xing],
Learning shape and motion representations for view invariant
skeleton-based action recognition,
PR(103), 2020, pp. 107293.
Elsevier DOI
2005
Human action recognition, Skeleton sequence,
Representation learning, View invariant, Geometric Algebra
BibRef
Ghorbel, E.,
Demisse, G.,
Aouada, D.,
Ottersten, B.,
Fast Adaptive Reparametrization (FAR) With Application to Human
Action Recognition,
SPLetters(27), 2020, pp. 580-584.
IEEE DOI
2005
Manifolds, Skeleton, Algebra, Optimization, Benchmark testing, Shape,
Feature extraction, Reparametrization, action recognition Riemannian manifolds
BibRef
Li, J.A.[Jian-An],
Xie, X.M.[Xue-Mei],
Pan, Q.Z.[Qing-Zhe],
Cao, Y.[Yuhan],
Zhao, Z.[Zhifu],
Shi, G.M.[Guang-Ming],
SGM-Net: Skeleton-guided multimodal network for action recognition,
PR(104), 2020, pp. 107356.
Elsevier DOI
2005
Action recognition, multi-modality, skeleton-guided
BibRef
Kawamura, K.[Kazuki],
Matsubara, T.[Takashi],
Uehara, K.[Kuniaki],
Deep State-Space Model for Noise Tolerant Skeleton-Based Action
Recognition,
IEICE(E103-D), No. 6, June 2020, pp. 1217-1225.
WWW Link.
2006
BibRef
Cho, S.[Sangwoo],
Maqbool, M.H.[Muhammad Hasan],
Liu, F.[Fei],
Foroosh, H.[Hassan],
Self-Attention Network for Skeleton-based Human Action Recognition,
WACV20(624-633)
IEEE DOI
2006
Skeleton, Semantics, Data mining,
Recurrent neural networks, Computational modeling, Encoding
BibRef
Li, S.,
Jiang, T.,
Huang, T.,
Tian, Y.,
Global Co-occurrence Feature Learning and Active Coordinate System
Conversion for Skeleton-based Action Recognition,
WACV20(575-583)
IEEE DOI
2006
Skeleton, Feature extraction, Convolution, Solid modeling,
Recurrent neural networks, Head
BibRef
Zhu, G.M.[Guang-Ming],
Zhang, L.[Liang],
Li, H.S.[Hong-Sheng],
Shen, P.[Peiyi],
Shah, S.A.A.[Syed Afaq Ali],
Bennamoun, M.[Mohammed],
Topology-Learnable Graph Convolution for Skeleton-Based Action
Recognition,
PRL(135), 2020, pp. 286-292.
Elsevier DOI
2006
Action recognition, Graph convolution, Graph topology, Skeleton
BibRef
Zhu, G.M.[Guang-Ming],
Yang, L.[Lu],
Zhang, L.[Liang],
Shen, P.[Peiyi],
Song, J.[Juan],
Recurrent Graph Convolutional Networks for Skeleton-based Action
Recognition,
ICPR21(1352-1359)
IEEE DOI
2105
Deep learning, Network topology, Topology, Pattern recognition
BibRef
Jiang, X.,
Xu, K.,
Sun, T.,
Action Recognition Scheme Based on Skeleton Representation With
DS-LSTM Network,
CirSysVideo(30), No. 7, July 2020, pp. 2129-2140.
IEEE DOI
2007
Skeleton, Hidden Markov models,
Noise reduction, Geometry, Robustness, Electrical engineering,
STAE
BibRef
Guo, H.J.[Hong-Ji],
Ren, Z.[Zhou],
Wu, Y.[Yi],
Hua, G.[Gang],
Ji, Q.[Qiang],
Uncertainty-Based Spatial-Temporal Attention for Online Action
Detection,
ECCV22(IV:69-86).
Springer DOI
2211
BibRef
Cui, R.[Ran],
Zhu, A.[Aichun],
Wu, J.R.[Jing-Ran],
Hua, G.[Gang],
Skeleton-based attention-aware spatial-temporal model for action
detection and recognition,
IET-CV(14), No. 5, August 2020, pp. 177-184.
DOI Link
2007
BibRef
Cui, R.[Ran],
Hua, G.[Gang],
Wu, J.R.[Jing-Ran],
AP-GAN: Predicting skeletal activity to improve early activity
recognition,
JVCIR(73), 2020, pp. 102923.
Elsevier DOI
2012
Early activity recognition, Activity prediction, Skeleton, GAN
BibRef
Liu, X.[Xing],
Li, Y.S.[Yan-Shan],
Xia, R.J.[Rong-Jie],
Rotation-based spatial-temporal feature learning from skeleton
sequences for action recognition,
SIViP(14), No. 6, September 2020, pp. 1227-1234.
WWW Link.
2008
BibRef
Hu, G.,
Cui, B.,
Yu, S.,
Joint Learning in the Spatio-Temporal and Frequency Domains for
Skeleton-Based Action Recognition,
MultMed(22), No. 9, September 2020, pp. 2207-2220.
IEEE DOI
2008
Frequency-domain analysis, Transforms, Frequency synchronization,
Semantics, Training, Skeleton, Data mining, Action recognition,
multi-task learning
BibRef
Avola, D.,
Cascio, M.,
Cinque, L.,
Foresti, G.L.,
Massaroni, C.,
Rodolà, E.,
2-D Skeleton-Based Action Recognition via Two-Branch Stacked
LSTM-RNNs,
MultMed(22), No. 10, October 2020, pp. 2481-2496.
IEEE DOI
2009
Skeleton, Feature extraction,
Cameras, Recurrent neural networks,
long short-term memory (LSTM)
BibRef
Zhang, T.,
Zheng, W.,
Cui, Z.,
Zong, Y.,
Li, C.,
Zhou, X.,
Yang, J.,
Deep Manifold-to-Manifold Transforming Network for Skeleton-Based
Action Recognition,
MultMed(22), No. 11, November 2020, pp. 2926-2937.
IEEE DOI
2010
Manifolds, Measurement, Covariance matrices, Feature extraction,
Task analysis, Convolution, Kernel, Riemannian manifold, SPD matrix,
action recognition
BibRef
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Gao, Z.M.[Zhi-Min],
Zhang, J.[Jing],
Tang, C.[Chang],
Ogunbona, P.O.[Philip O.],
Action Recognition from Depth Maps Using Deep Convolutional Neural
Networks,
HMS(46), No. 4, August 2016, pp. 498-509.
IEEE DOI
1608
data mining
BibRef
Miao, S.Y.[Shuang-Yan],
Hou, Y.H.[Yong-Hong],
Gao, Z.M.[Zhi-Min],
Xu, M.L.[Ming-Liang],
Li, W.Q.[Wan-Qing],
A Central Difference Graph Convolutional Operator for Skeleton-Based
Action Recognition,
CirSysVideo(32), No. 7, July 2022, pp. 4893-4899.
IEEE DOI
2207
Convolution, Bones, Joints, Convolutional codes, Aggregates, Topology,
Training, Graph convolutional network, action recognition, skeleton
BibRef
Li, C.K.[Chuan-Kun],
Li, S.[Shuai],
Gao, Y.B.[Yan-Bo],
Guo, L.[Lina],
Li, W.Q.[Wan-Qing],
Improved Shift Graph Convolutional Network for Action Recognition
With Skeleton,
SPLetters(30), 2023, pp. 438-442.
IEEE DOI
2305
Convolution, Skeleton, Computational complexity,
Feature extraction, Convolutional neural networks, Kernel, skeleton
BibRef
Hou, Y.H.[Yong-Hong],
Li, Z.Y.[Zhao-Yang],
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Skeleton Optical Spectra-Based Action Recognition Using Convolutional
Neural Networks,
CirSysVideo(28), No. 3, March 2018, pp. 807-811.
IEEE DOI
1804
convolution, feature extraction, feedforward neural nets,
image coding, image colour analysis, image motion analysis,
skeleton
BibRef
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Gao, Z.M.[Zhi-Min],
Tang, C.[Chang],
Ogunbona, P.O.[Philip O.],
Depth Pooling Based Large-Scale 3-D Action Recognition with
Convolutional Neural Networks,
MultMed(20), No. 5, May 2018, pp. 1051-1061.
IEEE DOI
1805
Dynamics, Feature extraction, Gesture recognition,
Image recognition, Image segmentation, Motion segmentation,
depth
BibRef
Li, C.K.[Chuan-Kun],
Hou, Y.H.[Yong-Hong],
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Joint Distance Maps Based Action Recognition With Convolutional
Neural Networks,
SPLetters(24), No. 5, May 2017, pp. 624-628.
IEEE DOI
1704
image colour analysis
BibRef
Li, C.K.[Chuan-Kun],
Hou, Y.H.[Yong-Hong],
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Multiview-Based 3-D Action Recognition Using Deep Networks,
HMS(49), No. 1, February 2019, pp. 95-104.
IEEE DOI
1901
Skeleton, Trajectory, Feature extraction,
Recurrent neural networks, Image color analysis, Encoding,
three dimensional (3-D)
BibRef
Wang, P.C.[Pi-Chao],
Li, W.Q.[Wan-Qing],
Gao, Z.M.[Zhi-Min],
Zhang, Y.Y.[Yu-Yao],
Tang, C.[Chang],
Ogunbona, P.O.[Philip O.],
Scene Flow to Action Map: A New Representation for RGB-D Based Action
Recognition with Convolutional Neural Networks,
CVPR17(416-425)
IEEE DOI
1711
Cameras, Feature extraction, Kernel, Optical imaging,
Transforms, Videos
BibRef
Zhang, J.[Jing],
Li, W.Q.[Wan-Qing],
Wang, P.C.[Pi-Chao],
Ogunbona, P.[Philip],
Liu, S.[Song],
Tang, C.[Chang],
A Large Scale RGB-D Dataset for Action Recognition,
UHA3DS16(101-114).
Springer DOI
1806
BibRef
Zhang, H.Y.[Hao-Yuan],
Hou, Y.H.[Yong-Hong],
Wang, P.C.[Pi-Chao],
Guo, Z.H.[Zi-Hui],
Li, W.Q.[Wan-Qing],
SAR-NAS: Skeleton-based action recognition via neural architecture
searching,
JVCIR(73), 2020, pp. 102942.
Elsevier DOI
2012
Neural architecture search, Action recognition, Skeleton
See also Large-Scale Continuous Gesture Recognition Using Convolutional Neural Networks.
BibRef
Huang, H.[Hong'en],
Su, H.[Hang],
Chang, Z.G.[Zhi-Gang],
Yu, M.Y.[Ming-Yang],
Gao, J.L.[Jia-Lin],
Li, X.Z.[Xin-Zhe],
Zheng, S.B.[Shi-Bao],
Convolutional neural network with adaptive inferential framework for
skeleton-based action recognition,
JVCIR(73), 2020, pp. 102925.
Elsevier DOI
2012
Skeleton-based action recognition, Pseudo image,
Adaptive inferential framework, Different prior information
BibRef
Gao, J.L.[Jia-Lin],
He, T.[Tong],
Zhou, X.[Xi],
Ge, S.M.[Shi-Ming],
Skeleton-Based Action Recognition With Focusing-Diffusion Graph
Convolutional Networks,
SPLetters(28), 2021, pp. 2058-2062.
IEEE DOI
2111
Focusing, Convolution, Skeleton, Transformers, Hidden Markov models,
Context modeling, Aggregates, Focusing and diffusion,
action recognition
BibRef
Liu, K.,
Gao, L.,
Khan, N.M.,
Qi, L.,
Guan, L.,
A Multi-Stream Graph Convolutional Networks-Hidden Conditional Random
Field Model for Skeleton-Based Action Recognition,
MultMed(23), 2021, pp. 64-76.
IEEE DOI
2012
Feature extraction, Convolution, Adaptation models,
Neural networks, Bones, Message passing, GCN, CRF, skeleton,
action recognition
BibRef
Lee, I.,
Kim, D.,
Lee, S.,
3-D Human Behavior Understanding Using Generalized TS-LSTM Networks,
MultMed(23), 2021, pp. 415-428.
IEEE DOI
2012
Skeleton, Hidden Markov models, Feature extraction, Dynamics,
Machine learning, Solid modeling, Human action recognition,
temporal sequence analysis
BibRef
Shao, Z.,
Li, Y.,
Zhang, H.,
Learning Representations From Skeletal Self-Similarities for
Cross-View Action Recognition,
CirSysVideo(31), No. 1, January 2021, pp. 160-174.
IEEE DOI
2101
Skeleton, Feature extraction,
Learning systems, Wrapping, Spatiotemporal phenomena,
view-invariant representation
BibRef
Chen, L.,
Lu, J.,
Song, Z.,
Zhou, J.,
Recurrent Semantic Preserving Generation for Action Prediction,
CirSysVideo(31), No. 1, January 2021, pp. 231-245.
IEEE DOI
2101
Semantics, Machine learning, Skeleton, Predictive models,
Feature extraction,
skeleton based action
BibRef
Bian, C.,
Feng, W.,
Wan, L.,
Wang, S.,
Structural Knowledge Distillation for Efficient Skeleton-Based Action
Recognition,
IP(30), 2021, pp. 2963-2976.
IEEE DOI
2102
Skeleton, Training, Pose estimation, Feature extraction, Videos,
Joints, Knowledge engineering, Skeleton-based action recognition,
gradient revision
BibRef
Peng, W.[Wei],
Shi, J.G.[Jin-Gang],
Zhao, G.Y.[Guo-Ying],
Spatial Temporal Graph Deconvolutional Network for Skeleton-Based
Human Action Recognition,
SPLetters(28), 2021, pp. 244-248.
IEEE DOI
2102
Deconvolution, Convolution, Kernel, Skeleton, Task analysis,
Covariance matrices, Correlation, Graph neural network,
over-smoothing
BibRef
Peng, W.[Wei],
Hong, X.P.[Xiao-Peng],
Zhao, G.Y.[Guo-Ying],
Tripool: Graph triplet pooling for 3D skeleton-based action
recognition,
PR(115), 2021, pp. 107921.
Elsevier DOI
2104
3D skeletal action recognition, ST-GCN, Graph pooling, Graph topology analysis
BibRef
Hao, X.K.[Xiao-Ke],
Li, J.[Jie],
Guo, Y.C.[Ying-Chun],
Jiang, T.[Tao],
Yu, M.[Ming],
Hypergraph Neural Network for Skeleton-Based Action Recognition,
IP(30), 2021, pp. 2263-2275.
IEEE DOI
2102
convolutional neural nets, feature extraction,
Fourier analysis, graph theory, image fusion, geometric relations
BibRef
Yang, J.,
Liu, W.,
Yuan, J.,
Mei, T.,
Hierarchical Soft Quantization for Skeleton-Based Human Action
Recognition,
MultMed(23), 2021, pp. 883-898.
IEEE DOI
2103
Skeleton, Feature extraction, Quantization (signal),
Color, congenerous feature
BibRef
Aouaidjia, K.,
Sheng, B.,
Li, P.,
Kim, J.,
Feng, D.D.,
Efficient Body Motion Quantification and Similarity Evaluation Using
3-D Joints Skeleton Coordinates,
SMCS(51), No. 5, May 2021, pp. 2774-2788.
IEEE DOI
2104
Skeleton, Measurement, Cameras, Sensors, Biological system modeling,
Solid modeling, Pose estimation, Human-computer interaction,
three-dimensional (3-D) human motion representation
BibRef
Sun, N.[Ning],
Leng, L.[Ling],
Liu, J.X.[Ji-Xin],
Han, G.[Guang],
Multi-stream slowFast graph convolutional networks for skeleton-based
action recognition,
IVC(109), 2021, pp. 104141.
Elsevier DOI
2105
Action recognition, Graph convolutional network,
Human skeleton, SlowFast network, Attention
BibRef
Plizzari, C.[Chiara],
Cannici, M.[Marco],
Matteucci, M.[Matteo],
Skeleton-based action recognition via spatial and temporal
transformer networks,
CVIU(208-209), 2021, pp. 103219.
Elsevier DOI
2106
BibRef
Earlier:
Spatial Temporal Transformer Network for Skeleton-based Action
Recognition,
FBE20(694-701).
Springer DOI
2103
Representation learning, Graph CNN, Self-attention, 3D skeleton,
Action recognition
BibRef
Banerjee, A.[Avinandan],
Singh, P.K.[Pawan Kumar],
Sarkar, R.[Ram],
Fuzzy Integral-Based CNN Classifier Fusion for 3D Skeleton Action
Recognition,
CirSysVideo(31), No. 6, June 2021, pp. 2206-2216.
IEEE DOI
2106
Skeleton, Feature extraction,
Kinematics, Data mining, Image coding, convolutional neural network
BibRef
Liu, X.L.[Xiao-Li],
Yin, J.Q.[Jian-Qin],
Liu, J.[Jin],
Ding, P.X.[Peng-Xiang],
Liu, J.[Jun],
Liu, H.P.[Hua-Ping],
TrajectoryCNN: A New Spatio-Temporal Feature Learning Network for
Human Motion Prediction,
CirSysVideo(31), No. 6, June 2021, pp. 2133-2146.
IEEE DOI
2106
Dynamics, Trajectory, Predictive models, Correlation,
Biological system modeling, Robots, Benchmark testing, skeleton
BibRef
Ding, P.X.[Peng-Xiang],
Yin, J.Q.[Jian-Qin],
Towards More Realistic Human Motion Prediction With Attention to
Motion Coordination,
CirSysVideo(32), No. 9, September 2022, pp. 5846-5858.
IEEE DOI
2209
Dynamics, Feature extraction, Predictive models, Adaptation models,
Data mining, Skeleton, Convolution, Human motion prediction,
enriched dynamics
BibRef
Gupta, P.[Pranay],
Thatipelli, A.[Anirudh],
Aggarwal, A.[Aditya],
Maheshwari, S.[Shubh],
Trivedi, N.[Neel],
Das, S.[Sourav],
Sarvadevabhatla, R.K.[Ravi Kiran],
Quo Vadis, Skeleton Action Recognition?,
IJCV(129), No. 7, July 2021, pp. 2097-2112.
Springer DOI
2106
BibRef
Li, X.M.[Xing-Ming],
Zhai, W.[Wei],
Cao, Y.[Yang],
A tri-attention enhanced graph convolutional network for
skeleton-based action recognition,
IET-CV(15), No. 2, 2021, pp. 110-121.
DOI Link
2106
BibRef
Yu, B.X.B.[Bruce X.B.],
Liu, Y.[Yan],
Chan, K.C.C.[Keith C.C.],
Yang, Q.[Qintai],
Wang, X.Y.[Xiao-Ying],
Skeleton-based human action evaluation using graph convolutional
network for monitoring Alzheimer's progression,
PR(119), 2021, pp. 108095.
Elsevier DOI
2108
Human action evaluation, Alzheimer's disease,
Graph neural network, Abnormality detection
BibRef
Li, M.S.[Mao-Sen],
Chen, S.H.[Si-Heng],
Zhao, Y.H.[Yang-Heng],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
Tian, Q.[Qi],
Multiscale Spatio-Temporal Graph Neural Networks for 3D
Skeleton-Based Motion Prediction,
IP(30), 2021, pp. 7760-7775.
IEEE DOI
2109
BibRef
Earlier:
Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human
Motion Prediction,
CVPR20(211-220)
IEEE DOI
2008
Feature extraction, Decoding, Predictive models, Convolution,
Dynamics, Computational modeling,
graph convolution.
Dynamics, Convolution, Neural networks, Adaptation models
BibRef
Li, M.S.[Mao-Sen],
Chen, S.H.[Si-Heng],
Zhang, Z.J.[Zi-Jing],
Xie, L.X.[Ling-Xi],
Tian, Q.[Qi],
Zhang, Y.[Ya],
Skeleton-Parted Graph Scattering Networks for 3D Human Motion
Prediction,
ECCV22(VI:18-36).
Springer DOI
2211
BibRef
Li, M.S.[Mao-Sen],
Chen, S.H.[Si-Heng],
Chen, X.[Xu],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
Tian, Q.[Qi],
Symbiotic Graph Neural Networks for 3D Skeleton-Based Human Action
Recognition and Motion Prediction,
PAMI(44), No. 6, June 2022, pp. 3316-3333.
IEEE DOI
2205
Feature extraction, Magnetic heads,
Joints, Convolution, Task analysis, Symbiosis,
graph inference
BibRef
Li, M.S.[Mao-Sen],
Chen, S.H.[Si-Heng],
Liu, Z.H.[Zi-Hui],
Zhang, Z.J.[Zi-Jing],
Xie, L.X.[Ling-Xi],
Tian, Q.[Qi],
Zhang, Y.[Ya],
Skeleton Graph Scattering Networks for 3D Skeleton-based Human Motion
Prediction,
GSP-CV21(854-864)
IEEE DOI
2112
Convolution,
Aggregates, Scattering, Feature extraction
BibRef
Feng, H.[Hui],
Wang, S.S.[Shan-Shan],
Xu, H.X.[Hai-Xiang],
Ge, S.S.[Shuzhi Sam],
Object Activity Scene Description, Construction, and Recognition,
Cyber(51), No. 10, October 2021, pp. 5082-5092.
IEEE DOI
2110
Skeleton, Feature extraction, Hip, Cybernetics, Trajectory,
Data mining, Histograms, Convolutional neural network (CNN),
scene recognition
BibRef
Yang, H.[Hao],
Yan, D.[Dan],
Zhang, L.[Li],
Sun, Y.[Yunda],
Li, D.[Dong],
Maybank, S.J.[Stephen J.],
Feedback Graph Convolutional Network for Skeleton-Based Action
Recognition,
IP(31), 2022, pp. 164-175.
IEEE DOI
2112
Skeleton, Feature extraction, Joints, Semantics, Predictive models,
Data models, Convolution, Feedback mechanism,
action recognition
BibRef
Naveenkumar, M.,
Domnic, S.,
Spatio Temporal Joint Distance Maps for Skeleton-Based Action
Recognition Using Convolutional Neural Networks,
IJIG(21), No. 5 2021, pp. 2140001.
DOI Link
2201
BibRef
Koniusz, P.[Piotr],
Wang, L.[Lei],
Cherian, A.[Anoop],
Tensor Representations for Action Recognition,
PAMI(44), No. 2, February 2022, pp. 648-665.
IEEE DOI
2201
Tensors, Kernel, Skeleton, Correlation,
Optical imaging, Higher order statistics, CNN, 3D skeletons,
power normalization
BibRef
Koniusz, P.[Piotr],
Cherian, A.[Anoop],
Porikli, F.M.[Fatih M.],
Tensor Representations via Kernel Linearization for Action Recognition
from 3D Skeletons,
ECCV16(IV: 37-53).
Springer DOI
1611
BibRef
Earlier: A1, A2, Only:
Sparse Coding for Third-Order Super-Symmetric Tensor Descriptors with
Application to Texture Recognition,
CVPR16(5395-5403)
IEEE DOI
1612
BibRef
Shen, X.P.[Xiang-Pei],
Ding, Y.R.[Yan-Rui],
Human skeleton representation for 3D action recognition based on
complex network coding and LSTM,
JVCIR(82), 2022, pp. 103386.
Elsevier DOI
2201
Skeleton-based action recognition, Complex network coding,
LSTM, Feature extraction
BibRef
Zang, Y.[Ying],
Yang, D.S.[Dong-Sheng],
Liu, T.J.[Tian-Jiao],
Li, H.[Hui],
Zhao, S.G.[Shu-Guang],
Liu, Q.S.[Qing-Shan],
SparseShift-GCN: High precision skeleton-based action recognition,
PRL(153), 2022, pp. 136-143.
Elsevier DOI
2201
BibRef
Alsarhan, T.[Tamam],
Ali, U.[Usman],
Lu, H.T.[Hong-Tao],
Enhanced discriminative graph convolutional network with adaptive
temporal modelling for skeleton-based action recognition,
CVIU(216), 2022, pp. 103348.
Elsevier DOI
2202
Skeleton-based action recognition,
Graph convolutional network, Squeeze and excitation, Adaptive temporal modelling
BibRef
Kong, J.[Jun],
Bian, Y.H.[Yu-Hang],
Jiang, M.[Min],
MTT: Multi-Scale Temporal Transformer for Skeleton-Based Action
Recognition,
SPLetters(29), 2022, pp. 528-532.
IEEE DOI
2202
Feature extraction, Transformers, Kernel, Skeleton, Data mining,
Task analysis, Convolution, Skeleton-based action recognition,
multi-scale temporal embedding
BibRef
Yu, L.[Lubin],
Tian, L.[Lianfang],
Du, Q.[Qiliang],
Bhutto, J.A.[Jameel Ahmed],
Multi-stream adaptive spatial-temporal attention graph convolutional
network for skeleton-based action recognition,
IET-CV(16), No. 2, 2022, pp. 143-158.
DOI Link
2202
computer graphics, convolutional neural nets,
graphics processing units, space-time adaptive processing
BibRef
Song, S.[Sijie],
Liu, J.Y.[Jia-Ying],
Lin, L.[Lilang],
Guo, Z.M.[Zong-Ming],
Learning to Recognize Human Actions From Noisy Skeleton Data Via
Noise Adaptation,
MultMed(24), 2022, pp. 1152-1163.
IEEE DOI
2203
Skeleton, Noise measurement, Adaptation models, Feature extraction,
Cameras, Pose estimation, Action recognition, noisy skeletons,
noise adaptation
BibRef
Tang, J.[Jun],
Wang, Y.J.[Yan-Jiang],
Fu, S.C.[Si-Chao],
Liu, B.[Baodi],
Liu, W.F.[Wei-Feng],
A graph convolutional neural network model with Fisher vector
encoding and channel-wise spatial-temporal aggregation for
skeleton-based action recognition,
IET-IPR(16), No. 5, 2022, pp. 1433-1443.
DOI Link
2203
BibRef
Liu, M.Y.[Meng-Yuan],
Bao, Y.[Youneng],
Liang, Y.S.[Yong-Sheng],
Meng, F.[Fanyang],
Spatial-Temporal Asynchronous Normalization for Unsupervised 3D
Action Representation Learning,
SPLetters(29), 2022, pp. 632-636.
IEEE DOI
2203
Skeleton, Shape, Decoding, Task analysis, Representation learning,
Data mining, 3D action, representation learning
BibRef
Xie, Y.L.[Yu-Lai],
Zhang, Y.[Yang],
Ren, F.[Fang],
Temporal-Enhanced Graph Convolution Network for Skeleton-Based Action
Recognition,
IET-CV(16), No. 3, 2022, pp. 266-279.
DOI Link
2204
causal convolution, graph convolution network,
long-range temporal correlation, temporal sequence modelling
BibRef
Ng, W.[Wing],
Zhang, M.Y.[Ming-Yang],
Wang, T.[Ting],
Multi-Localized Sensitive Autoencoder-Attention-LSTM For
Skeleton-based Action Recognition,
MultMed(24), 2022, pp. 1678-1690.
IEEE DOI
2204
Skeleton, Feature extraction, Joints, Hidden Markov models,
Convolution, Task analysis, Bones,
Localized Stochastic Sensitive Autoencoder (LiSSA)
BibRef
Wu, C.[Cong],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
Graph2Net: Perceptually-Enriched Graph Learning for Skeleton-Based
Action Recognition,
CirSysVideo(32), No. 4, April 2022, pp. 2120-2132.
IEEE DOI
2204
BibRef
Earlier:
Spatial Residual Layer and Dense Connection Block Enhanced Spatial
Temporal Graph Convolutional Network for Skeleton-Based Action
Recognition,
SGRL19(1740-1748)
IEEE DOI
2004
Skeleton, Hidden Markov models, Feature extraction,
Spatiotemporal phenomena, Convolution, Technological innovation,
graph learning.
convolutional neural nets, feature extraction, graph theory,
image fusion, image representation, spatiotemporal phenomena,
Skeleton Based Action Recognition
BibRef
Shu, X.B.[Xiang-Bo],
Zhang, L.Y.[Li-Yan],
Qi, G.J.[Guo-Jun],
Liu, W.[Wei],
Tang, J.H.[Jin-Hui],
Spatiotemporal Co-Attention Recurrent Neural Networks for
Human-Skeleton Motion Prediction,
PAMI(44), No. 6, June 2022, pp. 3300-3315.
IEEE DOI
2205
Skeleton, Predictive models, Spatiotemporal phenomena,
Solid modeling, Recurrent neural networks, Spatial coherence,
recurrent neural network
BibRef
Wang, H.R.[Hao-Ran],
Yu, B.S.[Bao-Sheng],
Li, J.Q.[Jia-Qi],
Zhang, L.L.[Lin-Lin],
Chen, D.Y.[Dong-Yue],
Multi-Stream Interaction Networks for Human Action Recognition,
CirSysVideo(32), No. 5, May 2022, pp. 3050-3060.
IEEE DOI
2205
Skeleton, Proposals, Footwear, Deep learning, Image recognition, Fuses,
Adaptation models, Temporal HOI analysis,
human action recognition
BibRef
Zheng, H.[Hui],
Zhang, X.M.[Xin-Ming],
A Cross View Learning Approach for Skeleton-Based Action Recognition,
CirSysVideo(32), No. 5, May 2022, pp. 3061-3072.
IEEE DOI
2205
Convolution, Joints, Task analysis, Feature extraction, Data models,
Bones, Recurrent neural networks, HAR, fusion, inter-view, multi-scale, skeleton
BibRef
Qin, X.F.[Xiao-Fei],
Li, H.[Hao],
Liu, Y.[Yuru],
Yu, J.[Jiabin],
He, C.X.[Chang-Xiang],
Zhang, X.[Xuedian],
Multi-stage part-aware graph convolutional network for skeleton-based
action recognition,
IET-IPR(16), No. 8, 2022, pp. 2063-2074.
DOI Link
2205
BibRef
Xia, R.J.[Rong-Jie],
Li, Y.[Yanshan],
Luo, W.H.[Wen-Han],
LAGA-Net: Local-and-Global Attention Network for Skeleton Based
Action Recognition,
MultMed(24), 2022, pp. 2648-2661.
IEEE DOI
2205
Skeleton, Feature extraction, Joints, Adaptation models,
Kernel, Computational modeling,
Motion Enhancement
BibRef
Xu, B.Q.[Bin-Qian],
Shu, X.B.[Xiang-Bo],
Song, Y.[Yan],
X-Invariant Contrastive Augmentation and Representation Learning for
Semi-Supervised Skeleton-Based Action Recognition,
IP(31), 2022, pp. 3852-3867.
IEEE DOI
2206
Skeleton, Representation learning, Joints, Bones,
Semisupervised learning, Recurrent neural networks, contrastive learning
BibRef
Shu, X.B.[Xiang-Bo],
Xu, B.Q.[Bin-Qian],
Zhang, L.Y.[Li-Yan],
Tang, J.H.[Jin-Hui],
Multi-Granularity Anchor-Contrastive Representation Learning for
Semi-Supervised Skeleton-Based Action Recognition,
PAMI(45), No. 6, June 2023, pp. 7559-7576.
IEEE DOI
2305
Skeleton, Task analysis, Loss measurement, Joints, Semantics,
Data models, Pattern recognition, Action recognition, skeleton, anchor graph
BibRef
Sun, B.[Bin],
Wang, S.[Shaofan],
Kong, D.[Dehui],
Wang, L.C.[Li-Chun],
Yin, B.C.[Bao-Cai],
Real-Time Human Action Recognition Using Locally Aggregated
Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model,
Cyber(52), No. 6, June 2022, pp. 4837-4849.
IEEE DOI
2207
Feature extraction, Real-time systems, Computational modeling,
Joints, Solid modeling, Kinematics, Analytical models, sparse representation
BibRef
Zhou, J.X.[Jia-Xin],
Komuro, T.[Takashi],
An asymmetrical-structure auto-encoder for unsupervised
representation learning of skeleton sequences,
CVIU(222), 2022, pp. 103491.
Elsevier DOI
2209
BibRef
And:
Recognizing Fall Actions from Videos Using Reconstruction Error of
Variational Autoencoder,
ICIP19(3372-3376)
IEEE DOI
1910
Action recognition, Unsupervised representation learning.
Image sequence analysis, Video surveillance
BibRef
Rao, H.C.[Hao-Cong],
Wang, S.Q.[Si-Qi],
Hu, X.P.[Xi-Ping],
Tan, M.K.[Ming-Kui],
Guo, Y.[Yi],
Cheng, J.[Jun],
Liu, X.W.[Xin-Wang],
Hu, B.[Bin],
A Self-Supervised Gait Encoding Approach With Locality-Awareness for
3D Skeleton Based Person Re-Identification,
PAMI(44), No. 10, October 2022, pp. 6649-6666.
IEEE DOI
2209
Skeleton, Encoding, Task analysis, Computational modeling,
Solid modeling, Feature extraction,
contrastive learning
BibRef
Liu, C.W.[Cui-Wei],
Zhao, X.X.[Xiao-Xue],
Li, Z.K.[Zhao-Kui],
Yan, Z.[Zhuo],
Du, C.[Chong],
A Novel Two-Stage Knowledge Distillation Framework for Skeleton-Based
Action Prediction,
SPLetters(29), 2022, pp. 1918-1922.
IEEE DOI
2209
Adaptation models, Predictive models, Skeleton, Training,
Probability distribution, Writing, Action prediction, skeletons
BibRef
Liu, K.Y.[Kai-Yuan],
Li, Y.H.[Yun-Heng],
Xu, Y.F.[Yuan-Feng],
Liu, S.[Shuai],
Liu, S.L.[Sheng-Lan],
Spatial Focus Attention for Fine-Grained Skeleton-Based Action Tasks,
SPLetters(29), 2022, pp. 1883-1887.
IEEE DOI
2209
Task analysis, Topology, Skeleton, Sports, Semantics,
Heuristic algorithms, Encoding,
temporal action segmentation
BibRef
Kim, B.[Boeun],
Choi, J.Y.[Jin Young],
Learning spectral transform for 3D human motion prediction,
CVIU(223), 2022, pp. 103548.
Elsevier DOI
2210
Human motion prediction, 3D Human motion prediction,
Skeleton-based human motion prediction, Spectral transform
BibRef
Nguyen, T.T.[Tien-Thanh],
Pham, D.T.[Dinh-Tan],
Vu, H.[Hai],
Le, T.L.[Thi-Lan],
A robust and efficient method for skeleton-based human action
recognition and its application for cross-dataset evaluation,
IET-CV(16), No. 8, 2022, pp. 709-726.
DOI Link
2210
BibRef
Farnoosh, A.[Amirreza],
Ostadabbas, S.[Sarah],
Dynamical Deep Generative Latent Modeling of 3D Skeletal Motion,
IJCV(130), No. 11, November 2022, pp. 2695-2706.
Springer DOI
2210
BibRef
Ma, H.[Hao],
Yang, Z.[Zaiyue],
Liu, H.Y.[Hao-Yang],
Fine-Grained Unsupervised Temporal Action Segmentation and
Distributed Representation for Skeleton-Based Human Motion Analysis,
Cyber(52), No. 12, December 2022, pp. 13411-13424.
IEEE DOI
2212
Motion segmentation, Hidden Markov models, Semantics,
Analytical models, Motion analysis, Distributed representation,
temporal action segmentation
BibRef
Liu, Z.G.[Zhen-Guang],
Wu, S.[Shuang],
Jin, S.Y.[Shu-Yuan],
Ji, S.[Shouling],
Liu, Q.[Qi],
Lu, S.J.[Shi-Jian],
Cheng, L.[Li],
Investigating Pose Representations and Motion Contexts Modeling for
3D Motion Prediction,
PAMI(45), No. 1, January 2023, pp. 681-697.
IEEE DOI
2212
Context modeling, Mice, Joints, Predictive models, Kinematics,
Task analysis, Motion prediction, motion context,
pose representation
BibRef
Wu, K.L.[Kun-Lun],
Gong, X.[Xun],
Dynamic Channel-Aware Subgraph Interactive Networks for
Skeleton-Based Action Recognition,
SPLetters(29), 2022, pp. 2592-2596.
IEEE DOI
2301
Skeleton, Topology, Solid modeling, Adaptation models, Convolution,
Computational modeling, Collaboration, Graph neural network,
skeleton-based action recognition
BibRef
Xiong, X.[Xin],
Min, W.D.[Wei-Dong],
Wang, Q.[Qi],
Zha, C.[Cheng],
Human Skeleton Feature Optimizer and Adaptive Structure Enhancement
Graph Convolution Network for Action Recognition,
CirSysVideo(33), No. 1, January 2023, pp. 342-353.
IEEE DOI
2301
Feature extraction, Skeleton, Convolution, Data mining,
Directed graphs, Smart cities, Kernel, Action recognition,
adaptive pooling operation
BibRef
Song, Y.F.[Yi-Fan],
Zhang, Z.[Zhang],
Shan, C.F.[Cai-Feng],
Wang, L.[Liang],
Constructing Stronger and Faster Baselines for Skeleton-Based Action
Recognition,
PAMI(45), No. 2, February 2023, pp. 1474-1488.
IEEE DOI
2301
Computational modeling, Skeleton, Feature extraction, Convolution,
Task analysis, Compounds, Training, Action recognition,
separable convolution
BibRef
Wen, Y.H.[Yu-Hui],
Gao, L.[Lin],
Fu, H.B.[Hong-Bo],
Zhang, F.L.[Fang-Lue],
Xia, S.H.[Shi-Hong],
Liu, Y.J.[Yong-Jin],
Motif-GCNs With Local and Non-Local Temporal Blocks for
Skeleton-Based Action Recognition,
PAMI(45), No. 2, February 2023, pp. 2009-2023.
IEEE DOI
2301
Skeleton, Feature extraction, Joints, Convolutional codes, Topology,
Training, Sparse matrices, Action recognition, skeleton sequence
BibRef
Cui, M.M.[Meng-Meng],
Wang, W.[Wei],
Zhang, K.[Kunbo],
Sun, Z.A.[Zhen-An],
Wang, L.[Liang],
Pose-Appearance Relational Modeling for Video Action Recognition,
IP(32), 2023, pp. 295-308.
IEEE DOI
2301
Visualization, Solid modeling, Skeleton, Feature extraction, Optical flow,
Context modeling, Action recognition, temporal attention LSTM
BibRef
Li, Z.H.[Zhi-Heng],
Gong, X.Y.[Xu-Yuan],
Song, R.[Ran],
Duan, P.[Peng],
Liu, J.[Jun],
Zhang, W.[Wei],
SMAM: Self and Mutual Adaptive Matching for Skeleton-Based Few-Shot
Action Recognition,
IP(32), 2023, pp. 392-402.
IEEE DOI
2301
Skeleton, Feature extraction, Training, Task analysis, Convolution,
Topology, Semantics, Skeleton-based, action recognition, few-shot learning
BibRef
Zhu, Y.S.[Yi-Sheng],
Shuai, H.[Hui],
Liu, G.C.[Guang-Can],
Liu, Q.S.[Qing-Shan],
Multilevel Spatial-Temporal Excited Graph Network for Skeleton-Based
Action Recognition,
IP(32), 2023, pp. 496-508.
IEEE DOI
2301
Skeleton, Convolution, Topology, Head, Feature extraction,
Biological system modeling, Transformers,
multilevel spatial-temporal modeling
BibRef
Wu, L.[Liyu],
Zhang, C.[Can],
Zou, Y.X.[Yue-Xian],
SpatioTemporal focus for skeleton-based action recognition,
PR(136), 2023, pp. 109231.
Elsevier DOI
2301
Action recognition, Skeleton topology, Graph convolutional network
BibRef
Gao, X.H.[Xue-Hao],
Yang, Y.[Yang],
Zhang, Y.M.[Yi-Meng],
Li, M.[Maosen],
Yu, J.G.[Jin-Gang],
Du, S.[Shaoyi],
Efficient Spatio-Temporal Contrastive Learning for Skeleton-Based 3-D
Action Recognition,
MultMed(25), 2023, pp. 405-417.
IEEE DOI
2302
Task analysis, Skeleton, Encoding, Training, Feature extraction,
Visualization, self-supervised method, observation scene,
3D action recognition
BibRef
Weng, L.[Libo],
Lou, W.D.[Wei-Dong],
Shen, X.[Xin],
Gao, F.[Fei],
A 3D Graph Convolutional Networks Model for 2D Skeleton-Based Human
Action Recognition,
IET-IPR(17), No. 3, 2023, pp. 773-783.
DOI Link
2303
2D human action recognition, 3D convolutional neural networks,
attention mechanism, graph convolutional neural networks, skeleton sequences
BibRef
Bian, C.L.[Cun-Ling],
Feng, W.[Wei],
Meng, F.[Fanbo],
Wang, S.[Song],
Global-local contrastive multiview representation learning for
skeleton-based action recognition,
CVIU(229), 2023, pp. 103655.
Elsevier DOI
2303
Skeleton-based action recognition,
Contrastive representation learning, Multiview, Graph convolutional network
BibRef
Khezerlou, F.,
Baradarani, A.,
Balafar, M.A.,
A convolutional autoencoder model with weighted multi-scale attention
modules for 3D skeleton-based action recognition,
JVCIR(92), 2023, pp. 103781.
Elsevier DOI
2303
Human action recognition, Motion trajectories,
3DPo-CDP descriptor, Change direction patterns, Pose features, WMS block
BibRef
Huang, Z.X.[Zeng-Xi],
Qin, Y.S.[Yu-Song],
Lin, X.B.[Xia-Bing],
Liu, T.L.[Tian-Lin],
Feng, Z.H.[Zhen-Hua],
Liu, Y.G.[Yi-Guang],
Motion-Driven Spatial and Temporal Adaptive High-Resolution Graph
Convolutional Networks for Skeleton-Based Action Recognition,
CirSysVideo(33), No. 4, April 2023, pp. 1868-1883.
IEEE DOI
2304
Skeleton, Feature extraction, Convolution, Adaptation models, Joints,
Data mining, Correlation, Graph convolutional networks,
high-resolution graph
BibRef
Gedamu, K.[Kumie],
Ji, Y.L.[Yan-Li],
Gao, L.[LingLing],
Yang, Y.[Yang],
Shen, H.T.[Heng Tao],
Relation-mining self-attention network for skeleton-based human
action recognition,
PR(139), 2023, pp. 109455.
Elsevier DOI
2304
Action recognition, Relation-mining self-attention,
Pairwise self-attention, Unary self-attention, Position attention
BibRef
Nikpour, B.[Bahareh],
Armanfard, N.[Narges],
Spatio-temporal hard attention learning for skeleton-based activity
recognition,
PR(139), 2023, pp. 109428.
Elsevier DOI
2304
Temporal attention, Spatial attention, Spatio-temporal attention,
Activity recognition, Deep reinforcement learning
BibRef
Wang, W.Q.[Wen-Qian],
Chang, F.[Faliang],
Liu, C.S.[Chun-Sheng],
Li, G.X.[Guang-Xin],
Wang, B.[Bin],
GA-Net: A Guidance Aware Network for Skeleton-Based Early Activity
Recognition,
MultMed(25), 2023, pp. 1061-1073.
IEEE DOI
2305
Measurement, Skeleton, Dams, Feature extraction, Task analysis,
Spatiotemporal phenomena, metric learning
BibRef
Dai, M.[Meng],
Sun, Z.H.[Zhong-Hua],
Wang, T.Y.[Tian-Yi],
Feng, J.C.[Jin-Chao],
Jia, K.[Kebin],
Global spatio-temporal synergistic topology learning for
skeleton-based action recognition,
PR(140), 2023, pp. 109540.
Elsevier DOI
2305
Action recognition, Spatio-temporal synergistic, Skeleton, Topology learning
BibRef
Hedegaard, L.[Lukas],
Heidari, N.[Negar],
Iosifidis, A.[Alexandros],
Continual spatio-temporal graph convolutional networks,
PR(140), 2023, pp. 109528.
Elsevier DOI
2305
Graph convolutional networks, Continual inference,
Efficient deep learning, Skeleton-based action recognition
BibRef
Wang, M.[Minsi],
Ni, B.B.[Bing-Bing],
Yang, X.K.[Xiao-Kang],
Learning Multi-View Interactional Skeleton Graph for Action
Recognition,
PAMI(45), No. 6, June 2023, pp. 6940-6954.
IEEE DOI
2305
Skeleton, Topology, Feature extraction, Convolution,
Network topology, Recurrent neural networks, Action recognition,
hierarchical method
BibRef
Xu, L.[Leiyang],
Wang, Q.[Qiang],
Lin, X.T.[Xiao-Tian],
Yuan, L.[Lin],
An efficient framework for few-shot skeleton-based temporal action
segmentation,
CVIU(232), 2023, pp. 103707.
Elsevier DOI
2305
Temporal action segmentation, Data segmentation,
Synthetic action sequences, Connectionist temporal classification
BibRef
Liu, W.X.[Wen-Xuan],
Zhong, X.[Xian],
Zhou, Z.[Zhuo],
Jiang, K.[Kui],
Wang, Z.[Zheng],
Lin, C.W.[Chia-Wen],
Dual-Recommendation Disentanglement Network for View Fuzz in Action
Recognition,
IP(32), 2023, pp. 2719-2733.
IEEE DOI
2305
Feature extraction, Optical flow, Visualization, Computer science,
Skeleton, Predictive models, Training, Action recognition, view fuzz,
mutual learning
BibRef
Peng, K.[Kunyu],
Roitberg, A.[Alina],
Yang, K.[Kailun],
Zhang, J.M.[Jia-Ming],
Stiefelhagen, R.[Rainer],
Delving Deep Into One-Shot Skeleton-Based Action Recognition With
Diverse Occlusions,
MultMed(25), 2023, pp. 1489-1504.
IEEE DOI
2305
Transformers, Task analysis, Benchmark testing, Joints, Prototypes,
Image recognition, human activity recognition, representation learning
BibRef
Zeng, Q.[Qinyang],
Liu, C.[Chengju],
Liu, M.[Ming],
Chen, Q.J.[Qi-Jun],
Contrastive 3D Human Skeleton Action Representation Learning via
CrossMoCo With Spatiotemporal Occlusion Mask Data Augmentation,
MultMed(25), 2023, pp. 1564-1574.
IEEE DOI
2305
Skeleton, Feature extraction, Spatiotemporal phenomena,
Data mining, Joints, Learning systems, Cross contrastive learning,
human skeleton action recognition
BibRef
Shen, J.X.[Jun-Xiao],
Dudley, J.[John],
Kristensson, P.O.[Per Ola],
The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition,
FG21(1-8)
IEEE DOI
2303
Deep learning, Training data, Stochastic processes, Inspection,
Generative adversarial networks, Data models, Spatiotemporal phenomena
BibRef
Bandi, C.[Chaitanya],
Thomas, U.[Ulrike],
Skeleton-based Action Recognition for Human-Robot Interaction using
Self-Attention Mechanism,
FG21(1-8)
IEEE DOI
2303
Recurrent neural networks, Pipelines, Human-robot interaction,
Predictive models, Encoding, Skeleton, Real-time systems
BibRef
Chen, T.[Tailin],
Zhou, D.[Desen],
Wang, J.[Jian],
Wang, S.D.[Shi-Dong],
He, Q.[Qian],
Hu, C.Y.[Chuan-Yang],
Ding, E.[Errui],
Guan, Y.[Yu],
He, X.M.[Xu-Ming],
Part-aware Prototypical Graph Network for One-shot Skeleton-based
Action Recognition,
FG23(1-8)
IEEE DOI
2303
Visualization, Fuses, Face recognition, Prototypes,
Gesture recognition, Benchmark testing, Skeleton
BibRef
Zhu, A.[Anqi],
Ke, Q.H.[Qiu-Hong],
Gong, M.M.[Ming-Ming],
Bailey, J.[James],
Adaptive Local-Component-aware Graph Convolutional Network for
One-shot Skeleton-based Action Recognition,
WACV23(6027-6036)
IEEE DOI
2302
Training, Adaptation models, Visualization, Adaptive systems,
Measurement units, Face recognition
BibRef
Xu, S.H.[Shi-Hao],
Rao, H.[Haocong],
Hu, X.[Xiping],
Cheng, J.[Jun],
Hu, B.[Bin],
Prototypical Contrast and Reverse Prediction: Unsupervised Skeleton
Based Action Recognition,
MultMed(25), 2023, pp. 624-634.
IEEE DOI
2302
Skeleton, Prototypes, Encoding, Task analysis, Semantics, Decoding,
Prediction algorithms, Prototypical contrast,
skeleton based action recognition
BibRef
Kang, M.S.[Min-Seok],
Kang, D.[Dongoh],
Kim, H.S.[Han-Saem],
Efficient Skeleton-Based Action Recognition via Joint-Mapping
strategies,
WACV23(3392-3401)
IEEE DOI
2302
Visualization, Embedded systems, Computational modeling,
Surveillance, Pose estimation, Real-time systems, Robotics
BibRef
Shang, M.Z.[Ming-Zhou],
Huang, Q.[Qian],
Wang, Y.M.[Yi-Ming],
Bian, X.[Xiang],
Jiang, C.X.[Chuan-Xu],
Liu, J.W.[Ji-Wen],
Skeleton-Based Dumbbell Fitness Action Recognition Using Two-Stream
LSTM Network,
ICIVC22(31-36)
IEEE DOI
2301
Technological innovation, Image recognition,
Clustering algorithms, Feature extraction, Skeleton, LSTM
BibRef
Liu, C.[Cuiwei],
Zhao, X.X.[Xiao-Xue],
Yan, Z.[Zhuo],
Jiang, Y.Z.[You-Zhi],
Shi, X.B.[Xiang-Bin],
A Graph Convolutional Network with Early Attention Module for
Skeleton-based Action Prediction,
ICPR22(1266-1272)
IEEE DOI
2212
Convolution, Feature extraction, Skeleton, Character recognition, Task analysis
BibRef
Qin, H.[Hushan],
Cheng, J.[Jun],
Song, C.Q.[Cheng-Qun],
Hao, F.[Fusheng],
Cheng, Q.[Qin],
Structure-Preserving View-Invariant Skeleton Representation for
Action Detection,
ICPR22(3190-3196)
IEEE DOI
2212
Representation learning, Limiting, Stacking,
Discrete Fourier transforms, Feature extraction, Skeleton,
skeleton representation
BibRef
Xing, H.[Hao],
Burschka, D.[Darius],
Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network,
ICPR22(3333-3340)
IEEE DOI
2212
Adaptation models, Head, Skeleton, Natural language processing,
Graph neural networks, Planning, Kinetic theory
BibRef
Tang, Z.H.[Zhi-Hao],
Xia, H.L.[Hai-Lun],
Gao, X.K.[Xin-Kai],
Gao, F.[Feng],
Feng, C.Y.[Chun-Yan],
Skeleton-Based Action Recognition with Graph Involution Network,
ICPR22(3348-3354)
IEEE DOI
2212
Spirals, Convolution, Network topology, Benchmark testing,
Logic gates, Skeleton, Topology
BibRef
Kim, J.[Jaehwan],
Lee, J.[Junsuk],
Global Positional Self-Attention for Skeleton-Based Action
Recognition,
ICPR22(3355-3361)
IEEE DOI
2212
Visualization, Correlation, Semantics,
Gesture recognition, Benchmark testing, Encoding
BibRef
Zhu, H.D.[Hai-Dong],
Zheng, Z.H.[Zhao-Heng],
Nevatia, R.[Ram],
Temporal Shift and Attention Modules for Graphical Skeleton Action
Recognition,
ICPR22(3145-3151)
IEEE DOI
2212
Convolution, Shape, Biological system modeling, Skeleton,
Kinetic theory, Videos
BibRef
Golda, T.[Thomas],
Thiemich, J.[Johanna],
Cormier, M.[Mickael],
Beyerer, J.[Jürgen],
For the Sake of Privacy: Skeleton-Based Salient Behavior Recognition,
ICIP22(3983-3987)
IEEE DOI
2211
Data privacy, Image recognition, Video surveillance,
Behavioral sciences, Safety, Task analysis, Anomaly detection,
privacy friendly
BibRef
Hao, Y.L.[Yan-Ling],
Shi, Z.Y.[Zhi-Yuan],
Liu, Y.[Yuanwei],
WiFi-Based Spatiotemporal Human Action Perception,
ICIP22(3581-3585)
IEEE DOI
2211
Support vector machines, Visualization, Neural networks,
Line-of-sight propagation, Benchmark testing, Skeleton,
wireless-vision
BibRef
Kilis, N.[Nikolaos],
Papaioannidis, C.[Christos],
Mademlis, I.[Ioannis],
Pitas, I.[Ioannis],
An Efficient Framework for Human Action Recognition Based on Graph
Convolutional Networks,
ICIP22(1441-1445)
IEEE DOI
2211
Image recognition, Convolution, Architecture, Pipelines, Skeleton,
Skeleton-based human action recognition,
feature imputation
BibRef
Kim, B.[Boeun],
Chang, H.J.[Hyung Jin],
Kim, J.[Jungho],
Choi, J.Y.[Jin Young],
Global-Local Motion Transformer for Unsupervised Skeleton-Based Action
Learning,
ECCV22(IV:209-225).
Springer DOI
2211
BibRef
Ma, N.[Ning],
Zhang, H.Y.[Hong-Yi],
Li, X.[Xuhui],
Zhou, S.[Sheng],
Zhang, Z.[Zhen],
Wen, J.[Jun],
Li, H.F.[Hai-Feng],
Gu, J.[Jingjun],
Bu, J.J.[Jia-Jun],
Learning Spatial-Preserved Skeleton Representations for Few-Shot Action
Recognition,
ECCV22(IV:174-191).
Springer DOI
2211
BibRef
Pang, Y.S.[Yun-Sheng],
Ke, Q.H.[Qiu-Hong],
Rahmani, H.[Hossein],
Bailey, J.[James],
Liu, J.[Jun],
IGFormer: Interaction Graph Transformer for Skeleton-Based Human
Interaction Recognition,
ECCV22(XXV:605-622).
Springer DOI
2211
BibRef
Kwon, T.[Taein],
Tekin, B.[Bugra],
Tang, S.[Siyu],
Pollefeys, M.[Marc],
Context-Aware Sequence Alignment using 4D Skeletal Augmentation,
CVPR22(8162-8172)
IEEE DOI
2210
Training, Pose estimation,
Self-supervised learning, Transforms,
Transformers, Behavior analysis,
Self- semi- meta- Video analysis and understanding
BibRef
Chi, H.G.[Hyung-Gun],
Ha, M.H.[Myoung Hoon],
Chi, S.G.[Seung-Geun],
Lee, S.W.[Sang Wan],
Huang, Q.X.[Qi-Xing],
Ramani, K.[Karthik],
InfoGCN: Representation Learning for Human Skeleton-based Action
Recognition,
CVPR22(20154-20164)
IEEE DOI
2210
Representation learning, Convolution, Design methodology,
Benchmark testing, Skeleton, Encoding, Representation learning
BibRef
Duan, H.D.[Hao-Dong],
Zhao, Y.[Yue],
Chen, K.[Kai],
Lin, D.[Dahua],
Dai, B.[Bo],
Revisiting Skeleton-based Action Recognition,
CVPR22(2959-2968)
IEEE DOI
2210
Heating systems, Scalability, Benchmark testing,
Feature extraction, Skeleton, Robustness, Action and event recognition
BibRef
Salzmann, T.[Tim],
Pavone, M.[Marco],
Ryll, M.[Markus],
Motron: Multimodal Probabilistic Human Motion Forecasting,
CVPR22(6447-6456)
IEEE DOI
2210
Uncertainty, Computational modeling, Predictive models,
Probabilistic logic, Prediction algorithms, Skeleton, Planning,
Statistical methods
BibRef
Moliner, O.[Olivier],
Huang, S.X.[Sang-Xia],
Åström, K.[Kalle],
Bootstrapped Representation Learning for Skeleton-Based Action
Recognition,
L3D-IVU22(4153-4163)
IEEE DOI
2210
Representation learning, Transfer learning, Pipelines,
Self-supervised learning, Cameras, Sampling methods
BibRef
Liu, Y.[Yan],
Deng, Y.L.[Yue-Lin],
Su, J.P.[Jin-Ping],
Wang, R.N.[Ruo-Nan],
Li, C.[Chi],
Multiple Input Branches Shift Graph Convolutional Network with DropEdge
for Skeleton-Based Action Recognition,
CIAP22(I:584-596).
Springer DOI
2205
BibRef
Yang, S.Y.[Si-Yuan],
Liu, J.[Jun],
Lu, S.J.[Shi-Jian],
Er, M.H.[Meng Hwa],
Kot, A.C.[Alex C.],
Skeleton Cloud Colorization for Unsupervised 3D Action Representation
Learning,
ICCV21(13403-13413)
IEEE DOI
2203
Representation learning, Point cloud compression,
Image color analysis, Supervised learning, Stacking,
BibRef
Li, T.J.[Tian-Jiao],
Ke, Q.H.[Qiu-Hong],
Rahmani, H.[Hossein],
Ho, R.E.[Rui En],
Ding, H.H.[Heng-Hui],
Liu, J.[Jun],
Else-Net: Elastic Semantic Network for Continual Action Recognition
from Skeleton Data,
ICCV21(13414-13423)
IEEE DOI
2203
Semantics, Skeleton, Task analysis,
Action and behavior recognition, Gestures and body pose
BibRef
Shi, L.[Lei],
Zhang, Y.F.[Yi-Fan],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
AdaSGN: Adapting Joint Number and Model Size for Efficient
Skeleton-Based Action Recognition,
ICCV21(13393-13402)
IEEE DOI
2203
Adaptation models, Computational modeling, Process control,
Manuals, Skeleton, Data models, Action and behavior recognition,
Video analysis and understanding
BibRef
Villegas, R.[Ruben],
Ceylan, D.[Duygu],
Hertzmann, A.[Aaron],
Yang, J.[Jimei],
Saito, J.[Jun],
Contact-Aware Retargeting of Skinned Motion,
ICCV21(9700-9709)
IEEE DOI
2203
Torso, Geometry, Recurrent neural networks, Shape, Motion estimation,
Skeleton, Encoding, Motion and tracking, Gestures and body pose
BibRef
Friji, R.[Rasha],
Drira, H.[Hassen],
Chaieb, F.[Faten],
Kchok, H.[Hamza],
Kurtek, S.[Sebastian],
Geometric Deep Neural Network using Rigid and Non-Rigid
Transformations for Human Action Recognition,
ICCV21(12591-12600)
IEEE DOI
2203
Deep learning, Shape, Neural networks,
Skeleton, Action and behavior recognition, Motion and tracking,
Representation learning
BibRef
Su, Y.K.[Yu-Kun],
Lin, G.S.[Guo-Sheng],
Wu, Q.Y.[Qing-Yao],
Self-supervised 3D Skeleton Action Representation Learning with
Motion Consistency and Continuity,
ICCV21(13308-13318)
IEEE DOI
2203
Representation learning, Interpolation, Dynamics,
Transfer learning, Force, Network architecture,
BibRef
Chen, Y.X.[Yu-Xin],
Zhang, Z.Q.[Zi-Qi],
Yuan, C.F.[Chun-Feng],
Li, B.[Bing],
Deng, Y.[Ying],
Hu, W.M.[Wei-Ming],
Channel-wise Topology Refinement Graph Convolution for Skeleton-Based
Action Recognition,
ICCV21(13339-13348)
IEEE DOI
2203
Correlation, Network topology, Convolution, Computational modeling,
Aggregates, Refining, Action and behavior recognition,
BibRef
Nguyen, X.S.[Xuan Son],
GeomNet: A Neural Network Based on Riemannian Geometries of SPD
Matrix Space and Cholesky Space for 3D Skeleton-Based Interaction
Recognition,
ICCV21(13359-13369)
IEEE DOI
2203
Geometry, Manifolds, Symmetric matrices, Neural networks,
Gaussian distribution, Action and behavior recognition,
Video analysis and understanding
BibRef
Huynh-The, T.[Thien],
Hua, C.H.[Cam-Hao],
Tu, N.A.[Nguyen Anh],
Kim, D.S.[Dong-Seong],
Space-Time Skeletal Analysis with Jointly Dual-Stream ConvNet for
Action Recognition,
DICTA20(1-7)
IEEE DOI
2201
Training, Image recognition, Dynamics,
Skeleton, Kernel, Action recognition, convolutional network, 3D skeleton data
BibRef
Gupta, P.[Pranay],
Sharma, D.[Divyanshu],
Sarvadevabhatla, R.K.[Ravi Kiran],
Syntactically Guided Generative Embeddings for Zero-Shot Skeleton
Action Recognition,
ICIP21(439-443)
IEEE DOI
2201
Training, Visualization, Image recognition, Syntactics, Skeleton,
Task analysis, ZSL, skeleton action recognition, VAE,
deep learning, language and vision
BibRef
Lie, W.N.[Wen-Nung],
Huang, Y.J.[Yong-Jhu],
Chiang, J.C.[Jui-Chiu],
Fang, Z.Y.[Zhen-Yu],
High-Order Joint Information Input for Graph Convolutional Network
Based Action Recognition,
ICIP21(1064-1068)
IEEE DOI
2201
Couplings, Protocols, Fuses, Convolution, Image edge detection,
Deep learning, action recognition, graph convolutional network,
3D human skeleton
BibRef
Häring, S.[Simon],
Memmesheimer, R.[Raphael],
Paulus, D.[Dietrich],
Action Segmentation on Representations of Skeleton Sequences Using
Transformer Networks,
ICIP21(3053-3057)
IEEE DOI
2201
Image segmentation, Image recognition, Image coding, Art,
Motion segmentation, Estimation, Action segmentation, Transformer,
object detection
BibRef
Panousis, K.P.[Konstantinos P.],
Chatzis, S.[Soritios],
Theodoridis, S.[Sergios],
Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition,
ISVC21(II:67-80).
Springer DOI
2112
BibRef
Diao, Y.F.[Yun-Feng],
Shao, T.J.[Tian-Jia],
Yang, Y.L.[Yong-Liang],
Zhou, K.[Kun],
Wang, H.[He],
BASAR:Black-box Attack on Skeletal Action Recognition,
CVPR21(7593-7603)
IEEE DOI
2111
Activity recognition, Robustness, Data models
BibRef
Wang, H.[He],
He, F.X.[Fei-Xiang],
Peng, Z.X.[Zhe-Xi],
Shao, T.J.[Tian-Jia],
Yang, Y.L.[Yong-Liang],
Zhou, K.[Kun],
Hogg, D.[David],
Understanding the Robustness of Skeleton-based Action Recognition
under Adversarial Attack,
CVPR21(14651-14660)
IEEE DOI
2111
Surveillance,
Robustness, Pattern recognition, Autonomous vehicles
BibRef
Lohit, S.[Suhas],
Anirudh, R.[Rushil],
Turaga, P.[Pavan],
Recovering Trajectories of Unmarked Joints in 3D Human Actions Using
Latent Space Optimization,
WACV21(2341-2350)
IEEE DOI
2106
Manifolds, Tracking,
Time series analysis, Training data, Transforms, Trajectory
BibRef
Yang, D.[Di],
Dai, R.[Rui],
Wang, Y.[Yaohui],
Mallick, R.[Rupayan],
Minciullo, L.[Luca],
Francesca, G.[Gianpiero],
Brémond, F.[François],
Selective Spatio-Temporal Aggregation Based Pose Refinement System:
Towards Understanding Human Activities in Real-World Videos,
WACV21(2362-2371)
IEEE DOI
2106
Pose estimation, Boosting, Skeleton, Data models
BibRef
Cai, J.M.[Jin-Miao],
Jiang, N.[Nianjuan],
Han, X.G.[Xiao-Guang],
Jia, K.[Kui],
Lu, J.B.[Jiang-Bo],
JOLO-GCN: Mining Joint-Centered Light-Weight Information for
Skeleton-Based Action Recognition,
WACV21(2734-2743)
IEEE DOI
2106
Visualization, Skeleton,
Character recognition, Optical flow
BibRef
Obinata, Y.[Yuya],
Yamamoto, T.[Takuma],
Temporal Extension Module for Skeleton-Based Action Recognition,
ICPR21(534-540)
IEEE DOI
2105
Convolution, Biological system modeling, Feature extraction,
Skeleton, Pattern recognition, Optimization, Action recognition,
Kinetics-Skeleton
BibRef
Ban Teng, M.L.[Michael Lao],
Wu, Z.Y.[Zhi-Yong],
Channel-Wise Dense Connection Graph Convolutional Network for
Skeleton-Based Action Recognition,
ICPR21(3799-3806)
IEEE DOI
2105
Legged locomotion, Adaptation models, Time series analysis,
Feature extraction, Data models, Robustness, Kinetic theory
BibRef
Nam, S.[Suekyeong],
Lee, S.K.[Seung-Kyu],
JT-MGCN: Joint-temporal Motion Graph Convolutional Network for
Skeleton-Based Action Recognition,
ICPR21(6383-6390)
IEEE DOI
2105
Correlation, Skeleton, Pattern recognition
BibRef
Heidari, N.[Negar],
Iosifidis, A.[Alexandros],
Temporal Attention-Augmented Graph Convolutional Network for
Efficient Skeleton-Based Human Action Recognition,
ICPR21(7907-7914)
IEEE DOI
2105
Network topology, Computational modeling, Benchmark testing,
Skeleton, Data models, Distance measurement, Pattern recognition
BibRef
Chen, L.[Lian],
Lu, K.[Ke],
Gao, P.C.[Peng-Cheng],
Xue, J.[Jian],
Wang, J.B.[Jin-Bao],
A Novel Multi-feature Skeleton Representation for 3d Action Recognition,
IUC20(365-379).
Springer DOI
2103
BibRef
Shiraki, K.[Katsutoshi],
Hirakawa, T.[Tsubasa],
Yamashita, T.[Takayoshi],
Fujiyoshi, H.[Hironobu],
Spatial Temporal Attention Graph Convolutional Networks with
Mechanics-stream for Skeleton-based Action Recognition,
ACCV20(V:341-357).
Springer DOI
2103
BibRef
Radek, S.,
Skeleton Action Recognition Based on Singular Value Decomposition,
ICIP20(1831-1835)
IEEE DOI
2011
Protocols, Skeleton,
Symmetric matrices, Robustness, Trajectory, Feature extraction,
singular value decomposition
BibRef
Singh, I.,
Zhu, X.,
Greenspan, M.,
Multi-Modal Fusion With Observation Points For Skeleton Action
Recognition,
ICIP20(1781-1785)
IEEE DOI
2011
Joints, Bones, Training, multimodal fusion
BibRef
Su, K.,
Liu, X.,
Shlizerman, E.,
PREDICT CLUSTER: Unsupervised Skeleton Based Action Recognition,
CVPR20(9628-9637)
IEEE DOI
2008
Decoding, Skeleton, Training, Task analysis,
Cameras
BibRef
Zhang, X.,
Xu, C.,
Tao, D.,
Context Aware Graph Convolution for Skeleton-Based Action Recognition,
CVPR20(14321-14330)
IEEE DOI
2008
Convolution, Context-aware services, Computational modeling,
Context modeling, Task analysis, Skeleton, Feature extraction
BibRef
Yang, Z.,
Zhu, W.,
Wu, W.,
Qian, C.,
Zhou, Q.,
Zhou, B.,
Loy, C.C.,
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting,
CVPR20(5305-5314)
IEEE DOI
2008
Skeleton, Perturbation methods, Rendering (computer graphics),
Decoding
BibRef
Cui, Q.,
Sun, H.,
Yang, F.,
Learning Dynamic Relationships for 3D Human Motion Prediction,
CVPR20(6518-6526)
IEEE DOI
2008
Skeleton, Training, Adaptation models,
Predictive models, Solid modeling, Dynamics
BibRef
Corona, E.,
Pumarola, A.,
Alenyà, G.,
Moreno-Noguer, F.,
Context-Aware Human Motion Prediction,
CVPR20(6990-6999)
IEEE DOI
2008
Predictive models, Task analysis,
Skeleton, Recurrent neural networks, Semantics, Context modeling
BibRef
Liu, Z.,
Zhang, H.,
Chen, Z.,
Wang, Z.,
Ouyang, W.,
Disentangling and Unifying Graph Convolutions for Skeleton-Based
Action Recognition,
CVPR20(140-149)
IEEE DOI
2008
Feature extraction, Joints, Robustness, Bones, Pattern recognition, Correlation
BibRef
Wang, Y.,
Xiao, Y.,
Xiong, F.,
Jiang, W.,
Cao, Z.,
Zhou, J.T.,
Yuan, J.,
3DV: 3D Dynamic Voxel for Action Recognition in Depth Video,
CVPR20(508-517)
IEEE DOI
2008
Machine learning, Dynamics,
Solid modeling, Pattern recognition, Skeleton
BibRef
Zhang, P.,
Lan, C.,
Zeng, W.,
Xing, J.,
Xue, J.,
Zheng, N.,
Semantics-Guided Neural Networks for Efficient Skeleton-Based Human
Action Recognition,
CVPR20(1109-1118)
IEEE DOI
2008
Skeleton, Semantics, Indexes, Neural networks,
Computational modeling, Correlation
BibRef
Huang, J.Q.[Jun-Qin],
Huang, Z.H.[Zhen-Huan],
Xiang, X.[Xiang],
Gong, X.[Xuan],
Zhang, B.C.[Bao-Chang],
Long-Short Graph Memory Network for Skeleton-Based Action Recognition,
WACV20(634-641)
IEEE DOI
2006
Feature extraction, Convolution, Skeleton, Calibration, Data models,
Data mining, Neural networks
BibRef
Raj, N.B.[N. Bharath],
Subramanian, A.[Anand],
Ravichandran, K.[Kashyap],
Venkateswaran, N.,
Exploring Techniques to Improve Activity Recognition using Human Pose
Skeletons,
WACVWS20(165-172)
IEEE DOI
2006
Skeleton, Feature extraction, Activity recognition,
Mathematical model, Robustness, Pose estimation, Training
BibRef
Zhao, R.,
Wang, K.,
Su, H.,
Ji, Q.,
Bayesian Graph Convolution LSTM for Skeleton Based Action Recognition,
ICCV19(6881-6891)
IEEE DOI
2004
Bayes methods, feature extraction, graph theory,
image motion analysis, image representation, Kernel
BibRef
Yan, S.,
Li, Z.,
Xiong, Y.,
Yan, H.,
Lin, D.,
Convolutional Sequence Generation for Skeleton-Based Action Synthesis,
ICCV19(4393-4401)
IEEE DOI
2004
autoregressive processes, convolutional neural nets,
Gaussian processes, graph theory, image motion analysis,
Generative adversarial networks
BibRef
Szczapa, B.,
Daoudi, M.,
Berretti, S.,
del Bimbo, A.,
Pala, P.,
Massart, E.,
Fitting, Comparison, and Alignment of Trajectories on Positive
Semi-Definite Matrices with Application to Action Recognition,
HBU19(1241-1250)
IEEE DOI
2004
curve fitting, feature extraction, image motion analysis,
image representation, image sequences, Skeleton
BibRef
Hakim, T.,
Shimshoni, I.,
A-MAL: Automatic Motion Assessment Learning from Properly Performed
Motions in 3D Skeleton Videos,
CVPM19(1589-1598)
IEEE DOI
2004
image motion analysis, image segmentation,
learning (artificial intelligence), medical image processing, fma
BibRef
Li, M.S.[Mao-Sen],
Chen, S.H.[Si-Heng],
Chen, X.[Xu],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
Tian, Q.[Qi],
Actional-Structural Graph Convolutional Networks for Skeleton-Based
Action Recognition,
CVPR19(3590-3598).
IEEE DOI
2002
BibRef
Laraba, S.[Sohaib],
Tilmanne, J.[Joëlle],
Dutoit, T.[Thierry],
Leveraging Pre-trained CNN Models for Skeleton-based Action Recognition,
CVS19(612-626).
Springer DOI
1912
BibRef
Khamsehashari, R.,
Gadzicki, K.,
Zetzsche, C.,
Deep Residual Temporal Convolutional Networks for Skeleton-based Human
Action Recognition,
CVS19(376-385).
Springer DOI
1912
BibRef
Ye, F.,
Tang, H.,
Wang, X.,
Liang, X.,
Joints Relation Inference Network for Skeleton-Based Action
Recognition,
ICIP19(16-20)
IEEE DOI
1910
Action Recognition, Relation Inference,
Graph Convolutional Network, Skeleton
BibRef
Kao, J.,
Ortega, A.,
Tian, D.,
Mansour, H.,
Vetro, A.,
Graph Based Skeleton Modeling for Human Activity Analysis,
ICIP19(2025-2029)
IEEE DOI
1910
Human activity analysis, graph-based representation,
motion capture data, 3D action recognition
BibRef
Tang, Y.S.[Yan-Song],
Tian, Y.[Yi],
Lu, J.W.[Ji-Wen],
Li, P.Y.[Pei-Yang],
Zhou, J.[Jie],
Deep Progressive Reinforcement Learning for Skeleton-Based Action
Recognition,
CVPR18(5323-5332)
IEEE DOI
1812
Joints, Videos, Biological system modeling
BibRef
Cui, R.,
Zhu, A.,
Zhang, S.,
Hua, G.,
Multi-source Learning for Skeleton-based Action Recognition Using
Deep LSTM Networks,
ICPR18(547-552)
IEEE DOI
1812
Skeleton, Logic gates, Computational modeling, Torso,
Legged locomotion, Cameras, Data mining, Machine Learning,
Long Short-Term Memory
BibRef
Khodabandeh, M.,
Joze, H.R.V.,
Zharkov, I.,
Pradeep, V.,
DIY Human Action Dataset Generation,
Joint18(1529-152910)
IEEE DOI
1812
Skeleton, Task analysis, Trajectory, Generators,
Training
BibRef
Sogi, N.,
Fukui, K.,
Action Recognition Method Based on Sets of Time Warped ARMA Models,
ICPR18(1773-1778)
IEEE DOI
1812
Observability, Hidden Markov models, Analytical models, Manifolds,
Skeleton, Solid modeling
BibRef
Xu, J.,
Tasaka, K.,
Yanagihara, H.,
Beyond Two-stream: Skeleton-based Three-stream Networks for Action
Recognition in Videos,
ICPR18(1567-1573)
IEEE DOI
1812
Skeleton, Videos, Optical imaging,
Agriculture
BibRef
Rhif, M.,
Wannous, H.,
Farah, I.R.,
Action Recognition from 3D Skeleton Sequences using Deep Networks on
Lie Group Features,
ICPR18(3427-3432)
IEEE DOI
1812
Feature extraction, Skeleton,
Mathematical model, Tensile stress, Manifolds, Convolution
BibRef
Demisse, G.G.,
Papadopoulos, K.,
Aouada, D.,
Ottersten, B.,
Pose Encoding for Robust Skeleton-Based Action Recognition,
Crowd18(301-3016)
IEEE DOI
1812
Noise measurement, Data models, Decoding, Cameras, Noise reduction,
Training, Unsupervised learning
BibRef
Simkanic, R.[Radek],
Matrix Descriptor of Changes (MDC):
Activity Recognition Based on Skeleton,
ACIVS18(14-25).
Springer DOI
1810
BibRef
Noori, F.M.[Farzan Majeed],
Wallace, B.[Benedikte],
Uddin, M.Z.[M. Zia],
Torresen, J.[Jim],
A Robust Human Activity Recognition Approach Using OpenPose, Motion
Features, and Deep Recurrent Neural Network,
SCIA19(299-310).
Springer DOI
1906
BibRef
Uddin, M.Z.[M. Zia],
Khaksar, W.,
Torresen, J.[Jim],
Activity Recognition Using Deep Recurrent Neural Network on
Translation and Scale-Invariant Features,
ICIP18(475-479)
IEEE DOI
1809
Depth videos, segmentation, skeleton, Radon, RNN
BibRef
Wang, Z.K.[Zhi-Kai],
Zhang, C.Y.[Chong-Yang],
Luo, W.[Wu],
Lin, W.Y.[Wei-Yao],
Key Joints Selection and Spatiotemporal Mining for Skeleton-Based
Action Recognition,
ICIP18(3458-3462)
IEEE DOI
1809
Histograms, Trajectory, Spatiotemporal phenomena, Skeleton, Encoding,
Feature extraction,
skeleton
BibRef
Tsingalis, I.,
Vretos, N.,
Daras, P.,
Leveraging Skeleton Structure and Time Dependencies in the Scope of
Action Recognition,
ICIP18(470-474)
IEEE DOI
1809
Skeleton, Feature extraction, Optimization, Standards,
Noise measurement,
Human Activity
BibRef
Wang, B.,
Huang, L.,
Hoai, M.,
Active Vision for Early Recognition of Human Actions,
CVPR20(1078-1088)
IEEE DOI
2008
Cameras, Bandwidth, Learning (artificial intelligence),
Robot sensing systems, Pattern recognition, Recurrent neural networks
BibRef
Wang, B.,
Hoai, M.,
Predicting Body Movement and Recognizing Actions:
An Integrated Framework for Mutual Benefits,
FG18(341-348)
IEEE DOI
1806
Dynamics, Forecasting, Recurrent neural networks, Robots, Skeleton,
Trajectory, action early recognition,
early detection
BibRef
Das, S.,
Koperski, M.,
Bremond, F.,
Francesca, G.,
Action recognition based on a mixture of RGB and depth based skeleton,
AVSS17(1-6)
IEEE DOI
1806
CAD, feature extraction, image colour analysis, image recognition,
learning (artificial intelligence), neural nets,
Videos
BibRef
Liu, M.,
He, Q.,
Liu, H.,
Fusing shape and motion matrices for view invariant action
recognition using 3D skeletons,
ICIP17(3670-3674)
IEEE DOI
1803
Encoding, Matrix converters, Robustness, Shape, Skeleton,
Training, 3D action recognition, skeleton sequence
BibRef
Papadopoulos, K.,
Antunes, M.,
Aouada, D.,
Ottersten, B.,
Enhanced trajectory-based action recognition using human pose,
ICIP17(1807-1811)
IEEE DOI
1803
Computational modeling, Feature extraction, Heating systems,
Histograms, Skeleton, Standards, Trajectory, Action recognition,
spatio-temporal features
BibRef
Wei, S.H.[Sheng-Hua],
Song, Y.H.[Yong-Hong],
Zhang, Y.L.[Yuan-Lin],
Human skeleton tree recurrent neural network with joint relative
motion feature for skeleton based action recognition,
ICIP17(91-95)
IEEE DOI
1803
Acceleration, Feature extraction, Logic gates, Neurons,
Recurrent neural networks, Shoulder, Skeleton, Action recognition,
skeleton joints
BibRef
Lee, I.,
Kim, D.,
Kang, S.,
Lee, S.,
Ensemble Deep Learning for Skeleton-Based Action Recognition Using
Temporal Sliding LSTM Networks,
ICCV17(1012-1020)
IEEE DOI
1802
feature extraction, image motion analysis, image recognition,
image representation, learning (artificial intelligence),
BibRef
Huang, Z.,
Wan, C.,
Probst, T.,
Van Gool, L.J.[Luc J.],
Deep Learning on Lie Groups for Skeleton-Based Action Recognition,
CVPR17(1243-1252)
IEEE DOI
1711
Machine learning, Manifolds,
Neural networks, Skeleton, Transforms
BibRef
Wang, P.[Pei],
Yuan, C.F.[Chun-Feng],
Hu, W.M.[Wei-Ming],
Li, B.[Bing],
Zhang, Y.N.[Yan-Ning],
Graph Based Skeleton Motion Representation and Similarity Measurement
for Action Recognition,
ECCV16(VII: 370-385).
Springer DOI
1611
BibRef
Ubalde, S.,
Gómez-Fernández, F.,
Goussies, N.A.,
Mejail, M.,
Skeleton-based action recognition using Citation-kNN on bags of
time-stamped pose descriptors,
ICIP16(3051-3055)
IEEE DOI
1610
Hafnium
BibRef
Mavroudi, E.,
Bhaskara, D.,
Sefati, S.,
Ali, H.,
Vidal, R.,
End-to-End Fine-Grained Action Segmentation and Recognition Using
Conditional Random Field Models and Discriminative Sparse Coding,
WACV18(1558-1567)
IEEE DOI
1806
feature extraction, gesture recognition, image classification,
image representation, image segmentation,
Task analysis
BibRef
Mavroudi, E.[Effrosyni],
Bindal, P.[Prashast],
Vidal, R.[René],
Actor-Centric Tubelets for Real-Time Activity Detection in Extended
Videos,
Activity22(172-181)
IEEE DOI
2202
Visualization, Tracking, Surveillance, Focusing, Object detection,
Real-time systems, Graph neural networks
BibRef
Mavroudi, E.,
Tao, L.,
Vidal, R.,
Deep Moving Poselets for Video Based Action Recognition,
WACV17(111-120)
IEEE DOI
1609
BibRef
Earlier: A2, A3, Only:
Moving Poselets: A Discriminative and Interpretable Skeletal Motion
Representation for Action Recognition,
ChaLearnDec15(303-311)
IEEE DOI
1602
Feature extraction, Hip, Legged locomotion, Shoulder,
Support vector machines, Trajectory,
Computational modeling
BibRef
Batabyal, T.[Tamal],
Chattopadhyay, T.[Tanushyam],
Mukherjee, D.P.[Dipti Prasad],
Action recognition using joint coordinates of 3D skeleton data,
ICIP15(4107-4111)
IEEE DOI
1512
Covariance; Kinect; Local Linear Embedding
BibRef
Meshry, M.,
Hussein, M.E.[Mohamed E.],
Torki, M.[Marwan],
Linear-time online action detection from 3D skeletal data using bags
of gesturelets,
WACV16(1-9)
IEEE DOI
1606
Feature extraction
BibRef
Sharaf, A.[Amr],
Torki, M.[Marwan],
Hussein, M.E.[Mohamed E.],
El-Saban, M.[Motaz],
Real-Time Multi-scale Action Detection from 3D Skeleton Data,
WACV15(998-1005)
IEEE DOI
1503
Detectors
BibRef
Evangelidis, G.[Georgios],
Singh, G.[Gurkirt],
Horaud, R.[Radu],
Skeletal Quads: Human Action Recognition Using Joint Quadruples,
ICPR14(4513-4518)
IEEE DOI
1412
Accuracy; Joints; Kernel; Training; Vectors
BibRef
Chaudhry, R.[Rizwan],
Ofli, F.[Ferda],
Kurillo, G.[Gregorij],
Bajcsy, R.[Ruzena],
Vidal, R.[Rene],
Bio-inspired Dynamic 3D Discriminative Skeletal Features for Human
Action Recognition,
HAU3D13(471-478)
IEEE DOI
1309
BibRef
Bakken, R.H.[Rune Havnung],
Hilton, A.[Adrian],
Real-Time Pose Estimation Using Constrained Dynamics,
AMDO12(37-46).
Springer DOI
1208
BibRef
Bakken, R.H.,
Eliassen, L.M.,
Real-time 3D skeletonisation in computer vision-based human pose
estimation using GPGPU,
IPTA12(61-67)
IEEE DOI
1503
graphics processing units
BibRef
Karali, A.[Abubakrelsedik],
El Helw, M.[Mohamed],
Motion History of Skeletal Volumes for Human Action Recognition,
ISVC12(II: 135-144).
Springer DOI
1209
BibRef
Xu, R.[Ran],
Agarwal, P.[Priyanshu],
Kumar, S.[Suren],
Krovi, V.N.[Venkat N.],
Corso, J.J.[Jason J.],
Combining Skeletal Pose with Local Motion for Human Activity
Recognition,
AMDO12(114-123).
Springer DOI
1208
BibRef
Yoon, S.M.[Sang Min],
Kuijper, A.[Arjan],
Human Action Recognition Using Segmented Skeletal Features,
ICPR10(3740-3743).
IEEE DOI
1008
BibRef
And:
3D Human Action Recognition Using Model Segmentation,
ICIAR10(I: 189-199).
Springer DOI
1006
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Articulatd Action Recognition .