Mermec Group,
2010.
WWW Link.
Vendor, Railroad Inspection.
Trosino, M.[Michael],
Cunningham, J.J.[John J.],
Shaw, III, A.E.[Alfred E.],
Automated track inspection vehicle and method,
US_Patent6,064,428, May 16, 2000
WWW Link.
BibRef
0005
And:
US_Patent6,356,299, Mar 12, 2002
WWW Link.
BibRef
Mandriota, C.,
Nitti, M.,
Ancona, N.,
Stella, E.,
Distante, A.,
Filter-based feature selection for rail defect detection,
MVA(15), No. 4, October 2004, pp. 179-185.
Springer DOI
0410
BibRef
Mandriota, C.,
Stella, E.,
Nitti, M.,
Ancona, N.,
Distante, A.,
Rail Corrugation Detection by Gabor Filtering,
ICIP01(II: 626-628).
IEEE DOI
0108
BibRef
Labarile, A.,
Stella, E.,
Ancona, N.,
Distante, A.,
Ballast 3D reconstruction by a matching pursuit based stereo matcher,
IVS04(653-657).
IEEE DOI
0411
BibRef
Mazzeo, P.L.,
Nitti, M.,
Stella, E.,
Distante, A.,
Visual recognition of fastening bolts for railroad maintenance,
PRL(25), No. 6, 19 April 2004, pp. 669-677.
Elsevier DOI
0405
BibRef
Kim, Z.[ZuWhan],
Cohn, T.E.,
Pseudoreal-time activity detection for railroad grade-crossing safety,
ITS(5), No. 4, December 2004, pp. 319-324.
IEEE Abstract.
0501
BibRef
Marino, F.[Francescomaria],
Distante, A.[Arcangelo],
Mazzeo, P.L.[Pier Luigi],
Stella, E.[Ettore],
A Real-Time Visual Inspection System for Railway Maintenance:
Automatic Hexagonal-Headed Bolts Detection,
SMC-C(37), No. 3, May 2007, pp. 418-428.
IEEE DOI
0704
BibRef
Tsang, C.W.,
Ho, T.K.,
Optimal Track Access Rights Allocation for Agent Negotiation in an Open
Railway Market,
ITS(9), No. 1, March 2008, pp. 68-82.
IEEE DOI
0803
BibRef
Garcia, J.J.,
Ureña, J.,
Hernandez, A.,
Mazo, M.,
Jimenez, J.A.,
Alvarez, F.J.,
de Marziani, C.,
Jimenez, A.,
Diaz, M.J.,
Losada, C.,
Garcia, E.,
Efficient Multisensory Barrier for Obstacle Detection on Railways,
ITS(11), No. 3, September 2010, pp. 702-713.
IEEE DOI
1003
BibRef
Wilson, A.[Andrew],
Riding the Rails,
VisSys(16), No. 1, January 2011.
Survey, Rail Inspection. Railway tunnels, bridges, and underpasses can be imaged at
high speeds using linescan and area-array cameras.
BibRef
1101
Hensel, S.,
Hasberg, C.,
Stiller, C.,
Probabilistic Rail Vehicle Localization With Eddy Current Sensors in
Topological Maps,
ITS(12), No. 4, December 2011, pp. 1525-1536.
IEEE DOI
1112
BibRef
Huang, Y.P.[Ya-Ping],
Luo, S.W.[Si-Wei],
Wang, S.C.[Sheng-Chun],
Combining Boundary and Region Information with Bolt Prior for Rail
Surface Detection,
IEICE(E95-D), No. 2, February 2012, pp. 690-693.
WWW Link.
1202
BibRef
Hernandez, A.,
Perez, M.C.,
Garcia, J.J.,
Jimenez, A.,
Garcia, J.C.,
Espinosa, F.,
Mazo, M.,
Urena, J.,
FPGA-Based Track Circuit for Railways Using Transmission Encoding,
ITS(13), No. 2, June 2012, pp. 437-448.
IEEE DOI
1206
BibRef
Li, Q.Y.[Qing-Yong],
Huang, Y.P.[Ya-Ping],
Liang, Z.P.[Zheng-Ping],
Luo, S.W.[Si-Wei],
Thresholding Based on Maximum Weighted Object Correlation for Rail
Defect Detection,
IEICE(E95-D), No. 7, July 2012, pp. 1819-1822.
WWW Link.
1208
BibRef
Xu, Z.,
Wang, W.,
Sun, Y.,
Performance Degradation Monitoring for Onboard Speed Sensors of Trains,
ITS(13), No. 3, September 2012, pp. 1287-1297.
IEEE DOI
1209
BibRef
Nassu, B.T.,
Ukai, M.,
A Vision-Based Approach for Rail Extraction and its Application in a
Camera Pan-Tilt Control System,
ITS(13), No. 4, December 2012, pp. 1763-1771.
IEEE DOI
1212
BibRef
Zhang, Y.X.[Yi-Xin],
Wang, S.[Shun],
Zhang, X.P.[Xu-Ping],
Xie, F.[Fei],
Wang, J.[Jiaqi],
Freight train gauge-exceeding detection based on three-dimensional
stereo vision measurement,
MVA(24), No. 3, April 2013, pp. 461-475.
WWW Link.
1303
BibRef
Shafiullah, G.M.,
Azad, S.A.,
Ali, A.B.M.S.,
Energy-Efficient Wireless MAC Protocols for
Railway Monitoring Applications,
ITS(14), No. 2, 2013, pp. 649-659.
IEEE DOI
1307
Rail transportation; Energy efficiency
BibRef
Chen, X.X.[Xiang-Xian],
Zhou, G.S.[Gong-Shuang],
Yang, Y.[Yi],
Huang, H.[Hai],
A Newly Developed Safety-Critical Computer System for China Metro,
ITS(14), No. 2, 2013, pp. 709-719.
IEEE DOI
1307
railways; really the computer system, not vision.
BibRef
Resendiz, E.,
Hart, J.M.,
Ahuja, N.,
Automated Visual Inspection of Railroad Tracks,
ITS(14), No. 2, 2013, pp. 751-760.
IEEE DOI
1307
automated visual inspection; spectral estimation method
BibRef
Dong, H.R.[Hai-Rong],
Ning, B.[Bin],
Chen, Y.[Yao],
Sun, X.B.[Xu-Bin],
Wen, D.[Ding],
Hu, Y.L.[Yu-Ling],
Ouyang, R.[Renhai],
Emergency Management of Urban Rail Transportation Based
on Parallel Systems,
ITS(14), No. 2, 2013, pp. 627-636.
IEEE DOI
1307
Rail transportation
BibRef
Zhou, M.[Min],
Dong, H.R.[Hai-Rong],
Ning, B.[Bin],
Wang, F.Y.[Fei-Yue],
Parallel Urban Rail Transit Stations for Passenger Emergency
Management,
IEEE_Int_Sys(35), No. 6, November 2020, pp. 16-27.
IEEE DOI
2012
Emergency services, Rails, Optimization, Intelligent systems,
Agent-based modeling, Parallel system, ACP Method, Passenger,
Emergency management
BibRef
Wang, H.,
Schmid, F.,
Chen, L.,
Roberts, C.,
Xu, T.,
A Topology-Based Model for Railway Train Control Systems,
ITS(14), No. 2, 2013, pp. 819-827.
IEEE DOI
1307
signaling; Safety
BibRef
Wang, J.,
Wang, J.,
Roberts, C.,
Chen, L.,
Parallel Monitoring for the Next Generation of Train Control Systems,
ITS(16), No. 1, February 2015, pp. 330-338.
IEEE DOI
1502
Communication system signaling
BibRef
Wang, H.,
Yu, F.R.,
Zhu, L.,
Tang, T.,
Ning, B.,
Finite-State Markov Modeling for Wireless Channels in Tunnel
Communication-Based Train Control Systems,
ITS(15), No. 3, June 2014, pp. 1083-1090.
IEEE DOI
1407
Antenna measurements
BibRef
Sohn, K.[Keemin],
Optimizing Train-Stop Positions Along a Platform to Distribute
the Passenger Load More Evenly Across Individual Cars,
ITS(14), No. 2, 2013, pp. 994-1002.
IEEE DOI
1307
genetic algorithms; crowding; public transport; train-stop location
BibRef
Chen, D.,
Chen, R.,
Li, Y.,
Tang, T.,
Online Learning Algorithms for Train Automatic Stop Control Using
Precise Location Data of Balises,
ITS(14), No. 3, 2013, pp. 1526-1535.
IEEE DOI
1309
Balise
BibRef
Li, L.,
Dong, W.,
Ji, Y.,
Zhang, Z.,
Tong, L.,
Minimal-Energy Driving Strategy for High-Speed Electric Train With
Hybrid System Model,
ITS(14), No. 4, 2013, pp. 1642-1653.
IEEE DOI
1312
Cost function
BibRef
Zhang, L.,
Zhuan, X.,
Braking-Penalized Receding Horizon Control of Heavy-Haul Trains,
ITS(14), No. 4, 2013, pp. 1620-1628.
IEEE DOI
1312
Computational modeling
BibRef
Zhao, L.H.[Lin-Hai],
Cai, B.G.[Bai-Gen],
Xu, J.J.[Jun-Jie],
Ran, Y.K.[Yi-Kui],
Study of the Track-Train Continuous Information Transmission Process
in a High-Speed Railway,
ITS(15), No. 1, February 2014, pp. 112-121.
IEEE DOI
1403
rail traffic control
BibRef
Li, Y.[Ying],
Trinh, H.[Hoang],
Haas, N.[Norman],
Otto, C.[Charles],
Pankanti, S.[Sharath],
Rail Component Detection, Optimization, and Assessment for Automatic
Rail Track Inspection,
ITS(15), No. 2, April 2014, pp. 760-770.
IEEE DOI
1404
BibRef
Earlier: A2, A3, A1, A4, A5:
Enhanced rail component detection and consolidation for rail track
inspection,
WACV12(289-295).
IEEE DOI
1203
Cameras
BibRef
Trinh, H.[Hoang],
Haas, N.[Norman],
Pankanti, S.[Sharath],
Multisensor evidence integration and optimization in rail inspection,
ICPR12(886-889).
WWW Link.
1302
BibRef
Li, Y.[Ying],
Otto, C.[Charles],
Haas, N.[Norm],
Fujiki, Y.C.[Yui-Chi],
Pankanti, S.[Sharath],
Component-based track inspection using machine-vision technology,
ICMR11(60).
DOI Link
1301
inspection and condition monitoring of railroad tracks.
BibRef
Song, Y.,
Song, Q.,
Cai, W.,
Fault-Tolerant Adaptive Control of High-Speed Trains Under
Traction/Braking Failures: A Virtual Parameter-Based Approach,
ITS(15), No. 2, April 2014, pp. 737-748.
IEEE DOI
1404
Aerodynamics
BibRef
Wang, Y.,
Song, Y.,
Gao, H.,
Lewis, F.L.,
Distributed Fault-Tolerant Control of Virtually and Physically
Interconnected Systems With Application to High-Speed Trains Under
Traction/Braking Failures,
ITS(17), No. 2, February 2016, pp. 535-545.
IEEE DOI
1602
Couplings
BibRef
Liu, Z.[Zhen],
Li, F.J.[Feng-Jiao],
Huang, B.K.[Bang-Kui],
Zhang, G.J.[Guang-Jun],
Real-time and accurate rail wear measurement method and experimental
analysis,
JOSA-A(31), No. 8, August 2014, pp. 1721-1729.
DOI Link
1408
Optical instruments; Imaging systems; Machine vision optics
BibRef
Molodova, M.,
Li, Z.L.[Zi-Li],
Nunez, A.,
Dollevoet, R.,
Automatic Detection of Squats in Railway Infrastructure,
ITS(15), No. 5, October 2014, pp. 1980-1990.
IEEE DOI
1410
acceleration measurement
BibRef
Ai, B.[Bo],
Cheng, X.[Xiang],
Kurner, T.,
Zhong, Z.D.[Zhang-Dui],
Guan, K.[Ke],
He, R.S.[Rui-Si],
Xiong, L.[Lei],
Matolak, D.W.,
Michelson, D.G.,
Briso-Rodriguez, C.,
Challenges Toward Wireless Communications for High-Speed Railway,
ITS(15), No. 5, October 2014, pp. 2143-2158.
IEEE DOI
1410
data communication
BibRef
Kecman, P.,
Goverde, R.M.P.,
Online Data-Driven Adaptive Prediction of Train Event Times,
ITS(16), No. 1, February 2015, pp. 465-474.
IEEE DOI
1502
Adaptation models
BibRef
Hung, R.[Raymond],
King, B.[Bruce],
Chen, W.[Wu],
Conceptual Issues Regarding the Development of Underground Railway
Laser Scanning Systems,
IJGI(4), No. 1, 2015, pp. 185-198.
DOI Link
1502
BibRef
Salmane, H.,
Khoudour, L.,
Ruichek, Y.[Yassine],
A Video-Analysis-Based Railway-Road Safety System for Detecting
Hazard Situations at Level Crossings,
ITS(16), No. 2, April 2015, pp. 596-609.
IEEE DOI
1504
Accidents
BibRef
Xu, P.,
Liu, R.,
Sun, Q.,
Jiang, L.,
Dynamic-Time-Warping-Based Measurement Data Alignment Model for
Condition-Based Railroad Track Maintenance,
ITS(16), No. 2, April 2015, pp. 799-812.
IEEE DOI
1504
Data models
BibRef
Lauer, M.,
Stein, D.,
A Train Localization Algorithm for Train Protection Systems of the
Future,
ITS(16), No. 2, April 2015, pp. 970-979.
IEEE DOI
1504
Global Positioning System
BibRef
Lu, D.,
Schnieder, E.,
Performance Evaluation of GNSS for Train Localization,
ITS(16), No. 2, April 2015, pp. 1054-1059.
IEEE DOI
1504
Accuracy
BibRef
Hodge, V.J.,
O'Keefe, S.,
Weeks, M.,
Moulds, A.,
Wireless Sensor Networks for Condition Monitoring in the Railway
Industry: A Survey,
ITS(16), No. 3, June 2015, pp. 1088-1106.
IEEE DOI
1506
Sardis Award, Survey. Base stations
BibRef
Aytekin, C.,
Rezaeitabar, Y.,
Dogru, S.,
Ulusoy, I.,
Railway Fastener Inspection by Real-Time Machine Vision,
SMCS(45), No. 7, July 2015, pp. 1101-1107.
IEEE DOI
1506
Fasteners
BibRef
Arastounia, M.[Mostafa],
Automated Recognition of Railroad Infrastructure in Rural Areas from
LIDAR Data,
RS(7), No. 11, 2015, pp. 14916.
DOI Link
1512
BibRef
Wu, X.[Xiao],
Yuan, P.[Ping],
Peng, Q.A.[Qi-Ang],
Ngo, C.W.[Chong-Wah],
He, J.Y.[Jun-Yan],
Detection of bird nests in overhead catenary system images for
high-speed rail,
PR(51), No. 1, 2016, pp. 242-254.
Elsevier DOI
1601
Bird nest detection
BibRef
Liu, L.,
Zhou, F.,
He, Y.,
Vision-based fault inspection of small mechanical components for
train safety,
IET-ITS(10), No. 2, 2016, pp. 130-139.
DOI Link
1602
automatic optical inspection
BibRef
Hyde, P.,
Defossez, F.,
Ulianov, C.,
Development and testing of an automatic remote condition monitoring
system for train wheels,
IET-ITS(10), No. 1, 2016, pp. 32-40.
DOI Link
1602
computational geometry
BibRef
Rama, D.,
Andrews, J.D.,
Railway infrastructure asset management:
The whole-system life cost analysis,
IET-ITS(10), No. 1, 2016, pp. 58-64.
DOI Link
1602
Monte Carlo methods
BibRef
Gibert, X.[Xavier],
Patel, V.M.[Vishal M.],
Chellappa, R.[Rama],
Deep Multitask Learning for Railway Track Inspection,
ITS(18), No. 1, January 2017, pp. 153-164.
IEEE DOI
1701
BibRef
Earlier:
Robust Fastener Detection for Autonomous Visual Railway Track
Inspection,
WACV15(694-701)
IEEE DOI
1503
BibRef
Earlier:
Sequential Score Adaptation with Extreme Value Theory for Robust
Railway Track Inspection,
CVRoads15(131-138)
IEEE DOI
1602
BibRef
Earlier:
Material Classification and Semantic Segmentation of Railway Track
Images with Deep Convolutional Neural Networks,
ICIP15(621-625)
IEEE DOI
1512
Detectors.
Bayes methods.
Deep Convolutional Neural Networks
BibRef
Espinosa, F.,
Hernández, Á.,
Mazo, M.,
Ureña, J.,
Pérez, M.C.,
Jiménez, J.A.,
Fernández, I.,
García, J.C.,
García, J.J.,
Detector of Electrical Discontinuity of Rails in Double-Track Railway
Lines: Electronic System and Measurement Methodology,
ITS(18), No. 4, April 2017, pp. 743-755.
IEEE DOI
1704
Degradation
BibRef
Benedetto, F.,
Tosti, F.,
Alani, A.M.,
An Entropy-Based Analysis of GPR Data for the Assessment of Railway
Ballast Conditions,
GeoRS(55), No. 7, July 2017, pp. 3900-3908.
IEEE DOI
1706
Electronic ballasts, Entropy, Ground penetrating radar,
Radar tracking, Rail transportation, Rails, Receiving antennas,
Ballast fouling, entropy, ground penetrating radar (GPR),
performance analysis, railway, ballast
BibRef
Wang, F.,
Xu, T.,
Tang, T.,
Zhou, M.,
Wang, H.,
Bilevel Feature Extraction-Based Text Mining for Fault Diagnosis of
Railway Systems,
ITS(18), No. 1, January 2017, pp. 49-58.
IEEE DOI
1701
Fault diagnosis
BibRef
Dai, P.[Peng],
Wang, S.C.[Sheng-Chun],
Huang, Y.P.[Ya-Ping],
Wang, H.[Hao],
Du, X.Y.[Xin-Yu],
Han, Q.A.[Qi-Ang],
Visual Indexing of Large Scale Train-Borne Video for Rail Condition
Perceiving,
IEICE(E100-D), No. 9, September 2017, pp. 2017-2026.
WWW Link.
1709
BibRef
Mao, Z.,
Tao, G.,
Jiang, B.,
Yan, X.G.,
Adaptive Compensation of Traction System Actuator Failures for
High-Speed Trains,
ITS(18), No. 11, November 2017, pp. 2950-2963.
IEEE DOI
1711
Actuators, Adaptation models, Adaptive systems, Dynamics, Force,
Mathematical model, Resistance, Actuator failures,
adaptive control, failure compensation, high-speed train
BibRef
Gao, M.,
Wang, P.,
Wang, Y.,
Yao, L.,
Self-Powered ZigBee Wireless Sensor Nodes for Railway Condition
Monitoring,
ITS(19), No. 3, March 2018, pp. 900-909.
IEEE DOI
1804
Magnetic levitation, Monitoring, Rail transportation, Rails,
Wireless communication, Wireless sensor networks, ZigBee,
wireless sensor networks
BibRef
Krummenacher, G.,
Ong, C.S.,
Koller, S.,
Kobayashi, S.,
Buhmann, J.M.,
Wheel Defect Detection With Machine Learning,
ITS(19), No. 4, April 2018, pp. 1176-1187.
IEEE DOI
1804
Force measurement, Learning systems, Rail transportation,
Strain measurement, Vibrations, Wavelet transforms, Wheels,
wavelet transforms
BibRef
Fontul, S.[Simona],
Paixão, A.[André],
Solla, M.[Mercedes],
Pajewski, L.[Lara],
Railway Track Condition Assessment at Network Level by Frequency
Domain Analysis of GPR Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Fan, H.,
Cosman, P.C.,
Hou, Y.,
Li, B.,
High-Speed Railway Fastener Detection Based on a Line Local Binary
Pattern,
SPLetters(25), No. 6, June 2018, pp. 788-792.
IEEE DOI
1806
fasteners, feature extraction, image classification, image sensors,
image texture, object detection, railways, center point,
visual inspection
BibRef
Zhou, F.Q.A.[Fu-Qi-Ang],
Song, Y.[Ya],
Liu, L.[Liu],
Zheng, D.T.[Dong-Tian],
Automated visual inspection of target parts for train safety based on
deep learning,
IET-ITS(12), No. 6, August 2018, pp. 550-555.
DOI Link
1807
BibRef
Mao, Q.Z.[Qing-Zhou],
Cui, H.[Hao],
Hu, Q.W.[Qing-Wu],
Ren, X.C.[Xiao-Chun],
A rigorous fastener inspection approach for high-speed railway from
structured light sensors,
PandRS(143), 2018, pp. 249-267.
Elsevier DOI
1808
High-speed railway, Fastener inspection,
Structured light sensor, Dense point cloud, Decision tree,
Centerline extraction
BibRef
Wang, H.F.[Hai-Feng],
Zhao, N.[Ning],
Ning, B.[Bin],
Tang, T.[Tao],
Chai, M.[Ming],
Safety monitor for train-centric CBTC system,
IET-ITS(12), No. 8, October 2018, pp. 931-938.
DOI Link
1809
BibRef
Lou, Y.D.[Yi-Dong],
Zhang, T.[Tian],
Tang, J.[Jian],
Song, W.W.[Wei-Wei],
Zhang, Y.[Yi],
Chen, L.[Liang],
A Fast Algorithm for Rail Extraction Using Mobile Laser Scanning Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Chen, H.,
Jiang, B.,
Lu, N.,
A Newly Robust Fault Detection and Diagnosis Method for High-Speed
Trains,
ITS(20), No. 6, June 2019, pp. 2198-2208.
IEEE DOI
1906
Principal component analysis, Fault detection, Robustness, Sensors,
Aging, Probability density function, Sensitivity, Incipient faults,
high-speed trains
BibRef
Liu, H.,
Chang, Y.,
Li, Z.,
Zhong, S.,
Yan, L.,
Directional-Aware Automatic Defect Detection in High-Speed Railway
Catenary System,
ICIP19(3930-3934)
IEEE DOI
1910
directional-aware, attention, defect detection, dropper, catenary system
BibRef
Ciampoli, L.B.[Luca Bianchini],
Calvi, A.[Alessandro],
d'Amico, F.[Fabrizio],
Railway Ballast Monitoring by GPR: A Test-Site Investigation,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Wu, Y.,
Jiang, B.,
Lu, N.,
A Descriptor System Approach for Estimation of Incipient Faults With
Application to High-Speed Railway Traction Devices,
SMCS(49), No. 10, October 2019, pp. 2108-2118.
IEEE DOI
1909
Actuators, Iron, Observers, Rail transportation, Barium,
Noise measurement, Descriptor systems,
state/noise estimation
BibRef
Hu, F.M.[Feng-Ming],
van Leijen, F.J.[Freek J.],
Chang, L.[Ling],
Wu, J.[Jicang],
Hanssen, R.F.[Ramon F.],
Monitoring Deformation along Railway Systems Combining Multi-Temporal
InSAR and LiDAR Data,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Kano, G.[Guilherme],
Andrade, T.[Tiago],
Moutinho, A.[Alexandra],
Automatic Detection of Obstacles in Railway Tracks Using Monocular
Camera,
CVS19(284-294).
Springer DOI
1912
BibRef
Wen, T.,
Dong, D.,
Chen, Q.,
Chen, L.,
Roberts, C.,
Maximal Information Coefficient-Based Two-Stage Feature Selection
Method for Railway Condition Monitoring,
ITS(20), No. 7, July 2019, pp. 2681-2690.
IEEE DOI
1907
Feature extraction, Microwave integrated circuits,
Wavelet analysis, Correlation, Wavelet packets,
bearing fault
BibRef
Zou, R.[Rong],
Fan, X.Y.[Xiao-Yun],
Qian, C.[Chuang],
Ye, W.F.[Wen-Fang],
Zhao, P.[Peng],
Tang, J.[Jian],
Liu, H.[Hui],
An Efficient and Accurate Method for Different Configurations Railway
Extraction Based on Mobile Laser Scanning,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Chen, H.,
Jiang, B.,
A Review of Fault Detection and Diagnosis for the Traction System in
High-Speed Trains,
ITS(21), No. 2, February 2020, pp. 450-465.
IEEE DOI
2002
Circuit faults, Fault detection, Mathematical model,
Analytical models, Transportation, Temperature sensors,
high-speed trains
BibRef
Zhang, Z.,
He, X.,
Yuan, H.,
A Robust Parking Detection Algorithm Against Electric Railway
Magnetic Field Interference,
ITS(21), No. 2, February 2020, pp. 882-893.
IEEE DOI
2002
Interference, Rail transportation, Magnetic sensors, Magnetometers,
Perpendicular magnetic anisotropy, Space vehicles,
morphological filter
BibRef
Shankar, S.[Sangeetha],
Roth, M.[Michael],
Schubert, L.A.[Lucas Andreas],
Verstegen, J.A.[Judith Anne],
Automatic Mapping of Center Line of Railway Tracks using Global
Navigation Satellite System, Inertial Measurement Unit and Laser
Scanner,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Wei, X.,
Jiang, S.,
Li, Y.,
Li, C.,
Jia, L.,
Li, Y.,
Defect Detection of Pantograph Slide Based on Deep Learning and Image
Processing Technology,
ITS(21), No. 3, March 2020, pp. 947-958.
IEEE DOI
2003
Rail transportation, Image edge detection, Head, Deep learning,
Picture archiving and communication systems, Inspection,
railway
BibRef
Li, Y.,
Zhong, X.,
Ma, Z.,
Liu, H.,
The Outlier and Integrity Detection of Rail Profile Based on Profile
Registration,
ITS(21), No. 3, March 2020, pp. 1074-1085.
IEEE DOI
2003
Rails, Standards, Measurement by laser beam,
Data models, Anomaly detection, rail wear measurement
BibRef
Ning, X.W.[Xin-Wen],
Zhu, Q.[Qing],
Zhang, H.[Heng],
Wang, C.J.[Chang-Jin],
Han, Z.[Zujie],
Zhang, J.X.[Jun-Xiao],
Zhao, W.[Wen],
Dynamic Simulation Method of High-Speed Railway Engineering
Construction Processes Based on Virtual Geographic Environment,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Hong, N.[Ning],
Li, L.S.[Li-Shuai],
Yao, W.R.[Wei-Ran],
Zhao, Y.[Yang],
Yi, C.[Cai],
Lin, J.H.[Jian-Hui],
Tsui, K.L.[Kwok Leung],
High-Speed Rail Suspension System Health Monitoring Using
Multi-Location Vibration Data,
ITS(21), No. 7, July 2020, pp. 2943-2955.
IEEE DOI
2007
BibRef
And:
Correction:
ITS(22), No. 9, September 2021, pp. 6088-6088.
IEEE DOI
2109
Monitoring, Data models, Suspensions (mechanical systems),
Vibrations, Feature extraction, Vehicle dynamics,
data-driven approach
BibRef
Wang, H.,
Núñez, A.,
Liu, Z.,
Zhang, D.,
Dollevoet, R.,
A Bayesian Network Approach for Condition Monitoring of High-Speed
Railway Catenaries,
ITS(21), No. 10, October 2020, pp. 4037-4051.
IEEE DOI
2010
Condition monitoring, Rail transportation, Inspection, Wires,
Bayes methods, Dynamics, High-speed railway, catenary,
key performance indicator
BibRef
Ye, J.Q.[Jia-Qi],
Stewart, E.[Edward],
Zhang, D.C.[Ding-Cheng],
Chen, Q.Y.[Qian-Yu],
Roberts, C.[Clive],
Method for automatic railway track surface defect classification and
evaluation using a laser-based 3D model,
IET-IPR(14), No. 12, October 2020, pp. 2701-2710.
DOI Link
2010
BibRef
Liu, J.W.[Jian-Wei],
Liu, H.L.[Hong-Li],
Ni, X.F.[Xue-Feng],
Ma, Z.J.[Zi-Ji],
Shao, C.W.X.[Chao Wang Xun],
A Visual Inspection System for Accurate Positioning of Railway Fastener,
IEICE(E103-D), No. 10, October 2020, pp. 2208-2215.
WWW Link.
2010
BibRef
Karunathilake, A.[Amila],
Honma, R.[Ryohei],
Niina, Y.[Yasuhito],
Self-Organized Model Fitting Method for Railway Structures Monitoring
Using LiDAR Point Cloud,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Velha, P.,
Nannipieri, T.,
Signorini, A.,
Morosi, M.,
Solazzi, M.,
Barone, F.,
Frisoli, A.,
Ricciardi, L.,
Eusepi, R.,
Icardi, M.,
Recchia, G.,
Lupi, M.,
Arcoleo, G.,
Firmi, P.,
di Pasquale, F.,
Monitoring Large Railways Infrastructures Using Hybrid Optical Fibers
Sensor Systems,
ITS(21), No. 12, December 2020, pp. 5177-5188.
IEEE DOI
2012
Strain, Fiber gratings, Temperature sensors, Optical fiber sensors,
Bragg grating, finite element analysis, optical fiber sensors,
Raman scattering
BibRef
Samra, M.,
Chen, L.,
Roberts, C.,
Constantinou, C.,
Shukla, A.,
TV White Spaces Handover Scheme for Enabling Unattended Track
Geometry Monitoring From In-Service Trains,
ITS(22), No. 2, February 2021, pp. 1161-1173.
IEEE DOI
2102
TV, Handover, Rail transportation, Databases, Geometry, Monitoring,
Dynamic spectrum access, railway communications,
TV white spaces
BibRef
Ghassoun, Y.[Yahya],
Gerke, M.[Markus],
Khedar, Y.[Yogesh],
Backhaus, J.[Jan],
Bobbe, M.[Markus],
Meissner, H.[Henry],
Tiwary, P.K.[Prashant Kumar],
Heyen, R.[Ralf],
Implementation and Validation of a High Accuracy UAV-Photogrammetry
Based Rail Track Inspection System,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Ye, T.[Tao],
Zhang, X.[Xi],
Zhang, Y.[Yi],
Liu, J.[Jie],
Railway Traffic Object Detection Using Differential Feature Fusion
Convolution Neural Network,
ITS(22), No. 3, March 2021, pp. 1375-1387.
IEEE DOI
2103
Rail transportation, Feature extraction, Object detection, Safety,
Radar tracking, Real-time systems, Detectors,
prior module
BibRef
Jeansoulin, R.[Robert],
A Century of French Railways: The Value of Remote Sensing and VGI in
the Fusion of Historical Data,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kucera, M.[Michal],
Dobesova, Z.[Zdena],
Analysis of the Degree of Threat to Railway Infrastructure by Falling
Tree Vegetation,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Rekavandi, A.M.[Aref Miri],
Seghouane, A.K.[Abd-Krim],
Evans, R.J.[Robin J.],
Robust Subspace Detectors Based on a-Divergence With Application to
Detection in Imaging,
IP(30), 2021, pp. 5017-5031.
IEEE DOI
2106
Detectors, Maximum likelihood estimation, Robustness,
Light rail systems, Pollution measurement, Gaussian noise, Rao test
BibRef
Pan, X.[Xiao],
Liu, Z.[Zhen],
Zhang, G.J.[Guang-Jun],
Line Structured-Light Vision Sensor Calibration Based on Multi-Tooth
Free-Moving Target and Its Application in Railway Fields,
ITS(22), No. 9, September 2021, pp. 5762-5771.
IEEE DOI
2109
Calibration, Vision sensors, Rail transportation, Lasers, Cameras,
Feature extraction, Calibration,
uncertainty
BibRef
Furitsu, Y.[Yuki],
Deguchi, D.[Daisuke],
Kawanishi, Y.[Yasutomo],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Mukojima, H.[Hiroki],
Nagamine, N.[Nozomi],
Soft-Boundary Label Relaxation with class placement constraints for
semantic segmentation of the railway environment,
PRL(150), 2021, pp. 258-264.
Elsevier DOI
2109
Semantic segmentation, Railway, Label relaxation
BibRef
Liu, S.P.[Si-Ping],
Tu, X.H.[Xiao-Han],
Xu, C.[Cheng],
Chen, L.P.[Li-Pei],
Lin, S.[Shuai],
Li, R.[Renfa],
An Optimized Deep Neural Network for Overhead Contact System
Recognition from LiDAR Point Clouds,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
maintain the safety of railway systems
BibRef
Zauner, G.[Gerald],
Groessbacher, D.[David],
Buerger, M.[Martin],
Auer, F.[Florian],
Staccone, G.[Giuseppe],
Gabor Filter-Based Segmentation of Railroad Radargrams for Improved
Rail Track Condition Assessment: Preliminary Studies and Future
Perspectives,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, C.[Chao],
Zeng, J.[Jiuzhen],
Combination-Chord Measurement of Rail Corrugation Using Triple-Line
Structured-Light Vision: Rectification and Optimization,
ITS(22), No. 11, November 2021, pp. 7256-7265.
IEEE DOI
2112
Rails, Optimization, Vibrations, Cameras, Wavelength measurement,
Sensors, Laser modes, Combination-chord model, rail corrugation,
optimization
BibRef
Xu, L.[Lei],
Zheng, S.[Shunyi],
Na, J.M.[Jia-Ming],
Yang, Y.W.[Yuan-Wei],
Mu, C.L.[Chun-Lin],
Shi, D.B.[De-Bin],
A Vehicle-Borne Mobile Mapping System Based Framework for Semantic
Segmentation and Modeling on Overhead Catenary System Using Deep
Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
Railway inspection.
BibRef
Cheng, C.[Chao],
Wang, J.[Jiuhe],
Zhou, Z.J.[Zhi-Jie],
Teng, W.X.[Wan-Xiu],
Sun, Z.B.[Zhong-Bo],
Zhang, B.C.[Bang-Cheng],
A BRB-Based Effective Fault Diagnosis Model for High-Speed Trains
Running Gear Systems,
ITS(23), No. 1, January 2022, pp. 110-121.
IEEE DOI
2201
Gears, Fault diagnosis, Monitoring, Sensors, Interference, Data models,
Fault diagnosis, belief rule base, mixed reliability, high-speed trains
BibRef
Lin, S.[Sheng],
Fan, R.D.[Rui-Dong],
Feng, D.[Ding],
Yang, C.[Chao],
Wang, Q.[Qi],
Gao, S.B.[Shi-Bin],
Condition-Based Maintenance for Traction Power Supply Equipment Based
on Partially Observable Markov Decision Process,
ITS(23), No. 1, January 2022, pp. 175-189.
IEEE DOI
2201
Maintenance engineering, Markov processes, Degradation,
Uncertainty, Decision making, Traction power supplies, Reliability,
traction power supply equipment
BibRef
Gao, S.B.[Shi-Bin],
Kang, G.Q.[Gao-Qiang],
Yu, L.[Long],
Zhang, D.K.[Dong-Kai],
Wei, X.G.[Xiao-Guang],
Zhan, D.[Dong],
Adaptive Deep Learning for High-Speed Railway Catenary Swivel Clevis
Defects Detection,
ITS(23), No. 2, February 2022, pp. 1299-1310.
IEEE DOI
2202
Adaptation models, Uncertainty, Adaptive systems, Inspection,
Rail transportation, Training, Feature extraction,
uncertainty estimation
BibRef
Park, J.[Jaegeun],
Lee, B.H.[Byung-Hun],
Eun, Y.[Yongsoon],
Virtual Coupling of Railway Vehicles: Gap Reference for Merge and
Separation, Robust Control, and Position Measurement,
ITS(23), No. 2, February 2022, pp. 1085-1096.
IEEE DOI
2202
Couplings, Acceleration, Rail transportation, Uncertainty,
Resistance, Error correction, Force, Sliding model control, railway balise
BibRef
Ma, Z.J.[Zi-Ji],
Xu, K.H.[Ke-Huang],
Teng, Y.[Yun],
Shao, X.[Xun],
Dong, M.X.[Mian-Xiong],
Wang, Y.[Yaonan],
A Model of Extraction of Rail's Vertical Corrugation Based on
Flexible Virtual Ruler,
ITS(23), No. 2, February 2022, pp. 1097-1108.
IEEE DOI
2202
Rails, Standards, Extraterrestrial measurements,
Mathematical model, Current measurement, Wavelength measurement,
successive approximation
BibRef
Sang, K.[Kun],
Fontana, G.L.[Giovanni Luigi],
Piovan, S.E.[Silvia Elena],
Assessing Railway Landscape by AHP Process with GIS:
A Study of the Yunnan-Vietnam Railway,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chen, C.[Cen],
Zou, X.F.[Xiao-Feng],
Zeng, Z.[Zeng],
Cheng, Z.Y.[Zhong-Yao],
Zhang, L.[Le],
Hoi, S.C.H.[Steven C. H.],
Exploring Structural Knowledge for Automated Visual Inspection of
Moving Trains,
Cyber(52), No. 2, February 2022, pp. 1233-1246.
IEEE DOI
2202
Object detection, Visualization, Fasteners, Feature extraction,
Inspection, Proposals, Wheels, Automated visual inspection,
train component detection
BibRef
Chen, H.T.[Hong-Tian],
Jiang, B.[Bin],
Ding, S.X.[Steven X.],
Huang, B.[Biao],
Data-Driven Fault Diagnosis for Traction Systems in High-Speed
Trains: A Survey, Challenges, and Perspectives,
ITS(23), No. 3, March 2022, pp. 1700-1716.
IEEE DOI
2203
Mathematical model, Sensor systems, Traction motors, Reliability,
Intelligent transportation systems, Safety, Data-driven,
high-speed trains
BibRef
Mao, Z.[Zehui],
Xia, M.X.[Ming-Xuan],
Jiang, B.[Bin],
Xu, D.Z.[De-Zhi],
Shi, P.[Peng],
Incipient Fault Diagnosis for High-Speed Train Traction Systems via
Stacked Generalization,
Cyber(52), No. 8, August 2022, pp. 7624-7633.
IEEE DOI
2208
Fault diagnosis, Circuit faults, Stacking, Sensors, Sensor systems,
Mathematical model, Radio frequency, Fault diagnosis,
stacked generalization
BibRef
Xu, Y.S.[Yun-Song],
Long, Z.Q.[Zhi-Qiang],
Zhao, Z.G.[Zhen-Gen],
Zhai, M.[Mingda],
Wang, Z.Q.[Zhi-Qiang],
Real-Time Stability Performance Monitoring and Evaluation of Maglev
Trains' Levitation System: A Data-Driven Approach,
ITS(23), No. 3, March 2022, pp. 1912-1923.
IEEE DOI
2203
Stability analysis, Monitoring, Magnetic levitation vehicles,
Real-time systems, Performance evaluation, Real-time,
magnetic levitation system
BibRef
Alvarenga, T.A.[Tiago A.],
Nóbrega, R.A.[Rafael A.],
Cerqueira, A.S.[Augusto S.],
de Andrade Filho, L.M.[Luciano M.],
Honório, L.M.[Leonardo M.],
Rossignoli, S.[Sérgio],
Veloso, H.[Henrique],
Batista, R.[Rafael],
Identification of Low Impedance Points Along Railway Tracks From a
Railroad Inspection Vehicle,
ITS(23), No. 3, March 2022, pp. 1807-1817.
IEEE DOI
2203
Insulation life, Degradation, Impedance, Rail transportation,
Inspection, Transmission line measurements, Rails,
standing waves theory
BibRef
Zhao, Y.H.[Ying-Hong],
He, X.[Xiao],
Zhou, D.H.[Dong-Hua],
Pecht, M.G.[Michael G.],
Detection and Isolation of Wheelset Intermittent Over-Creeps for
Electric Multiple Units Based on a Weighted Moving Average Technique,
ITS(23), No. 4, April 2022, pp. 3392-3405.
IEEE DOI
2204
Adhesives, Creep, Force, Torque, Indexes, Sensors, Rails, Slip and slide,
detection and isolation, weighted moving average, optimal weight,
electric multiple units
BibRef
Chen, C.[Cen],
Li, K.[Kenli],
Zhong-Yao, C.[Cheng],
Piccialli, F.[Francesco],
Hoi, S.C.H.[Steven C. H.],
Zeng, Z.[Zeng],
A Hybrid Deep Learning Based Framework for Component Defect Detection
of Moving Trains,
ITS(23), No. 4, April 2022, pp. 3268-3280.
IEEE DOI
2204
Deep learning, Rail transportation, Object detection, Inspection,
Semantics, Image segmentation, Feature extraction,
visual inspection
BibRef
Karaduman, G.[Gulsah],
Akin, E.[Erhan],
A New Approach Based on Predictive Maintenance Using the Fuzzy
Classifier in Pantograph-Catenary Systems,
ITS(23), No. 5, May 2022, pp. 4236-4246.
IEEE DOI
2205
Temperature sensors, Correlation, Rail transportation,
Predictive maintenance, Strips, Matlab, Temperature distribution,
predictive maintenance
BibRef
Ni, X.F.[Xue-Feng],
Liu, H.L.[Hong-Li],
Ma, Z.[Ziji],
Wang, C.[Chao],
Liu, J.W.[Jian-Wei],
Detection for Rail Surface Defects via Partitioned Edge Feature,
ITS(23), No. 6, June 2022, pp. 5806-5822.
IEEE DOI
2206
Rails, Inspection, Surface morphology, Image edge detection,
Visualization, Surface cracks, Rail transportation,
rail surface defects
BibRef
Liu, S.[Su],
Yin, C.S.[Cheng-Shuang],
Chen, D.J.[Ding-Jun],
Lv, H.X.[Hong-Xia],
Zhang, Q.P.[Qing-Peng],
Cascading Failure in Multiple Critical Infrastructure Interdependent
Networks of Syncretic Railway System,
ITS(23), No. 6, June 2022, pp. 5740-5753.
IEEE DOI
2206
Rail transportation, Robustness, Power system protection,
Power system faults, Rails, Analytical models,
syncretic railway system
BibRef
Xu, J.P.[Jian-Peng],
Ai, B.[Bo],
Experience-Driven Power Allocation Using Multi-Agent Deep
Reinforcement Learning for Millimeter-Wave High-Speed Railway Systems,
ITS(23), No. 6, June 2022, pp. 5490-5500.
IEEE DOI
2206
Resource management, Array signal processing,
Rail transportation, Radio frequency, Uplink, Optimization,
multi-agent deep reinforcement learning
BibRef
Zhang, H.[Hui],
Song, Y.[Yanan],
Chen, Y.R.[Yu-Rong],
Zhong, H.[Hang],
Liu, L.[Li],
Wang, Y.N.[Yao-Nan],
Akilan, T.[Thangarajah],
Wu, Q.M.J.[Q. M. Jonathan],
MRSDI-CNN: Multi-Model Rail Surface Defect Inspection System Based on
Convolutional Neural Networks,
ITS(23), No. 8, August 2022, pp. 11162-11177.
IEEE DOI
2208
Rails, Surface cracks, Surface waves, Surface morphology,
Feature extraction, Real-time systems, Rail transportation, one-stage
BibRef
Zuo, Y.K.[Ya-Kun],
Wang, N.[Ning],
Jia, L.M.[Li-Min],
Zhang, H.Y.[Hui-Yue],
Wang, Z.P.[Zhi-Peng],
Qin, Y.[Yong],
Fully Decomposed Singular Value and Fixed Dictionary Extreme Learning
Machine for Bogie Fault Diagnosis,
ITS(23), No. 8, August 2022, pp. 10262-10274.
IEEE DOI
2208
Feature extraction, Fault diagnosis, Matrix decomposition, Rails,
Dictionaries, Employee welfare, Vibrations, Bogie, fault diagnosis,
variable conditions
BibRef
Wang, X.Y.[Xin-Yue],
Huang, D.Q.[De-Qing],
Qin, N.[Na],
Chen, C.R.[Chun-Rong],
Zhang, K.[Kai],
Modeling and Second-Order Sliding Mode Control for Lateral Vibration
of High-Speed Train With MR Dampers,
ITS(23), No. 8, August 2022, pp. 10299-10308.
IEEE DOI
2208
Shock absorbers, Vibrations, Force, Pistons, Damping,
Mathematical model, Magnetic hysteresis, High-speed train,
SOSM control
BibRef
Zeng, Y.C.[Yuan-Chen],
Song, D.L.[Dong-Li],
Zhang, W.H.[Wei-Hua],
Zhou, B.[Bin],
Xie, M.Y.[Ming-Yuan],
Tang, X.[Xu],
An Optimal Life Cycle Reprofiling Strategy of Train Wheels Based on
Markov Decision Process of Wheel Degradation,
ITS(23), No. 8, August 2022, pp. 10354-10364.
IEEE DOI
2208
Wheels, Maintenance engineering, Degradation,
Biological system modeling, Rail transportation, train wheels
BibRef
Liu, J.W.[Jian-Wei],
Ma, Z.[Ziji],
Qiu, Y.[Yuan],
Ni, X.F.[Xue-Feng],
Shi, B.[Bo],
Liu, H.L.[Hong-Li],
Four Discriminator Cycle-Consistent Adversarial Network for Improving
Railway Defective Fastener Inspection,
ITS(23), No. 8, August 2022, pp. 10636-10645.
IEEE DOI
2208
Fasteners, Inspection, Generative adversarial networks,
Image synthesis, Feature extraction, Solid modeling, deep learning
BibRef
Cao, Y.[Yuan],
Sun, Y.[Yongkui],
Xie, G.[Guo],
Li, P.[Peng],
A Sound-Based Fault Diagnosis Method for Railway Point Machines Based
on Two-Stage Feature Selection Strategy and Ensemble Classifier,
ITS(23), No. 8, August 2022, pp. 12074-12083.
IEEE DOI
2208
Feature extraction, Fault diagnosis, Time-domain analysis,
Rail transportation, Time-frequency analysis,
ensemble classifier
BibRef
Zhuang, L.[Li],
Qi, H.Y.[Hao-Yang],
Zhang, Z.J.[Zi-Jun],
The Automatic Rail Surface Multi-Flaw Identification Based on a Deep
Learning Powered Framework,
ITS(23), No. 8, August 2022, pp. 12133-12143.
IEEE DOI
2208
Rails, Corrugated surfaces, Surface morphology, Inspection,
Rail transportation, Feature extraction, Surface treatment,
condition monitoring
BibRef
Wang, Z.Y.[Zhang-Yu],
Yu, G.Z.[Gui-Zhen],
Chen, P.[Peng],
Zhou, B.[Bin],
Yang, S.[Songyue],
FarNet: An Attention-Aggregation Network for Long-Range Rail Track
Point Cloud Segmentation,
ITS(23), No. 8, August 2022, pp. 13118-13126.
IEEE DOI
2208
Rails, Laser radar, Feature extraction, Image segmentation,
Semantics, Sensors, Rail transportation, Semantic segmentation, rail track
BibRef
Zhang, Y.[Yao],
Cheng, Y.[Yu],
Xu, T.H.[Tian-Hua],
Wang, G.[Guang],
Chen, C.[Cong],
Yang, T.T.[Tian-Tian],
Fault Prediction of Railway Turnout Systems Based on Improved Sparse
Auto Encoder and Gated Recurrent Unit Network,
ITS(23), No. 8, August 2022, pp. 12711-12723.
IEEE DOI
2208
Feature extraction, Rail transportation, Circuit faults,
Degradation, Correlation, Robustness, Rails, Fault prediction,
gated recurrent unit network
BibRef
Tong, L.[Lei],
Wang, Z.P.[Zhi-Peng],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Wei, Y.B.[Yan-Bin],
Yang, H.Z.[Huai-Zhi],
Geng, Y.X.[Yi-Xuan],
Fully Decoupled Residual ConvNet for Real-Time Railway Scene Parsing
of UAV Aerial Images,
ITS(23), No. 9, September 2022, pp. 14806-14819.
IEEE DOI
2209
Rail transportation, Convolution, Correlation, Real-time systems,
Inspection, Task analysis, Computer architecture, UAV
BibRef
Lu, X.M.[Xue-Min],
Quan, W.[Wei],
Gao, S.B.[Shi-Bin],
Zhang, G.X.[Guang-Xiao],
Feng, K.[Kuan],
Lin, G.S.[Guo-Song],
Chen, J.X.[Jim X.],
A Segmentation-Based Multitask Learning Approach for Isolating Switch
State Recognition in High-Speed Railway Traction Substation,
ITS(23), No. 9, September 2022, pp. 15922-15939.
IEEE DOI
2209
Switches, Rail transportation, Substations, Strips, Semantics,
Switching circuits, Feature extraction,
high-speed railway traction substation
BibRef
Yu, H.[Hang],
Lu, J.[Jie],
Liu, A.[Anjin],
Wang, B.[Bin],
Li, R.M.[Rui-Min],
Zhang, G.Q.[Guang-Quan],
Real-Time Prediction System of Train Carriage Load Based on
Multi-Stream Fuzzy Learning,
ITS(23), No. 9, September 2022, pp. 15155-15165.
IEEE DOI
2209
Real-time systems, Load modeling, Predictive models, Mars, Open data,
Training data, Task analysis, Transportation systems,
concept drift
BibRef
Man, J.[Jie],
Dong, H.H.[Hong-Hui],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
AttGGCN Model: A Novel Multi-Sensor Fault Diagnosis Method for
High-Speed Train Bogie,
ITS(23), No. 10, October 2022, pp. 19511-19522.
IEEE DOI
2210
Sensors, Fault diagnosis, Axles, Convolution, Traction motors,
Temperature sensors, Rail transportation, Fault diagnosis,
high-speed train bogie
BibRef
Man, J.[Jie],
Dong, H.H.[Hong-Hui],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Zhang, J.[Jun],
An Adaptive Multisensor Fault Diagnosis Method for High-Speed Train
Bogie,
ITS(24), No. 6, June 2023, pp. 6292-6306.
IEEE DOI
2306
Fault diagnosis, Feature extraction, Axles, Temperature sensors,
Convolutional neural networks, Temperature measurement, Safety,
high-speed train bogie
BibRef
Wu, J.Y.[Jun-Yi],
Zhou, W.[Wujie],
Qiu, W.W.[Wei-Wei],
Yu, L.[Lu],
Depth Repeated-Enhancement RGB Network for Rail Surface Defect
Inspection,
SPLetters(29), 2022, pp. 2053-2057.
IEEE DOI
2210
Surface morphology, Rails, Surface treatment, Inspection, Decoding,
Weight measurement, Rail flaws detection, RGB-D image,
multimodality complementation
BibRef
Ye, T.[Tao],
Zhang, J.[Jun],
Zhao, Z.Y.[Zong-Yang],
Zhou, F.Q.[Fu-Qiang],
Foreign Body Detection in Rail Transit Based on a Multi-Mode
Feature-Enhanced Convolutional Neural Network,
ITS(23), No. 10, October 2022, pp. 18051-18063.
IEEE DOI
2210
Rail transportation, Feature extraction, Object detection,
Real-time systems, Convolution, Training, Rails,
multi-mode feature enhanced convolutional neural network
BibRef
Ye, T.[Tao],
Zhao, Z.[Zongyang],
Wang, S.[Shouan],
Zhou, F.Q.[Fu-Qiang],
Gao, X.Z.[Xiao-Zhi],
A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural
Network for Efficient Railway Transit Object Detection,
ITS(23), No. 10, October 2022, pp. 17952-17965.
IEEE DOI
2210
Feature extraction, Rail transportation, Safety, Real-time systems,
Object detection, Convolution, Adaptive systems, railway safety
BibRef
Liu, H.[Hao],
Yao, L.[Lianbi],
Xu, Z.W.[Zheng-Wen],
Fan, X.Z.[Xian-Zheng],
Jiao, X.[Xiongfeng],
Sun, P.P.[Pan-Pan],
A Railway Lidar Point Cloud Reconstruction Based on Target Detection
and Trajectory Filtering,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zheng, Z.X.[Zhong-Xing],
Liu, W.M.[Wei-Ming],
Liu, R.K.[Rui-Kang],
Wang, L.[Liang],
Mao, L.[Liang],
Qiu, Q.S.[Qi-Sheng],
Ling, G.Z.[Guang-Zheng],
Anomaly Detection of Metro Station Tracks Based on Sequential
Updatable Anomaly Detection Framework,
CirSysVideo(32), No. 11, November 2022, pp. 7677-7691.
IEEE DOI
2211
Anomaly detection, Image reconstruction, Task analysis, Training,
Feature extraction, Data models, Videos, Railway traffic
BibRef
Liu, H.M.[Hong-Ming],
Duan, X.[Xiang],
Jiang, J.[Jianqun],
Bian, X.C.[Xue-Cheng],
Dynamic Responses of Ballastless High-Speed Railway Due to Train
Passage With Excitation of Uneven Trackbed Settlement,
ITS(23), No. 11, November 2022, pp. 22244-22257.
IEEE DOI
2212
Slabs, Rail transportation, Mathematical models,
Electronic ballasts, Vibrations, Vehicle dynamics, Rails, uneven settlement
BibRef
Gonzalo, A.P.[Alfredo Peinado],
Horridge, R.[Richard],
Steele, H.[Heather],
Stewart, E.[Edward],
Entezami, M.[Mani],
Review of Data Analytics for Condition Monitoring of Railway Track
Geometry,
ITS(23), No. 12, December 2022, pp. 22737-22754.
IEEE DOI
2212
Radar tracking, Geometry, Degradation, Maintenance engineering,
Electronic ballasts, Inspection, Data analytics,
track geometry
BibRef
Qi, W.W.[Wei-Wei],
Zheng, S.B.[Shu-Bin],
Li, L.M.[Li-Ming],
Yang, Z.L.[Zheng-Long],
Loosening Bolts Detection of Bogie Box in Metro Vehicles Based on Deep
Learning,
IEICE(E105-D), No. 11, November 2022, pp. 1990-1993.
WWW Link.
2212
BibRef
Su, S.X.[Shi-Xiang],
Du, S.[Songlin],
Lu, X.B.[Xiao-Bo],
Geometric Constraint and Image Inpainting-Based Railway Track
Fastener Sample Generation for Improving Defect Inspection,
ITS(23), No. 12, December 2022, pp. 23883-23895.
IEEE DOI
2212
Fasteners, Rail transportation, Inspection, Task analysis, Skeleton,
Image synthesis, Training, Image generation, image inpainting,
railway fastener inspection
BibRef
Liu, S.[Scarlett],
Li, C.[Chao],
Yuwen, T.[Tian],
Wan, Z.L.[Zheng-Liang],
Luo, Y.P.[Yi-Ping],
A Lightweight LiDAR-Camera Sensing Method of Obstacles Detection and
Classification for Autonomous Rail Rapid Transit,
ITS(23), No. 12, December 2022, pp. 23043-23058.
IEEE DOI
2212
Point cloud compression, Laser radar, Sensors,
Subspace constraints, Semantics, Clustering algorithms,
point cloud classification
BibRef
Ji, W.J.[Wen-Jiang],
Zuo, Y.[Yuan],
Fei, R.[Rong],
Xie, G.[Guo],
Zhang, J.L.[Jiu-Long],
Hei, X.H.[Xin-Hong],
An Adaptive Fault Diagnosis Model for Railway Single and Double
Action Turnout,
ITS(24), No. 1, January 2023, pp. 1314-1324.
IEEE DOI
2301
Switches, Rail transportation, Fault diagnosis, Circuit faults,
Heuristic algorithms, Time series analysis, Feature extraction,
dynamic time warping
BibRef
Su, S.X.[Shi-Xiang],
Du, S.[Songlin],
Wei, X.[Xuan],
Lu, X.B.[Xiao-Bo],
RFS-Net: Railway Track Fastener Segmentation Network With Shape
Guidance,
CirSysVideo(33), No. 3, March 2023, pp. 1398-1412.
IEEE DOI
2303
Fasteners, Shape, Streaming media, Rail transportation,
Feature extraction, Image edge detection, Task analysis, shape guidance
BibRef
Wang, N.[Ning],
Kou, L.L.[Lin-Lin],
Zhang, H.Y.[Hui-Yue],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Wang, H.G.[Hong-Guang],
Wang, Z.P.[Zhi-Peng],
A self-adaptive phase-segmentation and health assessment framework
for point machines,
IET-ITS(17), No. 4, 2023, pp. 730-743.
DOI Link
2304
Rail inspecton.
aMMTS, confidence value, degradation degree, health assessment,
non-linear dynamic time warping, phase segmentation, point machine
BibRef
Ji, H.H.[Hong-Hai],
Zhou, J.[Jinyao],
Wang, L.[Li],
Li, Z.X.[Zhen-Xuan],
Fan, L.L.[Ling-Ling],
Hou, Z.S.[Zhong-Sheng],
Adaptive Iterative Learning Kalman Consensus Filtering for High-Speed
Train Identification and Estimation,
ITS(24), No. 5, May 2023, pp. 4988-5002.
IEEE DOI
2305
Estimation, Kalman filters, Resistance, Aerodynamics, Uncertainty,
Parameter estimation, Nonlinear dynamical systems, Kalman consensus filters
BibRef
Guo, X.X.[Xiao-Xuan],
Ji, Z.[Zhenyan],
Feng, Q.[Qibo],
Wang, H.H.[Hui-Hui],
Yang, Y.Y.[Yan-Yan],
Li, Z.[Zhao],
URS: A Light-Weight Segmentation Model for Train Wheelset Monitoring,
ITS(24), No. 7, July 2023, pp. 7707-7716.
IEEE DOI
2307
Convolution, Feature extraction, Image segmentation, Decoding,
Laser modes, Semantics, Data mining, Defect segmentation,
multi-line laser images
BibRef
Pan, W.B.[Wen-Bo],
Fan, X.H.[Xiang-Hua],
Li, H.B.[Hong-Bo],
He, K.[Kai],
Long-Range Perception System for Road Boundaries and Objects
Detection in Trains,
RS(15), No. 14, 2023, pp. 3473.
DOI Link
2307
BibRef
Yang, J.X.[Jin-Xin],
Zhou, W.J.[Wu-Jie],
Wu, R.M.[Rui-Ming],
Fang, M.X.[Mei-Xin],
CSANet: Contour and Semantic Feature Alignment Fusion Network for
Rail Surface Defect Detection,
SPLetters(30), 2023, pp. 972-976.
IEEE DOI
2308
Feature extraction, Semantics, Convolution, Surface treatment,
Surface morphology, Saliency detection, Rails,
rail surface defect inspection
BibRef
Zhang, Z.X.[Zhao-Xiang],
Zhang, L.[Limao],
Unsupervised Pixel-Level Detection of Rail Surface Defects Using
Multistep Domain Adaptation,
SMCS(53), No. 9, September 2023, pp. 5784-5795.
IEEE DOI
2309
BibRef
Gomez-Jauregui, V.[Valentin],
Agustín, J.[Javier],
Badolato, A.[Alejandro],
del-Castillo-Igareda, J.[Jesús],
de Dios-Sanz-Bobi, J.[Juan],
Carrera-Monterde, A.[Ana],
Manchado, C.[Cristina],
Otero, C.[César],
New methods and functionalities for railway maintenance through a
draisine prototype based on RADAR sensors,
IET-ITS(17), No. 8, 2023, pp. 1608-1628.
DOI Link
2309
maintenance engineering, position measurement, radar tracking,
rail transportation, railway engineering
BibRef
Wang, Z.P.[Zhi-Peng],
Geng, Y.X.[Yi-Xuan],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Chai, Y.Y.[Yuan-Yuan],
Tong, L.[Lei],
Liu, K.[Keyan],
Self-Attentive Local Aggregation Learning With Prototype Guided
Regularization for Point Cloud Semantic Segmentation of High-Speed
Railways,
ITS(24), No. 10, October 2023, pp. 11157-11170.
IEEE DOI
2310
BibRef
Liu, W.[Wei],
Lu, X.B.[Xiao-Bo],
Wei, Y.[Yun],
Ran, Z.D.[Zhi-Dan],
MFANet: Multifaceted Feature Aggregation Network for Oil Stains
Detection of High-Speed Trains,
ITS(24), No. 11, November 2023, pp. 12331-12344.
IEEE DOI
2311
BibRef
Cui, J.[Jing],
Qin, Y.[Yong],
Wu, Y.P.[Yun-Peng],
Shao, C.H.[Chang-Hong],
Yang, H.Z.[Huai-Zhi],
Skip Connection YOLO Architecture for Noise Barrier Defect Detection
Using UAV-Based Images in High-Speed Railway,
ITS(24), No. 11, November 2023, pp. 12180-12195.
IEEE DOI
2311
BibRef
d'Amico, G.[Gianluca],
Marinoni, M.[Mauro],
Nesti, F.[Federico],
Rossolini, G.[Giulio],
Buttazzo, G.[Giorgio],
Sabina, S.[Salvatore],
Lauro, G.[Gianluigi],
TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation,
ITS(24), No. 12, December 2023, pp. 15006-15017.
IEEE DOI
2312
BibRef
Zhu, G.Y.[Guang-Yu],
Sun, R.R.[Ran-Ran],
Fan, J.X.[Jia-Xin],
Li, F.[Furong],
Hou, Y.H.[Yu-Hong],
Yu, H.[Hui],
Liu, P.X.P.[Peter Xiao-Ping],
Coupling Effect and Chain Evolution of Urban Rail Transit Emergencies,
ITS(25), No. 1, January 2024, pp. 1044-1053.
IEEE DOI
2402
Couplings, Rails, Analytical models, Bayes methods, Sun, Uncertainty,
Rail transportation, Urban rail transit (URT), emergency chain,
coupled map lattices
BibRef
Liu, J.W.[Jian-Wei],
Qiu, Y.[Yuan],
Ni, X.F.[Xue-Feng],
Shi, B.[Bo],
Liu, H.L.[Hong-Li],
Fast Detection of Railway Fastener Using a New Lightweight Network
Op-YOLOv4-Tiny,
ITS(25), No. 1, January 2024, pp. 133-143.
IEEE DOI
2402
Fasteners, Feature extraction, Real-time systems, Convolution,
Task analysis, Rail transportation, Inspection, Fastener detection,
YOLOv4-tiny
BibRef
Gao, S.[Shuai],
Song, Q.J.[Qi-Jiang],
Shen, D.[Dong],
Distributed Learning Control for High-Speed Trains Subject to
Operation Safety Constraints,
Cyber(54), No. 3, March 2024, pp. 1794-1805.
IEEE DOI
2402
Safety, Trajectory tracking, Resistance, Couplers, Force,
Mathematical models, Task analysis,
tracking control
BibRef
Tang, T.J.[Tie-Jian],
Cao, J.H.[Jing-Hao],
Yang, X.[Xiong],
Liu, S.[Sheng],
Zhu, D.S.[Dong-Sheng],
Du, S.[Sidan],
Li, Y.[Yang],
A Real-Time Method for Railway Track Detection and 3D Fitting Based
on Camera and LiDAR Fusion Sensing,
RS(16), No. 8, 2024, pp. 1441.
DOI Link
2405
BibRef
Kang, R.W.[Ren-Wei],
Pang, Y.Z.[Yan-Zhi],
Cheng, J.F.[Jian-Feng],
Xu, P.[Peng],
Chen, J.Q.[Jian-Qiu],
Zhang, K.Y.[Kai-Yuan],
A novel refined maintenance strategy for full life cycle of
high-speed automatic train protection system,
IET-ITS(18), No. 5, 2024, pp. 889-903.
DOI Link
2405
intelligent transportation systems, maintenance engineering,
rail traffic control, reliability
BibRef
Zhou, W.[Wujie],
Hong, J.K.[Jian-Kang],
Yan, W.Q.[Wei-Qing],
Jiang, Q.P.[Qiu-Ping],
Modal Evaluation Network via Knowledge Distillation for No-Service
Rail Surface Defect Detection,
CirSysVideo(34), No. 5, May 2024, pp. 3930-3942.
IEEE DOI Code:
WWW Link.
2405
Feature extraction, Task analysis, Encoding,
Computational modeling, Predictive models, Adaptation models,
surface defect detection
BibRef
Zhou, W.[Wujie],
Hong, J.K.[Jian-Kang],
Ran, X.X.[Xiao-Xiao],
Yan, W.Q.[Wei-Qing],
Jiang, Q.P.[Qiu-Ping],
DSANet-KD: Dual Semantic Approximation Network via Knowledge
Distillation for Rail Surface Defect Detection,
ITS(25), No. 10, October 2024, pp. 13849-13862.
IEEE DOI Code:
WWW Link.
2410
Rails, Defect detection, Decoding, Semantics, Task analysis,
Feature extraction, Computational modeling, dual semantic approximation
BibRef
Sun, X.Y.[Xin-Yu],
Zhou, W.[Wujie],
Qian, X.H.[Xiao-Hong],
Normalized Cyclic Loop Network for Rail Surface Defect Detection
Using Knowledge Distillation,
ITS(25), No. 11, November 2024, pp. 16561-16573.
IEEE DOI
2411
Feature extraction, Rails, Defect detection,
Computational modeling, Accuracy, Training, Knowledge engineering,
rail surface defect detection
BibRef
Tang, Q.F.[Qing-Feng],
Wei, X.[Xiukun],
Wei, D.H.[De-Hua],
Shen, X.[Xing],
Yin, X.[Xinqiang],
Wang, D.[Diqing],
Jia, L.M.[Li-Min],
Zhong, Q.[Qitian],
High Precision Robust Real-Time Lightweight Approach for Railway
Pantograph Slider Wear Estimation,
ITS(25), No. 5, May 2024, pp. 3973-3985.
IEEE DOI
2405
Image processing, Real-time systems, Monitoring,
Image edge detection, Deep learning, Head, Rails, Pantograph slider,
deep learning
BibRef
Su, Z.H.[Zhen-Hua],
Luo, J.[Jun],
Feng, P.[Piji],
Yao, C.X.[Chun-Xing],
Yan, Z.Y.[Zhao-Ying],
Zhu, T.[Taoning],
Zhao, C.[Chunfa],
Ma, G.[Guangtong],
Vertical-Lateral Coupled Dynamic Model for Integrated Propulsion,
Levitation and Guidance Superconducting EDS Train,
ITS(25), No. 5, May 2024, pp. 4364-4380.
IEEE DOI
2405
Coils, Vehicle dynamics, Mathematical models, Couplings,
Electromagnetics, Propulsion, Inductance,
levitation and guidance (PLG) coil
BibRef
Cheng, R.[Ruijun],
Chen, D.[Dewang],
Ma, X.P.[Xiao-Ping],
Cheng, Y.[Yu],
Cheng, H.[Huize],
Intelligent Quantitative Safety Monitoring Approach for ATP Using
LSSVM and Probabilistic Model Checking Considering Imperfect Fault
Coverage,
ITS(25), No. 5, May 2024, pp. 3724-3738.
IEEE DOI
2405
Safety, Monitoring, Computational modeling, Model checking,
Probabilistic logic, Control systems, Rail transportation,
online reliability evaluation
BibRef
Tong, L.[Lei],
Wang, Z.P.[Zhi-Peng],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Song, D.H.[Dong-Hai],
Miao, B.[Bidong],
Tang, T.[Tian],
Geng, Y.X.[Yi-Xuan],
TriRNet: Real-Time Rail Recognition Network for UAV-Based Railway
Inspection,
ITS(25), No. 5, May 2024, pp. 3927-3943.
IEEE DOI
2405
Rails, Inspection, Rail transportation, Real-time systems,
Task analysis, Autonomous aerial vehicles, Mathematical models,
automatic railway inspection
BibRef
Tan, P.[Ping],
Cui, Z.S.[Zhi-Sheng],
Wu, Z.G.[Zheng-Guang],
Li, X.F.[Xu-Feng],
Ding, J.[Jin],
Ma, J.[Jien],
Huang, B.Q.[Bing-Qiang],
Fang, Y.[Youtong],
RTS-LCSS: A New Method for Real-Time Monitoring of Pantograph
Structure,
ITS(25), No. 5, May 2024, pp. 3960-3972.
IEEE DOI
2405
Cameras, Real-time systems, Interpolation, Training, Neural networks,
Rail transportation, Generators, High-speed railway, pantograph,
image processing
BibRef
Yang, S.[Songyue],
Wang, Z.Y.[Zhang-Yu],
Yu, G.Z.[Gui-Zhen],
Liu, W.T.[Wen-Tao],
Key Point Estimate Network for Rail-Track Detection,
ITS(25), No. 5, May 2024, pp. 4077-4088.
IEEE DOI
2405
Rails, Transportation, Roads, Rail transportation, Lighting, Accidents,
Task analysis, Rail-track detection, pseudo-attention,
rail-track generalized IoU
BibRef
Nan, Z.L.[Zong-Liang],
Zhu, G.[Guoan],
Zhang, X.[Xu],
Lin, X.[Xuechun],
Yang, Y.Y.[Ying-Ying],
Development of a High-Precision Lidar System and Improvement of Key
Steps for Railway Obstacle Detection Algorithm,
RS(16), No. 10, 2024, pp. 1761.
DOI Link
2405
BibRef
Li, C.Z.[Chen-Zhong],
Sun, H.[Huakun],
Li, W.Y.[Wang-Yijia],
Wang, Y.F.[Yi-Feng],
Wan, Z.[Zhuang],
Wu, W.J.[Wei-Jun],
Wang, P.[Ping],
He, Q.[Qing],
A Multitask Learning Method for Rail Corrugation Detection Using
In-Vehicle Responses and Noise Data,
ITS(25), No. 6, June 2024, pp. 5045-5058.
IEEE DOI
2406
Rails, Rail transportation, Inspection, Feature extraction,
Vibrations, Maintenance engineering, Data integration,
rail track maintenance
BibRef
Wang, S.X.[Shi-Xiong],
Li, X.K.[Xin-Ke],
Chen, Z.[Zhirui],
Liu, Y.[Yang],
A Railway Accident Prevention System Using an Intelligent Pilot
Vehicle,
ITS(25), No. 6, June 2024, pp. 5170-5188.
IEEE DOI
2406
Rail transportation, Railway accidents, Monitoring,
Wireless sensor networks, Maintenance engineering,
deep neural network
BibRef
Pu, H.[Hao],
Wang, G.H.[Guang-Hui],
Song, T.[Taoran],
Schonfeld, P.[Paul],
Zhang, H.[Hong],
Multi-Task Deep Learning Methods for Determining Railway Major
Technical Standards,
ITS(25), No. 6, June 2024, pp. 5904-5918.
IEEE DOI
2406
Rail transportation, Decision making, Task analysis, Multitasking,
Voting, Feature extraction, Environmental factors, Decision making,
railway technical standards
BibRef
He, Y.Y.X.[Yuan-Yan-Xingzi],
Li, Y.W.[Yong-Wei],
Xu, L.R.[Lin-Rong],
An Integrated Multisource and Multiscale Monitoring Technique for
Assessing the Health Status of High-Speed Railway Subgrade,
RS(16), No. 11, 2024, pp. 1972.
DOI Link
2406
BibRef
Wang, J.[Jie],
Li, G.Q.[Guo-Qiang],
Qiu, G.[Guanwen],
Ma, G.[Gang],
Xi, J.W.[Jin-Wen],
Yu, N.[Nana],
Depth-Assisted Semi-Supervised RGB-D Rail Surface Defect Inspection,
ITS(25), No. 7, July 2024, pp. 8042-8052.
IEEE DOI
2407
Task analysis, Rails, Annotations, Inspection, Training,
Surface morphology, Shape, Rail surface defect inspection,
salient object detection
BibRef
Cao, Z.W.[Zhi-Wei],
Qin, Y.[Yong],
Jia, L.M.[Li-Min],
Xie, Z.Y.[Zheng-Yu],
Gao, Y.[Yang],
Wang, Y.[Yaguan],
Li, P.[Ping],
Yu, Z.[Zujun],
Railway Intrusion Detection Based on Machine Vision:
A Survey, Challenges, and Perspectives,
ITS(25), No. 7, July 2024, pp. 6427-6448.
IEEE DOI
2407
Rail transportation, Intrusion detection, Monitoring,
Machine vision, Inspection, Autonomous aerial vehicles, deep learning
BibRef
Wu, Y.K.[Yun-Kai],
Su, Y.[Yu],
Wang, Y.L.[Yu-Long],
Shi, P.[Peng],
T-S Fuzzy Data-Driven ToMFIR With Application to Incipient Fault
Detection and Isolation for High-Speed Rail Vehicle Suspension
Systems,
ITS(25), No. 7, July 2024, pp. 7921-7932.
IEEE DOI
2407
Rail transportation, Fault detection, Sensors, Monitoring,
Data models, Analytical models, Actuators, Data-driven ToMFIR,
suspension systems
BibRef
He, S.[Sen],
Jian, Z.[Zehua],
Liu, S.L.[Shao-Li],
Liu, J.H.[Jian-Hua],
Fang, Y.[Yue],
Hu, J.[Jia],
PCSGAN: A Perceptual Constrained Generative Model for Railway Defect
Sample Expansion From a Single Image,
ITS(25), No. 8, August 2024, pp. 8796-8806.
IEEE DOI
2408
Rail transportation, Defect detection, Training,
Generative adversarial networks, Deep learning, Rails, Fasteners,
railway defect detection
BibRef
Chen, X.H.[Xiao-Hong],
Jin, Z.[Zhi],
Zhang, M.[Min],
Mallet, F.[Frédéric],
Liu, X.S.[Xiao-Shan],
Zhou, T.L.[Ting-Liang],
A Scalable Approach to Detecting Safety Requirements Inconsistencies
for Railway Systems,
ITS(25), No. 8, August 2024, pp. 8375-8386.
IEEE DOI
2408
Clocks, Safety, Rail transportation, Unified modeling language,
Cause effect analysis, Scalability, railway systems
BibRef
Cao, Z.W.[Zhi-Wei],
Gao, Y.[Yang],
Bai, J.[Jie],
Qin, Y.[Yong],
Zheng, Y.[Yuanjin],
Jia, L.M.[Li-Min],
Efficient Dual-Stream Fusion Network for Real-Time Railway Scene
Understanding,
ITS(25), No. 8, August 2024, pp. 9442-9452.
IEEE DOI
2408
Rail transportation, Feature extraction, Semantic segmentation,
Semantics, Safety, Rails, Real-time systems, autonomous driving
BibRef
Wang, H.[Huan],
Li, Y.F.[Yan-Fu],
Men, T.[Tianli],
Wavelet Integrated CNN With Dynamic Frequency Aggregation for
High-Speed Train Wheel Wear Prediction,
ITS(25), No. 8, August 2024, pp. 8960-8971.
IEEE DOI
2408
Wheels, Discrete wavelet transforms,
Convolutional neural networks, Feature extraction
BibRef
Li, J.W.[Jia-Wei],
Tian, D.X.[Da-Xin],
Zhou, J.[Jianshan],
Duan, X.[Xuting],
Sheng, Z.G.[Zheng-Guo],
Zhao, D.[Dezong],
Cao, D.[Dongpu],
Distributed Robust Model Predictive Control for Virtual Coupling
Under Structural and External Uncertainty,
ITS(25), No. 8, August 2024, pp. 8751-8769.
IEEE DOI
2408
Stability analysis, Couplings, Uncertainty, Rail transportation,
Control systems, Feedforward systems, Formation control, uncertainty
BibRef
Chang, Y.Q.[Yong-Qi],
Zhang, X.[Xin],
Song, S.Z.[Shu-Zhi],
Song, Q.H.[Qing-Hua],
Zhao, Z.Y.[Zhen-Yu],
Wang, W.[Wensong],
Jie, H.M.[Hua-Min],
Shen, Y.[Yi],
EMAE-Based Rail Structural Health Monitoring Using Double-Layer
Signal Processing and Spectrum Information Entropy,
ITS(25), No. 9, September 2024, pp. 11370-11381.
IEEE DOI
2409
Rails, Monitoring, Signal processing algorithms, Signal processing,
Electromagnetics, Rail transportation, Interference,
spectrum information entropy (SIE)
BibRef
Feng, Y.[Yong],
Chen, J.L.[Jing-Long],
Xie, Z.L.[Zong-Liang],
Xie, J.S.[Jing-Song],
Pan, T.[Tongyang],
Li, C.[Chao],
Zhao, Q.[Qing],
Integrating Misidentification and OOD Detection for Reliable Fault
Diagnosis of High-Speed Train Bogie,
ITS(25), No. 9, September 2024, pp. 11935-11945.
IEEE DOI
2409
Uncertainty, Reliability, Fault diagnosis, Bayes methods,
Probabilistic logic, Predictive models, Data models, uncertainty estimation
BibRef
Shang, D.[Du],
Su, S.[Shuai],
Sun, Y.[Yongkui],
Wang, F.[Feng],
Cao, Y.[Yuan],
Liu, H.T.[Hai-Tao],
Yang, W.F.[Wei-Feng],
Zhou, J.H.[Ji-Hui],
Fault Diagnosis for Rail Profile Data Using Refined Dispersion
Entropy and Dependence Measurements,
ITS(25), No. 9, September 2024, pp. 11689-11700.
IEEE DOI
2409
Rails, Entropy, Correlation, Dispersion, Rail transportation,
Fault diagnosis, Complexity theory, Fault diagnosis, rail profile,
martingale difference correlation
BibRef
Ni, X.F.[Xue-Feng],
Fieguth, P.W.[Paul W.],
Ma, Z.[Ziji],
Shi, B.[Bo],
Qiu, Y.[Yuan],
Chen, Y.H.[Yu-Hao],
Liu, H.L.[Hong-Li],
Superpixel-Guided Multi-Type Rail Segmentation via Contextual
Information Aggregation,
ITS(25), No. 10, October 2024, pp. 14004-14018.
IEEE DOI
2410
Rails, Rail transportation, Semantics, Image segmentation, Noise,
Inspection, Feature extraction, Semantic segmentation, rail segmentation
BibRef
Tong, S.Z.[Shu-Zhen],
Wang, Q.[Qing],
Wei, X.[Xuan],
Lu, C.[Cheng],
Lu, X.B.[Xiao-Bo],
Modulated deformable convolution based on graph convolution network
for rail surface crack detection,
SP:IC(130), 2025, pp. 117202.
Elsevier DOI
2412
Rail Surface, Crack Detection, Deformable convolution, Semantic segmentation
BibRef
Wang, Y.[Yi],
Cai, X.P.[Xiao-Pei],
Tang, X.[Xueyang],
Pan, S.[Shuo],
Wang, Y.Q.[Yu-Qi],
Yan, H.[Hai],
Ren, Y.H.[Yu-Heng],
Hou, Y.[Yue],
HSRA-Net: Intelligent Detection Network of Anomaly Monitoring Data in
High-Speed Railway,
ITS(25), No. 12, December 2024, pp. 20793-20803.
IEEE DOI
2412
Monitoring, Anomaly detection, Data models, Noise,
Generative adversarial networks, Statistical analysis
BibRef
Zhao, Z.[Zheda],
Qin, Y.[Yong],
Qian, Y.[Yu],
Wu, Y.P.[Yun-Peng],
Qin, W.W.[Wen-Wen],
Zhang, H.[Hao],
Wu, X.L.[Xiao-Lei],
Automatic Potential Safety Hazard Evaluation System for Environment
Around High-Speed Railroad Using Hybrid U-Shape Learning Architecture,
ITS(26), No. 1, January 2025, pp. 1071-1087.
IEEE DOI
2501
Autonomous aerial vehicles, Hazards, YOLO, Inspection, Feature extraction,
Semantics, Roads, Rail transportation, Training, hazard evaluation
BibRef
Liu, Y.Y.[Yu-Yao],
Li, Q.Y.[Qing-Yong],
Bao, S.[Shi],
Wang, W.[Wen],
Multi-Scale Rail Surface Anomaly Detection Based on Weighted
Multivariate Gaussian Distribution,
IEICE(E108-D), No. 2, February 2025, pp. 147-156.
WWW Link.
2502
BibRef
Zhang, L.X.[Long-Xin],
Zeng, W.L.[Wen-Liang],
Zhou, P.[Peng],
Deng, X.J.[Xiao-Jun],
Wu, J.[Jiayu],
Wen, H.[Hong],
A fast and lightweight train image fault detection model based on
convolutional neural networks,
IVC(154), 2025, pp. 105380.
Elsevier DOI
2502
Attention mechanism, Clustering algorithm,
Convolutional neural network, Fault detection
BibRef
Liu, W.[Wei],
Lu, X.B.[Xiao-Bo],
Wei, Y.[Yun],
Ran, Z.D.[Zhi-Dan],
MFECNet: Multi-level feature enhancement and correspondence network
for few-shot anomaly detection of high-speed trains,
PR(161), 2025, pp. 111298.
Elsevier DOI
2502
Anomaly detection, Few-shot learning, MFECNet
BibRef
Wu, Y.[Yue],
Qiang, F.F.[Fang-Fang],
Zhou, W.[Wujie],
Yan, W.Q.[Wei-Qing],
PFCNet: Enhancing Rail Surface Defect Detection With Pixel-Aware
Frequency Conversion Networks,
SPLetters(32), 2025, pp. 606-610.
IEEE DOI
2502
Convolution, Feature extraction, Rails, Object detection,
Frequency conversion, Surface treatment, Semantics, Inspection, DCT transform
BibRef
Santamato, G.[Giancarlo],
Tozzetti, L.[Lorenzo],
Solazzi, M.[Massimiliano],
Fedeli, E.[Eugenio],
di Pasquale, F.[Fabrizio],
SmartRail: A System for the Continuous Monitoring of the Track
Geometry Based on Embedded Arrays of Fiber Optic Sensors,
ITS(26), No. 3, March 2025, pp. 3262-3272.
IEEE DOI
2503
Strain, Sensors, Rails, Optical fiber sensors, Sensor arrays, Geometry,
Temperature measurement, Temperature sensors, Fiber gratings,
finite elements analysis
BibRef
Chen, Z.X.[Zheng-Xing],
Wang, Q.H.[Qi-Hang],
He, Q.[Qing],
Yu, T.[Tianle],
Zhang, M.[Min],
Wang, P.[Ping],
CUFuse: Camera and Ultrasound Data Fusion for Rail Defect Detection,
ITS(23), No. 11, November 2022, pp. 21971-21983.
IEEE DOI
2212
Rails, Feature extraction, Surface treatment, Image edge detection,
Inspection, Acoustics, Rail transportation, Rail defect, data fusion,
convolutional neural networks
BibRef
Franke, M.[Marten],
Gopinath, V.[Vaishnavi],
Reddy, C.[Chaitra],
Ristic-Durrant, D.[Danijela],
Michels, K.[Kai],
Bounding Box Dataset Augmentation for Long-range Object Distance
Estimation,
ILDAV21(1669-1677)
IEEE DOI
2112
Training, Estimation, Rail transportation, Reliability
BibRef
Gasparini, R.[Riccardo],
d'Eusanio, A.[Andrea],
Borghi, G.[Guido],
Pini, S.[Stefano],
Scaglione, G.[Giuseppe],
Calderara, S.[Simone],
Fedeli, E.[Eugenio],
Cucchiara, R.[Rita],
Anomaly Detection, Localization and Classification for Railway
Inspection,
ICPR21(3419-3426)
IEEE DOI
2105
Rails, Performance evaluation, Location awareness, Inspection,
Rail transportation, Safety, Reliability
BibRef
Yamamoto, K.,
Chen, T.,
Yabuki, N.,
A Calibration Method of Two Mobile Laser Scanning System Units For
Railway Measurement,
ISPRS20(B1:277-283).
DOI Link
2012
BibRef
Corongiu, M.,
Masiero, A.,
Tucci, G.,
Classification of Railway Assets In Mobile Mapping Point Clouds,
ISPRS20(B1:219-225).
DOI Link
2012
BibRef
Zhan, Y.,
Linb, K.,
Zhan, H.,
Guo, Y.,
Sun, G.,
A Unified Framework for Fault Detection of Freight Train Images Under
Complex Environment,
ICIP18(1348-1352)
IEEE DOI
1809
Fault detection, Proposals, Feature extraction, Databases,
Task analysis, Joining processes, Fasteners, unified framework,
convolutional neural network (CNN)
BibRef
Nicodeme, C.,
Stanciulescu, B.,
Pollution Detection on Rail Surface for Adhesion Evaluation Using
Multispectral Images,
DICTA17(1-6)
IEEE DOI
1804
adhesion, image processing, matrix decomposition,
pattern clustering, pollution, rails, railway engineering,
Surface contamination
BibRef
Daoust, T.[Tyler],
Pomerleau, F.[François],
Barfoot, T.[Timothy],
Light at the End of the Tunnel: High-Speed LiDAR-Based Train
Localization in Challenging Underground Environments,
CRV16(93-100)
IEEE DOI
1612
Award, Best Robotics Paper. lidar; localization; mapping; train
BibRef
Flammini, F.[Francesco],
Naddei, R.[Riccardo],
Pragliola, C.[Concetta],
Smarra, G.[Giovanni],
Towards Automated Drone Surveillance in Railways:
State-of-the-Art and Future Directions,
ACIVS16(336-348).
Springer DOI
1611
BibRef
Brunke, S.[Suzanne],
Aubé, G.[Guy],
Legaré, S.[Serge],
Auger, C.[Claude],
Analysis and Remediation of the 2013 Lac-mégantic Train Derailment,
ISPRS16(B8: 17-23).
DOI Link
1610
BibRef
Han, Y.,
Liu, Z.,
Lee, D.J.,
Zhang, G.,
Deng, M.,
High-speed railway rod-insulator detection using segment clustering
and deformable part models,
ICIP16(3852-3856)
IEEE DOI
1610
Cameras
BibRef
Santur, Y.,
Karaköse, M.,
Aydin, I.,
Akin, E.,
IMU based adaptive blur removal approach using image processing for
railway inspection,
WSSIP16(1-4)
IEEE DOI
1608
image processing
BibRef
Ma, K.,
Vicente, T.F.Y.,
Samaras, D.,
Petrucci, M.,
Magnus, D.L.,
Texture classification for rail surface condition evaluation,
WACV16(1-9)
IEEE DOI
1606
Image edge detection
BibRef
Dwarakanath, D.[Deepak],
Griwodz, C.[Carsten],
Halvorsen, P.[Pål],
Lildballe, J.[Jacob],
Online Re-calibration for Robust 3D Measurement Using Single Camera:
PantoInspect Train Monitoring System,
CVS15(498-510).
Springer DOI
1507
BibRef
Berg, A.[Amanda],
Öfjäll, K.[Kristoffer],
Ahlberg, J.[Jörgen],
Felsberg, M.[Michael],
Detecting Rails and Obstacles Using a Train-Mounted Thermal Camera,
SCIA15(492-503).
Springer DOI
1506
BibRef
Aminmansour, S.,
Maire, F.,
Larue, G.S.,
Wullems, C.,
Improving Near-Miss Event Detection Rate at Railway Level Crossings,
DICTA15(1-8)
IEEE DOI
1603
BibRef
Earlier: A1, A2, A4, Only:
Near-Miss Event Detection at Railway Level Crossings,
DICTA14(1-8)
IEEE DOI
1502
image sensors.
railway industry
BibRef
Soni, A.,
Robson, S.,
Gleeson, B.,
Extracting Rail Track Geometry from Static Terrestrial Laser Scans for
Monitoring Purposes,
CloseRange14(553-557).
DOI Link
1411
BibRef
di Leo, G.[Giuseppe],
Lengu, R.[Roald],
Mazzino, N.[Nadia],
Pattern Recognition for Defect Detection in Uncontrolled Environment
Railway Applications,
CIAP13(II:753-757).
Springer DOI
1309
BibRef
Li, Y.[Ying],
Pankanti, S.[Sharath],
Anomalous tie plate detection for railroad inspection,
ICPR12(3017-3020).
WWW Link.
1302
BibRef
Soukup, D.[Daniel],
Huber-Mörk, R.[Reinhold],
Cross-Channel Co-occurrence Matrices for Robust Characterization of
Surface Disruptions in 21/2D Rail Image Analysis,
ACIVS12(167-177).
Springer DOI
1209
BibRef
Kremer, J.,
Grimm, A.,
The Railmapper: A Dedicated Mobile Lidar Mapping System for Railway
Networks,
ISPRS12(XXXIX-B5:477-482).
DOI Link
1209
BibRef
Kohut, P.,
Mikrut, S.,
Pyka, K.,
Tokarczyk, R.,
Uhl, T.,
Research On The Prototype of Rail Clearance Measurement System,
ISPRS12(XXXIX-B4:385-389).
DOI Link
1209
BibRef
Maire, F.,
Bigdeli, A.,
Obstacle-free range determination for rail track maintenance vehicles,
ICARCV10(2172-2178).
IEEE DOI
1109
BibRef
Gschwandtner, M.[Michael],
Pree, W.[Wolfgang],
Uhl, A.[Andreas],
Track Detection for Autonomous Trains,
ISVC10(III: 19-28).
Springer DOI
1011
BibRef
Huber-Mörk, R.[Reinhold],
Nölle, M.[Michael],
Oberhauser, A.[Andreas],
Fischmeister, E.[Edgar],
Statistical Rail Surface Classification Based on 2D and 2-1/2D Image
Analysis,
ACIVS10(I: 50-61).
Springer DOI
1012
BibRef
Kong, Q.J.[Qing-Jie],
Kumar, A.[Avinash],
Ahuja, N.[Narendra],
Liu, Y.C.[Yun-Cai],
Robust segmentation of freight containers in train monitoring videos,
WACV09(1-6).
IEEE DOI
0912
BibRef
Petitjean, C.[Caroline],
Heutte, L.[Laurent],
Kouadio, R.[Régis],
Delcourt, V.[Vincent],
Automatic Extraction of Droppers in Catenary Scenes,
MVA09(497-).
PDF File.
0905
BibRef
And:
A Top-Down Approach for Automatic Dropper Extraction in Catenary Scenes,
IbPRIA09(225-232).
Springer DOI
0906
Inspection of railroad bridges.
BibRef
Maire, F.[Frederic],
Vision based anti-collision system for rail track maintenance vehicles,
AVSBS07(170-175).
IEEE DOI
0709
BibRef
Kim, H.C.[Hyun-Chul],
Baek, Y.M.[Yeul-Min],
Kim, S.G.[Sun-Gi],
Park, J.G.[Jong-Guk],
Kim, W.Y.[Whoi-Yul],
Measurement of the Position of the Overhead Electric-Railway Line Using
the Stereo Images,
MIRAGE07(506-515).
Springer DOI
0703
BibRef
Kumar, A.,
Ahuja, N.,
Hart, J.M.,
Visesh, U.K.,
Narayanan, P.J.,
Jawahar, C.V.,
A Vision System for Monitoring Intermodal Freight Trains,
WACV07(24-24).
IEEE DOI
0702
BibRef
Geistler, A.,
Bohringer, F.,
Robust velocity measurement for railway applications by fusing eddy
current sensor signals,
IVS04(664-669).
IEEE DOI
0411
BibRef
Garcia, J.J.,
Hernandez, A.,
Urena, J.,
Garcia, J.C.,
Mazo, M.,
Lazaro, J.L.,
Perez, M.C.,
Alvarez, F.J.,
Low cost obstacle detection for smart railway infrastructures,
IVS04(670-675).
IEEE DOI
0411
BibRef
Deutschl, E.,
Gasser, C.,
Niel, A.,
Werschonig, J.,
Defect detection on rail surfaces by a vision based system,
IVS04(507-511).
IEEE DOI
0411
BibRef
Moretti, M.,
Triglia, M.,
Maffei, G.,
ARCHIMEDE: The first European diagnostic train for global monitoring
of railway infrastructure,
IVS04(522-526).
IEEE DOI
0411
BibRef
Blug, A.,
Baulig, C.,
Wolfelschneider, H.,
Hofler, H.,
Fast fiber coupled clearance profile scanner using real time 3D data
processing with automatic rail detection,
IVS04(658-663).
IEEE DOI
0411
BibRef
Alvarez, F.J.,
Urena, J.,
Mazo, M.,
Hernandez, A.,
Garcia, J.J.,
Donato, P.G.,
Ultrasonic sensor system for detecting falling objects on railways,
IVS04(866-871).
IEEE DOI
0411
BibRef
Donato, P.G.,
Urena, J.,
Mazo, M.,
Alvarez, F.J.,
Train wheel detection without electronic equipment near the rail line,
IVS04(876-880).
IEEE DOI
0411
BibRef
Vazquez, J.,
Mazo, M.,
Lazaro, J.L.,
Luna, C.A.,
Urena, J.,
Garcia, J.J.,
Cabello, J.,
Hierrezuelo, L.,
Detection of moving objects in railway using vision,
IVS04(872-875).
IEEE DOI
0411
BibRef