Pathak, S.D.,
Haynor, D.R.,
Kim, Y.,
Edge-guided boundary delineation in prostate ultrasound images,
MedImg(19), No. 12, December 2000, pp. 1211-1219.
IEEE Top Reference.
0110
BibRef
Shen, D.G.[Ding-Gang],
Zhan, Y.Q.[Yi-Qiang],
Davatzikos, C.[Christos],
Segmentation of prostate boundaries from ultrasound images using
statistical shape model,
MedImg(22), No. 4, April 2003, pp. 539-551.
IEEE Abstract.
0306
BibRef
Zhan, Y.Q.[Yi-Qiang],
Shen, D.G.[Ding-Gang],
Deformable segmentation of 3-D ultrasound prostate images using
statistical texture matching method,
MedImg(25), No. 3, March 2006, pp. 256-272.
IEEE DOI
0604
BibRef
Fei, B.W.[Bao-Wei],
Duerk, J.L.,
Boll, D.T.,
Lewin, J.S.,
Wilson, D.L.,
Slice-to-Volume Registration and Its Potential Application to
Interventional MRI-Guided Radio-Frequency Thermal Ablation of
Prostate Cancer,
MedImg(22), No. 4, April 2003, pp. 515-525.
IEEE Abstract.
0306
BibRef
Gong, L.,
Pathak, S.D.,
Haynor, D.R.,
Cho, P.S.,
Kim, Y.,
Parametric Shape Modeling Using Deformable Superellipses for Prostate
Segmentation,
MedImg(23), No. 3, March 2004, pp. 340-349.
IEEE Abstract.
0403
BibRef
Madabhushi, A.,
Feldman, M.D.,
Metaxas, D.N.,
Tomaszeweski, J.,
Chute, D.,
Automated detection of prostatic adenocarcinoma from high-resolution ex
vivo MRI,
MedImg(24), No. 12, December 2005, pp. 1611-1625.
IEEE DOI
0601
BibRef
Madabhushi, A.[Anant],
Shi, J.B.[Jian-Bo],
Feldman, M.D.[Michael D.],
Rosen, M.[Mark],
Tomaszewski, J.E.[John E.],
Comparing Ensembles of Learners: Detecting Prostate Cancer from High
Resolution MRI,
CVAMIA06(25-36).
Springer DOI
0605
BibRef
Tahir, M.A.[Muhammad Atif],
Bouridane, A.[Ahmed],
Kurugollu, F.[Fatih],
Amira, A.[Abbes],
A Novel Prostate Cancer Classification Technique Using Intermediate
Memory Tabu Search,
JASP(2005), No. 14, 2005, pp. 2241-2249.
WWW Link.
0603
BibRef
Earlier:
Feature selection using tabu search for improving the classification
rate of prostate needle biopsies,
ICPR04(II: 335-338).
IEEE DOI
0409
BibRef
Tahir, M.A.[Muhammad Atif],
Bouridane, A.[Ahmed],
Kurugollu, F.[Fatih],
Simultaneous feature selection and feature weighting using Hybrid Tabu
Search/K-nearest neighbor classifier,
PRL(28), No. 4, 1 March 2007, pp. 438-446.
Elsevier DOI
0701
Tabu Search; K-NN classifier; Feature selection; Feature weighting;
Prostate cancer diagnosis
BibRef
Egorov, V.,
Ayrapetyan, S.,
Sarvazyan, A.P.,
Prostate Mechanical Imaging: 3-D Image Composition and Feature
Calculations,
MedImg(25), No. 10, October 2006, pp. 1329-1340.
IEEE DOI
0609
See also Mechanical Imaging of the Breast.
BibRef
Tutar, I.B.,
Pathak, S.D.,
Gong, L.,
Cho, P.S.,
Wallner, K.,
Kim, Y.,
Semiautomatic 3-D Prostate Segmentation from TRUS Images Using
Spherical Harmonics,
MedImg(25), No. 12, December 2006, pp. 1645-1654.
IEEE DOI
0701
BibRef
Rieke, V.,
Kinsey, A.M.,
Ross, A.B.,
Nau, W.H.,
Diederich, C.J.,
Sommer, G.,
Pauly, K.B.,
Referenceless MR Thermometry for Monitoring Thermal Ablation in the
Prostate,
MedImg(26), No. 6, June 2007, pp. 813-821.
IEEE DOI
0706
BibRef
Zhan, Y.,
Shen, D.,
Zeng, J.,
Sun, L.,
Fichtinger, G.,
Moul, J.,
Davatzikos, C.,
Targeted Prostate Biopsy Using Statistical Image Analysis,
MedImg(26), No. 6, June 2007, pp. 779-788.
IEEE DOI
0706
BibRef
Lee, J.,
Liu, X.,
Jain, A.K.,
Song, D.Y.,
Burdette, E.C.,
Prince, J.L.,
Fichtinger, G.,
Prostate Brachytherapy Seed Reconstruction With Gaussian Blurring and
Optimal Coverage Cost,
MedImg(28), No. 12, December 2009, pp. 1955-1968.
IEEE DOI
0912
See also Ultrasound Elastography: A Dynamic Programming Approach.
BibRef
Lee, J.,
Labat, C.,
Jain, A.K.,
Song, D.Y.,
Burdette, E.C.,
Fichtinger, G.,
Prince, J.L.,
REDMAPS: Reduced-Dimensionality Matching for Prostate Brachytherapy
Seed Reconstruction,
MedImg(30), No. 1, January 2011, pp. 38-51.
IEEE DOI
1101
BibRef
Betrouni, N.,
Vermandel, M.,
Pasquier, D.,
Rousseau, J.,
Ultrasound image guided patient setup for prostate cancer conformal
radiotherapy,
PRL(28), No. 13, 1 October 2007, pp. 1808-1817.
Elsevier DOI
0709
Ultrasound imaging; Prostate model; Segmentation;
Optical stereolocalization; Conformal radiotherapy; Registration
BibRef
Tabesh, A.,
Teverovskiy, M.,
Pang, H.Y.,
Kumar, V.P.,
Verbel, D.,
Kotsianti, A.,
Saidi, O.,
Multifeature Prostate Cancer Diagnosis and Gleason Grading of
Histological Images,
MedImg(26), No. 10, October 2007, pp. 1366-1378.
IEEE DOI
0711
BibRef
Crouch, J.R.,
Pizer, S.M.,
Chaney, E.L.,
Hu, Y.C.,
Mageras, G.S.,
Zaider, M.,
Automated Finite-Element Analysis for Deformable Registration of
Prostate Images,
MedImg(26), No. 10, October 2007, pp. 1379-1390.
IEEE DOI
0711
BibRef
Mohamed, S.S.,
Salama, M.M.A.,
Prostate Cancer Spectral Multifeature Analysis Using TRUS Images,
MedImg(27), No. 4, April 2008, pp. 548-556.
IEEE DOI
0804
BibRef
Mohamed, S.S.,
Youssef, A.M.,
El-Saadany, E.F.,
Salama, M.M.A.,
Prostate Tissue Characterization Using TRUS Image Spectral Features,
ICIAR06(II: 589-601).
Springer DOI
0610
BibRef
Earlier:
Artificial Life Feature Selection Techniques for Prostrate Cancer
Diagnosis Using TRUS Images,
ICIAR05(903-913).
Springer DOI
0509
BibRef
Li, B.[Bing],
Acton, S.T.[Scott T.],
Automatic Active Model Initialization via Poisson Inverse Gradient,
IP(17), No. 8, August 2008, pp. 1406-1420.
IEEE DOI
0808
BibRef
Li, B.[Bing],
Patil, A.V.[Abhay V.],
Hossack, J.A.[John A.],
Acton, S.T.[Scott T.],
3D Segmentation of the Prostate via Poisson Inverse Gradient
Initialization,
ICIP07(V: 25-28).
IEEE DOI
0709
BibRef
Shao, F.[Fan],
Ling, K.V.[Keck Voon],
Ng, W.S.[Wan Sing],
Automatic 3d Prostate Surface Detection From Trus With Level Sets,
IJIG(4), No. 3, July 2004, pp. 385-403.
0407
BibRef
Liu, X.[Xin],
Langer, D.L.,
Haider, M.A.,
Yang, Y.,
Wernick, M.N.[Miles N.],
Yetik, I.S.[Imam Samil],
Prostate Cancer Segmentation With Simultaneous Estimation of Markov
Random Field Parameters and Class,
MedImg(28), No. 6, June 2009, pp. 906-915.
IEEE DOI
0906
Markov Random Field.
BibRef
Liu, X.[Xin],
Yetik, I.S.[Imam Samil],
A Maximum Likelihood Classification method for image segmentation
considering subject variability,
Southwest10(125-128).
IEEE DOI
1005
BibRef
Liu, X.[Xin],
Yetik, I.S.[Imam Samil],
Wernick, M.N.[Miles N.],
Simultaneous estimation of the Markov random field parameters and the
classes for image segmentation,
ICIP08(3048-3051).
IEEE DOI
0810
BibRef
Huang, P.W.,
Lee, C.H.,
Automatic Classification for Pathological Prostate Images Based on
Fractal Analysis,
MedImg(28), No. 7, July 2009, pp. 1037-1050.
IEEE DOI
0906
BibRef
Maggio, S.,
Palladini, A.,
Marchi, L.D.,
Alessandrini, M.,
Speciale, N.,
Masetti, G.,
Predictive Deconvolution and Hybrid Feature Selection for
Computer-Aided Detection of Prostate Cancer,
MedImg(29), No. 2, February 2010, pp. 455-464.
IEEE DOI
1002
BibRef
Artan, Y.,
Haider, M.A.,
Langer, D.L.,
van der Kwast, T.H.,
Evans, A.J.,
Yang, Y.,
Wernick, M.N.,
Trachtenberg, J.,
Yetik, I.S.,
Prostate Cancer Localization With Multispectral MRI Using
Cost-Sensitive Support Vector Machines and Conditional Random Fields,
IP(19), No. 9, September 2010, pp. 2444-2455.
IEEE DOI
1008
BibRef
Gao, Y.,
Sandhu, R.,
Fichtinger, G.,
Tannenbaum, A.R.,
A Coupled Global Registration and Segmentation Framework With
Application to Magnetic Resonance Prostate Imagery,
MedImg(29), No. 10, October 2010, pp. 1781-1794.
IEEE DOI
1011
BibRef
Kuenen, M.P.J.,
Mischi, M.,
Wijkstra, H.,
Contrast-Ultrasound Diffusion Imaging for Localization of Prostate
Cancer,
MedImg(30), No. 8, August 2011, pp. 1493-1502.
IEEE DOI
1108
BibRef
Bouatmane, S.[Sabrina],
Roula, M.A.[Mohamed Ali],
Bouridane, A.[Ahmed],
Al-Maadeed, S.[Somaya],
Round-Robin sequential forward selection algorithm for prostate cancer
classification and diagnosis using multispectral imagery,
MVA(22), No. 5, September 2011, pp. 865-878.
WWW Link.
1108
BibRef
Hu, Y.,
Carter, T.J.,
Ahmed, H.U.,
Emberton, M.,
Allen, C.,
Hawkes, D.J.,
Barratt, D.C.,
Modelling Prostate Motion for Data Fusion During Image-Guided
Interventions,
MedImg(30), No. 11, November 2011, pp. 1887-1900.
IEEE DOI
1111
BibRef
Lobo, J.R.,
Moradi, M.,
Chng, N.,
Dehghan, E.,
Morris, W.J.,
Fichtinger, G.,
Salcudean, S.E.,
Use of Needle Track Detection to Quantify the Displacement of Stranded
Seeds Following Prostate Brachytherapy,
MedImg(31), No. 3, March 2012, pp. 738-748.
IEEE DOI
1203
BibRef
Nguyen, K.[Kien],
Sabata, B.[Bikash],
Jain, A.K.[Anil K.],
Prostate cancer grading: Gland segmentation and structural features,
PRL(33), No. 7, 1 May 2012, pp. 951-961.
Elsevier DOI
1203
Prostate cancer; Benign; Carcinoma; Gleason grading system; Gland
segmentation; Nuclei
From the ICPR paper.
BibRef
Nguyen, K.[Kien],
Jain, A.K.[Anil K.],
Allen, R.L.[Ronald L.],
Automated Gland Segmentation and Classification for Gleason Grading of
Prostate Tissue Images,
ICPR10(1497-1500).
IEEE DOI
1008
Award, ICPR.
BibRef
Liao, S.[Shu],
Shen, D.G.[Ding-Gang],
A Feature-Based Learning Framework for Accurate Prostate Localization
in CT Images,
IP(21), No. 8, August 2012, pp. 3546-3559.
IEEE DOI
1208
BibRef
Shi, Y.H.[Yong-Hong],
Liao, S.[Shu],
Shen, D.G.[Ding-Gang],
Learning Statistical Correlation of Prostate Deformations for Fast
Registration,
MLMI11(1-9).
Springer DOI
1109
BibRef
Toth, R.,
Madabhushi, A.,
Multifeature Landmark-Free Active Appearance Models:
Application to Prostate MRI Segmentation,
MedImg(31), No. 8, August 2012, pp. 1638-1650.
IEEE DOI
1208
BibRef
Toth, R.[Robert],
Ribault, J.[Justin],
Gentile, J.[John],
Sperling, D.[Dan],
Madabhushi, A.[Anant],
Simultaneous segmentation of prostatic zones using Active Appearance
Models with multiple coupled levelsets,
CVIU(117), No. 9, 2013, pp. 1051-1060.
Elsevier DOI
1307
Active Appearance Models
BibRef
Sparks, R.[Rachel],
Madabhushi, A.[Anant],
Statistical shape model for manifold regularization:
Gleason grading of prostate histology,
CVIU(117), No. 9, 2013, pp. 1138-1146.
Elsevier DOI
1307
Manifold learning
BibRef
Chandra, S.S.,
Dowling, J.A.,
Shen, K.K.[Kai-Kai],
Raniga, P.,
Pluim, J.P.W.,
Greer, P.B.,
Salvado, O.,
Fripp, J.,
Patient Specific Prostate Segmentation in 3-D Magnetic Resonance Images,
MedImg(31), No. 10, October 2012, pp. 1955-1964.
IEEE DOI
1210
BibRef
Earlier: A1, A2, A3, A5, A6, A7, A8, Only:
Automatic Segmentation of the Prostate in 3D Magnetic Resonance Images
Using Case Specific Deformable Models,
DICTA11(7-12).
IEEE DOI
1205
BibRef
Mahdavi, S.S.,
Moradi, M.,
Morris, W.J.,
Goldenberg, S.L.,
Salcudean, S.E.,
Fusion of Ultrasound B-Mode and Vibro-Elastography Images for Automatic
3-D Segmentation of the Prostate,
MedImg(31), No. 11, November 2012, pp. 2073-2082.
IEEE DOI
1211
BibRef
Han, E.J.[Eun Ji],
Lee, S.H.[Sang-Hoon],
Sohn, H.S.[Hyung Sun],
Chung, Y.A.[Yong-An],
Chung, S.K.[Soo Kyo],
Assessment of testicular uptake in flourine-18 fluorodeoxyglucose
positron emission tomography/computed tomography,
IJIST(22), No. 4, December 2012, pp. 245-249.
DOI Link
1211
BibRef
Atupelage, C.[Chamidu],
Nagahashi, H.[Hiroshi],
Yamaguchi, M.[Masahiro],
Abe, T.[Tokiya],
Hashiguchi, A.[Akinori],
Sakamoto, M.[Michiie],
Classification of Prostate Histopathology Images Based on Multifractal
Analysis,
IEICE(E95-D), No. 12, December 2012, pp. 3037-3045.
WWW Link.
1212
BibRef
Liao, S.,
Gao, Y.,
Lian, J.,
Shen, D.,
Sparse Patch-Based Label Propagation for Accurate Prostate Localization
in CT Images,
MedImg(32), No. 2, February 2013, pp. 419-434.
IEEE DOI
1301
BibRef
Nir, G.,
Sahebjavaher, R.S.,
Kozlowski, P.,
Chang, S.D.,
Sinkus, R.,
Goldenberg, S.L.,
Salcudean, S.E.,
Model-Based Registration of Ex Vivo and In Vivo MRI of the Prostate
Using Elastography*,
MedImg(32), No. 7, 2013, pp. 1349-1361.
IEEE DOI
1307
BibRef
Earlier:
Earlier version had author error.
MedImg(32), No. 6, 2013, pp. 1068-1080.
IEEE DOI
1307
cancer; deformation; ex vivo prostate MRI
BibRef
Nir, G.,
Sahebjavaher, R.S.,
Kozlowski, P.,
Chang, S.D.,
Jones, E.C.,
Goldenberg, S.L.,
Salcudean, S.E.,
Registration of Whole-Mount Histology and Volumetric Imaging of the
Prostate Using Particle Filtering,
MedImg(33), No. 8, August 2014, pp. 1601-1613.
IEEE DOI
1408
Image segmentation
BibRef
Gavrilovic, M.,
Azar, J.C.,
Lindblad, J.,
Wahlby, C.,
Bengtsson, E.,
Busch, C.,
Carlbom, I.B.,
Blind Color Decomposition of Histological Images,
MedImg(32), No. 6, 2013, pp. 983-994.
IEEE DOI
1307
blind source separation; blind color decomposition;
image restoration; prostate
BibRef
Gorelick, L.,
Veksler, O.,
Gaed, M.,
Gomez, J.A.,
Moussa, M.,
Bauman, G.,
Fenster, A.,
Ward, A.D.,
Prostate Histopathology: Learning Tissue Component Histograms for
Cancer Detection and Classification,
MedImg(32), No. 10, 2013, pp. 1804-1818.
IEEE DOI
1311
cancer
BibRef
Artan, Y.,
Oto, A.,
Yetik, I.S.,
Cross-Device Automated Prostate Cancer Localization With
Multiparametric MRI,
IP(22), No. 12, 2013, pp. 5385-5394.
IEEE DOI
1312
biomedical MRI
BibRef
Gao, Y.Z.[Yao-Zong],
Zhan, Y.Q.[Yi-Qiang],
Shen, D.G.[Ding-Gang],
Incremental Learning With Selective Memory (ILSM): Towards Fast
Prostate Localization for Image Guided Radiotherapy,
MedImg(33), No. 2, February 2014, pp. 518-534.
IEEE DOI
1403
biological organs
BibRef
Niaf, E.,
Flamary, R.,
Rouviere, O.,
Lartizien, C.,
Canu, S.,
Kernel-Based Learning From Both Qualitative and Quantitative Labels:
Application to Prostate Cancer Diagnosis Based on Multiparametric MR
Imaging,
IP(23), No. 3, March 2014, pp. 979-991.
IEEE DOI
1403
biological tissues
BibRef
Qiu, W.,
Yuan, J.,
Ukwatta, E.,
Sun, Y.,
Rajchl, M.,
Fenster, A.,
Prostate Segmentation: An Efficient Convex Optimization Approach With
Axial Symmetry Using 3-D TRUS and MR Images,
MedImg(33), No. 4, April 2014, pp. 947-960.
IEEE DOI
1404
Biopsy
BibRef
Sun, Y.,
Yuan, J.,
Qiu, W.,
Rajchl, M.,
Romagnoli, C.,
Fenster, A.,
Three-Dimensional Nonrigid MR-TRUS Registration Using Dual
Optimization,
MedImg(34), No. 5, May 2015, pp. 1085-1095.
IEEE DOI
1505
Biopsy
BibRef
Yuan, J.[Jing],
Qiu, W.[Wu],
Rajchl, M.[Martin],
Ukwatta, E.[Eranga],
Tai, X.C.[Xue-Cheng],
Fenster, A.[Aaron],
Efficient 3D Endfiring TRUS Prostate Segmentation with Globally
Optimized Rotational Symmetry,
CVPR13(2211-2218)
IEEE DOI
1309
3D TRUS; Continuous Max-Flow; Convex Optimization; Image Segmentation
BibRef
Nguyen, K.,
Sarkar, A.,
Jain, A.K.,
Prostate Cancer Grading:
Use of Graph Cut and Spatial Arrangement of Nuclei,
MedImg(33), No. 12, December 2014, pp. 2254-2270.
IEEE DOI
1412
biomedical optical imaging
BibRef
Lee, G.,
Singanamalli, A.,
Wang, H.B.[Hai-Bo],
Feldman, M.D.,
Master, S.R.,
Shih, N.N.C.,
Spangler, E.,
Rebbeck, T.,
Tomaszewski, J.E.,
Madabhushi, A.,
Supervised Multi-View Canonical Correlation Analysis (sMVCCA):
Integrating Histologic and Proteomic Features for Predicting
Recurrent Prostate Cancer,
MedImg(34), No. 1, January 2015, pp. 284-297.
IEEE DOI
1502
biomedical MRI
BibRef
Pääkkönen, J.[Jouni],
Päivinen, N.[Niina],
Nykänen, M.[Matti],
Paavonen, T.[Timo],
An automated gland segmentation and classification method in prostate
biopsies: an image source-independent approach,
MVA(26), No. 1, January 2015, pp. 103-113.
Springer DOI
1503
BibRef
Nouranian, S.,
Mahdavi, S.S.,
Spadinger, I.,
Morris, W.J.,
Salcudean, S.E.,
Abolmaesumi, P.,
A Multi-Atlas-Based Segmentation Framework for Prostate Brachytherapy,
MedImg(34), No. 4, April 2015, pp. 950-961.
IEEE DOI
1504
Brachytherapy
BibRef
Nouranian, S.,
Ramezani, M.,
Spadinger, I.,
Morris, W.J.,
Salcudean, S.E.,
Abolmaesumi, P.,
Learning-Based Multi-Label Segmentation of Transrectal Ultrasound
Images for Prostate Brachytherapy,
MedImg(35), No. 3, March 2016, pp. 921-932.
IEEE DOI
1603
Brachytherapy
BibRef
Wu, P.F.[Peng-Fei],
Liu, Y.G.[Yi-Guang],
Li, Y.Z.[Yong-Zhong],
Liu, B.B.[Bing-Bing],
Robust Prostate Segmentation Using Intrinsic Properties of TRUS
Images,
MedImg(34), No. 6, June 2015, pp. 1321-1335.
IEEE DOI
1506
biological organs
BibRef
Shi, Y.H.[Ying-Huan],
Gao, Y.Z.[Yao-Zong],
Liao, S.[Shu],
Zhang, D.Q.[Dao-Qiang],
Gao, Y.[Yang],
Shen, D.G.[Ding-Gang],
Semi-Automatic Segmentation of Prostate in CT Images via Coupled
Feature Representation and Spatial-Constrained Transductive Lasso,
PAMI(37), No. 11, November 2015, pp. 2286-2303.
IEEE DOI
1511
computerised tomography
BibRef
Imani, F.,
Abolmaesumi, P.,
Gibson, E.,
Khojaste, A.,
Gaed, M.,
Moussa, M.,
Gomez, J.A.,
Romagnoli, C.,
Leveridge, M.,
Chang, S.,
Siemens, D.R.,
Fenster, A.,
Ward, A.D.,
Mousavi, P.,
Computer-Aided Prostate Cancer Detection Using Ultrasound RF Time
Series: In Vivo Feasibility Study,
MedImg(34), No. 11, November 2015, pp. 2248-2257.
IEEE DOI
1511
Biopsy
BibRef
Khallaghi, S.,
Sanchez, C.A.,
Rasoulian, A.,
Sun, Y.,
Imani, F.,
Khojaste, A.,
Goksel, O.,
Romagnoli, C.,
Abdi, H.,
Chang, S.,
Mousavi, P.,
Fenster, A.,
Ward, A.,
Fels, S.,
Abolmaesumi, P.,
Biomechanically Constrained Surface Registration:
Application to MR-TRUS Fusion for Prostate Interventions,
MedImg(34), No. 11, November 2015, pp. 2404-2414.
IEEE DOI
1511
Biomechanics
BibRef
Khallaghi, S.,
Sanchez, C.A.,
Rasoulian, A.,
Nouranian, S.,
Romagnoli, C.,
Abdi, H.,
Chang, S.D.,
Black, P.C.,
Goldenberg, L.,
Morris, W.J.,
Spadinger, I.,
Fenster, A.,
Ward, A.,
Fels, S.,
Abolmaesumi, P.,
Statistical Biomechanical Surface Registration:
Application to MR-TRUS Fusion for Prostate Interventions,
MedImg(34), No. 12, December 2015, pp. 2535-2549.
IEEE DOI
1601
biological organs
BibRef
Wang, Y.,
Cheng, J.Z.,
Ni, D.,
Lin, M.,
Qin, J.,
Luo, X.,
Xu, M.,
Xie, X.,
Heng, P.A.,
Towards Personalized Statistical Deformable Model and Hybrid Point
Matching for Robust MR-TRUS Registration,
MedImg(35), No. 2, February 2016, pp. 589-604.
IEEE DOI
1602
Biological system modeling
BibRef
Tian, Z.,
Liu, L.,
Zhang, Z.,
Fei, B.,
Superpixel-Based Segmentation for 3D Prostate MR Images,
MedImg(35), No. 3, March 2016, pp. 791-801.
IEEE DOI
1603
Active contours
BibRef
Guo, Y.,
Gao, Y.,
Shen, D.,
Deformable MR Prostate Segmentation via Deep Feature Learning and
Sparse Patch Matching,
MedImg(35), No. 4, April 2016, pp. 1077-1089.
IEEE DOI
1604
Biomedical imaging
BibRef
Gao, Y.,
Shao, Y.,
Lian, J.,
Wang, A.Z.,
Chen, R.C.,
Shen, D.,
Accurate Segmentation of CT Male Pelvic Organs via Regression-Based
Deformable Models and Multi-Task Random Forests,
MedImg(35), No. 6, June 2016, pp. 1532-1543.
IEEE DOI
1606
Bladder
BibRef
Tang, S.,
Chen, J.,
Samant, P.,
Stratton, K.,
Xiang, L.,
Transurethral Photoacoustic Endoscopy for Prostate Cancer:
A Simulation Study,
MedImg(35), No. 7, July 2016, pp. 1780-1787.
IEEE DOI
1608
biomedical optical imaging
BibRef
Mahara, A.,
Khan, S.,
Murphy, E.K.,
Schned, A.R.,
Hyams, E.S.,
Halter, R.J.,
3D Microendoscopic Electrical Impedance Tomography for Margin
Assessment During Robot-Assisted Laparoscopic Prostatectomy,
MedImg(34), No. 7, July 2015, pp. 1590-1601.
IEEE DOI
1507
Cancer
BibRef
Khan, S.,
Mahara, A.,
Hyams, E.S.,
Schned, A.R.,
Halter, R.J.,
Prostate Cancer Detection Using Composite Impedance Metric,
MedImg(35), No. 12, December 2016, pp. 2513-2523.
IEEE DOI
1612
Cancer
BibRef
van Sloun, R.J.G.[Ruud J.G.],
Demi, L.[Libertario],
Postema, A.W.[Arnoud W.],
de la Rosette, J.J.M.C.H.[Jean J.M.C.H.],
Wijkstra, H.[Hessel],
Mischi, M.[Massimo],
Entropy of Ultrasound-Contrast-Agent Velocity Fields for Angiogenesis
Imaging in Prostate Cancer,
MedImg(36), No. 3, March 2017, pp. 826-837.
IEEE DOI
1703
Blood
BibRef
Zhang, J.,
Liu, M.,
Shen, D.,
Detecting Anatomical Landmarks From Limited Medical Imaging Data
Using Two-Stage Task-Oriented Deep Neural Networks,
IP(26), No. 10, October 2017, pp. 4753-4764.
IEEE DOI
1708
biomedical MRI, computerised tomography, feedforward neural nets,
learning (artificial intelligence), medical image processing,
object detection, regression analysis,
3D T1-weighted magnetic resonance images,
3D computed tomography images, CNN based regression model,
Biological neural networks, Biomedical imaging, Machine learning,
BibRef
Wang, Z.,
Liu, C.,
Cheng, D.,
Wang, L.,
Yang, X.,
Cheng, K.T.,
Automated Detection of Clinically Significant Prostate Cancer in
mp-MRI Images Based on an End-to-End Deep Neural Network,
MedImg(37), No. 5, May 2018, pp. 1127-1139.
IEEE DOI
1805
Cancer, Feature extraction, Lesions, Manuals, Neural networks,
Principal component analysis, CS PCa detection,
neural network
BibRef
Salimi, A.[Ahad],
Pourmina, M.A.[Mohammad Ali],
Moin, M.S.[Mohammad-Shahram],
Fully automatic prostate segmentation in MR images using a new hybrid
active contour-based approach,
SIViP(12), No. 8, November 2018, pp. 1629-1637.
Springer DOI
1809
BibRef
Wildeboer, R.R.,
van Sloun, R.J.G.,
Schalk, S.G.,
Mannaerts, C.K.,
van der Linden, J.C.,
Huang, P.,
Wijkstra, H.,
Mischi, M.,
Convective-Dispersion Modeling in 3D Contrast-Ultrasound Imaging for
the Localization of Prostate Cancer,
MedImg(37), No. 12, December 2018, pp. 2593-2602.
IEEE DOI
1812
Principal component analysis, Dispersion,
Kinetic theory, Imaging,
3D
BibRef
Azizi, S.,
Bayat, S.,
Yan, P.,
Tahmasebi, A.,
Kwak, J.T.,
Xu, S.,
Turkbey, B.,
Choyke, P.,
Pinto, P.,
Wood, B.,
Mousavi, P.,
Abolmaesumi, P.,
Deep Recurrent Neural Networks for Prostate Cancer Detection:
Analysis of Temporal Enhanced Ultrasound,
MedImg(37), No. 12, December 2018, pp. 2695-2703.
IEEE DOI
1812
Ultrasonic imaging, Biopsy, Logic gates, Recurrent neural networks,
Principal component analysis, Prostate cancer,
cancer detection
BibRef
Moradi, H.,
Tang, S.,
Salcudean, S.E.,
Toward Intra-Operative Prostate Photoacoustic Imaging: Configuration
Evaluation and Implementation Using the da Vinci Research Kit,
MedImg(38), No. 1, January 2019, pp. 57-68.
IEEE DOI
1901
Transducers, Robots, Surgery, Probes, Image reconstruction, Tomography,
Photoacoustic tomography, prostate cancer,
limited view
BibRef
He, K.,
Cao, X.,
Shi, Y.,
Nie, D.,
Gao, Y.,
Shen, D.,
Pelvic Organ Segmentation Using Distinctive Curve Guided Fully
Convolutional Networks,
MedImg(38), No. 2, February 2019, pp. 585-595.
IEEE DOI
1902
Image segmentation, Computed tomography, Shape, Bladder,
Task analysis, Robustness, Image segmentation, neural networks,
prostate cancer
BibRef
Li, W.,
Li, J.,
Sarma, K.V.,
Ho, K.C.,
Shen, S.,
Knudsen, B.S.,
Gertych, A.,
Arnold, C.W.,
Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of
Histological Images,
MedImg(38), No. 4, April 2019, pp. 945-954.
IEEE DOI
1904
Feature extraction, Image segmentation, Biomedical imaging, Glands,
Prostate cancer, Solid modeling, Computer-aided diagnosis (CAD),
region-based convolutional neural networks (R-CNN)
BibRef
Cao, R.,
Bajgiran, A.M.[A. Mohammadian],
Mirak, S.A.[S. Afshari],
Shakeri, S.,
Zhong, X.,
Enzmann, D.,
Raman, S.,
Sung, K.,
Joint Prostate Cancer Detection and Gleason Score Prediction in
mp-MRI via FocalNet,
MedImg(38), No. 11, November 2019, pp. 2496-2506.
IEEE DOI
1911
Lesions, Principal component analysis,
Magnetic resonance imaging, Biopsy, Training, Encoding,
convolutional neural network
BibRef
Wang, Y.,
Dou, H.,
Hu, X.,
Zhu, L.,
Yang, X.,
Xu, M.,
Qin, J.,
Heng, P.,
Wang, T.,
Ni, D.,
Deep Attentive Features for Prostate Segmentation in 3D Transrectal
Ultrasound,
MedImg(38), No. 12, December 2019, pp. 2768-2778.
IEEE DOI
1912
Image segmentation, Shape,
Ultrasonic imaging, Biomedical imaging,
transrectal ultrasound
BibRef
Jia, H.,
Xia, Y.,
Song, Y.,
Zhang, D.,
Huang, H.,
Zhang, Y.,
Cai, W.,
3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network
for Prostate Segmentation in MR Images,
MedImg(39), No. 2, February 2020, pp. 447-457.
IEEE DOI
2002
Image segmentation,
Spatial resolution, Decoding, Convolution, Glands,
magnetic resonance imaging
BibRef
Zhu, Q.,
Du, B.,
Yan, P.,
Boundary-Weighted Domain Adaptive Neural Network for Prostate MR
Image Segmentation,
MedImg(39), No. 3, March 2020, pp. 753-763.
IEEE DOI
2004
Image segmentation, Biomedical imaging, Feature extraction,
Neural networks, Shape, Training data, Adaptive systems,
boundary-weighted loss
BibRef
Wang, S.,
Nie, D.,
Qu, L.,
Shao, Y.,
Lian, J.,
Wang, Q.,
Shen, D.,
CT Male Pelvic Organ Segmentation via Hybrid Loss Network With
Incomplete Annotation,
MedImg(39), No. 6, June 2020, pp. 2151-2162.
IEEE DOI
2006
Image segmentation, male pelvic organ, deep learning,
incomplete annotation, CT
BibRef
Liu, Q.,
Dou, Q.,
Yu, L.,
Heng, P.A.,
MS-Net: Multi-Site Network for Improving Prostate Segmentation With
Heterogeneous MRI Data,
MedImg(39), No. 9, September 2020, pp. 2713-2724.
IEEE DOI
2009
Magnetic resonance imaging, Image segmentation, Training,
Robustness, Data models, Biomedical imaging, Task analysis,
knowledge transfer
BibRef
Shao, Y.,
Wang, J.,
Wodlinger, B.,
Salcudean, S.E.,
Improving Prostate Cancer (PCa) Classification Performance by Using
Three-Player Minimax Game to Reduce Data Source Heterogeneity,
MedImg(39), No. 10, October 2020, pp. 3148-3158.
IEEE DOI
2010
Principal component analysis, Feature extraction, Biopsy, Cancer,
Radio frequency, Data source heterogeneity,
BibRef
Wang, S.,
Liu, M.,
Lian, J.,
Shen, D.,
Boundary Coding Representation for Organ Segmentation in Prostate
Cancer Radiotherapy,
MedImg(40), No. 1, January 2021, pp. 310-320.
IEEE DOI
2012
Image segmentation, Computed tomography, Feature extraction,
Bladder, Proposals, Image coding, Image segmentation,
CT image
BibRef
Rossi, A.,
Hosseinzadeh, M.,
Bianchini, M.,
Scarselli, F.,
Huisman, H.,
Multi-Modal Siamese Network for Diagnostically Similar Lesion
Retrieval in Prostate MRI,
MedImg(40), No. 3, March 2021, pp. 986-995.
IEEE DOI
2103
Feature extraction, Cancer, Magnetic resonance imaging,
Neural networks, Lesions, Task analysis, Prostate cancer,
lesion similarity
BibRef
Shen, T.C.[Tian-Cheng],
Yang, Y.[Yibo],
Lin, Z.C.[Zhou-Chen],
Zhang, M.[Mingbin],
Recurrent learning with clique structures for prostate sparse-view CT
artifacts reduction,
IET-IPR(15), No. 3, 2021, pp. 648-655.
DOI Link
2106
BibRef
Pinckaers, H.[Hans],
Bulten, W.[Wouter],
van der Laak, J.[Jeroen],
Litjens, G.[Geert],
Detection of Prostate Cancer in Whole-Slide Images Through End-to-End
Training With Image-Level Labels,
MedImg(40), No. 7, July 2021, pp. 1817-1826.
IEEE DOI
2107
Training, Prostate cancer, Pathology, Biomedical imaging,
Biological system modeling, Task analysis, Streaming media,
prostate cancer
BibRef
He, K.[Kelei],
Lian, C.F.[Chun-Feng],
Zhang, B.[Bing],
Zhang, X.[Xin],
Cao, X.H.[Xiao-Huan],
Nie, D.[Dong],
Gao, Y.[Yang],
Zhang, J.F.[Jun-Feng],
Shen, D.G.[Ding-Gang],
HF-UNet: Learning Hierarchically Inter-Task Relevance in Multi-Task
U-Net for Accurate Prostate Segmentation in CT Images,
MedImg(40), No. 8, August 2021, pp. 2118-2128.
IEEE DOI
2108
Task analysis, Image segmentation, Computed tomography,
Deformable models, Biomedical imaging, Computer architecture,
consistency learning
BibRef
Jia, H.Z.[Hao-Zhe],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
Xia, Y.[Yong],
Learning multi-scale synergic discriminative features for prostate
image segmentation,
PR(126), 2022, pp. 108556.
Elsevier DOI
2204
Prostate segmentation, Intra-class consistency,
Inter-class discrimination, Synergic multi-task loss
BibRef
Xu, X.A.[Xuan-Ang],
Sanford, T.[Thomas],
Turkbey, B.[Baris],
Xu, S.[Sheng],
Wood, B.J.[Bradford J.],
Yan, P.K.[Ping-Kun],
Shadow-Consistent Semi-Supervised Learning for Prostate Ultrasound
Segmentation,
MedImg(41), No. 6, June 2022, pp. 1331-1345.
IEEE DOI
2206
Image segmentation, Ultrasonic imaging, Training,
Feature extraction, Biomedical imaging, Imaging,
shadow artifact
BibRef
Peng, T.[Tao],
Zhao, J.[Jing],
Gu, Y.D.[Yi-Dong],
Wang, C.S.[Cai-Shan],
Wu, Y.Y.[Yi-Yun],
Cheng, X.X.[Xiu-Xiu],
Cai, J.[Jing],
H-ProMed: Ultrasound image segmentation based on the evolutionary
neural network and an improved principal curve,
PR(131), 2022, pp. 108890.
Elsevier DOI
2208
Accurate prostate segmentation, Transrectal ultrasound,
Principal curve, Optimized closed polygonal segment method,
Interpretable mathematical model
BibRef
Peng, T.[Tao],
Tang, C.Y.[Cai-Yin],
Wu, Y.Y.[Yi-Yun],
Cai, J.[Jing],
H-SegMed: A Hybrid Method for Prostate Segmentation in TRUS Images via
Improved Closed Principal Curve and Improved Enhanced Machine Learning,
IJCV(130), No. 8, August 2022, pp. 1896-1919.
Springer DOI
2207
BibRef
Moradi, H.[Hamid],
Foruzan, A.H.[Amir Hossein],
Integration of Dynamic Multi-Atlas and Deep Learning Techniques to
Improve Segmentation of the Prostate in MR Images,
IJIG(22), No. 4, July 2022, pp. 2250031.
DOI Link
2208
BibRef
Yang, Q.[Qianye],
Atkinson, D.[David],
Fu, Y.[Yunguan],
Syer, T.[Tom],
Yan, W.[Wen],
Punwani, S.[Shonit],
Clarkson, M.J.[Matthew J.],
Barratt, D.C.[Dean C.],
Vercauteren, T.[Tom],
Hu, Y.P.[Yi-Peng],
Cross-Modality Image Registration Using a Training-Time Privileged
Third Modality,
MedImg(41), No. 11, November 2022, pp. 3421-3431.
IEEE DOI
2211
Training, Imaging, Task analysis, Medical diagnostic imaging,
Image registration, Prostate cancer, Magnetic resonance imaging,
multi-parametric MRI
BibRef
Juneja, M.[Mamta],
Saini, S.K.[Sumindar Kaur],
Acharjee, R.[Rajarshi],
Kaul, S.[Sambhav],
Thakur, N.[Niharika],
Jindal, P.[Prashant],
PC-SNet for automated detection of prostate cancer in
multiparametric-magnetic resonance imaging,
IJIST(32), No. 6, 2022, pp. 1861-1879.
DOI Link
2212
convolution neural network, magnetic resonance imaging,
prostate cancer, segmentation
BibRef
Chen, Z.[Zhen],
Yang, C.[Chen],
Zhu, M.[Meilu],
Peng, Z.[Zhe],
Yuan, Y.X.[Yi-Xuan],
Personalized Retrogress-Resilient Federated Learning Toward
Imbalanced Medical Data,
MedImg(41), No. 12, December 2022, pp. 3663-3674.
IEEE DOI
2212
Servers, Training, Medical diagnostic imaging,
Computational modeling, Prototypes, Collaborative work,
prostate segmentation
BibRef
Hung, A.L.Y.[Alex Ling Yu],
Zheng, H.X.[Hao-Xin],
Miao, Q.[Qi],
Raman, S.S.[Steven S.],
Terzopoulos, D.[Demetri],
Sung, K.[Kyunghyun],
CAT-Net: A Cross-Slice Attention Transformer Model for Prostate Zonal
Segmentation in MRI,
MedImg(42), No. 1, January 2023, pp. 291-303.
IEEE DOI
2301
Image segmentation, Transformers, Magnetic resonance imaging, Standards,
Image resolution, Decoding, Attention mechanism, transformer network
BibRef
Baum, Z.M.C.[Zachary M. C.],
Hu, Y.P.[Yi-Peng],
Barratt, D.C.[Dean C.],
Meta-Learning Initializations for Interactive Medical Image
Registration,
MedImg(42), No. 3, March 2023, pp. 823-833.
IEEE DOI
2303
Image registration, Biomedical imaging, Training, Annotations,
Ultrasonic imaging, Task analysis, prostate cancer
BibRef
Wang, F.[Fan],
Xu, X.[Xuanang],
Yang, D.[Defu],
Chen, R.C.[Ronald C.],
Royce, T.J.[Trevor J.],
Wang, A.[Andrew],
Lian, J.[Jun],
Lian, C.F.[Chun-Feng],
Dynamic Cross-Task Representation Adaptation for Clinical Targets
Co-Segmentation in CT Image-Guided Post-Prostatectomy Radiotherapy,
MedImg(42), No. 4, April 2023, pp. 1046-1055.
IEEE DOI
2304
Image segmentation, Task analysis, Computed tomography, Multitasking,
Radiation therapy, Planning, Learning systems, computed tomography
BibRef
Aleef, T.A.[Tajwar Abrar],
Lobo, J.[Julio],
Baghani, A.[Ali],
Mohammed, S.[Shahed],
Eskandari, H.[Hani],
Moradi, H.[Hamid],
Rohling, R.[Robert],
Goldenberg, S.L.[S. Larry],
Morris, W.J.[W. James],
Mahdavi, S.S.[S. Sara],
Salcudean, S.E.[Septimiu E.],
Multi-Frequency 3D Shear Wave Absolute Vibro-Elastography (S-WAVE)
System for the Prostate,
MedImg(42), No. 11, November 2023, pp. 3436-3450.
IEEE DOI
2311
BibRef
Karthik, R.,
Menaka, R.,
Siddharth, M.V.,
Hussain, S.[Sameeha],
Siddharth, P.,
Won, D.[Daehan],
HMARNET: A Hierarchical Multi-Attention Residual Network for Gleason
scoring of prostate cancer,
IJIST(34), No. 1, 2024, pp. e22976.
DOI Link
2401
attention, deep learning, histopathology, prostate cancer, TCGA-PRAD
BibRef
Pan, X.W.[Xian-Wei],
Wang, S.[Simiao],
Liu, Y.[Yunan],
Wen, L.J.[Li-Jie],
Lu, M.Y.[Ming-Yu],
iPCa-Former: A Multi-Task Transformer Framework for Perceiving
Incidental Prostate Cancer,
SPLetters(31), 2024, pp. 785-789.
IEEE DOI
2404
Feature extraction, Transformers, Task analysis, Optimization,
Benchmark testing, Prostate cancer, Decoding,
boundary-based mutual information loss
BibRef
Zhang, Z.[Zheng],
Song, Y.S.[Yu-Shan],
Tan, Y.P.[Yun-P#1ng],
Yan, S.[Shuo],
Zhang, B.[Bo],
Zhuang, Y.F.[Yu-Feng],
Segmentation assisted Prostate Cancer Grading with Multitask
Collaborative Learning,
PRL(183), 2024, pp. 42-48.
Elsevier DOI
2406
Multitask collaborative learning, Prostate cancer grading,
Multimodal diagnostic data
BibRef
Rajagopal, A.[Abhejit],
Westphalen, A.C.[Antonio C.],
Velarde, N.[Nathan],
Simko, J.P.[Jeffry P.],
Nguyen, H.[Hao],
Hope, T.A.[Thomas A.],
Larson, P.E.Z.[Peder E. Z.],
Magudia, K.[Kirti],
Mixed Supervision of Histopathology Improves Prostate Cancer
Classification From MRI,
MedImg(43), No. 7, July 2024, pp. 2610-2622.
IEEE DOI
2407
Magnetic resonance imaging, Biopsy, Prostate cancer, Lesions, Glands,
Systematics, Biological system modeling, MRI, prostate cancer,
weak spatial supervision
BibRef
Smith, N.J.[Nathaniel J.],
Newton, D.T.[David T.],
Gunderman, D.[David],
Hutchins, G.D.[Gary D.],
A Comparison of Arterial Input Function Interpolation Methods for
Patlak Plot Analysis of 68Ga-PSMA-11 PET Prostate Cancer Studies,
MedImg(43), No. 7, July 2024, pp. 2411-2419.
IEEE DOI
2407
Kinetic theory, Interpolation, Positron emission tomography,
Plasmas, Estimation, Blood, Data models, Arterial input function,
positron emission tomography
BibRef
Wang, W.R.[Wei-Rong],
Pan, B.[Bo],
Ai, Y.[Yue],
Li, G.[Gonghui],
Fu, Y.[Yili],
Liu, Y.J.[Yan-Jie],
LightCM-PNet: A lightweight pyramid network for real-time prostate
segmentation in transrectal ultrasound,
PR(156), 2024, pp. 110776.
Elsevier DOI
2408
Robotic prostate biopsy, Real-time segmentation,
Ultrasound image, Tokenized MLP, Pyramid network
BibRef
Li, S.C.[Shi-Chang],
Wu, H.J.[Hong-Jie],
Tang, C.W.[Chen-Wei],
Chen, D.D.[Dong-Dong],
Chen, Y.[Yueyue],
Mei, L.[Ling],
Yang, F.[Fan],
Lv, J.C.[Jian-Cheng],
Self-supervised Domain Adaptation with Significance-Oriented Masking
for Pelvic Organ Prolapse detection,
PRL(185), 2024, pp. 94-100.
Elsevier DOI
2410
Pelvic organ prolapse, Domain adaptation, Vision transformer,
Masked image modeling, Significance-oriented masking, Data imbalance
BibRef
Matuk, J.[James],
Kurtek, S.[Sebastian],
Bharath, K.[Karthik],
Topo-Geometric Analysis of Variability in Point Clouds Using
Persistence Landscapes,
PAMI(46), No. 12, December 2024, pp. 11035-11046.
IEEE DOI
2411
Point cloud compression, Noise, Shape, Data analysis, Arteries,
Signal resolution, Prostate cancer, Amplitude-phase separation,
topological data analysis
BibRef
Gao, G.[Gan],
Song, A.H.[Andrew H.],
Wang, F.[Fiona],
Brenes, D.[David],
Wang, R.[Rui],
Chow, S.S.L.[Sarah S.L.],
Bishop, K.W.[Kevin W.],
True, L.D.[Lawrence D.],
Mahmood, F.[Faisal],
Liu, J.T.C.[Jonathan T.C.],
Triage of 3D pathology data via 2.5D multiple-instance learning to
guide pathologist assessments,
CVMI24(6955-6965)
IEEE DOI
2410
Pathology, Accuracy, Reviews, Microscopy, Biopsy, Morphology,
3D pathology, Multiple-instance learning, 2.5D, Prostate cancer,
Context-awareness
BibRef
Ranem, A.[Amin],
González, C.[Camila],
Pinto-dos Santos, D.[Daniel],
Bucher, A.M.[Andreas M.],
Othman, A.E.[Ahmed E.],
Mukhopadhyay, A.[Anirban],
Continual atlas-based segmentation of prostate MRI,
WACV24(7548-7557)
IEEE DOI Code:
WWW Link.
2404
Training, Image segmentation, Privacy, Codes,
Magnetic resonance imaging, Prototypes, Rigidity, Applications
BibRef
Carloni, G.[Gianluca],
Pachetti, E.[Eva],
Colantonio, S.[Sara],
Causality-Driven One-Shot Learning for Prostate Cancer Grading from
MRI,
CVAMD23(2608-2616)
IEEE DOI
2401
BibRef
Balaha, H.M.[Hossam Magdy],
Ayyad, S.M.[Sarah M.],
Alksas, A.[Ahmed],
Elsorougy, A.[Ali],
Badawy, M.A.[Mohamed Ali],
Shehata, M.[Mohamed],
El-Ghar, M.A.[Mohamed Abou],
Ghazal, M.[Mohammed],
Mahmoud, A.[Ali],
Contractor, S.[Sohail],
El-Baz, A.[Ayman],
Early Diagnosis of Prostate Cancer Using Parametric Estimation of
IVIM from DW-MRI,
ICIP23(2910-2914)
IEEE DOI
2312
BibRef
Hammouda, K.,
Khalifa, F.,
Ghazal, M.,
Darwish, H.E.,
Yousaf, J.,
El-Baz, A.,
A Pyramidal CNN-Based Gleason Grading System Using Digitized Prostate
Biopsy Specimens,
ICPR22(4277-4284)
IEEE DOI
2212
Deep learning, Measurement, Convolution, Biopsy, Neural networks,
Convolutional neural networks, Prostate cancer
BibRef
del Rio, M.[Mauro],
Lianas, L.[Luca],
Aspegren, O.[Oskar],
Busonera, G.[Giovanni],
Versaci, F.[Francesco],
Zelic, R.[Renata],
Vincent, P.H.[Per H.],
Leo, S.[Simone],
Pettersson, A.[Andreas],
Akre, O.[Olof],
Pireddu, L.[Luca],
AI Support for Accelerating Histopathological Slide Examinations of
Prostate Cancer in Clinical Studies,
DeepHealth22(545-556).
Springer DOI
2208
BibRef
Pachetti, E.[Eva],
Colantonio, S.[Sara],
Pascali, M.A.[Maria Antonietta],
On the Effectiveness of 3D Vision Transformers for the Prediction of
Prostate Cancer Aggressiveness,
MEDXF22(317-328).
Springer DOI
2208
BibRef
Peng, T.[Tao],
Tang, C.Y.[Cai-Yin],
Wang, J.[Jing],
Prostate Segmentation of Ultrasound Images Based on
Interpretable-Guided Mathematical Model,
MMMod22(I:166-177).
Springer DOI
2203
BibRef
Deng, H.C.[Han-Chen],
Cai, N.[Naxin],
Peng, Y.H.[Ya-Hui],
Semi-Quantitative Analysis of DCE-MRI for Classification of the
Prostate with and without Cancer,
ICIVC21(181-185)
IEEE DOI
2112
Support vector machines, Training, Sensitivity, Receivers,
Linear discriminant analysis, Data mining, Prostate cancer,
classification
BibRef
Dhrangadhariya, A.[Anjani],
Otálora, S.[Sebastian],
Atzori, M.[Manfredo],
Müller, H.[Henning],
Classification of Noisy Free-Text Prostate Cancer Pathology Reports
Using Natural Language Processing,
AIDP20(154-166).
Springer DOI
2103
BibRef
Rossi, A.[Alberto],
Bianchini, M.[Monica],
Scarselli, F.[Franco],
Robust Prostate Cancer Classification with Siamese Neural Networks,
ISVC20(II:180-189).
Springer DOI
2103
BibRef
Lyons, A.[Alexander],
Rossi, A.[Alberto],
Prostate MRI Registration Using Siamese Metric Learning,
ISVC20(II:593-603).
Springer DOI
2103
BibRef
Kalapahar, A.,
Silva-Rodríguez, J.,
Colomer, A.,
López-Mir, F.,
Naranjo, V.,
Gleason Grading of Histology Prostate Images Through Semantic
Segmentation via Residual U-Net,
ICIP20(2501-2505)
IEEE DOI
2011
Image segmentation, Semantics, Biopsy, Task analysis,
Prostate cancer, Feature extraction, Prostate Cancer, Histology,
Residual U-Net
BibRef
Cao, R.,
Zhong, X.,
Scalzo, F.,
Raman, S.,
Sung, K.,
Prostate Cancer Inference via Weakly-Supervised Learning using a
Large Collection of Negative MRI,
VRMI19(434-439)
IEEE DOI
2004
Magnetic resonance imaging, Principal component analysis,
Lesions, Cancer, Training, Testing, Cancer Inference,
Prostate MRI
BibRef
Reda, I.,
Ghazal, M.,
Shalaby, A.,
Elmogy, M.,
Aboulfotouh, A.,
El-Ghar, M.A.,
El-Melegy, M.,
Khalil, A.,
Keynton, R.,
El-Baz, A.,
Detecting and Localizing Prostate Cancer from Diffusion-Weighted
Magnetic Resonance Imaging,
ICIP19(1405-1409)
IEEE DOI
1910
Prostate cancer, computer-aided diagnosis, convolutional neural network
BibRef
Firjani, A.,
Khalifa, F.,
Elnakib, A.,
Gimel'farb, G.L.,
El-Ghar, M.A.[M. Abou],
Elmaghraby, A.,
El-Baz, A.,
A novel image-based approach for early detection of prostate cancer,
ICIP12(2849-2852).
IEEE DOI
1302
BibRef
Earlier:
3D automatic approach for precise segmentation of the prostate from
Diffusion-Weighted Magnetic Resonance Imaging,
ICIP11(2285-2288).
IEEE DOI
1201
BibRef
Germanese, D.[Danila],
Colantonio, S.[Sara],
Caudai, C.[Claudia],
Pascali, M.A.[Maria Antonietta],
Barucci, A.[Andrea],
Zoppetti, N.[Nicola],
Agostini, S.[Simone],
Bertelli, E.[Elena],
Mercatelli, L.[Laura],
Miele, V.[Vittorio],
Carpi, R.[Roberto],
May Radiomic Data Predict Prostate Cancer Aggressiveness?,
CAIPWS19(65-75).
Springer DOI
1909
BibRef
Alkadi, R.[Ruba],
El-Baz, A.[Ayman],
Taher, F.[Fatma],
Werghi, N.[Naoufel],
A 2.5D Deep Learning-Based Approach for Prostate Cancer Detection on
T2-Weighted Magnetic Resonance Imaging,
WiCV-E18(IV:734-739).
Springer DOI
1905
BibRef
Wang, Y.,
Zheng, B.,
Gao, D.,
Wang, J.,
Fully convolutional neural networks for prostate cancer detection
using multi-parametric magnetic resonance images: an initial
investigation,
ICPR18(3814-3819)
IEEE DOI
1812
Tumors, Image segmentation, Prostate cancer, Training,
Magnetic resonance imaging, Feature extraction, Deep learning,
Prostate cancer detection
BibRef
Jit, D.,
Qian, J.,
Yu, J.,
Kurihara, T.,
Zhan, S.,
Automatic Prostate Segmentation on MR Images Using Enhanced
Holistically-Nested Networks,
ICPR18(3820-3825)
IEEE DOI
1812
Image segmentation, Task analysis, Feature extraction,
Biomedical imaging, Image edge detection, Training, Computer architecture
BibRef
Reda, I.,
Ghazal, M.,
Shalaby, A.,
Elmogy, M.,
AbouEl-Fetouh, A.,
Ayinde, B.O.,
AbouEl-Ghar, M.,
Elmaghraby, A.,
Keynton, R.,
El-Baz, A.,
A Novel ADCs-Based CNN Classification System for Precise Diagnosis of
Prostate Cancer,
ICPR18(3923-3928)
IEEE DOI
1812
Prostate cancer, Magnetic resonance imaging, Feature extraction,
Solid modeling, Blood, Image color analysis, Prostate Cancer,
Convolutional Neural Networks
BibRef
Esteban, Á.E.,
Colomer, A.,
Naranjo, V.,
Sales, M.Á.,
Granulometry-Based Descriptor for Pathological Tissue Discrimination
in Histopathological Images,
ICIP18(1413-1417)
IEEE DOI
1809
Pathology, Glands, Feature extraction, Prostate cancer,
Image segmentation, Image reconstruction, Granulometry,
histology
BibRef
Elmahdy, M.S.[Mohamed S.],
Jagt, T.[Thyrza],
Yousefi, S.[Sahar],
Sokooti, H.[Hessam],
Zinkstok, R.[Roel],
Hoogeman, M.[Mischa],
Staring, M.[Marius],
Evaluation of Multi-metric Registration for Online Adaptive Proton
Therapy of Prostate Cancer,
WBIR18(94-104).
Springer DOI
1806
BibRef
Sguario Coelho de Andrade, M.L.,
Skeika, E.,
Kaminski Aires, S.B.,
Segmentation of the Prostate Gland in Images Using Prior Knowledge
and Level Set Method,
WVC17(31-36)
IEEE DOI
1804
biological organs, biomedical MRI, cancer, diseases,
image segmentation, medical image processing, active shape model,
prior-knowledge
BibRef
Ghasab, M.A.J.,
Paplinski, A.P.,
Betts, J.M.,
Reynolds, H.M.,
Haworth, A.,
Automatic 3D modelling for prostate cancer brachytherapy,
ICIP17(4452-4456)
IEEE DOI
1803
Active appearance model, Image segmentation, Mathematical model,
Shape, Solid modeling, Training,
Visualisation
BibRef
Mun, J.,
Jang, W.D.,
Sung, D.J.,
Kim, C.S.,
Comparison of objective functions in CNN-based prostate magnetic
resonance image segmentation,
ICIP17(3859-3863)
IEEE DOI
1803
Entropy, Hamming distance, Image segmentation, Indexes,
Linear programming, Training,
prostate segmentation
BibRef
Cho, C.,
Lee, Y.H.,
Lee, S.,
Prostate detection and segmentation based on convolutional neural
network and topological derivative,
ICIP17(3071-3074)
IEEE DOI
1803
Convolutional neural networks, Databases, Image segmentation,
Magnetic resonance imaging, Medical diagnostic imaging, Training,
Topological Derivative
BibRef
Albayrak, N.B.[Nur Banu],
Yildirim, E.[Emrah],
Akgul, Y.S.[Yusuf Sinan],
Prostate Size Inference from Abdominal Ultrasound Images with Patch
Based Prior Information,
ACIVS17(249-259).
Springer DOI
1712
BibRef
Karimi, A.H.[Amir-Hossein],
Chung, A.G.[Audrey G.],
Shafiee, M.J.[Mohammad Javad],
Khalvati, F.[Farzad],
Haider, M.A.[Masoom A.],
Ghodsi, A.[Ali],
Wong, A.[Alexander],
Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for
Multi-parametric MRI Prostate Cancer Classification,
ICIAR17(45-53).
Springer DOI
1706
BibRef
Clark, T.[Tyler],
Wong, A.[Alexander],
Haider, M.A.[Masoom A.],
Khalvati, F.[Farzad],
Fully Deep Convolutional Neural Networks for Segmentation of the
Prostate Gland in Diffusion-Weighted MR Images,
ICIAR17(97-104).
Springer DOI
1706
BibRef
Zhang, J.J.[Jun-Jie],
Baig, S.[Sameer],
Wong, A.[Alexander],
Haider, M.A.[Masoom A.],
Khalvati, F.[Farzad],
Segmentation of Prostate in Diffusion MR Images via Clustering,
ICIAR17(471-478).
Springer DOI
1706
BibRef
Jensen, C.[Carina],
Korsager, A.S.[Anne Sofie],
Boesen, L.[Lars],
Řstergaard, L.R.[Lasse Riis],
Carl, J.[Jesper],
Computer Aided Detection of Prostate Cancer on Biparametric MRI Using a
Quadratic Discriminant Model,
SCIA17(I: 161-171).
Springer DOI
1706
BibRef
Perez, I.M.,
Toivonen, J.,
Movahedi, P.,
Merisaari, H.,
Pesola, M.,
Taimen, P.,
Boström, P.J.,
Kiviniemi, A.,
Aronen, H.J.,
Pahikkala, T.,
Jambor, I.,
Diffusion weighted imaging of prostate cancer: Prediction of cancer
using texture features from parametric maps of the monoexponential
and kurtosis functions,
IPTA16(1-6)
IEEE DOI
1703
Gabor filters
BibRef
Guinin, M.,
Ruan, S.,
Dubray, B.,
Massoptier, L.,
Gardin, I.,
Feature selection and patch-based segmentation in MRI for prostate
radiotherapy,
ICIP16(2663-2667)
IEEE DOI
1610
Dictionaries
BibRef
Sammouda, R.,
Aboalsamh, H.,
Saeed, F.,
Comparison between K mean and fuzzy C-mean methods for segmentation
of near infrared fluorescent image for diagnosing prostate cancer,
ICCVIA15(1-6)
IEEE DOI
1603
biomedical optical imaging
BibRef
Bojorquez, J.Z.[Jorge Zavala],
Bricq, S.[Stephanie],
Walker, P.M.[Paul M.],
Lalande, A.[Alain],
Automatic classification of tissues using T1 and T2 relaxation times
from prostate MRI: A step towards generation of PET/MR attenuation
map,
ICIP15(1185-1189)
IEEE DOI
1512
MRI
BibRef
Albayrak, N.B.[Nur Banu],
Oktay, A.B.[Ayse Betul],
Akgul, Y.S.[Yusuf Sinan],
Prostate detection from abdominal ultrasound images:
A part based approach,
ICIP15(1955-1959)
IEEE DOI
1512
Abdominal Ultrasound; Graphical Model; HOG; Prostate Detection; SVM
BibRef
Mahapatra, D.[Dwarikanath],
Buhmann, J.M.[Joachim M.],
Visual Saliency Based Active Learning for Prostate MRI Segmentation,
MLMI15(9-16).
Springer DOI
1511
BibRef
Weingant, M.[Michaela],
Reynolds, H.M.[Hayley M.],
Haworth, A.[Annette],
Mitchell, C.[Catherine],
Williams, S.[Scott],
DiFranco, M.D.[Matthew D.],
Ensemble Prostate Tumor Classification in H&E Whole Slide Imaging via
Stain Normalization and Cell Density Estimation,
MLMI15(280-287).
Springer DOI
1511
BibRef
Chung, A.G.[Audrey G.],
Scharfenberger, C.[Christian],
Khalvati, F.[Farzad],
Wong, A.[Alexander],
Haider, M.A.[Masoom A.],
Statistical Textural Distinctiveness in Multi-Parametric Prostate MRI
for Suspicious Region Detection,
ICIAR15(368-376).
Springer DOI
1507
BibRef
Samarasinghe, G.,
Sowmya, A.,
Moses, D.A.,
A Semi-Quantitative Analysis Model with Parabolic Modelling for
DCE-MRI Sequences of Prostate,
DICTA14(1-6)
IEEE DOI
1502
biomedical MRI
BibRef
Lehaire, J.[Jerome],
Flamary, R.[Remi],
Rouviere, O.[Olivier],
Lartizien, C.[Carole],
Computer-aided diagnostic system for prostate cancer detection and
characterization combining learned dictionaries and supervised
classification,
ICIP14(2251-2255)
IEEE DOI
1502
Bismuth
BibRef
Niaf, E.[Emilie],
Flamary, R.[Remi],
Rakotomamonjy, A.[Alain],
Rouviere, O.[Olivier],
Lartizien, C.[Carole],
SVM with feature selection and smooth prediction in images:
Application to CAD of prostate cancer,
ICIP14(2246-2250)
IEEE DOI
1502
Biomedical imaging
BibRef
Gao, Q.Q.[Qin-Quan],
Asthana, A.[Akshay],
Tong, T.[Tong],
Hu, Y.P.[Yi-Peng],
Rueckert, D.[Daniel],
Edwards, P.[Philip],
Hybrid Decision Forests for Prostate Segmentation in Multi-channel MR
Images,
ICPR14(3298-3303)
IEEE DOI
1412
Feature extraction
BibRef
McCarthy, N.[Nicholas],
Cunningham, P.[Padraig],
OHurley, G.[Gillian],
The Contribution of Morphological Features in the Classification of
Prostate Carcinoma in Digital Pathology Images,
ICPR14(3269-3273)
IEEE DOI
1412
Accuracy
BibRef
Jacobs, J.G.[Joseph G.],
Panagiotaki, E.[Eleftheria],
Alexander, D.C.[Daniel C.],
Gleason Grading of Prostate Tumours with Max-Margin Conditional Random
Fields,
MLMI14(85-92).
Springer DOI
1410
BibRef
Gao, Y.Z.[Yao-Zong],
Shen, D.G.[Ding-Gang],
Context-Aware Anatomical Landmark Detection: Application to Deformable
Model Initialization in Prostate CT Images,
MLMI14(165-173).
Springer DOI
1410
BibRef
Park, S.H.[Sang Hyun],
Gao, Y.Z.[Yao-Zong],
Shi, Y.H.[Ying-Huan],
Shen, D.G.[Ding-Gang],
Interactive Prostate Segmentation Based on Adaptive Feature Selection
and Manifold Regularization,
MLMI14(264-271).
Springer DOI
1410
BibRef
Qian, C.[Chunjun],
Wang, L.[Li],
Yousuf, A.[Ambereen],
Oto, A.[Aytekin],
Shen, D.G.[Ding-Gang],
In Vivo MRI Based Prostate Cancer Identification with Random Forests
and Auto-context Model,
MLMI14(314-322).
Springer DOI
1410
BibRef
Shao, Y.Q.[Ye-Qin],
Gao, Y.Z.[Yao-Zong],
Yang, X.[Xin],
Shen, D.G.[Ding-Gang],
CT Prostate Deformable Segmentation by Boundary Regression,
MCV14(127-136).
Springer DOI
1501
BibRef
Gao, Y.Z.[Yao-Zong],
Wang, L.[Li],
Shao, Y.Q.[Ye-Qin],
Shen, D.G.[Ding-Gang],
Learning Distance Transform for Boundary Detection and Deformable
Segmentation in CT Prostate Images,
MLMI14(93-100).
Springer DOI
1410
BibRef
Cazoulat, G.,
Simon, A.,
Dumenil, A.,
Gnep, K.,
de Crevoisier, R.,
Acosta, O.,
Haigron, P.,
Surface-Constrained Nonrigid Registration for Dose Monitoring in
Prostate Cancer Radiotherapy,
MedImg(33), No. 7, July 2014, pp. 1464-1474.
IEEE DOI
1407
Accuracy
BibRef
Wu, Y.,
Liu, G.,
Huang, M.,
Guo, J.,
Jiang, J.,
Yang, W.,
Chen, W.,
Feng, Q.,
Prostate Segmentation Based on Variant Scale Patch and Local
Independent Projection,
MedImg(33), No. 6, June 2014, pp. 1290-1303.
IEEE DOI
1407
Computed tomography
BibRef
Li, A.[Ang],
Li, C.Y.[Chang-Yang],
Wang, X.Y.[Xiu-Ying],
Eberl, S.,
Feng, D.D.,
Fulham, M.J.,
Automated Segmentation of Prostate MR Images Using Prior Knowledge
Enhanced Random Walker,
DICTA13(1-7)
IEEE DOI
1402
biomedical MRI
BibRef
Vafaie, R.,
Alirezaie, J.,
Babyn, P.,
Fully Automated Model-Based Prostate Boundary Segmentation Using Markov
Random Field in Ultrasound Images,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Mitra, J.,
Kato, Z.,
Ghose, S.,
Sidibe, D.,
Marti, R.,
Llado, X.,
Oliver, A.,
Vilanova, J.C.,
Meriaudeau, F.,
Spectral clustering to model deformations for fast multimodal prostate
registration,
ICPR12(2622-2625).
WWW Link.
1302
BibRef
Mitra, J.,
Ghose, S.,
Sidibe, D.,
Oliver, A.,
Marti, R.,
Llado, X.,
Vilanova, J.C.,
Comet, J.,
Meriaudeau, F.,
Weighted likelihood function of multiple statistical parameters to
retrieve 2D TRUS-MR slice correspondence for prostate biopsy,
ICIP12(2949-2952).
IEEE DOI
1302
BibRef
Moradi, M.[Mehdi],
Wachinger, C.[Christian],
Fedorov, A.[Andriy],
Wells, W.M.[William M.],
Kapur, T.[Tina],
Wolfsberger, L.D.[Luciant D.],
Nguyen, P.[Paul],
Tempany, C.M.[Clare M.],
MRI Confirmed Prostate Tissue Classification with Laplacian Eigenmaps
of Ultrasound RF Spectra,
MLMI12(19-26).
Springer DOI
1211
BibRef
Shi, Y.H.[Ying-Huan],
Liao, S.[Shu],
Gao, Y.Z.[Yao-Zong],
Zhang, D.Q.[Dao-Qiang],
Gao, Y.[Yang],
Shen, D.G.[Ding-Gang],
Prostate Segmentation in CT Images via Spatial-Constrained
1211
BibRef
Skalski, A.[Andrzej],
Kos, A.[Artur],
Zielinski, T.[Tomasz],
Using ASM in CT Data Segmentaion for Prostate Radiotherapy,
ICCVG12(610-617).
Springer DOI
1210
BibRef
Ghose, S.[Soumya],
Mitra, J.[Jhimli],
Oliver, A.[Arnau],
Martí, R.[Robert],
Lladó, X.[Xavier],
Freixenet, J.[Jordi],
Vilanova, J.C.[Joan C.],
Comet, J.[Josep],
Sidibé, D.[Désiré],
Meriaudeau, F.[Fabrice],
A Supervised Learning Framework for Automatic Prostate Segmentation in
Trans Rectal Ultrasound Images,
ACIVS12(190-200).
Springer DOI
1209
BibRef
Ghose, S.,
Mitra, J.,
Oliver, A.,
Marti, R.,
Llado, X.,
Freixenet, J.,
Vilanova, J.C.,
Sidibe, D.,
Meriaudeau, F.,
A coupled schema of probabilistic atlas and statistical shape and
appearance model for 3D prostate segmentation in MR images,
ICIP12(541-544).
IEEE DOI
1302
BibRef
Ghose, S.,
Mitra, J.,
Oliver, A.,
Marti, R.,
Llado, X.,
Freixenet, J.,
Vilanova, J.C.,
Comet, J.,
Sidibe, D.,
Meriaudeau, F.,
A Mumford-Shah functional based variational model with contour, shape,
and probability prior information for prostate segmentation,
ICPR12(121-124).
WWW Link.
1302
BibRef
Ghose, S.,
Mitra, J.,
Oliver, A.,
Marti, R.,
Llado, X.,
Freixenet, J.,
Vilanova, J.C.,
Sidibe, D.,
Meriaudeau, F.,
Graph cut energy minimization in a probabilistic learning framework for
3D prostate segmentation in MRI,
ICPR12(125-128).
WWW Link.
1302
BibRef
Ghose, S.,
Oliver, A.,
Marti, R.,
Llado, X.,
Freixenet, J.,
Mitra, J.,
Vilanova, J.C.,
Comet, J.,
Meriaudeau, F.,
Statistical Shape and Probability Prior Model for Automatic Prostate
Segmentation,
DICTA11(340-345).
IEEE DOI
1205
BibRef
Mitra, J.,
Kato, Z.,
Marti, R.,
Oliver, A.,
Llado, X.,
Ghose, S.,
Vilanova, J.C.,
Meriaudeau, F.,
A Non-Linear Diffeomorphic Framework for Prostate Multimodal
Registration,
DICTA11(31-36).
IEEE DOI
1205
BibRef
Mitra, J.[Jhimli],
Oliver, A.[Arnau],
Marti, R.[Robert],
Llado, X.[Xavier],
Vilanova, J.C.[Joan C.],
Meriaudeau, F.[Fabrice],
Multimodal Prostate Registration Using Thin-Plate Splines from
Automatic Correspondences,
DICTA10(587-592).
IEEE DOI
1012
BibRef
Ghose, S.,
Oliver, A.,
Marti, R.,
Llado, X.,
Freixenet, J.,
Vilanova, J.C.,
Meriaudeau, F.,
A probabilistic framework for automatic prostate segmentation with a
statistical model of shape and appearance,
ICIP11(713-716).
IEEE DOI
1201
BibRef
Lu, C.[Chao],
Chelikani, S.[Sudhakar],
Papademetris, X.[Xenophon],
Staib, L.[Lawrence],
Duncan, J.S.[James S.],
Constrained non-rigid registration using Lagrange multipliers for
application in prostate radiotherapy,
MMBIA10(133-138).
IEEE DOI
1006
BibRef
Xia, T.[Tian],
Yu, Y.Z.[Yi-Zhou],
Hua, J.[Jing],
Automatic detection of malignant prostatic gland units in
cross-sectional microscopic images,
ICIP10(1057-1060).
IEEE DOI
1009
BibRef
Zaboli, S.[Shiva],
Tabibiazar, A.[Arash],
Fieguth, P.W.[Paul W.],
Organ Recognition Using Gabor Filters,
CRV10(94-100).
IEEE DOI
1005
E.g. prostate tissue using techniques similar to iris recognition.
BibRef
Ou, Y.M.[Yang-Ming],
Shen, D.G.[Ding-Gang],
Feldman, M.D.[Michael D.],
Tomaszewski, J.E.[John E.],
Davatzikos, C.[Christos],
Non-rigid registration between histological and MR images of the
prostate: A joint segmentation and registration framework,
MMBIA09(125-132).
IEEE DOI
0906
BibRef
Arif, M.[Muhammad],
Rajpoot, N.[Nasir],
Classification of potential nuclei in prostate histology images using
shape manifold learning,
ICMV07(113-118).
IEEE DOI
0712
BibRef
Jendoubi, A.,
Zeng, J.C.[Jian-Chao],
Chouikha, M.F.,
Top-down approach to segmentation of prostate boundaries in ultrasound
images,
AIPR04(145-149).
IEEE DOI
0410
BibRef
Zaim, A.[Amjad],
FSM: A new finite sphere method for modeling 3D geometry of the
prostate,
ICIP08(2956-2959).
IEEE DOI
0810
BibRef
Zouqi, M.[Mehrnaz],
Samarabandu, J.[Jagath],
Prostate Segmentation from 2-D Ultrasound Images Using Graph Cuts and
Domain Knowledge,
CRV08(359-362).
IEEE DOI
0805
BibRef
Hui, E.K.T.[Eric K.T.],
Mohamed, S.S.,
Salama, M.M.A.,
Fenster, A.,
Prostate TRUS Image Region-Based Feature Extraction and Evaluation,
ICIAR09(759-771).
Springer DOI
0907
BibRef
Hui, E.K.T.[Eric K.T.],
Mohamed, S.S.,
Salama, M.M.A.,
Rizkalla, K.,
Region-Based Feature Extraction Using TRUS Images,
Southwest08(205-208).
IEEE DOI
0803
BibRef
Li, J.,
Mohamed, S.S.,
Salama, M.M.A.,
Freeman, G.H.,
Prostate Tissue Texture Feature Extraction for Cancer Recognition in
TRUS Images Using Wavelet Decomposition,
ICIAR07(993-1004).
Springer DOI
0708
BibRef
Mohamed, S.S.,
Salama, M.M.A.,
Kamel, M.,
Rizkalla, K.,
Region of Interest Based Prostate Tissue Characterization Using Least
Square Support Vector Machine LS-SVM,
ICIAR04(II: 51-58).
Springer DOI
0409
BibRef
Bougioukos, P.[Panagiotis],
Cavouras, D.[Dionisis],
Daskalakis, A.[Antonis],
Kalatzis, I.[Ioannis],
Kostopoulos, S.[Spiros],
Georgiadis, P.[Pantelis],
Nikiforidis, G.[George],
Bezerianos, A.[Anastasios],
Biomarker Selection System, Employing an Iterative Peak Selection
Method, for Identifying Biomarkers Related to Prostate Cancer,
CAIP07(197-204).
Springer DOI
0708
BibRef
Rodríguez-Vila, B.[Borja],
Pettersson, J.[Johanna],
Borga, M.[Magnus],
García-Vicente, F.[Feliciano],
Gómez, E.J.[Enrique J.],
Knutsson, H.[Hans],
3D Deformable Registration for Monitoring Radiotherapy Treatment in
Prostate Cancer,
SCIA07(750-759).
Springer DOI
0706
BibRef
Rahnamayan, S.,
Tizhoosh, H.R.,
Salama, M.M.A.,
Automated Snake Initialization for the Segmentation of the Prostate in
Ultrasound Images,
ICIAR05(930-937).
Springer DOI
0509
BibRef
Zaim, A.[Amjad],
Automatic Segmentation of the Prostate from Ultrasound Data Using
Feature-Based Self Organizing Map,
SCIA05(1259-1265).
Springer DOI
0506
BibRef
Cosío, F.A.[Fernando Arámbula],
Robust Fitting of a Point Distribution Model of the Prostate Using
Genetic Algorithms,
ICIAR04(II: 76-83).
Springer DOI
0409
BibRef
Rousson, M.[Mikael],
Khamene, A.[Ali],
Diallo, M.[Mamadou],
Celi, J.C.[Juan Carlos],
Sauer, F.[Frank],
Constrained Surface Evolutions for Prostate and Bladder Segmentation in
CT Images,
CVBIA05(251-260).
Springer DOI
0601
BibRef
Sahba, F.,
Tizhoosh, H.R.,
Salama, M.M.A.,
Segmentation of Prostate Boundaries Using Regional Contrast Enhancement,
ICIP05(II: 1266-1269).
IEEE DOI
0512
BibRef
Yu, Y.,
Acton, S.T.,
Thornton, K.,
Detection of Radioactive Seeds in Ultrasound Images of the Prostate,
ICIP01(II: 319-322).
IEEE DOI
0108
BibRef
Pouliot, S.,
Zaccarin, A.,
Laurendeau, D.,
Pouliot, J.,
Automatic Detection of Three Radio-opaque Markers for Prostate
Targeting Using Epid During External Radiation Therapy,
ICIP01(II: 857-860).
IEEE DOI
0108
BibRef
Adiga, P.S.U.,
Chaudhuri, B.B.,
Automatic Prostate Cancer Grading System Based on 3-D
Histo-pathological Images,
MVA98(xx-yy).
BibRef
9800
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Cervical Cancer Analysis, Ovarian Cancer .