Lakshminarasimhan, A.L., and
Dasarathy, B.V.,
A Unified Approach to Feature Selection and Learning in
Unsupervised Environments,
TC(24), September 1975, pp. 948-952.
BibRef
7509
Dasarathy, B.V.,
Feature Selection and Concept of Immediate
Neighborhood in the Context of Clustering Techniques,
PIEEE(62), No. 4, April 1974, pp. 529-530.
BibRef
7404
Dasarathy, B.V.,
FEAST: Feature Evaluation and Selection
Technique for Deployment in Unsupervised Nonparametric Environments,
CIS(6), No. 4, September 1977, pp. 307-315.
BibRef
7709
Dasarathy, B.V.,
AHIMSA: Ad hoc Histogram Information Measure
Sensing Algorithm for Feature Selection in the Context of Histogram
Inspired Clustering Techniques,
PIEEE(64), No. 9, September 1976, pp. 1446-1447.
BibRef
7609
Dasarathy, B.V.,
A Generalized Discriminant Hyperplane Approach to
Pattern Classification,
PRL(12), No. 2, February 1991, pp. 127-128.
BibRef
9102
Basak, J.[Jayanta],
De, R.K.[Rajat K.],
Pal, S.K.[Sankar K.],
Unsupervised Feature Selection Using a Neuro-Fuzzy Approach,
PRL(19), No. 11, 30 September 1998, pp. 997-1006.
BibRef
9809
Mitra, P.[Pabrita],
Murthy, C.A.,
Pal, S.K.[Sankar K.],
Unsupervised Feature Selection Using Feature Similarity,
PAMI(24), No. 3, March 2002, pp. 301-312.
IEEE DOI
0202
BibRef
And:
Correction:
PAMI(24), No. 6, June 2002, pp. 721.
IEEE DOI
0206
Feature selection for large (dimension and size) data sets.
BibRef
Li, Y.H.[Yuan-Hong],
Dong, M.[Ming],
Hua, J.[Jing],
Localized feature selection for clustering,
PRL(29), No. 1, 1 January 2008, pp. 10-18.
Elsevier DOI
0711
BibRef
And:
Feature selection for clustering with constraints using Jensen-Shannon
divergence,
ICPR08(1-4).
IEEE DOI
0812
Clustering, Unsupervised learning, Feature selection, Scatter separability
BibRef
Li, Y.H.[Yuan-Hong],
Dong, M.[Ming],
Hua, J.[Jing],
Simultaneous Localized Feature Selection and Model Detection for
Gaussian Mixtures,
PAMI(31), No. 5, May 2009, pp. 953-960.
IEEE DOI
0903
BibRef
Earlier:
Localized feature selection for Gaussian mixtures using variational
learning,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ferreira, A.J.[Artur J.],
Figueiredo, M.A.T.[Mário A.T.],
An unsupervised approach to feature discretization and selection,
PR(45), No. 9, September 2012, pp. 3048-3060.
Elsevier DOI
1206
BibRef
Earlier:
Unsupervised Joint Feature Discretization and Selection,
IbPRIA11(200-207).
Springer DOI
1106
Feature discretization, Feature quantization, Feature selection;
Linde-Buzo-Gray algorithm, Sparse data, Support vector machines, Naïve
Bayes, k-nearest neighbor
BibRef
Ferreira, A.J.[Artur J.],
Figueiredo, M.A.T.[Mário A.T.],
Efficient feature selection filters for high-dimensional data,
PRL(33), No. 13, 1 October 2012, pp. 1794-1804.
Elsevier DOI
1208
Feature selection, Filters, Dispersion measures, Similarity measures;
High-dimensional data
BibRef
Ferreira, A.J.[Artur J.],
Figueiredo, M.A.T.[Mário A.T.],
An Incremental Bit Allocation Strategy for Supervised Feature
Discretization,
IbPRIA13(526-534).
Springer DOI
1307
BibRef
Mao, K.Z.,
Identifying critical variables of principal components for unsupervised
feature selection,
SMC-B(35), No. 2, April 2005, pp. 339-344.
IEEE DOI
0508
BibRef
Cai, R.C.[Rui-Chu],
Zhang, Z.J.[Zhen-Jie],
Hao, Z.F.[Zhi-Feng],
BASSUM: A Bayesian semi-supervised method for classification feature
selection,
PR(44), No. 4, April 2011, pp. 811-820.
Elsevier DOI
1101
Feature selection, Semi-supervised, Structured object, Markov blanket;
Conditional independence test
BibRef
Breaban, M.[Mihaela],
Luchian, H.[Henri],
A unifying criterion for unsupervised clustering and feature selection,
PR(44), No. 4, April 2011, pp. 854-865.
Elsevier DOI
1101
Unsupervised feature selection, Unsupervised clustering, Global optimization
BibRef
Kalakech, M.[Mariam],
Biela, P.[Philippe],
Macaire, L.[Ludovic],
Hamad, D.[Denis],
Constraint scores for semi-supervised feature selection:
A comparative study,
PRL(32), No. 5, 1 April 2011, pp. 656-665.
Elsevier DOI
1103
Feature selection, Pairwise constraints, Kendall's coefficient;
Constraint scores, Laplacian score, Fisher score
BibRef
Qian, Y.H.[Yu-Hua],
Liang, J.[Jiye],
Pedrycz, W.[Witold],
Dang, C.Y.[Chuang-Yin],
An efficient accelerator for attribute reduction from incomplete data
in rough set framework,
PR(44), No. 8, August 2011, pp. 1658-1670.
Elsevier DOI
1104
Feature selection, Rough set theory, Incomplete information systems;
Positive approximation, Granular computing
BibRef
Wang, S.P.[Shi-Ping],
Pedrycz, W.[Witold],
Zhu, Q.X.[Qing-Xin],
Zhu, W.[William],
Subspace learning for unsupervised feature selection via matrix
factorization,
PR(48), No. 1, 2015, pp. 10-19.
Elsevier DOI
1410
Machine learning
BibRef
Zhou, N.[Nan],
Xu, Y.Y.[Yang-Yang],
Cheng, H.[Hong],
Fang, J.[Jun],
Pedrycz, W.[Witold],
Global and local structure preserving sparse subspace learning:
An iterative approach to unsupervised feature selection,
PR(53), No. 1, 2016, pp. 87-101.
Elsevier DOI
1602
Machine learning
BibRef
Zhou, N.[Nan],
Cheng, H.[Hong],
Zheng, Y.L.,
He, L.T.,
Pedrycz, W.[Witold],
Unsupervised feature selection by nonnegative sparsity adaptive
subspace learning,
ICWAPR16(18-24)
IEEE DOI
1611
Adaptation models
BibRef
Zhou, N.[Nan],
Xu, Y.Y.[Yang-Yang],
Cheng, H.[Hong],
Yuan, Z.J.[Ze-Jian],
Chen, B.D.[Ba-Dong],
Maximum Correntropy Criterion-Based Sparse Subspace Learning for
Unsupervised Feature Selection,
CirSysVideo(29), No. 2, February 2019, pp. 404-417.
IEEE DOI
1902
Feature extraction, Robustness, Kernel, Convergence,
Computational modeling, Measurement, Machine learning,
sparse subspace learning
BibRef
Yang, B.[Ben],
Wu, J.H.[Jing-Han],
Zhou, Y.[Yu],
Zhang, X.T.[Xue-Tao],
Lin, Z.P.[Zhi-Ping],
Nie, F.P.[Fei-Ping],
Chen, B.D.[Ba-Dong],
Robust spectral embedded bilateral orthogonal concept factorization
for clustering,
PR(150), 2024, pp. 110308.
Elsevier DOI
2403
Concept factorization, Spectral embedding, Correntropy, Clustering
BibRef
Liao, W.,
Pizurica, A.,
Scheunders, P.,
Philips, W.,
Pi, Y.,
Semisupervised Local Discriminant Analysis for Feature Extraction in
Hyperspectral Images,
GeoRS(51), No. 1, January 2013, pp. 184-198.
IEEE DOI
1301
BibRef
Schiezaro, M.[Mauricio],
Pedrini, H.[Helio],
Data feature selection based on Artificial Bee Colony algorithm,
JIVP(2013), No. 1, 2013, pp. 47.
DOI Link
1309
BibRef
Wang, L.[Ling],
Cheng, H.[Hong],
Liu, Z.C.[Zi-Cheng],
Zhu, C.[Ce],
A robust elastic net approach for feature learning,
JVCIR(25), No. 2, 2014, pp. 313-321.
Elsevier DOI
1402
Feature learning
BibRef
Bandyopadhyay, S.[Sanghamitra],
Bhadra, T.[Tapas],
Mitra, P.[Pabitra],
Maulik, U.[Ujjwal],
Integration of dense subgraph finding with feature clustering for
unsupervised feature selection,
PRL(40), No. 1, 2014, pp. 104-112.
Elsevier DOI
1403
Pattern recognition
BibRef
Zhu, P.F.[Peng-Fei],
Zuo, W.M.[Wang-Meng],
Zhang, L.[Lei],
Hu, Q.H.[Qing-Hua],
Shiu, S.C.K.[Simon C.K.],
Unsupervised feature selection by regularized self-representation,
PR(48), No. 2, 2015, pp. 438-446.
Elsevier DOI
1411
Self-representation
BibRef
Zhu, P.F.[Peng-Fei],
Zhu, W.C.[Wen-Cheng],
Wang, W.Z.[Wei-Zhi],
Zuo, W.M.[Wang-Meng],
Hu, Q.H.[Qing-Hua],
Non-convex regularized self-representation for unsupervised feature
selection,
IVC(60), No. 1, 2017, pp. 22-29.
Elsevier DOI
1704
Self-representation
BibRef
Zhu, P.F.[Peng-Fei],
Xu, Q.[Qian],
Hu, Q.H.[Qing-Hua],
Zhang, C.Q.[Chang-Qing],
Zhao, H.[Hong],
Multi-label feature selection with missing labels,
PR(74), No. 1, 2018, pp. 488-502.
Elsevier DOI
1711
Feature selection
BibRef
Liang, S.,
Xu, Q.[Qian],
Zhu, P.F.[Peng-Fei],
Hu, Q.H.[Qing-Hua],
Zhang, C.Q.[Chang-Qing],
Unsupervised feature selection by manifold regularized
self-representation,
ICIP17(2398-2402)
IEEE DOI
1803
Clustering algorithms, Face, Feature extraction, Laplace equations,
Manifolds, Optimization, Signal processing algorithms,
Unsupervised feature selection
BibRef
Zhu, P.F.[Peng-Fei],
Zhu, W.C.[Wen-Cheng],
Hu, Q.H.[Qing-Hua],
Zhang, C.Q.[Chang-Qing],
Zuo, W.M.[Wang-Meng],
Subspace clustering guided unsupervised feature selection,
PR(66), No. 1, 2017, pp. 364-374.
Elsevier DOI
1704
Subspace clustering
BibRef
Zhang, F.[Fan],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Saliency-Guided Unsupervised Feature Learning for Scene
Classification,
GeoRS(53), No. 4, April 2015, pp. 2175-2184.
IEEE DOI
1502
feature extraction
BibRef
Yao, J.[Jin],
Mao, Q.[Qi],
Goodison, S.[Steve],
Mai, V.[Volker],
Sun, Y.J.[Yi-Jun],
Feature selection for unsupervised learning through local learning,
PRL(53), No. 1, 2015, pp. 100-107.
Elsevier DOI
1502
Feature selection
BibRef
Li, Z.C.[Ze-Chao],
Tang, J.H.[Jin-Hui],
Unsupervised Feature Selection via Nonnegative Spectral Analysis and
Redundancy Control,
IP(24), No. 12, December 2015, pp. 5343-5355.
IEEE DOI
1512
feature selection
BibRef
Akay, B.[Bahriye],
Karaboga, D.[Dervis],
A survey on the applications of artificial bee colony in signal, image,
and video processing,
SIViP(9), No. 4, May 2015, pp. 967-990.
WWW Link.
1504
Survey, Bee Colony.
BibRef
Xu, Y.,
Qiu, P.,
Roysam, B.,
Unsupervised Discovery of Subspace Trends,
PAMI(37), No. 10, October 2015, pp. 2131-2145.
IEEE DOI
1509
Algorithm design and analysis
BibRef
Han, J.Q.[Jiu-Qi],
Sun, Z.Y.[Zheng-Ya],
Hao, H.W.[Hong-Wei],
L0-norm based structural sparse least square regression for feature
selection,
PR(48), No. 12, 2015, pp. 3927-3940.
Elsevier DOI
1509
Structural sparse learning
BibRef
Feng, J.[Jie],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Sun, T.[Tao],
Zhang, X.R.[Xiang-Rong],
Unsupervised feature selection based on maximum information and
minimum redundancy for hyperspectral images,
PR(51), No. 1, 2016, pp. 295-309.
Elsevier DOI
1601
Unsupervised feature selection
BibRef
Xu, L.,
Wong, A.,
Li, F.,
Clausi, D.A.,
Intrinsic Representation of Hyperspectral Imagery for Unsupervised
Feature Extraction,
GeoRS(54), No. 2, February 2016, pp. 1118-1130.
IEEE DOI
1601
Correlation
BibRef
Alba-Cabrera, E.[Eduardo],
Godoy-Calderon, S.[Salvador],
Ibarra-Fiallo, J.[Julio],
Generating synthetic test matrices as a benchmark for the
computational behavior of typical testor-finding algorithms,
PRL(80), No. 1, 2016, pp. 46-51.
Elsevier DOI
1609
Feature selection
BibRef
Wang, D.[Dong],
Tan, X.Y.[Xiao-Yang],
Unsupervised feature learning with C-SVDDNet,
PR(60), No. 1, 2016, pp. 473-485.
Elsevier DOI
1609
Unsupervised feature learning
BibRef
Wen, J.J.[Jia-Jun],
Lai, Z.H.[Zhi-Hui],
Zhan, Y.W.[Yin-Wei],
Cui, J.R.[Jin-Rong],
The L2,1-norm-based unsupervised optimal feature selection with
applications to action recognition,
PR(60), No. 1, 2016, pp. 515-530.
Elsevier DOI
1609
Feature selection
BibRef
Wen, J.J.[Jia-Jun],
Lai, Z.H.[Zhi-Hui],
Wong, W.K.[Wai Keung],
Cui, J.R.[Jin-Rong],
Wan, M.H.[Ming-Hua],
Optimal Feature Selection for Robust Classification via L2,1-Norms
Regularization,
ICPR14(517-521)
IEEE DOI
1412
Accuracy, Convergence, Face, Face recognition, Robustness, Training, Vectors
BibRef
Mo, D.M.[Dong-Mei],
Lai, Z.H.[Zhi-Hui],
Robust Jointly Sparse Regression with Generalized Orthogonal Learning
for Image Feature Selection,
PR(93), 2019, pp. 164-178.
Elsevier DOI
1906
Code, Matlab.
WWW Link. Dimensionality reduction, Local structure, Joint sparsity,
Orthogonality, Orthogonal matching pursuit
BibRef
Xiong, W.[Wei],
Zhang, L.[Lefei],
Du, B.[Bo],
Tao, D.C.[Da-Cheng],
Combining local and global:
Rich and robust feature pooling for visual recognition,
PR(62), No. 1, 2017, pp. 225-235.
Elsevier DOI
1705
Unsupervised learning
BibRef
Zhang, Z.H.[Zhi-Hong],
Bai, L.[Lu],
Liang, Y.H.[Yuan-Heng],
Hancock, E.R.[Edwin R.],
Joint hypergraph learning and sparse regression for feature selection,
PR(63), No. 1, 2017, pp. 291-309.
Elsevier DOI
1612
BibRef
Earlier:
Adaptive Graph Learning for Unsupervised Feature Selection,
CAIP15(I:790-800).
Springer DOI
1511
BibRef
And:
Unsupervised Feature Selection by Graph Optimization,
CIAP15(I:130-140).
Springer DOI
1511
Feature selection
BibRef
Zhang, Z.H.[Zhi-Hong],
Xiahou, J.B.[Jian-Bing],
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Coupled-Feature Hypergraph Representation for Feature Selection,
GbRPR15(44-53).
Springer DOI
1511
BibRef
Zaharieva, M.[Maia],
Breiteneder, C.[Christian],
Hudec, M.[Marcus],
Unsupervised group feature selection for media classification,
MultInfoRetr(6), No. 3, September 2017, pp. 233-249.
Springer DOI
1708
BibRef
Solorio-Fernández, S.[Saúl],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[J. Ariel],
A new Unsupervised Spectral Feature Selection Method for mixed data:
A filter approach,
PR(72), No. 1, 2017, pp. 314-326.
Elsevier DOI
1708
Unsupervised, feature, selection
BibRef
Zhao, L.,
Chen, Z.,
Wang, Z.J.,
Unsupervised Multiview Nonnegative Correlated Feature Learning for
Data Clustering,
SPLetters(25), No. 1, January 2018, pp. 60-64.
IEEE DOI
1801
correlation methods, image representation, optimisation,
pattern clustering, unsupervised learning, UMCFL method,
unsupervised learning
BibRef
Li, Y.D.[Yang-Ding],
Lei, C.[Cong],
Fang, Y.[Yue],
Hu, R.Y.[Rong-Yao],
Li, Y.G.[Yong-Gang],
Zhang, S.C.[Shi-Chao],
Unsupervised feature selection by combining subspace learning with
feature self-representation,
PRL(109), 2018, pp. 35-43.
Elsevier DOI
1806
Subspace learning, Feature selection, Self-representation
BibRef
Zhu, Q.H.[Qi-Hai],
Yang, Y.B.[Yu-Bin],
Discriminative embedded unsupervised feature selection,
PRL(112), 2018, pp. 219-225.
Elsevier DOI
1809
Unsupervised learning, Feature selection,
Laplacian regularization, Discriminative clustering, Simplex learning
BibRef
Zhou, P.[Peng],
Hu, X.G.[Xue-Gang],
Li, P.P.[Pei-Pei],
Wu, X.D.[Xin-Dong],
OFS-Density: A novel online streaming feature selection method,
PR(86), 2019, pp. 48-61.
Elsevier DOI
1811
Feature selection, Online feature selection,
Streaming features, Neighborhood rough set
BibRef
Teisseyre, P.[Pawel],
Zufferey, D.[Damien],
Slomka, M.[Marta],
Cost-sensitive classifier chains:
Selecting low-cost features in multi-label classification,
PR(86), 2019, pp. 290-319.
Elsevier DOI
1811
Multi-label classification, Cost-sensitive feature selection,
Classifier chains, Logistic regression, Stability, Generalization error bounds
BibRef
Su, Y.T.[Yu-Ting],
Bai, X.[Xu],
Li, W.[Wu],
Jing, P.G.[Pei-Guang],
Zhang, J.[Jing],
Liu, J.[Jing],
Graph regularized low-rank tensor representation for feature
selection,
JVCIR(56), 2018, pp. 234-244.
Elsevier DOI
1811
Unsupervised feature selection,
Low-rank tensor representation, Graph embedding, Subspace clustering
BibRef
Bradley, P.E.[Patrick Erik],
Keller, S.[Sina],
Weinmann, M.[Martin],
Unsupervised Feature Selection Based on Ultrametricity and Sparse
Training Data: A Case Study for the Classification of
High-Dimensional Hyperspectral Data,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Kashef, S.[Shima],
Nezamabadi-pour, H.[Hossein],
A label-specific multi-label feature selection algorithm based on the
Pareto dominance concept,
PR(88), 2019, pp. 654-667.
Elsevier DOI
1901
Multi-label dataset, Feature selection,
Label-specific features, Pareto dominance, Online feature selection
BibRef
Yuan, H.L.[Hao-Liang],
Li, J.Y.[Jun-Yu],
Lai, L.L.[Loi Lei],
Tang, Y.Y.[Yuan Yan],
Joint sparse matrix regression and nonnegative spectral analysis for
two-dimensional unsupervised feature selection,
PR(89), 2019, pp. 119-133.
Elsevier DOI
1902
Unsupervised learning, Two-dimensional feature selection,
Sparse matrix regression, Nonnegative spectral analysis
BibRef
Wang, H.[Haishuai],
Zhang, Q.[Qin],
Wu, J.[Jia],
Pan, S.R.[Shi-Rui],
Chen, Y.X.[Yi-Xin],
Time series feature learning with labeled and unlabeled data,
PR(89), 2019, pp. 55-66.
Elsevier DOI
1902
Time series, Feature selection, Semi-supervised learning, Classification
BibRef
Nie, F.,
Yang, S.,
Zhang, R.,
Li, X.,
A General Framework for Auto-Weighted Feature Selection via Global
Redundancy Minimization,
IP(28), No. 5, May 2019, pp. 2428-2438.
IEEE DOI
1903
data mining, feature extraction, feature selection, graph theory,
learning (artificial intelligence), minimisation,
redundant features
BibRef
de Amorim, R.C.[Renato Cordeiro],
Unsupervised feature selection for large data sets,
PRL(128), 2019, pp. 183-189.
Elsevier DOI
1912
Unsupervised feature selection, Clustering, Big data
BibRef
Li, X.,
Zhang, H.,
Zhang, R.,
Nie, F.,
Discriminative and Uncorrelated Feature Selection With Constrained
Spectral Analysis in Unsupervised Learning,
IP(29), 2020, pp. 2139-2149.
IEEE DOI
2001
Feature extraction, Spectral analysis, Unsupervised learning,
Optimization, Manifolds, Linear programming, Task analysis,
unsupervised learning
BibRef
Guo, M.,
Yang, S.,
Nie, F.,
Li, X.,
Locality-Based Discriminant Feature Selection with Trace Ratio,
ICIP18(3373-3377)
IEEE DOI
1809
Feature extraction, Robustness, Linear programming,
Data structures, Power capacitors, Optical filters, Optimization,
local data structure
BibRef
Yang, S.,
Nie, F.,
Li, X.,
Unsupervised Feature Selection with Local Structure Learning,
ICIP18(3398-3402)
IEEE DOI
1809
Feature extraction, Eigenvalues and eigenfunctions,
Laplace equations, Sparse matrices, Face, Optical imaging,
feature selection
BibRef
Yan, X.Y.[Xu-Yang],
Nazmi, S.[Shabnam],
Erol, B.A.[Berat A.],
Homaifar, A.[Abdollah],
Gebru, B.[Biniam],
Tunstel, E.[Edward],
An efficient unsupervised feature selection procedure through feature
clustering,
PRL(131), 2020, pp. 277-284.
Elsevier DOI
2004
Unsupervised feature selection, Feature clustering, Feature redundancy
BibRef
Gan, J.Z.[Jiang-Zhang],
Wen, G.Q.[Guo-Qiu],
Yu, H.[Hao],
Zheng, W.[Wei],
Lei, C.[Cong],
Supervised feature selection by self-paced learning regression,
PRL(132), 2020, pp. 30-37.
Elsevier DOI
2005
Feature selection, Self-paced learning, Regression analysis,
Supervised learning, Sparse learning
BibRef
Zheng, W.[Wei],
Zhu, X.F.[Xiao-Feng],
Wen, G.Q.[Guo-Qiu],
Zhu, Y.H.[Yong-Hua],
Yu, H.[Hao],
Gan, J.Z.[Jiang-Zhang],
Unsupervised feature selection by self-paced learning regularization,
PRL(132), 2020, pp. 4-11.
Elsevier DOI
2005
Feature selection, Self-paced learning, Robust statistic
BibRef
Zhang, R.,
Li, X.,
Unsupervised Feature Selection Via Data Reconstruction and Side
Information,
IP(29), 2020, pp. 8097-8106.
IEEE DOI
2008
Feature extraction, Robustness, Image reconstruction, Manifolds,
Laplace equations, Minimization, Data models, Feature selection,
the~graph embedding
BibRef
Lim, H.K.[Hyun-Ki],
Kim, D.W.[Dae-Won],
Pairwise dependence-based unsupervised feature selection,
PR(111), 2021, pp. 107663.
Elsevier DOI
2012
Unsupervised feature selection, Feature dependency,
Feature redundancy, Joint entropy, regularization
BibRef
Wu, J.S.[Jian-Sheng],
Song, M.X.[Meng-Xiao],
Min, W.D.[Wei-Dong],
Lai, J.H.[Jian-Huang],
Zheng, W.S.[Wei-Shi],
Joint adaptive manifold and embedding learning for unsupervised
feature selection,
PR(112), 2021, pp. 107742.
Elsevier DOI
2102
Unsupervised feature selection, Manifold learning,
Embedding learning, Sparse learning
BibRef
Shang, R.H.[Rong-Hua],
Wang, L.J.[Lu-Juan],
Shang, F.H.[Fan-Hua],
Jiao, L.C.[Li-Cheng],
Li, Y.Y.[Yang-Yang],
Dual space latent representation learning for unsupervised feature
selection,
PR(114), 2021, pp. 107873.
Elsevier DOI
2103
Latent representation learning,
Unsupervised feature selection, Dual space, Sparse regression
BibRef
Song, Z.H.[Zi-Hao],
Song, P.[Peng],
Sheng, C.[Chao],
Zheng, W.M.[Wen-Ming],
Zhang, W.J.[Wen-Jing],
Li, S.[Shaokai],
A Novel Discriminative Virtual Label Regression Method for Unsupervised
Feature Selection,
IEICE(E105-D), No. 1, January 2022, pp. 175-179.
WWW Link.
2201
BibRef
Huang, P.[Pei],
Yang, X.W.[Xiao-Wei],
Unsupervised feature selection via adaptive graph and dependency
score,
PR(127), 2022, pp. 108622.
Elsevier DOI
2205
Unsupervised feature selection, Adaptive graph, Mutual information, Entropy
BibRef
Liu, K.H.[Keng-Hao],
Chen, Y.K.[Yu-Kai],
Chen, T.Y.[Tsun-Yang],
A Band Subset Selection Approach Based on Sparse Self-Representation
and Band Grouping for Hyperspectral Image Classification,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chien, H.C.[Hung-Chang],
Lai, C.H.[Chih-Hung],
Liu, K.H.[Keng-Hao],
Unsupervised Band Selection Based on Group-Based Sparse Representation,
HISP16(I: 389-401).
Springer DOI
1704
BibRef
Chen, B.[Bilian],
Guan, J.[Jiewen],
Li, Z.N.[Zhe-Ning],
Unsupervised Feature Selection via Graph Regularized Nonnegative CP
Decomposition,
PAMI(45), No. 2, February 2023, pp. 2582-2594.
IEEE DOI
2301
Feature extraction, Tensors, Sparse matrices, Data models,
Principal component analysis, Optimization, Matrix decomposition,
classification
BibRef
Shi, D.[Dan],
Zhu, L.[Lei],
Li, J.J.[Jing-Jing],
Zhang, Z.[Zheng],
Chang, X.J.[Xiao-Jun],
Unsupervised Adaptive Feature Selection With Binary Hashing,
IP(32), 2023, pp. 838-853.
IEEE DOI
2301
Feature extraction, Codes, Spectral analysis, Semantics,
Task analysis, Adaptation models, Correlation, Adaptive,
unsupervised feature selection
BibRef
Li, Z.X.[Zheng-Xin],
Nie, F.P.[Fei-Ping],
Bian, J.[Jintang],
Wu, D.Y.[Dan-Yang],
Li, X.L.[Xue-Long],
Sparse PCA via L_2,p-Norm Regularization for Unsupervised Feature
Selection,
PAMI(45), No. 4, April 2023, pp. 5322-5328.
IEEE DOI
2303
Feature extraction, Principal component analysis,
Sparse matrices, Optimization, Task analysis, Minimization, sparse learning
BibRef
Wang, Z.[Zheng],
Li, Q.[Qi],
Zhao, H.F.[Hai-Feng],
Nie, F.P.[Fei-Ping],
Simultaneous local clustering and unsupervised feature selection via
strong space constraint,
PR(142), 2023, pp. 109718.
Elsevier DOI
2307
Unsupervised feature selection, -Norm constraint optimization,
Local structure learning
BibRef
Huang, P.[Pei],
Kong, Z.M.[Zhao-Ming],
Xie, M.[Mengying],
Yang, X.W.[Xiao-Wei],
Robust unsupervised feature selection via data relationship learning,
PR(142), 2023, pp. 109676.
Elsevier DOI
2307
Unsupervised feature selection, Outlier, Robustness
BibRef
Guo, L.L.[Ling-Li],
Chen, X.H.[Xiu-Hong],
Latent low-rank representation sparse regression model with symmetric
constraint for unsupervised feature selection,
IET-IPR(17), No. 9, 2023, pp. 2791-2805.
DOI Link
2307
face recognition, feature selection, image representation,
pattern clustering, regression analysis
BibRef
Wang, C.C.[Chen-Chen],
Wang, J.[Jun],
Gu, Z.[Zhichen],
Wei, J.M.[Jin-Mao],
Liu, J.[Jian],
Unsupervised feature selection by learning exponential weights,
PR(148), 2024, pp. 110183.
Elsevier DOI
2402
Unsupervised feature selection, Sparse regression,
Local structure learning, Global information preservation
BibRef
Li, D.Z.[Duan-Zhang],
Chen, H.M.[Hong-Mei],
Mi, Y.[Yong],
Luo, C.[Chuan],
Horng, S.J.[Shi-Jinn],
Li, T.R.[Tian-Rui],
Dual space-based fuzzy graphs and orthogonal basis clustering for
unsupervised feature selection,
PR(155), 2024, pp. 110683.
Elsevier DOI
2408
Unsupervised feature selection, Dual-graph,
Orthogonal basis clustering, Sparse learning
BibRef
Wang, M.,
Yue, X.,
Gao, C.,
Chen, Y.,
Feature Selection Ensemble for Symbolic Data Classification with AHP,
ICPR18(868-873)
IEEE DOI
1812
Feature extraction, Analytic hierarchy process,
Distributed databases, Linear matrix inequalities, Task analysis,
analytic hierarchy process
BibRef
Zheng, J.,
Lee, T.,
Feng, C.,
Lit, X.,
Zhang, Z.,
Robust Attentional Pooling via Feature Selection,
ICPR18(2038-2043)
IEEE DOI
1812
Feature extraction, Visualization, Image coding, Solid modeling
BibRef
Wei, R.[Ran],
Robles-Kelly, A.[Antonio],
Álvarez, J.[José],
Context Free Band Reduction Using a Convolutional Neural Network,
SSSPR18(86-96).
Springer DOI
1810
BibRef
Wangila, K.W.,
Gao, K.,
Zhu, P.,
Hu, Q.,
Zhang, C.,
Mixed sparsity regularized multi-view unsupervised feature selection,
ICIP17(1930-1934)
IEEE DOI
1803
Convergence, Data models, Feature extraction, Laplace equations,
Noise measurement, Optimization, Social network services,
unsupervised feature selection
BibRef
Zhuge, W.Z.[Wen-Zhang],
Hou, C.,
Nie, F.,
Yi, D.,
Unsupervised feature extraction using a learned graph with clustering
structure,
ICPR16(3597-3602)
IEEE DOI
1705
Algorithm design and analysis, Clustering algorithms, Concrete,
Eigenvalues and eigenfunctions, Feature extraction,
Laplace equations, Learning systems, clustering information,
feature extraction, learned, graph
BibRef
Nie, S.Q.[Si-Qi],
Gao, T.[Tian],
Ji, Q.A.[Qi-Ang],
An information theoretic feature selection framework based on integer
programming,
ICPR16(3584-3589)
IEEE DOI
1705
Computers, Entropy, Feature extraction,
Linear programming, Mutual information, Systems, engineering, and, theory
BibRef
Rani, D.S.,
Rani, T.S.,
Bhavani, S.D.,
Feature subset selection using consensus clustering,
ICAPR15(1-6)
IEEE DOI
1511
feature selection
BibRef
Majumder, A.,
Hasanuzzaman, M.,
Ekbal, A.,
Feature selection for event extraction in biomedical text,
ICAPR15(1-6)
IEEE DOI
1511
data mining
BibRef
Han, D.Y.[Dong-Yoon],
Kim, J.[Junmo],
Unsupervised Simultaneous Orthogonal basis Clustering Feature
Selection,
CVPR15(5016-5023)
IEEE DOI
1510
BibRef
Sui, C.H.[Chen-Hong],
Tian, Y.[Yan],
Xu, Y.P.[Yi-Ping],
An Unsupervised Band Selection Method Based on Overall Accuracy
Prediction,
ICPR14(3756-3761)
IEEE DOI
1412
Accuracy
BibRef
Lan, T.[Tian],
Raptis, M.[Michalis],
Sigal, L.[Leonid],
Mori, G.[Greg],
From Subcategories to Visual Composites:
A Multi-level Framework for Object Detection,
ICCV13(369-376)
IEEE DOI
1403
Appearence changes with pose.
Subcategories automatically, object class (car) given.
BibRef
Liu, Y.[Yang],
Wang, Y.Z.[Yi-Zhou],
Unsupervised discriminative feature selection in a kernel space via
L2,1-norm minimization,
ICPR12(1205-1208).
WWW Link.
1302
BibRef
Coelho, F.[Frederico],
Braga, A.P.[Antonio Padua],
Verleysen, M.[Michel],
Multi-Objective Semi-Supervised Feature Selection and Model Selection
Based on Pearson's Correlation Coefficient,
CIARP10(509-516).
Springer DOI
1011
BibRef
Wang, S.Y.[Sui-Yu],
Baird, H.S.[Henry S.],
Performance Evaluation of Automatic Feature Discovery Focused within
Error Clusters,
ICPR10(718-721).
IEEE DOI
1008
BibRef
Earlier:
Feature selection focused within error clusters,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhao, B.[Bin],
Kwok, J.T.[James T.],
Wang, F.[Fei],
Zhang, C.S.[Chang-Shui],
Unsupervised Maximum Margin Feature Selection with manifold
regularization,
CVPR09(888-895).
IEEE DOI
0906
BibRef
Xie, L.X.[Le-Xing],
Chang, S.F.[Shih-Fu],
Divakaran, A.,
Sun, H.F.[Hui-Fang],
Feature selection for unsupervised discovery of statistical temporal
structures in video,
ICIP03(I: 29-32).
IEEE DOI
0312
BibRef
Murphey, Y.L.,
Guo, H.,
Automatic Feature Selection: A Hybrid Statistical Approach,
ICPR00(Vol II: 382-385).
IEEE DOI
0009
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Feature Selection using Search and Learning .