16.5.2 Rotation Only

Chapter Contents (Back)
Motion, Rotation. Rotation.
See also Rotation Averaging.

Jerian, C.[Charles], and Jain, R.C.[Ramesh C.],
Polynomial Methods for Structure from Motion,
PAMI(12), No. 12, December 1990, pp. 1150-1166.
IEEE DOI BibRef 9012
Earlier: ICCV88(197-206).
IEEE DOI Motion, Structure. Perspective assumption. Polynomial solution to the rotation problem with 8 (or more) point pairs. The space is quantized and all possible tilt angles are tried to find the best close one, then the amount of rotation is generated. BibRef

Kanatani, K.,
Analysis of 3-D Rotation Fitting,
PAMI(16), No. 5, May 1994, pp. 543-549.
IEEE DOI BibRef 9405

Kanatani, K.,
Automatic Singularity Test for Motion Analysis by an Information Criterion,
ECCV96(I:697-708).
Springer DOI BibRef 9600

Aitken, V.C., Schwartz, H.M.,
A Comparison of Rotational Representations in Structure and Motion Estimation for Maneuvering Objects,
IP(4), No. 4, April 1995, pp. 516-520.
IEEE DOI BibRef 9504

Goryn, D.[Daniel], Hein, S.[Soren],
On the Estimation of Rigid Body Rotation from Noisy Data,
PAMI(17), No. 12, December 1995, pp. 1219-1220.
IEEE DOI BibRef 9512

Manmatha, R., and Oliensis, J.,
Extracting Affine Deformations from Image Patches - I: Finding Scale and Rotation,
CVPR93(754-755).
IEEE DOI BibRef 9300
And:
Measuring the Affine Transform - I: Recovering Scale and Rotation,
DARPA93(449-458). Two frames, find the affine transformation between patches. BibRef

Manmatha, R.,
A Framework for Recovering Affine Transforms Using Points, Lines or Image Brightnesses,
CVPR94(141-146).
IEEE DOI BibRef 9400

Manmatha, R.,
Measuring the Affine Transform Using Gaussian Filters,
ECCV94(B:159-164).
Springer DOI BibRef 9400

Sawhney, H.S., Oliensis, J., and Hanson, A.R.,
Image Description and 3-D Reconstruction from Image Trajectories of Rotational Motion,
PAMI(15), No. 9, September 1993, pp. 885-898.
IEEE DOI BibRef 9309
Earlier: A1, A2 Only:
Description and Interpretation of Rotational Motion from Image Trajectories,
DARPA89(992-1003). BibRef
And: A1, A2, A3:
Description and Reconstruction from Image Trajectories of Rotational Motion,
ICCV90(494-498).
IEEE DOI Find the rotation and structure for a set of 3-D points rotating around an arbitrary axis. Uses grouping of points rather than matching (find a conic that fits a group, this gives a certain 3-D structure). BibRef

Sawhney, H.S., Hanson, A.R.,
Comparative Results of Some Motion Algorithms on Real Image Sequences,
DARPA90(307-313). BibRef 9000

Ostuni, J., Dunn, S.,
Motion from Three Weak Perspective Images Using Image Rotation,
PAMI(18), No. 1, January 1996, pp. 64-69.
IEEE DOI Given 4 points in a pair of images, find the rotation. A linear system is then generated to get the full rotation matricies. BibRef 9601

Young, T.Y., Wang, Y.L.,
Analysis of Three-Dimensional Rotation and Linear Shape Changes,
PRL(2), 1984, pp. 239-242. BibRef 8400

Xu, G.[Gang], Sugimoto, N.[Noriko],
Linear Algorithm for Motion from Three Weak Perspective Images Using Euler Angles,
PAMI(21), No. 1, January 1999, pp. 54-57.
IEEE DOI Code, Motion. Code is available:
HTML Version. Determine the rotations and structure. Uses epipolar geometry computations from:
See also Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach. But see results in:
See also Motion Estimation With More Than Two Frames. BibRef 9901

Xu, G.[Gang], Terai, J.I.[Jun-Ichi], Shum, H.Y.[Heung-Yeung],
A Linear Algorithm for Camera Self-Calibration, Motion and Structure Recovery for Multi-Planar Scenes from Two Perspective Images,
CVPR00(II: 474-479).
IEEE DOI 0005
BibRef

Noumeir, R.[Rita],
Detecting three-dimensional rotation of an ellipsoid from its orthographic projections,
PRL(20), No. 6. June 1999, pp. 585-590. BibRef 9906

Weerasinghe, C., Yan, H., Ji, L.,
A fast method for estimation of object rotation function in MRI using a similarity criterion among k-space overlap data,
SP(78), No. 2, 1999, pp. 215-230. BibRef 9900

Mendonça, P.R.S.[Paulo R.S.], Wong, K.Y.K., Cipolla, R.[Roberto],
Epipolar Geometry from Profiles under Circular Motion,
PAMI(23), No. 6, June 2001, pp. 604-616.
IEEE DOI 0106
Motion from contours (profiles). Object rotates on turntable, stationary camera. Exploit symmetry properties.
See also Camera Calibration from Symmetry.
See also Multiview Geometry: Profiles and Self-Calibration. BibRef

Wong, K.Y.K.[Kwan-Yee Kenneth], and Cipolla, R.[Roberto],
Reconstruction of Outdoor Sculptures from Silhouettes under Approximate Circular Motion of an Uncalibrated Hand-Held Camera,
MVA02(459-462).
PDF File. BibRef 0200
Earlier:
Structure and Motion from Silhouettes,
ICCV01(II: 217-222).
IEEE DOI 0106
BibRef

Wong, K.Y.K.[Kwan-Yee K.], Mendonca, P.R.S.[Paulo R.S.], Cipolla, R.[Roberto],
Structure and Motion Estimation from Apparent Contours under Circular Motion,
IVC(20), No. 5-6, 15 April 2002, pp. 441-448.
Elsevier DOI 0204

See also Silhouette Coherence for Camera Calibration under Circular Motion. BibRef

Wong, K.Y.K., Mendonca, P.R.S., Cipolla, R.,
Camera calibration from surfaces of revolution,
PAMI(25), No. 2, February 2003, pp. 147-161.
IEEE DOI 0301
BibRef
Earlier:
Camera Calibration from Symmetry,
ConferenceThe Mathematics of Surfaces IX, September 2000, pp. 214-226. Cambridge, UK. harmonic homology.
PDF File.
See also Silhouette Coherence for Camera Calibration under Circular Motion. BibRef

Mendonca, P.R.S., Wong, K.Y.K., Cipolla, R.,
Camera Pose Estimation and Reconstruction from Image Profiles under Circular Motion,
ECCV00(II: 864-877).
Springer DOI Apparent Contours.
PDF File. 0003
BibRef

Mendonca, P.R.S.[Paulo R.S.], Cipolla, R.[Roberto],
Estimation of Epipolar Geometry from Apparent Contours: Affine and Circular Motion Cases,
CVPR99(I: 9-14).
IEEE DOI Circlular motion is for wide baseline cases only. BibRef 9900

Mendonca, P.R.S., Wong, K.Y.K., Cipolla, R.,
Recovery of Circular Motion from Profiles of Surfaces,
VisionAlg99(151-167).
PDF File. 0101
Title in the abstract given as: Circular motion recovery from image profiles (title is as given in full paper) Pages may be: 119-126. BibRef

Wong, K.Y.K., Mendonca, P.R.S., Cipolla, R.,
Reconstruction and motion estimation from apparent contours under circular motion,
BMVC99(I: 83-92).
PDF File. Apparent Contours.
PDF File.
See also 1D Camera Geometry and Its Application to the Self-Calibration of Circular Motion Sequences. BibRef 9900

Leduc, J.P.,
Spatiotemporal Wavelet Transforms for Digital Signal Analysis,
SP(60), No. 1, July 1997, pp. 23-41. 9709
BibRef

Leduc, J.P.[Jean-Pierre],
A Group-Theoretic Construction with Spatiotemporal Wavelets for the Analysis of Rotational Motion,
JMIV(17), No. 3, November 2002, pp. 207-236.
DOI Link 0211
BibRef

Jiang, G.[Guang], Tsui, H.T.[Hung-Tat], Quan, L.[Long], Zisserman, A.[Andrew],
Geometry of single axis motions using conic fitting,
PAMI(25), No. 10, October 2003, pp. 1343-1348.
IEEE Abstract. 0310
BibRef
Earlier:
Single Axis Geometry by Fitting Conics,
ECCV02(I: 537 ff.).
Springer DOI 0205
Fit a conic over the points in multiple views. E.g. 1 point in 5 views. How does it compare to the earlier analysis resulting in 1 point in 5 frames (
See also Motion Estimation With More Than Two Frames. or
See also Number of Solutions for Motion and Structure from Multiple Frame Correspondence. )? BibRef

Jiang, G.[Guang], Tsui, H.T.[Hung-Tat], Quan, L.[Long], and Liu, S.Q.[Shang-Qian],
Recovering the Geometry of Single Axis Motions by Conic Fitting,
CVPR01(I:293-298).
IEEE DOI 0110
From unknown rotations. BibRef

Jiang, G.[Guang], Quan, L.[Long], Tsui, H.T.[Hung-Tat],
Circular Motion Geometry Using Minimal Data,
PAMI(26), No. 6, June 2004, pp. 721-731.
IEEE Abstract. 0404
BibRef
Earlier:
Circular motion geometry by minimal 2 points in 4 images,
ICCV03(221-227).
IEEE DOI 0311
Structure from turntable motion. 2 points in 4 images. So, for rotation 1 point in 4 images was shown earlier.
See also Motion Estimation With More Than Two Frames. BibRef

Jiang, G.[Guang], Wei, Y.C.[Yi-Chen], Quan, L.[Long], Tsui, H.T.[Hung-Tat], Shum, H.Y.[Heung Yeung],
Outward-Looking Circular Motion Analysis of Large Image Sequences,
PAMI(27), No. 2, February 2005, pp. 271-277.
IEEE Abstract. 0501
mounted video camera, moving in circular motion. BibRef

Molnar, J.R.S.[Joseph R. S.], Mutz, A.H.[Andrew H.],
Velocity-dependent dewarping of images,
US_Patent6,687,387, Feb 3, 2004
WWW Link. rotations BibRef 0402

Feng, M.[Mu], Reed, T.R.,
Motion Estimation in the 3-D Gabor Domain,
IP(16), No. 8, August 2007, pp. 2038-2047.
IEEE DOI 0709
BibRef
Earlier:
Detection and Estimation of Rotational Motions Using the 3-D Gabor Representation,
ICIP05(I: 133-136).
IEEE DOI 0512
BibRef
Earlier:
Dense Motion Field Estimation by 3-D Gabor Representation,
ICIP04(IV: 2555-2558).
IEEE DOI 0505
BibRef

Cao, W.P.[Wan-Peng], Che, R.S.[Ren-Sheng], Ye, D.[Dong],
Estimation of the center of rotation and 3D motion parameters from stereo sequence images and virtual validation using three-COMERO,
PRL(28), No. 13, 1 October 2007, pp. 1593-1599.
Elsevier DOI 0709
Motion model; Centers of rotation; Stereo sequences images; Virtual simulation BibRef

Zhong, H., Hung, Y.S.,
Self-calibration from one circular motion sequence and two images,
PR(39), No. 9, September 2006, pp. 1672-1678.
Elsevier DOI Self-calibration; Circular motion; Circular projective reconstruction 0606
BibRef

Zhong, H., Hung, Y.S.,
Multi-stage 3D reconstruction under circular motion,
IVC(25), No. 11, 1 November 2007, pp. 1814-1823.
Elsevier DOI 0709
Multi-stage reconstruction; Circular motion; Circular projective reconstruction BibRef

Thibault, Y.[Yohan], Kenmochi, Y.[Yukiko], Sugimoto, A.[Akihiro],
Computing upper and lower bounds of rotation angles from digital images,
PR(42), No. 8, August 2009, pp. 1708-1717.
Elsevier DOI 0904
BibRef
Earlier:
Computing Admissible Rotation Angles from Rotated Digital Images,
IWCIA08(xx-yy).
Springer DOI 0804
Discrete geometry; Rotation; Discrete rotation; Hinge angles; Pythagorean angles; Admissible rotation angles BibRef

Lee, J.M.[Jong-Min], Kim, W.Y.[Whoi-Yul],
A Comparative Study of Rotation Angle Estimation Methods Based on Complex Moments,
IEICE(E95-D), No. 5, May 2012, pp. 1485-1493.
WWW Link. 1202
BibRef

Althloothi, S., Mahoor, M.H., Voyles, R.M.,
A Robust Method for Rotation Estimation Using Spherical Harmonics Representation,
IP(22), No. 6, 2013, pp. 2306-2316.
IEEE DOI 1307
3D object rotation estimation; unit quaternion vector; Eigendecomposition BibRef

Althloothi, S.[Salah], Mahoor, M.H.[Mohammad H.], Zhang, X.[Xiao], Voyles, R.M.[Richard M.],
Human activity recognition using multi-features and multiple kernel learning,
PR(47), No. 5, 2014, pp. 1800-1812.
Elsevier DOI 1402
Human activity recognition
See also Facial expression recognition using HessianMKL based multiclass-SVM. BibRef

Chen, C., Ni, J., Shen, Z.,
Effective Estimation of Image Rotation Angle Using Spectral Method,
SPLetters(21), No. 7, July 2014, pp. 890-894.
IEEE DOI 1405
Digital images BibRef

Jin, J.[Jing], Zhao, L.[Lingna], Xu, S.L.[Sheng-Li],
High-precision rotation angle measurement method based on monocular vision,
JOSA-A(31), No. 7, July 2014, pp. 1401-1407.
DOI Link 1407
Three-dimensional sensing; Motion detection; Algorithms BibRef

Benseddik, H.E.[Houssem-Eddine], Hadj-Abdelkader, H.[Hicham], Cherki, B.[Brahim], Bouchafa, S.[Samia],
Direct method for rotation estimation from spherical images using 3D mesh surfaces with SPHARM representation,
JVCIR(40, Part B), No. 1, 2016, pp. 708-720.
Elsevier DOI 1610
Rotation estimation BibRef

Guan, B.[Banglei], Yu, Q.F.[Qi-Feng], Fraundorfer, F.[Friedrich],
Minimal solutions for the rotational alignment of IMU-camera systems using homography constraints,
CVIU(170), 2018, pp. 79-91.
Elsevier DOI 1806
IMU-camera calibration, Rotational alignment, Minimal solution, Homography constraint, Algebraic solution, Pure rotation BibRef

Esteves, C.[Carlos], Allen-Blanchette, C.[Christine], Makadia, A.[Ameesh], Daniilidis, K.[Kostas],
Learning SO(3) Equivariant Representations with Spherical CNNs,
IJCV(128), No. 3, March 2020, pp. 588-600.
Springer DOI 2003
BibRef
Earlier: ECCV18(XIII: 54-70).
Springer DOI 1810
Code:
WWW Link. BibRef

Wang, W.T.[Wan-Tian], Zhu, Y.[Yong], Tang, Z.Y.[Zi-Yue], Chen, Y.C.[Yi-Chang], Zhu, Z.B.[Zhen-Bo], Sun, Y.J.[Yong-Jian], Zhou, C.[Chang],
Efficient Rotational Angular Velocity Estimation of Rotor Target via Modified Short-Time Fractional Fourier Transform,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Wang, W.T.[Wan-Tian], Zhang, J.H.[Jia-Hao], Wu, H.[Hao], Meng, J.[Jin],
An Adaptive and Accurate Method for Rotational Angular Velocity Estimation of Rotor Targets via Fourier Coefficient Interpolation,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Ciattaglia, G.[Gianluca], Iadarola, G.[Grazia], Senigagliesi, L.[Linda], Spinsante, S.[Susanna], Gambi, E.[Ennio],
UAV Propeller Rotational Speed Measurement through FMCW Radars,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Kuang, F.[Fa], Zhao, Z.[Zunjin], Xiong, B.S.[Bang-Shu], Wang, L.[Lei], Ou, Q.[Qiaofeng], Yu, L.[Lei],
A lightweight model for blade tip image enhancement in helicopter rotor motion parameter measurement system,
SP:IC(113), 2023, pp. 116935.
Elsevier DOI 2303
Fast image enhancement, Lightweight model, Blade tip image, Helicopter rotor BibRef


Delattre, F.[Fabien], Dirnfeld, D.[David], Nguyen, P.[Phat], Scarano, S.[Stephen], Jones, M.J.[Michael J.], Miraldo, P.[Pedro], Learned-Miller, E.[Erik],
Robust Frame-to-Frame Camera Rotation Estimation in Crowded Scenes,
ICCV23(9718-9728)
IEEE DOI Code:
WWW Link. 2401
BibRef

Cheng, Z.[Zezhou], Gadelha, M.[Matheus], Maji, S.[Subhransu],
Accidental Turntables: Learning 3D Pose by Watching Objects Turn,
R6D23(2105-2114)
IEEE DOI 2401
BibRef

Liu, Y.L.[Yu-Lin], Liu, H.R.[Hao-Ran], Yin, Y.[Yingda], Wang, Y.[Yang], Chen, B.Q.[Bao-Quan], Wang, H.[He],
Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling,
CVPR23(21264-21273)
IEEE DOI 2309
BibRef

Peng, L.Z.[Liang-Zu], Fazlyab, M.[Mahyar], Vidal, R.[René],
Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not,
ECCV22(XXIII:673-691).
Springer DOI 2211
BibRef

Li, Y.Y.[Yan-Yan], Tombari, F.[Federico],
E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs,
ECCV22(XXII:306-322).
Springer DOI 2211
BibRef

Zhang, J.Y.[Jason Y.], Ramanan, D.[Deva], Tulsiani, S.[Shubham],
RelPose: Predicting Probabilistic Relative Rotation for Single Objects in the Wild,
ECCV22(XXXI:592-611).
Springer DOI 2211
BibRef

Muhle, D.[Dominik], Koestler, L.[Lukas], Demmel, N.[Nikolaus], Bernard, F.[Florian], Cremers, D.[Daniel],
The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation Optimization under Uncertain Feature Positions,
CVPR22(1809-1818)
IEEE DOI 2210
Uncertainty, Estimation, Probabilistic logic, Nonhomogeneous media, Linear programming, Real-time systems, Pose estimation and tracking BibRef

Mills, S.[Steven],
Relative Camera Rotation from a Single Oriented Correspondence,
IVCNZ21(1-6)
IEEE DOI 2201
BibRef

Yang, X.[Xue], Hou, L.P.[Li-Ping], Zhou, Y.[Yue], Wang, W.T.[Wen-Tao], Yan, J.C.[Jun-Chi],
Dense Label Encoding for Boundary Discontinuity Free Rotation Detection,
CVPR21(15814-15824)
IEEE DOI 2111
Training, Visualization, Codes, Estimation, Detectors, Benchmark testing BibRef

Cai, R.[Ruojin], Hariharan, B.[Bharath], Snavely, N.[Noah], Averbuch-Elor, H.[Hadar],
Extreme Rotation Estimation using Dense Correlation Volumes,
CVPR21(14561-14570)
IEEE DOI 2111
Solid modeling, Correlation, Computational modeling, Urban areas, Lighting, Training data BibRef

Yang, H.[Heng], Carlone, L.[Luca],
A Quaternion-Based Certifiably Optimal Solution to the Wahba Problem With Outliers,
ICCV19(1665-1674)
IEEE DOI 2004
Rotation search. computational complexity, concave programming, convex programming, quadratic programming, BibRef

Cariow, A.[Aleksandr], Cariowa, G.[Galina], Majorkowska-Mech, D.[Dorota],
A Fast Algorithm for Quaternion-Based 4D Rotation,
ICCVG18(28-37).
Springer DOI 1810
BibRef

Hartmann, W.[Wilfried], Havlena, M.[Michal], Schindler, K.[Konrad],
Visual Gyroscope for Accurate Orientation Estimation,
WACV15(286-293)
IEEE DOI 1503
Accuracy. Estimate rotations. BibRef

Kneip, L.[Laurent], Lynen, S.[Simon],
Direct Optimization of Frame-to-Frame Rotation,
ICCV13(2352-2359)
IEEE DOI 1403
Geometric Vision; Relative Pose Computation BibRef

Kneip, L.[Laurent], Siegwart, R.[Roland], Pollefeys, M.[Marc],
Finding the Exact Rotation between Two Images Independently of the Translation,
ECCV12(VI: 696-709).
Springer DOI 1210
BibRef

Richard, A.[Aurélie], Fuchs, L.[Laurent], Charneau, S.[Sylvain],
An Algorithm to Decompose n-Dimensional Rotations into Planar Rotations,
CompIMAGE10(60-71).
Springer DOI 1006
Representations. BibRef

Falcon, L.E.[Luis Eduardo], Bayro-Corrochano, E.[Eduardo],
Radon Transform and Harmonical Analysis Using Lines for 3D Rotation Estimation without Correpondences from Omnidirectional Vision,
OMNIVIS07(1-6).
IEEE DOI 0710
BibRef

Lennon, D.[Daire], Harte, N.[Naomi], Kokaram, A.[Anil],
Rotation Detection using the Curl Equation,
ICIP07(I: 473-476).
IEEE DOI 0709
Rotation only motions. BibRef

Nagashima, S.[Sei], Ito, K.[Koichi], Aoki, T.[Takafumi], Ishii, H.[Hideaki], Kobayashi, K.[Koji],
A High-Accuracy Rotation Estimation Algorithm Based on 1D Phase-Only Correlation,
ICIAR07(210-221).
Springer DOI 0708
BibRef

Scholz, I.[Ingo], Niemann, H.[Heinrich],
Globally Consistent 3-D Reconstruction by Utilizing Loops in Camera Movement,
DAGM04(471-479).
Springer DOI 0505
BibRef

Deutsch, B.[Benjamin], Scholz, I.[Ingo], Gräßl, C.[Christoph], Niemann, H.[Heinrich],
Extending Light Fields using Object Tracking Techniques,
VMV04(109-116). 0411
BibRef

Schmidt, J., Niemann, H.,
Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization,
VMV01(xx-yy).
PDF File. 0209
BibRef

Moriya, T.[Toshio], Takeda, H.[Haruo],
Solving the Rotation-Estimation Problem by using the Perspective Three-Point Algorithm,
CVPR00(I: 766-773).
IEEE DOI 0005
BibRef

Ohta, N., Kanatani, K.,
Optimal estimation of three-dimensional rotation and reliability evaluation,
ECCV98(I: 175).
Springer DOI
See also Accuracy bounds and optimal computation of robot localization. BibRef 9800

Rousso, B., Avidan, S., Shashua, A., Peleg, S.,
Robust Recovery of Camera Rotation from Three Frames,
CVPR96(796-802).
IEEE DOI BibRef 9600
And: ARPA96(851-856). Three frames. BibRef

Lu, J.P.[Ji-Ping], Little, J.J.[James J.],
Geometric and Photometric Constraints for Surface Recovery,
CVPR96(694-700).
IEEE DOI Wire frame models. BibRef 9600

Horswill, I.D., and Thompson, W.B.,
Acceleration-Based Structure-from-Motion,
CVPR88(356-359).
IEEE DOI Motion, Structure. Using acceleration find the rotation only (both velocity and acceleration). BibRef 8800

Imiya, A., Nakayama, Y., Yamamoto, Y.,
Reconstruction of rotatory moving image from projections,
ICPR88(II: 879-881).
IEEE DOI 8811
BibRef

Shariat, H.,
Shape From Rotation,
CVPR85(178-180). Preliminary - specific to rotational motion. BibRef 8500

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Rotation Averaging .


Last update:Mar 16, 2024 at 20:36:19