Poggio, T.A.,
Gamble, E.B., and
Little, J.J.,
Parallel Integration of Vision Modules,
Science(242), October 21, 1988, pp. 436-439.
Data Fusion.
Connection Machine. This is the new MIT vision system with multiple processes (motion,
stereo, color, texture, edges).
BibRef
8810
Poggio, T.[Tomaso],
Visual Algorithms,
MIT AI Memo-683, May 1982.
BibRef
8205
Poggio, T.A.,
Edelman, S., and
Fahle, M.,
Learning of Visual Modules from Examples: A Framework for
Understanding Adaptive Visual Performance,
CVGIP(56), No. 1, July 1992, pp. 22-30.
Elsevier DOI
BibRef
9207
Poggio, T.[Tomaso],
Fahle, M.[Manfred],
Edelman, S.[Shimon],
Fast Perceptual Learning in Visual Hyperacuity,
Science(256), 15 May 1992, pp. 1018-1021.
BibRef
9205
And:
MIT AI Memo-1336, December 1991.
WWW Link.
BibRef
Poggio, T.[Tomaso],
Fahle, M.[Manfred],
Edelman, S.[Shimon],
Synthesis of Visual Modules from Examples: Learning Hyperacuity,
MIT AI Memo-1271, January 1991.
WWW Link.
BibRef
9101
Weiss, Y.[Yair],
Edelman, S.[Shimon], and
Fahle, M.[Manfred],
Models of Perceptual Learning in Vernier Hyperacuity,
NeurComp(5), 1993, pp. 695-718.
BibRef
9300
Weiss, Y.[Yair],
Edelman, S.[Shimon],
Representation of Similarity as a Goal of Early Visual Processing,
WeizmannCS-TR 93-09, 1995.
BibRef
9500
Edelman, S.,
Poggio, T.,
Bringing the Grandmother Back into the Picture:
A Memory-Based View of Pattern Recognition,
PRAI(6), 1992, pp. 37-61.
BibRef
9200
And:
MIT AI Memo-1181, April 1990.
BibRef
Aloimonos, Y., and
Shulman, D.,
Learning Early-Vision Computations,
JOSA-A(6), 1989, pp. 908-919.
Early Vision.
BibRef
8900
Aloimonos, Y., and
Shulman, D.,
Integration of Visual Modules: An Extension of the Marr Paradigm,
San Diego:
Academic Press1989.
Survey, Computational Vision.
Computational Vision, Survey. A Chapter as a paper (first author only):
BibRef
8900
Unification and Integration of Visual Modules:
An Extension of the Marr Paradigm,
DARPA89(507-551). A Chapter in the above book. The goal
is to provide a framework to discuss computational algorithms. Included are
discontinuous regularization, etc.
BibRef
Aloimonos, Y.,
Basu, A.,
Combining Information In Low-Level Vision,
DARPA88(862-906).
BibRef
8800
Gamble, E.B.[Ed B.],
Poggio, T.[Tomaso],
Visual Integration and Detection of Discontinuities:
The Key Role of Intensity Edges,
MIT AI Memo-970, October 1987.
WWW Link.
BibRef
8710
Gamble, E.B.,
Geiger, D.,
Poggio, T.A., and
Weinshall, D.,
Integration of Vision Modules and Labeling of Surface Discontinuities,
SMC(19), No. 6, November/December 1989, pp. 1576-1581.
BibRef
8911
Jepson, A.D., and
Richards, W.A.,
A Lattice Framework for Integrating Vision Modules,
SMC(22), 1992, pp. 1087-1096.
BibRef
9200
Clement, V., and
Thonnat, M.,
A Knowledge-Based Approach to Integration of
Image Processing Procedures,
CVGIP(57), No. 2, March 1993, pp. 166-184.
DOI Link OCAPI system.
BibRef
9303
Thonnat, M.,
Clement, V.,
van den Elst, J.,
Supervision of Perception Tasks for Autonomous Systems:
The OCAPI Approach,
JIST(3), No. 2, January 1994, pp. 140-163.
BibRef
9401
And:
INRIA2000, June 1993.
BibRef
Maillot, N.E.[Nicolas Eric],
Thonnat, M.[Monique],
Boucher, A.[Alain],
Towards Ontology Based Cognitive Vision,
MVA(16), No. 1, December 2004, pp. 33-40.
Springer DOI
0501
BibRef
Earlier:
CVS03(44 ff).
Springer DOI
0306
BibRef
Maillot, N.E.[Nicolas Eric],
Thonnat, M.[Monique],
Ontology based complex object recognition,
IVC(26), No. 1, 1 January 2008, pp. 102-113.
Elsevier DOI
0711
Keywords: Ontology; Machine learning; Categorization; Cognitive vision
BibRef
Maillot, N.E.[Nicolas E.],
Thonnat, M.[Monique],
A Weakly Supervised Approach for Semantic Image Indexing and Retrieval,
CIVR05(629-638).
Springer DOI
0507
BibRef
Bozma, H.I., and
Duncan, J.S.,
A Game-Theoretic Approach to Integration of Modules,
PAMI(16), No. 11, November 1994, pp. 1074-1086.
IEEE DOI
BibRef
9411
Earlier:
Integration of Vision Modules: A Game-Theoretic Framework,
CVPR91(501-507).
IEEE DOI
Fusion, Modules. Combine modules doing part of the task.
BibRef
Bozma, H.I.[H. Isil],
Duncan, J.S.[James S.],
Modular System for Image Analysis Using a Game-Theoretic Framework,
IVC(10), No. 6, July-August 1992, pp. 431-443.
Elsevier DOI
BibRef
9207
Bobick, A.F., and
Bolles, R.C.,
The Representation Space Paradigm of Concurrent Evolving
Object Descriptions,
PAMI(14), No. 2, February 1992, pp. 146-156.
IEEE DOI
BibRef
9202
Earlier:
SRITechnical Note 459. February, 1992.
WWW Link.
BibRef
And:
Representation Space: An Approach to the
Integration of Visual Information,
CVPR89(492-499).
IEEE DOI
BibRef
And:
DARPA89(263-272).
Discussion of different representations
needed for a vision system from the initial 2-D blobs to the 3-D object.
BibRef
Crowley, J.L., and
Christensen, H.I.,
Integration of Visual Processes,
PRAI(7), No. 6, December 1993.
BibRef
9312
Crowley, J.L.,
Integration and Control of Reactive Visual Processes,
RobAS(15), No. 1, December 1995.
BibRef
9512
Earlier:
Add A2, A3, A4:
Bedrune, J.M.,
Bekker, M.,
Schneider, M.,
ECCV94(B:47-58).
Springer DOI
BibRef
Drake, K.C.,
Kim, R.Y.,
Hierarchical Integration of Sensor Data and Contextual Information
for Automatic Target Recognition,
AppIntel(5), No. 3, July 1995, pp. 269-290.
BibRef
9507
Pankanti, S.,
Jain, A.K.,
Integrating Vision Modules:
Stereo, Shading, Grouping, and Line Labeling,
PAMI(17), No. 9, September 1995, pp. 831-842.
IEEE DOI
Stereo.
Shape from Shading.
Perceptual Grouping.
Geons.
BibRef
9509
Pankanti, S.,
Jain, A.K.,
Tuceryan, M.,
On Integration of Vision Modules,
CVPR94(316-322).
IEEE DOI
BibRef
9400
And: A1, A2 only:
MSUTR-CS, June 1994.
Stereo analysis with surface normals and line labels.
BibRef
Gong, L.G.,
Kulikowski, C.A.,
Composition of Image-Analysis Processes Through Object-Centered
Hierarchical Planning,
PAMI(17), No. 10, October 1995, pp. 997-1009.
IEEE DOI
BibRef
9510
Earlier:
VISIPLAN: A Hierarchical Planning Framework for Composing
Biomedical Image Analysis Processes,
CVPR94(718-723).
IEEE DOI Model the composition of processes. Used for medical image analysis.
BibRef
Indiveri, G.,
Raffo, L.,
Sabatini, S.P., and
Bisio, G.M.,
A Neuromorphic Architecture for Cortical Multilayer Integration of
Early Visual Tasks,
MVA(8), No. 5, 1995, pp. 305-314.
Springer DOI
BibRef
9500
Tung, C.P.,
Kak, A.C.,
Integrating Sensing, Task Planning, and Execution for Robotic Assembly,
RA(12), No. 2, April 1996, pp. 187-201.
BibRef
9604
Hwang, S.Y.[Shu-Yuen],
Tanimoto, S.L.[Steven L.],
Parallel Coordination of Image Operators:
Model, Algorithm, and Performance,
IVC(11), No. 3, April 1993, pp. 129-138.
Elsevier DOI
BibRef
9304
Ardizzone, E.,
Chella, A.,
Gaglio, S.,
Hybrid Architecture for Shape Reconstruction and Object Recognition,
IJIS(11), No. 12, December 1996, pp. 1115-1133.
9612
BibRef
Das, S.[Subhodev],
Bhanu, B.[Bir],
Ho, C.C.[Chih-Cheng],
Generic Object Recognition Using Multiple Representations,
IVC(14), No. 5, June 1 1996, pp. 323-338.
Elsevier DOI
9607
BibRef
Murino, V.,
Foresti, G.L.,
Regazzoni, C.S.,
A Distributed Probabilistic System for Adaptive Regulation of
Image-Processing Parameters,
SMC-B(26), No. 1, February 1996, pp. 1-20.
IEEE Top Reference.
BibRef
9602
Murino, V.[Vittorio],
Peri, M.F.[Massimiliano F.],
Regazzoni, C.S.[Carlo S.],
Distributed belief revision for adaptive image processing regulation,
ECCV92(87-91).
Springer DOI
9205
BibRef
Foresti, G.L.,
Regazzoni, C.S.,
A Real-Time Model-Based Method for 3-D Object Orientation Estimation
in Outdoor Scenes,
SPLetters(4), No. 9, September 1997, pp. 248-251.
IEEE Top Reference.
9709
BibRef
Clouard, R.[Regis],
El Moataz, A.[Abderrahim],
Porquet, C.[Christine],
Revenu, M.[Marinette],
Borg: A Knowledge-Based System for Automatic Generation of Image
Processing Programs,
PAMI(21), No. 2, February 1999, pp. 128-144.
IEEE DOI User describes task, generate the plan. Chains of image processing
programs.
BibRef
9902
Ortiz, M.J.,
Formaggio, A.R.,
Epiphanio, J.C.N.,
Classification of Croplands Through Integration of
Remote-Sensing, GIS, and Historical Database,
JRS(18), No. 1, January 10 1997, pp. 95-105.
9701
Remote Sensing.
BibRef
Takatsuka, M.[Masahiro],
Caelli, T.M.[Terry M.],
West, G.A.W.[Geoff A.W.],
Venkatesh, S.[Svetha],
An Application of 'Agent-Oriented' Techniques to Symbolic Matching and
Object Recognition,
PRL(23), No. 4, February 2002, pp. 419-429.
Elsevier DOI
0202
Combine the results from multiple agents for recognition.
BibRef
Privitera, C.M.,
Stark, L.W.,
Human-vision-based selection of image processing algorithms for
planetary exploration,
IP(12), No. 8, August 2003, pp. 917-923.
IEEE DOI
0308
BibRef
Lai, K.T.[Kuan-Ting],
Liu, D.[Dong],
Chang, S.F.[Shih-Fu],
Chen, M.S.[Ming-Syan],
Learning Sample Specific Weights for Late Fusion,
IP(24), No. 9, September 2015, pp. 2772-2783.
IEEE DOI
1506
Accuracy
BibRef
Liu, D.[Dong],
Lai, K.T.[Kuan-Ting],
Ye, G.[Guangnan],
Chen, M.S.[Ming-Syan],
Chang, S.F.[Shih-Fu],
Sample-Specific Late Fusion for Visual Category Recognition,
CVPR13(803-810)
IEEE DOI
1309
graph; infinite push; late fusion; ranking
BibRef
Jiang, H.,
Tian, Q.,
Farrell, J.,
Wandell, B.A.,
Learning the Image Processing Pipeline,
IP(26), No. 10, October 2017, pp. 5032-5042.
IEEE DOI
1708
Cameras, Computer architecture, Image color analysis, Pipelines,
Rendering (computer graphics), Transforms, Local linear learned,
camera image processing pipeline, machine learning
BibRef
Hu, Y.Q.[Yi-Qi],
Liu, X.H.[Xu-Hui],
Li, S.Q.[Shu-Qiao],
Yu, Y.[Yang],
Cascaded Algorithm Selection With Extreme-Region UCB Bandit,
PAMI(44), No. 10, October 2022, pp. 6782-6794.
IEEE DOI
2209
Tuning, Task analysis, Computer aided software engineering,
Machine learning algorithms, Bayes methods, Optimization methods,
machine learning
BibRef
Casas, S.[Sergio],
Sadat, A.[Abbas],
Urtasun, R.[Raquel],
MP3: A Unified Model to Map, Perceive, Predict and Plan,
CVPR21(14398-14407)
IEEE DOI
2111
Location awareness, Training, Measurement, Uncertainty,
Computational modeling, Semantics, Predictive models
BibRef
Lu, Y.[Yao],
Pirk, S.[Sören],
Dlabal, J.[Jan],
Brohan, A.[Anthony],
Pasad, A.[Ankita],
Chen, Z.[Zhao],
Casser, V.[Vincent],
Angelova, A.[Anelia],
Gordon, A.[Ariel],
Taskology: Utilizing Task Relations at Scale,
CVPR21(8696-8705)
IEEE DOI
2111
Training,
Computational modeling, Semantics, Estimation, Prediction algorithms
BibRef
Popovic, N.[Nikola],
Paudel, D.P.[Danda Pani],
Probst, T.[Thomas],
Sun, G.[Guolei],
Van Gool, L.J.[Luc J.],
CompositeTasking:
Understanding Images by Spatial Composition of Tasks,
CVPR21(6866-6876)
IEEE DOI
2111
Codes, Multitasking, Task analysis
BibRef
Wallace, B.[Bram],
Wu, Z.Y.[Zi-Yang],
Hariharan, B.[Bharath],
Can We Characterize Tasks Without Labels or Features?,
CVPR21(1245-1254)
IEEE DOI
2111
Codes, Shape, Computational modeling,
Natural languages, Task analysis
BibRef
Chen, W.[Wenhu],
Gan, Z.[Zhe],
Li, L.J.[Lin-Jie],
Cheng, Y.[Yu],
Wang, W.[William],
Liu, J.J.[Jing-Jing],
Meta Module Network for Compositional Visual Reasoning,
WACV21(655-664)
IEEE DOI
2106
Visualization, Scalability,
Neural networks, Spread spectrum communication, Computer architecture
BibRef
de Sá, J.M.C.[Jáder M. C.],
Rossi, A.L.D.[Andre L. D.],
Batista, G.E.A.P.A.[Gustavo E. A. P. A.],
Garcia, L.P.F.[Luís P. F.],
Algorithm Recommendation for Data Streams,
ICPR21(6073-6080)
IEEE DOI
2105
Heuristic algorithms, Memory management, Machine learning,
Companies, Predictive models, Knowledge discovery, Data models
BibRef
Lukac, M.[Martin],
Bayanov, A.[Ayazkhan],
Li, A.[Albina],
Abiyeva, K.[Kamila],
Izbassarova, N.[Nadira],
Gabidolla, M.[Magzhan],
Kameyama, M.[Michitaka],
Selecting Algorithms Without Meta-features,
IML20(607-621).
Springer DOI
2103
BibRef
Wu, Y.X.[Yu-Xuan],
Nakayama, H.[Hideki],
Graph-based Heuristic Search for Module Selection Procedure in Neural
Module Network,
ACCV20(III:560-575).
Springer DOI
2103
BibRef
Liu, S.,
Liu, J.,
Zhao, X.,
Feasibility Analysis of Openstack and Dynamips Application Fusion,
CVIDL20(656-659)
IEEE DOI
2102
cloud computing, public domain software, information technology,
openstack cloud platform,
Fusion
BibRef
Hu, Y.H.[Yu-Huang],
Delbruck, T.[Tobi],
Liu, S.C.[Shih-Chii],
Learning to Exploit Multiple Vision Modalities by Using Grafted
Networks,
ECCV20(XVI: 85-101).
Springer DOI
2010
BibRef
Liu, Y.C.[Yen-Cheng],
Tian, J.J.[Jun-Jiao],
Glaser, N.[Nathaniel],
Kira, Z.[Zsolt],
When2com: Multi-Agent Perception via Communication Graph Grouping,
CVPR20(4105-4114)
IEEE DOI
2008
Multiple agents.
Task analysis, Bandwidth, Collaboration, Robot sensing systems,
Correlation, Semantics, Training
BibRef
Zhu, Y.[Yuke],
Gordon, D.[Daniel],
Kolve, E.[Eric],
Fox, D.[Dieter],
Fei-Fei, L.[Li],
Gupta, A.[Abhinav],
Mottaghi, R.[Roozbeh],
Farhadi, A.[Ali],
Visual Semantic Planning Using Deep Successor Representations,
ICCV17(483-492)
IEEE DOI
1802
learning (artificial intelligence),
planning (artificial intelligence), statistical analysis,
Visualization
BibRef
Tünnermann, J.[Jan],
Grüne, S.[Steffen],
Mertsching, B.[Bärbel],
Selection and Execution of Simple Actions via Visual Attention and
Direct Parameter Specification,
CVS17(404-414).
Springer DOI
1711
BibRef
Amr, M.F.,
Qbadou, M.,
Mansouri, K.,
Riyami, B.,
Towards a model of adaptation and interfacing based on a middleware
layer SOA for interoperability of several different information
systems,
ISCV17(1-8)
IEEE DOI
1710
Adaptation models, Information systems,
Interoperability, Service-oriented architecture, ATL, BPEL, BPMN,
Interoperability, MDA, MDE, Reverse engineering, SOA,
information systems, middleware, ontological, database
BibRef
Zhang, P.[Peng],
Wang, J.[Jiuling],
Farhadi, A.[Ali],
Hebert, M.[Martial],
Parikh, D.[Devi],
Predicting Failures of Vision Systems,
CVPR14(3566-3573)
IEEE DOI
1409
BibRef
Karasev, V.[Vasiliy],
Ravichandran, A.[Avinash],
Soatto, S.[Stefano],
Active Frame, Location, and Detector Selection for Automated and
Manual Video Annotation,
CVPR14(2131-2138)
IEEE DOI
1409
active learning; video annotation
Which detector when and where.
BibRef
Karayev, S.[Sergey],
Fritz, M.[Mario],
Darrell, T.J.[Trevor J.],
Anytime Recognition of Objects and Scenes,
CVPR14(572-579)
IEEE DOI
1409
anytime; budgeted classification; visual recognition.
Deal with instant recognition, but refinement if time is available.
BibRef
Wang, J.[Joseph],
Bolukbasi, T.[Tolga],
Trapeznikov, K.[Kirill],
Saligrama, V.[Venkatesh],
Model Selection by Linear Programming,
ECCV14(II: 647-662).
Springer DOI
1408
Use expensive (computation) models only when needed.
BibRef
Bansal, A.[Aayush],
Farhadi, A.[Ali],
Parikh, D.[Devi],
Towards Transparent Systems: Semantic Characterization of Failure Modes,
ECCV14(VI: 366-381).
Springer DOI
1408
Why vision systems fail.
BibRef
Pan, Y.[Yan],
Lai, H.J.[Han-Jiang],
Liu, C.[Cong],
Yan, S.C.[Shui-Cheng],
A Divide-and-Conquer Method for Scalable Low-Rank Latent Matrix
Pursuit,
CVPR13(524-531)
IEEE DOI
1309
divide-and-conquer method; low-rank matrices; prediction fushion
Robust Late Fusion: multiple score lists from different models.
BibRef
Miller, G.[Gregor],
Oldridge, S.[Steve],
Fels, S.[Sidney],
OpenVL: Abstracting Vision Tasks Using a Segment-Based Language Model,
CRV13(257-264)
IEEE DOI
1308
Algorithm design and analysis
BibRef
Moehrmann, J.[Julia],
Heidemann, G.[Gunther],
Semi-automatic Image Annotation,
CAIP13(II:266-273).
Springer DOI
1311
BibRef
Earlier:
Efficient Development of User-Defined Image Recognition Systems,
DevCen12(I:242-253).
Springer DOI
1304
BibRef
Attamimi, M.[Muhammad],
Nakamura, T.[Tomoaki],
Nagai, T.[Takayuki],
Hierarchical multilevel object recognition using Markov model,
ICPR12(2963-2966).
WWW Link.
1302
Multiple levels of recognition -- category, material, etc.
Integrate single level recognitions.
BibRef
Dornelles, M.M.[Marta M.],
Hirata, N.S.T.[Nina S. T.],
A genetic algorithm based approach for combining binary image operators,
ICPR12(3184-3187).
WWW Link.
1302
BibRef
Munoz, D.[Daniel],
Bagnell, J.A.[James Andrew],
Hebert, M.[Martial],
Co-inference for Multi-modal Scene Analysis,
ECCV12(VI: 668-681).
Springer DOI
1210
Multiple sources, not sensor fusion.
Ananyze each and propogate information across.
BibRef
Qaffou, I.[Issam],
Sadgal, M.[Mohamed],
Elfazziki, A.[Aziz],
Selecting Vision Operators and Fixing Their Optimal Parameters Values
Using Reinforcement Learning,
ICISP12(103-112).
Springer DOI
1208
BibRef
Sorschag, R.[Robert],
How to Select and Customize Object Recognition Approaches for an
Application?,
MMMod12(452-462).
Springer DOI
1201
BibRef
Kaczmarek, P.L.[Pawel L.],
Raszkowski, P.[Piotr],
Semantic Integration of Heterogeneous Recognition Systems,
CIARP11(288-295).
Springer DOI
1111
BibRef
Bolme, D.S.[David S.],
Beveridge, J.R.[J. Ross],
Draper, B.A.[Bruce A.],
Phillips, P.J.[P. Jonathon],
Lui, Y.M.[Yui Man],
Automatically Searching for Optimal Parameter Settings Using a Genetic
Algorithm,
CVS11(213-222).
Springer DOI
1109
BibRef
Miller, G.[Gregor],
Oldridge, S.[Steve],
Fels, S.S.[Sidney S.],
Towards a General Abstraction through Sequences of Conceptual
Operations,
CVS11(183-192).
Springer DOI
1109
BibRef
Gurevich, I.,
The Descriptive Approach to Image Analysis: Current State and Prospects,
SCIA05(214-223).
Springer DOI
0506
BibRef
Sethi, A.,
Rahurkar, M.,
Huang, T.S.,
Variable Module Graphs:
A Framework For Inference and Learning in Modular Vision Systems,
ICIP05(II: 1326-1329).
IEEE DOI
0512
BibRef
Broadhurst, A.E.,
Baker, S.,
Setting Low-Level Vision Parameters,
CMU-RI-TR-04-20, March, 2004.
HTML Version.
0501
BibRef
Koryabkina, I.[Irina],
Method for Image Informational Properties Exploitation in Pattern
Recognition Environment,
SCIA03(1006-1013).
Springer DOI
0310
BibRef
Müller, H.[Hardo],
Gülch, E.[Eberhard],
Mayr, W.[Werner],
A New Modelling Technique for Object-Oriented Photogrammetric Computer
Vision Algorithms,
PCV02(B: 186).
0305
BibRef
Thonnat, M.,
Moisan, S.,
Crubézy, M.,
Experience in Integrating Image Processing Programs,
CVS99(200 ff.).
Springer DOI
0209
BibRef
Nickolay, B.[Bertram],
Schneider, B.[Bernd],
Jacob, S.[Stefan],
Parameter optimisation of an image processing system using evolutionary
algorithms,
CAIP97(637-644).
Springer DOI
9709
BibRef
Hamada, T.,
Shimizu, A.,
Hasegawa, J.I.,
Toriwaki, J.I.,
Automated Construction of Image Processing Procedure Based on
Misclassification Condition,
ICPR00(Vol II: 430-433).
IEEE DOI
0009
BibRef
Kohl, C.,
Hanson, A.R., and
Riseman, E.M.,
Goal-Directed Control of Low Level Processes for Image Interpretation,
DARPA87(538-551).
BibRef
8700
And:
COINS-TR-87-31, April 1987.
BibRef
Ozaki, Y.,
Sato, K.,
Inokuchi, S.,
Rule-Driven Processing And Recognition From Range Images,
ICPR88(II: 804-807).
IEEE DOI
8811
BibRef
Yamamoto, K.,
Sakaue, K.,
Matsubara, H.,
Yamagishi, K.,
Miracle-IV: Multiple Image Recognition System Aiming
Concept Learning -- Intelligent Vision,
ICPR88(II: 818-821).
IEEE DOI
8811
BibRef
Glicksman, J.[Jay],
Using Multiple Information Sources in a Computational Vision System,
IJCAI83(1078-1080).
Does not really say much more than it is a good idea, no
implementation with real images.
BibRef
8300
Garvey, T.D.,
Lowrance, J., and
Fischler, M.A.,
An Inference Technique for Integrating Knowledge for Disparate Sources,
IJCAI81(319-325).
BibRef
8100
Garvey, T.D., and
Fischler, M.A.,
Perceptual Reasoning in a Hostile Environment,
AAAI-80(253-255).
BibRef
8000
Garvey, T.D., and
Fischler, M.A.,
The Integration of Multi-Sensor Data for Threat Assessment,
ICPR80(343-347).
BibRef
8000
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Context in Computer Vision .