Suetens, P.,
Jansen, P.,
Haegemans, A.,
Oosterlinck, A.,
Gybels, J.,
3D Reconstruction of the Blood Vessels of the Brain from a Stereoscopic
Pair of Subtraction Angiograms,
IVC(1), No. 1, February 1983, pp. 43-51.
Elsevier DOI
BibRef
8302
Suetens, P.,
Haegemans, A.,
Oosterlinck, A.,
Gybels, J.,
An Attempt to Reconstruct the Cerebral Bloodvessels from a
Lateral and a Frontal Angiogram,
PR(16), No. 5, 1983, pp. 517-524.
Elsevier DOI
0309
BibRef
Barillot, C.[Christian],
Gibaud, B.[Bernard],
Scarabin, J.M.[Jean-Marie], and
Coatrieux, J.L.[Jean-Louis],
3-D Reconstruction of Cerebral Blood Vessels,
IEEE_CGA(5), No. 12, December, 1985, pp. 13-19.
BibRef
8512
Wilson, D.L.,
Royston, D.D.,
Noble, J.A.,
Byrne, J.V.,
Determining X-ray projections for coil treatments of intracranial
aneurysms,
MedImg(18), No. 10, October 1999, pp. 973-980.
IEEE Top Reference.
0110
BibRef
Jani, A.B.,
Pelizzari, C.A.,
Chen, G.T.Y.,
Roeske, J.,
Hamilton, R.J.,
MacDonald, R.L.,
Bova, F.,
Hoffmann, K.R.,
Sweeney, P.A.,
Volume rendering quantification algorithm for reconstruction of CT
volume-rendered structures. 1. Cerebral arteriovenous malformations,
MedImg(19), No. 1, January 2000, pp. 12-24.
IEEE Top Reference.
0110
BibRef
Flasque, N.,
Desvignes, M.,
Constans, J.M.,
Revenu, M.,
Acquisition, segmentation and tracking of the cerebral
vascular tree on 3D magnetic resonance angiography images,
MIA(5), No. 3, 2001, pp. 173-183.
3D segmentation, stenosys
PDF File.
BibRef
0100
Flasque, N.,
Desvignes, M.,
Accurate Detection of 3d Tubular Tree Structures,
ICIP00(Vol III: 436-439).
IEEE DOI
0008
BibRef
Bullitt, E.,
Gerig, G.,
Pizer, S.M.[Stephen M.],
Lin, W.L.[Wei-Li],
Aylward, S.R.,
Measuring tortuosity of the intracerebral vasculature from MRA images,
MedImg(22), No. 9, September 2003, pp. 1163-1171.
IEEE Abstract.
0309
BibRef
Cebral, J.R.,
Castro, M.A.,
Appanaboyina, S.,
Putman, C.M.,
Millan, D.,
Frangi, A.F.,
Efficient Pipeline for Image-Based Patient-Specific Analysis of
Cerebral Aneurysm Hemodynamics: Technique and Sensitivity,
MedImg(24), No. 4, April 2005, pp. 457-467.
IEEE Abstract.
0501
BibRef
Volkau, I.,
Zheng, W.,
Baimouratov, R.,
Aziz, A.,
Nowinski, W.L.,
Geometric Modeling of the Human Normal Cerebral Arterial System,
MedImg(24), No. 4, April 2005, pp. 529-539.
IEEE Abstract.
0501
BibRef
Millan, R.D.,
Dempere-Marco, L.,
Pozo, J.M.,
Cebral, J.R.,
Frangi, A.F.,
Morphological Characterization of Intracranial Aneurysms Using 3-D
Moment Invariants,
MedImg(26), No. 9, September 2007, pp. 1270-1282.
IEEE DOI
0710
See also Efficient 3D Geometric and Zernike Moments Computation from Unstructured Surface Meshes.
BibRef
Volkau, I.,
Ng, T.T.,
Marchenko, Y.,
Nowinski, W.L.,
On Geometric Modeling of the Human Intracranial Venous System,
MedImg(27), No. 6, June 2008, pp. 745-751.
IEEE DOI
0711
BibRef
Zhang, C.,
Villa-Uriol, M.C.,
de Craene, M.,
Pozo, J.M.,
Frangi, A.F.,
Morphodynamic Analysis of Cerebral Aneurysm Pulsation From
Time-Resolved Rotational Angiography,
MedImg(28), No. 7, July 2009, pp. 1105-1116.
IEEE DOI
0906
BibRef
Passat, N.,
Ronse, C.,
Baruthio, J.,
Armspach, J.P.,
Foucher, J.,
Watershed and multimodal data for brain vessel segmentation:
Application to the superior sagittal sinus,
IVC(25), No. 4, April 2007, pp. 512-521.
Elsevier DOI
0702
Vessel segmentation; Watershed segmentation; A priori knowledge integration;
Magnetic resonance imaging
BibRef
Chillet, D.,
Passat, N.,
Jacob-da Col, M.A.,
Baruthio, J.,
Thickness Estimation of Discrete Tree-Like Tubular Objects:
Application to Vessel Quantification,
SCIA05(263-271).
Springer DOI
0506
BibRef
Passat, N.,
Ronse, C.,
Baruthio, J.,
Armspach, J.P.,
Bosc, M.,
Foucher, J.,
Using Multimodal MR Data for Segmentation and Topology Recovery of the
Cerebral Superficial Venous Tree,
ISVC05(60-67).
Springer DOI
0512
BibRef
Passat, N.,
Ronse, C.,
Baruthio, J.,
Armspach, J.P.,
Maillot, C.,
Cerebral Vascular Atlas Generation for Anatomical Knowledge Modeling
and Segmentation Purpose,
CVPR05(II: 331-337).
IEEE DOI
0507
BibRef
Caldairou, B.[Benoît],
Passat, N.[Nicolas],
Naegel, B.[Benoît],
Attribute-Filtering and Knowledge Extraction for Vessel Segmentation,
ISVC10(I: 13-22).
Springer DOI
1011
BibRef
Piccinelli, M.,
Veneziani, A.,
Steinman, D.A.,
Remuzzi, A.,
Antiga, L.,
A Framework for Geometric Analysis of Vascular Structures:
Application to Cerebral Aneurysms,
MedImg(28), No. 8, August 2009, pp. 1141-1155.
IEEE DOI
0909
BibRef
O'Sullivan, F.,
Kirrane, J.,
Muzi, M.,
O'Sullivan, J.N.,
Spence, A.M.,
Mankoff, D.A.,
Krohn, K.A.,
Kinetic Quantitation of Cerebral PET-FDG Studies Without Concurrent
Blood Sampling: Statistical Recovery of the Arterial Input Function,
MedImg(29), No. 3, March 2010, pp. 610-624.
IEEE DOI
1003
BibRef
Wang, Y.,
Hu, D.,
Liu, Y.,
Li, M.,
Cerebral Artery-Vein Separation Using 0.1-Hz Oscillation in
Dual-Wavelength Optical Imaging,
MedImg(30), No. 12, December 2011, pp. 2030-2043.
IEEE DOI
1112
BibRef
Morales, H.G.,
Larrabide, I.,
Geers, A.J.,
San Roman, L.,
Blasco, J.,
Macho, J.M.,
Frangi, A.F.,
A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic
Path Planning,
MedImg(32), No. 1, January 2013, pp. 119-129.
IEEE DOI
1301
BibRef
Jiang, J.,
Strother, C.M.,
Interactive Decomposition and Mapping of Saccular Cerebral Aneurysms
Using Harmonic Functions: Its First Application With 'Patient-Specific'
Computational Fluid Dynamics (CFD) Simulations,
MedImg(32), No. 2, February 2013, pp. 153-164.
IEEE DOI
1301
BibRef
Liu, B.[Bin],
Zhao, Q.C.[Qiao-Chu],
Dong, J.H.[Jia-Hao],
Jia, X.Y.[Xian-Yong],
Yue, Z.G.[Zong-Ge],
A stretching transform-based automatic nonrigid registration system
for cerebrovascular digital subtraction angiography images,
IJIST(23), No. 2, 2013, pp. 171-187.
DOI Link digital subtraction angiography, cerebrovascular image,
non-rigid registration, stretching transformation
1307
BibRef
Mitra, J.[Jubin],
Chandra, A.[Abhijit],
Halder, T.[Tanmay],
Peak Trekking of Hierarchy Mountain for the Detection of Cerebral
Aneurysm using Modified Hough Circle Transform,
ELCVIA(12), No. 1, 2013, pp. xx-yy.
DOI Link
1307
BibRef
Kang, C.K.[Chang-Ki],
Park, C.A.[Chan-A],
Lee, Y.B.[Yeong-Bae],
Park, C.W.[Cheol-Wan],
Hong, S.M.[Suk-Min],
Kim, Y.B.[Young-Bo],
Cho, Z.H.[Zang-Hee],
Micro-vascular imaging experiences of time-of-flight MRA at 7T for
cerebrovascular diseases,
IJIST(24), No. 2, 2014, pp. 121-128.
DOI Link
1405
7T MRI, MRA, micro-vascular imaging, cerebrovascular diseases
BibRef
Skwerer, S.[Sean],
Bullitt, E.[Elizabeth],
Huckemann, S.[Stephan],
Miller, E.[Ezra],
Oguz, I.[Ipek],
Owen, M.[Megan],
Patrangenaru, V.[Vic],
Provan, S.[Scott],
Marron, J.S.,
Tree-Oriented Analysis of Brain Artery Structure,
JMIV(50), No. 1-2, September 2014, pp. 126-143.
Springer DOI
1408
BibRef
Dou, Q.,
Chen, H.,
Yu, L.,
Zhao, L.,
Qin, J.,
Wang, D.,
Mok, V.C.,
Shi, L.,
Heng, P.A.,
Automatic Detection of Cerebral Microbleeds From MR Images via 3D
Convolutional Neural Networks,
MedImg(35), No. 5, May 2016, pp. 1182-1195.
IEEE DOI
1605
Biomarkers
BibRef
Monti, S.,
Cocozza, S.,
Borrelli, P.,
Straub, S.,
Ladd, M.E.,
Salvatore, M.,
Tedeschi, E.,
Palma, G.,
MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of
Brain Veins From Gradient Echo Acquisitions,
MedImg(36), No. 5, May 2017, pp. 1054-1065.
IEEE DOI
1609
Algorithm design and analysis, Diseases, Image segmentation,
Magnetic resonance imaging, Manuals, Nonhomogeneous media, Veins,
Brain veins, MRI, segmentation, vesselness
BibRef
Chon, Y.[Younghoon],
Jeong, H.S.[Hyeonseok S.],
Im, J.J.[Jooyeon J.],
Oh, J.K.[Jin Kyoung],
Kim, Y.D.[Young-Do],
Chung, Y.A.[Yong-An],
Kim, D.J.[Dai-Jin],
Alterations of regional cerebral blood flow after NMDA receptor
antagonist administration in patients with alcohol-related dementia,
IJIST(27), No. 4, 2017, pp. 376-382.
DOI Link
1712
alcohol-related dementia, NMDA receptor antagonist,
regional cerebral blood flow, SPECT
BibRef
Li, R.[Rui],
Duan, Y.X.[Yu-Xia],
Liu, J.J.[Jin-Jin],
Cao, G.Q.[Guo-Quan],
Yang, Y.J.[Yun-Jun],
Zhuge, Q.C.[Qi-Chuan],
Chen, W.J.[Wei-Jian],
Control study of low tube voltage computed tomography angiography (CTA)
and digital subtraction angiography (DSA) in diagnosing intracranial
micro-aneurysm,
IJIST(28), No. 2, 2018, pp. 86-91.
WWW Link.
1806
BibRef
Moriconi, S.,
Zuluaga, M.A.,
Jäger, H.R.,
Nachev, P.,
Ourselin, S.,
Cardoso, M.J.,
Inference of Cerebrovascular Topology With Geodesic Minimum Spanning
Trees,
MedImg(38), No. 1, January 2019, pp. 225-239.
IEEE DOI
1901
Topology, Image segmentation, Kernel, Network topology,
Feature extraction, Imaging,
connectivity
BibRef
Elzaafarany, K.[Khaled],
Kumar, G.[Gyanendra],
Nakhmani, A.[Arie],
Transcranial Doppler-based modeling of hemodynamics using delay
differential equations,
SIViP(13), No. 4, June 2019, pp. 667-673.
Springer DOI
1906
brain aneurysm analysis, diagnosis.
BibRef
Hong, J.[Jin],
Cheng, H.[Hong],
Zhang, Y.D.[Yu-Dong],
Liu, J.[Jie],
Detecting cerebral microbleeds with transfer learning,
MVA(30), No. 7-8, October 2019, pp. 1123-1133.
WWW Link.
1911
BibRef
Zeng, Y.,
Liu, X.,
Xiao, N.,
Li, Y.,
Jiang, Y.,
Feng, J.,
Guo, S.,
Automatic Diagnosis Based on Spatial Information Fusion Feature for
Intracranial Aneurysm,
MedImg(39), No. 5, May 2020, pp. 1448-1458.
IEEE DOI
2005
Aneurysm, Angiography, Sensitivity,
Intracranial aneurysm,
deep learning
BibRef
Su, J.,
Wolff, L.,
van Es, A.C.G.M.,
van Zwam, W.,
Majoie, C.,
Dippel, D.W.J.,
van der Lugt, A.,
Niessen, W.J.,
van Walsum, T.,
Automatic Collateral Scoring From 3D CTA Images,
MedImg(39), No. 6, June 2020, pp. 2190-2200.
IEEE DOI
2006
Deep learning, brain vessel segmentation, 3D CTA images
BibRef
Nazir, A.,
Cheema, M.N.,
Sheng, B.,
Li, H.,
Li, P.,
Yang, P.,
Jung, Y.,
Qin, J.,
Kim, J.,
Feng, D.D.,
OFF-eNET: An Optimally Fused Fully End-to-End Network for Automatic
Dense Volumetric 3D Intracranial Blood Vessels Segmentation,
IP(29), 2020, pp. 7192-7202.
IEEE DOI
2007
Image segmentation,
Biomedical imaging, Convolution, Blood vessels,
intracranial vessels segmentation
BibRef
Abderezaei, J.,
Martinez, J.,
Terem, I.,
Fabris, G.,
Pionteck, A.,
Yang, Y.,
Holdsworth, S.J.,
Nael, K.,
Kurt, M.,
Amplified Flow Imaging (aFlow): A Novel MRI-Based Tool to Unravel the
Coupled Dynamics Between the Human Brain and Cerebrovasculature,
MedImg(39), No. 12, December 2020, pp. 4113-4123.
IEEE DOI
2012
Magnetic resonance imaging, Aneurysm, Blood, Strain, Dynamics,
Biomedical imaging, Intracranial aneurysm, aneurysm rupture,
amplified MRI
BibRef
Damseh, R.,
Delafontaine-Martel, P.,
Pouliot, P.,
Cheriet, F.,
Lesage, F.,
Laplacian Flow Dynamics on Geometric Graphs for Anatomical Modeling
of Cerebrovascular Networks,
MedImg(40), No. 1, January 2021, pp. 381-394.
IEEE DOI
2012
Laplace equations, Computational modeling,
Geometry, Imaging, Optimization,
two-photonmicroscopy
BibRef
Tang, J.,
Kilic, K.,
Szabo, T.L.,
Boas, D.A.,
Improved Color Doppler for Cerebral Blood Flow Axial Velocity Imaging,
MedImg(40), No. 2, February 2021, pp. 758-764.
IEEE DOI
2102
Doppler effect, Ultrasonic imaging, Imaging, Blood flow,
Image color analysis, Frequency estimation,
ultrasonic brain imaging
BibRef
Patera, A.[Alessandra],
Zippo, A.G.[Antonio G.],
Bonnin, A.[Anne],
Stampanoni, M.[Marco],
Biella, G.E.M.[Gabriele E. M.],
Brain micro-vasculature imaging: An unsupervised deep learning
algorithm for segmenting mouse brain volume probed by high-resolution
phase-contrast X-ray tomography,
IJIST(31), No. 3, 2021, pp. 1211-1220.
DOI Link
2108
brain vasculature system, deep learning, X-ray tomography
BibRef
Zhu, J.X.[Jun-Xi],
Teolis, S.[Spencer],
Biassou, N.[Nadia],
Tabb, A.[Amy],
Jabin, P.E.[Pierre-Emmanuel],
Lavi, O.[Orit],
Tracking the Adaptation and Compensation Processes of Patients' Brain
Arterial Network to an Evolving Glioblastoma,
PAMI(44), No. 1, January 2022, pp. 488-501.
IEEE DOI
2112
Arteries, Image resolution, Cancer, Blood,
Magnetic resonance imaging, Image segmentation,
network topology and hemodynamics
BibRef
Chen, Y.[Ying],
Jin, D.[Darui],
Guo, B.[Bin],
Bai, X.Z.[Xiang-Zhi],
Attention-Assisted Adversarial Model for Cerebrovascular Segmentation
in 3D TOF-MRA Volumes,
MedImg(41), No. 12, December 2022, pp. 3520-3532.
IEEE DOI
2212
Image segmentation, Training, Feature extraction, Visualization,
Biomedical imaging, Task analysis, Cerebrovascular segmentation, TOF-MRA
BibRef
Ozaltin, O.[Oznur],
Coskun, O.[Orhan],
Yeniay, O.[Ozgur],
Subasi, A.[Abdulhamit],
Classification of brain hemorrhage computed tomography images using
OzNet hybrid algorithm,
IJIST(33), No. 1, 2023, pp. 69-91.
DOI Link
2301
classification, CNN, feature extraction, machine learning, NCA, OZNET
BibRef
Chen, C.[Cheng],
Zhou, K.N.[Kang-Neng],
Wang, Z.L.[Zhi-Liang],
Xiao, R.X.[Ruo-Xiu],
Generative Consistency for Semi-Supervised Cerebrovascular
Segmentation From TOF-MRA,
MedImg(42), No. 2, February 2023, pp. 346-353.
IEEE DOI
2302
Image reconstruction, Biological system modeling, Image segmentation,
Perturbation methods, Data models, Training, transformer
BibRef
Liu, P.P.[Ping-Ping],
Ning, G.J.[Gang-Jun],
Shi, L.[Lida],
Zhou, Q.Z.[Qiu-Zhan],
Chen, X.[Xuan],
Fine-grained classification of intracranial haemorrhage subtypes in
head CT scans,
IET-CV(17), No. 2, 2023, pp. 170-188.
DOI Link
2304
compact bilinear pooling, multi-weight focal loss,
softmax relative entropy loss,
subtype classification of intracranial haemorrhage
BibRef
Timmins, K.M.[Kimberley M.],
van der Schaaf, I.C.[Irene C.],
Vos, I.N.[Iris N.],
Ruigrok, Y.M.[Ynte M.],
Velthuis, B.K.[Birgitta K.],
Kuijf, H.J.[Hugo J.],
Geometric Deep Learning Using Vascular Surface Meshes for
Modality-Independent Unruptured Intracranial Aneurysm Detection,
MedImg(42), No. 11, November 2023, pp. 3451-3460.
IEEE DOI
2311
BibRef
Malik, P.[Payal],
Vidyarthi, A.[Ankit],
Stacked deep model-based classification of the multiclass brain
hemorrhages in CT scans,
IJIST(34), No. 1, 2024, pp. e22955.
DOI Link
2401
brain hemorrhage, computer-aided diagnosis,
deep convolutional neural networks, multimodal neurological imaging
BibRef
Kothala, L.P.[Lakshmi Prasanna],
Guntur, S.R.[Sitaramanjaneya Reddy],
An efficient stacked bidirectional GRU-LSTM network for intracranial
hemorrhage detection,
IJIST(34), No. 1, 2024, pp. e22958.
DOI Link
2401
Bi-GRU, Bi-LSTM, computed tomography, deep learning,
image classification, intracranial hemorrhage
BibRef
Guo, L.[Lilin],
Liang, Y.[Yu],
Guo, R.[Ruichao],
Cao, Z.J.[Zhi-Jian],
Ye, J.M.[Jian-Ming],
Lai, X.B.[Xiao-Bo],
Staged cluster transformers for intracranial aneurysms segmentation
from structure fused 3D MRA,
IJIST(34), No. 2, 2024, pp. e23039.
DOI Link Code:
WWW Link.
2402
deep learning, intracranial aneurysms, medical image,
segmentation, transformer
BibRef
Ma, W.[Wenao],
Chen, C.[Cheng],
Gong, Y.Q.[Yu-Qi],
Chan, N.Y.[Nga Yan],
Jiang, M.[Meirui],
Mak, C.H.K.[Calvin Hoi-Kwan],
Abrigo, J.M.[Jill M.],
Dou, Q.[Qi],
Causal Effect Estimation on Imaging and Clinical Data for Treatment
Decision Support of Aneurysmal Subarachnoid Hemorrhage,
MedImg(43), No. 8, August 2024, pp. 2778-2789.
IEEE DOI Code:
WWW Link.
2408
BibRef
Autrusseau, F.[Florent],
Nader, R.[Rafic],
Nouri, A.[Anass],
L'Allinec, V.[Vincent],
Bourcier, R.[Romain],
Toward a 3D Arterial Tree Bifurcation Model for Intra-Cranial
Aneurysm Detection and Segmentation,
ICPR22(4500-4506)
IEEE DOI
2212
Solid modeling, Angiography, Aneurysm,
Manuals, Bifurcation,
synthetic bifurcation model
BibRef
Wu, Y.H.[Yun-Heng],
Oda, M.[Masahiro],
Hayashi, Y.[Yuichiro],
Takebe, T.[Takanori],
Nagata, S.[Shogo],
Wang, C.[Cheng],
Mori, K.[Kensaku],
Blood Vessel Segmentation from Low-Contrast and Wide-Field Optical
Microscopic Images of Cranial Window by Attention-Gate-Based Network,
CVMI22(1863-1872)
IEEE DOI
2210
Image segmentation, Visualization, Optical microscopy, Uncertainty,
Microscopy, Blood vessels
BibRef
Vepa, A.[Arvind],
Choi, A.[Andrew],
Nakhaei, N.[Noor],
Lee, W.J.[Won-Jun],
Stier, N.[Noah],
Vu, A.[Andrew],
Jenkins, G.[Greyson],
Yang, X.Y.[Xiao-Yan],
Shergill, M.[Manjot],
Desphy, M.[Moira],
Delao, K.[Kevin],
Levy, M.[Mia],
Garduno, C.[Cristopher],
Nelson, L.[Lacy],
Liu, W.[Wandi],
Hung, F.[Fan],
Scalzo, F.[Fabien],
Weakly-Supervised Convolutional Neural Networks for Vessel
Segmentation in Cerebral Angiography,
WACV22(3220-3229)
IEEE DOI
2202
Training, Deep learning, Image segmentation, Costs,
Angiography, Network architecture, Semi- and Un- supervised Learning
BibRef
Taher, F.,
Soliman, A.,
Kandil, H.,
Mahmoud, A.,
Shalaby, A.,
Gimel'farb, G.,
El-Baz, A.,
Precise Cerebrovascular Segmentation,
ICIP20(394-397)
IEEE DOI
2011
Feature extraction, Data models, Solid modeling, Brain modeling,
Blood vessels, Measurement, and MGRF
BibRef
Haft-Javaherian, M.,
Villiger, M.,
Schaffer, C.B.,
Nishimura, N.,
Golland, P.,
Bouma, B.E.,
A topological encoding convolutional neural network for segmentation
of 3D multiphoton images of brain vasculature using persistent
homology,
Microscopy20(4262-4271)
IEEE DOI
2008
Image segmentation,
Biological system modeling,
Biomedical imaging
BibRef
Yang, X.,
Xia, D.,
Kin, T.,
Igarashi, T.,
IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning,
CVPR20(2653-2663)
IEEE DOI
2008
Aneurysm, Solid modeling,
Biomedical imaging, Image segmentation, Brain modeling, Shape
BibRef
Esfahani, S.S.,
Zhai, X.,
Chen, M.,
Amira, A.,
Bensaali, F.,
AbiNahed, J.,
Dakua, S.,
Younes, G.,
Richardson, R.A.,
Coveney, P.V.,
Hemelb Acceleration and Visualization for Cerebral Aneurysms,
ICIP19(1376-1380)
IEEE DOI
1910
Cerebral aneurysm, HemeLB, Visualization, GPU
BibRef
Tang, A.[Alice],
Zhang, Z.Y.[Zhi-Yuan],
Scalzo, F.[Fabien],
Automatic Registration of Serial Cerebral Angiography: A Comparative
Review,
ISVC18(3-14).
Springer DOI
1811
BibRef
Kocinski, M.,
Materka, A.,
Elgalal, M.,
Majos, A.,
On accuracy of personalized 3D-printed MRI-based models of brain
arteries,
WSSIP17(1-5)
IEEE DOI
1707
Arteries, Biomedical imaging, Image resolution, Image segmentation,
Skeleton, Solid modeling, 3D printing,
Centerline-radius modeling, Level set segmentation,
Personalized blood vessels phantom, Subpixel, accuracy
BibRef
Kocinski, M.,
Materka, A.,
Deistung, A.,
Reichenbach, J.,
Lundervold, A.,
Towards multi-scale personalized modeling of brain vasculature based
on magnetic resonance image processing,
WSSIP17(1-5)
IEEE DOI
1707
Arteries, Biomedical imaging, Blood, Brain modeling,
Computational modeling, Veins, Multi-scale modeling,
blood vessel segmentation, cerebral vasculature, subpixel, accuracy
BibRef
Jerman, T.,
Pernuš, F.,
Likar, B.,
Špiclin, Ž.,
Chien, A.,
Automatic cutting plane identification for computer-aided analysis of
intracranial aneurysms,
ICPR16(1484-1489)
IEEE DOI
1705
Aneurysm, Image segmentation, Manuals, Neck, Shape, Surface morphology,
Three-dimensional, displays
BibRef
Bendaoudi, H.,
Cheriet, F.,
Langlois, J.M.P.,
Memory efficient Multi-Scale Line Detector architecture for retinal
blood vessel segmentation,
DASIP16(59-64)
IEEE DOI
1704
blood vessels
BibRef
Fu, Y.[Yang],
Fang, J.W.[Jia-Wen],
Quachtran, B.[Benjamin],
Chachkhiani, N.[Natia],
Scalzo, F.[Fabien],
Vessel Detection on Cerebral Angiograms Using Convolutional Neural
Networks,
ISVC16(I: 659-668).
Springer DOI
1701
BibRef
Tang, A.[Alice],
Scalzo, F.[Fabien],
Similarity Metric Learning for 2D to 3D Registration of Brain
Vasculature,
ISVC16(I: 3-12).
Springer DOI
1701
BibRef
Ding, Y.[Yu],
Nicolescu, M.[Mircea],
Farmer, D.[Dan],
Wang, Y.[Yao],
Bebis, G.[George],
Scalzo, F.[Fabien],
Tensor Voting Extraction of Vessel Centerlines from Cerebral Angiograms,
ISVC16(I: 35-44).
Springer DOI
1701
BibRef
Quachtran, B.[Benjamin],
Sheth, S.I.[Sun-Il],
Saver, J.L.[Jeffrey L.],
Liebeskind, D.S.[David S.],
Scalzo, F.[Fabien],
Probabilistic Labeling of Cerebral Vasculature on MR Angiography,
ISVC15(I: 538-548).
Springer DOI
1601
BibRef
Yang, X.[Xin],
Cheng, K.T.T.[Kwang-Ting Tim],
Chien, A.[Aichi],
Accurate Vessel Segmentation with Progressive Contrast Enhancement and
Canny Refinement,
ACCV14(III: 1-16).
Springer DOI
1504
BibRef
And:
Geodesic Active Contours with Adaptive Configuration for Cerebral
Vessel and Aneurysm Segmentation,
ICPR14(3209-3214)
IEEE DOI
1412
Accuracy
BibRef
Dávila Serrano, E.E.[Eduardo E.],
Guigues, L.[Laurent],
Roux, J.P.[Jean-Pierre],
Cervenansky, F.[Frédéric],
Camarasu-Pop, S.[Sorina],
Riveros-Reyes, J.G.[Juan G.],
Flórez-Valencia, L.[Leonardo],
Hern, M.[Marcela],
Orkisz, M.[Maciej],
CreaTools: A Framework to Develop Medical Image Processing Software:
Application to Simulate Pipeline Stent Deployment in Intracranial
Vessels with Aneurysms,
ICCVG12(55-62).
Springer DOI
1210
BibRef
Chan, S.L.S.,
Gal, Y.,
Automatic Detection of Arterial Voxels in Dynamic Contrast-Enhanced MR
Images of the Brain,
DICTA12(1-7).
IEEE DOI
1303
BibRef
Suniaga, S.[Santiago],
Werner, R.[Rene],
Kemmling, A.[Andre],
Groth, M.[Michael],
Fiehler, J.[Jens],
Forkert, N.D.[Nils Daniel],
Computer-Aided Detection of Aneurysms in 3D Time-of-Flight MRA Datasets,
MLMI12(63-69).
Springer DOI
1211
BibRef
Maumet, C.[Camille],
Maurel, P.[Pierre],
Ferré, J.C.[Jean-Christophe],
Barillot, C.[Christian],
Robust Cerebral Blood Flow Map Estimation in Arterial Spin Labeling,
MBIA12(215-224).
Springer DOI
1210
BibRef
Hassan, S.[Sahar],
Hétroy, F.[Franck],
Faure, F.[François],
Palombi, O.[Olivier],
Automatic Localization and Quantification of Intracranial Aneurysms,
CAIP11(I: 554-562).
Springer DOI
1109
BibRef
Lederman, C.[Carl],
Vese, L.[Luminita],
Chien, A.[Aichi],
Registration for 3D Morphological Comparison of Brain Aneurysm Growth,
ISVC11(I: 392-399).
Springer DOI
1109
BibRef
Tankyevych, O.[Olena],
Talbot, H.[Hugues],
Dokladal, P.[Petr],
Passat, N.[Nicolas],
Direction-adaptive grey-level morphology. application to 3D vascular
brain imaging,
ICIP09(2261-2264).
IEEE DOI
0911
BibRef
Copeland, A.,
Mangoubi, R.,
Desai, M.,
Mitter, S.,
Malek, A.,
Enhancing the surgeons reality: Smart visualization of bolus time of
arrival and blood flow anomalies from time lapse series for safety and
speed of cerebrovascular surgery,
AIPR09(1-4).
IEEE DOI
0910
BibRef
Zhu, Z.[Zhen],
Tsiamyrtzis, P.[Panagiotis],
Pavlidis, I.[Ioannis],
The Segmentation of the Supraorbital Vessels in Thermal Imagery,
AVSBS08(237-244).
IEEE DOI
0809
BibRef
Jiang, S.F.[Shao-Feng],
Chen, W.F.[Wu-Fan],
Feng, Q.J.[Qian-Jin],
Yang, S.[Suhua],
Weighted Fuzzy Feature Matching for Region-Based Medical Image
Retrieval: Application to Cerebral Hemorrhage Computerized Tomography,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Deneux, T.[Thomas],
Vanzetta, I.[Ivo],
Masson, G.S.[Guillaume S.],
Faugeras, O.D.[Olivier D.],
Cerebral blood flow recorded at high sensitivity in
two dimensions using high resolution optical imaging,
INRIARR-5759, 2005.
HTML Version.
BibRef
0500
El-Baz, A.S.[Ayman S.],
Farag, A.[Aly],
Gimel'farb, G.L.[Georgy L.],
El-Ghar, M.A.[Mohamed A.],
Eldiasty, T.[Tarek],
Probabilistic Modeling of Blood Vessels for Segmenting MRA Images,
ICPR06(III: 917-920).
IEEE DOI
0609
BibRef
El-Baz, A.S.[Ayman S.],
Farag, A.[Aly],
Gimel'farb, G.L.[Georgy L.],
Cerebrovascular Segmentation by Accurate Probabilistic Modeling of
TOF-MRA Images,
SCIA05(1128-1137).
Springer DOI
0506
BibRef
El-Baz, A.S.[Ayman S.],
Farag, A.[Aly],
Gimel'farb, G.L.[Georgy L.],
MGRF Controlled Stochastic Deformable Model,
SCIA05(1138-1147).
Springer DOI
0506
BibRef
Székely, G.,
Gerig, G.,
Koller, T.,
Brechbühler, C.,
Kübler, O.,
Analysis of MR angiography volume data leading to the structural
description of the cerebral vessel tree,
CAIP93(687-692).
Springer DOI
9309
WWW Link.
BibRef
Chen, C.H.[Chun-Han],
Yu, Y.C.[Yen-Ching],
Guo, J.K.[Jinn-Kwei],
Chen, C.H.[Chin-Hsing],
Sun, Y.N.[Yung-Nein],
Yu, C.I.,
3-D cerebral vessel reconstruction from angiograms,
CAIP93(649-656).
Springer DOI
9309
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Cortex, MRI Segmentation .