21.8.6 Electrical Impedance Tomography, EIT

Chapter Contents (Back)
Electrical Impedance Tomography. Reconstruction. Impedance Tomography. Tomography.

Polydorides, N., Lionheart, W.R.B., McCann, H.,
Krylov subspace iterative techniques: on the detection of brain activity with electrical impedance tomography,
MedImg(21), No. 6, June 2002, pp. 596-603.
IEEE Top Reference. 0208
BibRef

Calderon, A.P.,
On an inverse boundary value problem,
ConferenceBrazilian Mathematical Society, 1980,
WWW Link. BibRef 8000
And: Reprinted: CompMath(25), No. 2-3, 2006, p. 133-138
WWW Link. The foundational (mathematics) paper in Electrical Impedance Tomography. BibRef

Paulson, K.[Kevin], Lionheart, W.R.B.[William R.B.], Pidcock, M.[Michael],
Fast, non-linear inversion for electrical impedance tomography,
IVC(12), No. 6, July-August 1994, pp. 367-373.
Elsevier DOI 0401
BibRef

Adler, A., Guardo, R.,
Electrical impedance tomography: Regularized Imaging and Contrast Detection,
MedImg(15), No. 2, April 1996, pp. 170-179.
IEEE Top Reference. 0203
BibRef

Ruan, W.X.[Wen-Xin], Guardo, R., Adler, A.,
Experimental evaluation of two iterative reconstruction methods for induced current electrical impedance tomography,
MedImg(15), No. 2, April 1996, pp. 180-187.
IEEE Top Reference. 0203
BibRef

Grootveld, C.J., Segal, A., Scarlett, B.,
Regularized Modified Newton-Raphson Technique Applied to Electrical-Impedance Tomography,
IJIST(9), No. 1, 1998, pp. 60-65. 9801
BibRef

Levy, S., Adam, D., Bresler, Y.,
Electromagnetic impedance tomography (EMIT): A new method for impedance imaging,
MedImg(21), No. 6, June 2002, pp. 676-687.
IEEE Top Reference. 0208
BibRef

Belward, C.[Catherine], Howes, T.[Tony], Forbes, L.K.[Lawrence K.],
An analytic simplification for the reconstruction problem of electrical impedance tomography,
IJIST(12), No. 1, 2002, pp. 9-15.
WWW Link. 0202
BibRef

Cohen-Bacrie, C., Goussard, Y., Guardo, R.,
Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint,
MedImg(16), No. 5, October 1997, pp. 562-571.
IEEE Top Reference. 0205
BibRef

Glidewell, M.E., Ng, K.T.,
Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies,
MedImg(16), No. 5, October 1997, pp. 572-580.
IEEE Top Reference. 0205
BibRef

Mueller, J.L., Siltanen, S., Isaacson, D.,
A direct reconstruction algorithm for electrical impedance tomography,
MedImg(21), No. 6, June 2002, pp. 555-559.
IEEE Top Reference. 0208
BibRef

Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.,
Reconstructions of Chest Phantoms by the D-Bar Method for Electrical Impedance Tomography,
MedImg(23), No. 7, July 2004, pp. 821-828.
IEEE Abstract. 0407
BibRef

Boverman, G., Kao, T.J., Kulkarni, R., Kim, B.S., Isaacson, D., Saulnier, G.J., Newell, J.C.,
Robust Linearized Image Reconstruction for Multifrequency EIT of the Breast,
MedImg(27), No. 10, October 2008, pp. 1439-1448.
IEEE DOI 0810
BibRef

Jossinet, J., Marry, E., Montalibet, A.,
Electrical impedance endo-tomography: imaging tissue from inside,
MedImg(21), No. 6, June 2002, pp. 560-565.
IEEE Top Reference. 0208
BibRef

Frangi, A.F., Riu, P.J., Rosell, J., Viergever, M.A.,
Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography,
MedImg(21), No. 6, June 2002, pp. 566-578.
IEEE Top Reference. 0208
BibRef

Fitzgerald, A.J., Holder, D.S., Eadie, L., Hare, C., Bayford, R.H.,
A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors,
MedImg(21), No. 6, June 2002, pp. 668-675.
IEEE Top Reference. 0208
BibRef

Khang, H.S.[Hyun Soo], Lee, B.I.[Byung Il], Oh, S.H.[Suk Hoon], Woo, E.J.[Eung Je], Lee, S.Y.[Soo Yeol], Cho, M.H.[Min Hyoung], Kwon, O.[Ohin], Yoon, J.R.[Jeong Rock], Seo, J.K.[Jin Keun],
J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images,
MedImg(21), No. 6, June 2002, pp. 695-702.
IEEE Top Reference. 0208
BibRef

Lee, S., Seo, J.K., Park, C., Lee, B.I., Woo, E.J., Lee, S.Y., Kwon, O., Hahn, J.,
Conductivity Image Reconstruction From Defective Data in MREIT: Numerical Simulation and Animal Experiment,
MedImg(25), No. 2, February 2006, pp. 168-176.
IEEE DOI 0602
magnetic resonance electrical impedance tomography. BibRef

Nam, H.S., Kwon, O.I.,
Axial Anisotropic Conductivity Imaging Based on Projected Current Density in MREIT,
MedImg(29), No. 3, March 2010, pp. 781-789.
IEEE DOI 1003
magnetic resonance electrical impedance tomography BibRef

Zlochiver, S., Rosenfeld, M., Abboud, S.,
Induced-current electrical impedance tomography: A 2-d theoretical simulation,
MedImg(22), No. 12, December 2003, pp. 1550-1560.
IEEE Abstract. 0401
BibRef

Park, C., Kwon, O., Woo, E.J., Seo, J.K.,
Electrical Conductivity Imaging Using Gradient z-Decomposition Algorithm in Magnetic Resonance Electrical Impedance Tomography (MREIT),
MedImg(23), No. 3, March 2004, pp. 388-394.
IEEE Abstract. 0403
BibRef

Song, Y.Z.[Yi-Zhuang], Ammari, H.[Habib], Seo, J.K.[Jin Keun],
Fast Magnetic Resonance Electrical Impedance Tomography with Highly Undersampled Data,
SIIMS(10), No. 2, 2017, pp. 558-577.
DOI Link 1708
BibRef

Demidenko, E., Hartov, A., Paulsen, K.D.,
Statistical Estimation of Resistance/Conductance by Electrical Impedance Tomography Measurements,
MedImg(23), No. 7, July 2004, pp. 829-838.
IEEE Abstract. 0407
BibRef

Soni, N.K., Paulsen, K.D., Dehghani, H., Hartov, A.,
Finite Element Implementation of Maxwell's Equations for Image Reconstruction in Electrical Impedance Tomography,
MedImg(25), No. 1, January 2006, pp. 55-61.
IEEE DOI 0601
BibRef

Lim, K.H., Lee, J.H., Ye, G., Liu, Q.H.,
An Efficient Forward Solver in Electrical Impedance Tomography by Spectral Element Method,
MedImg(25), No. 8, August 2006, pp. 1044-1051.
IEEE DOI 0608
BibRef

Babaeizadeh, S., Brooks, D.H., Isaacson, D., Newell, J.C.,
Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions,
MedImg(25), No. 9, September 2006, pp. 1180-1188.
IEEE DOI 0609
electrical impedance tomography. BibRef

Babaeizadeh, S.[Saeed], Brooks, D.H.[Dana H.],
Electrical Impedance Tomography for Piecewise Constant Domains Using Boundary Element Shape-Based Inverse Solutions,
MedImg(26), No. 5, May 2007, pp. 637-647.
IEEE DOI 0705
BibRef

Naik, N., Eriksson, J., de Groen, P., Sahli, H.,
A Nonlinear Iterative Reconstruction and Analysis Approach to Shape-Based Approximate Electromagnetic Tomography,
GeoRS(46), No. 5, May 2008, pp. 1558-1574.
IEEE DOI 0804
BibRef

Ireland, R.H.[Rob H.], Barber, D.C.[David C.],
Constrained image reconstruction for magnetic detection electrical impedance tomography,
IJIST(17), No. 6, 2007, pp. 379-382.
DOI Link 0804
BibRef

Hasanov, K.F., Ma, A.W., Nachman, A.I., Joy, M.L.G.,
Current Density Impedance Imaging,
MedImg(27), No. 9, September 2008, pp. 1301-1309.
IEEE DOI 0809
BibRef

Wang, D., de Monte, T.P., Ma, W., Joy, M.L.G., Nachman, A.I.,
Multislice Radio-Frequency Current Density Imaging,
MedImg(28), No. 7, July 2009, pp. 1083-1092.
IEEE DOI 0906
BibRef

Wang, D., Ma, W., de Monte, T.P., Nachman, A.I., Joy, M.L.G.,
Radio-Frequency Current Density Imaging Based on a 180° Sample Rotation With Feasibility Study of Full Current Density Vector Reconstruction,
MedImg(30), No. 2, February 2011, pp. 327-337.
IEEE DOI 1102
BibRef

Kolehmainen, V., Lassas, M., Ola, P.,
Electrical Impedance Tomography Problem With Inaccurately Known Boundary and Contact Impedances,
MedImg(27), No. 10, October 2008, pp. 1404-1414.
IEEE DOI 0810
BibRef

Seo, J.K., Kim, S.W., Kim, S., Liu, J., Woo, E.J., Jeon, K., Lee, C.O.,
Local Harmonic B_z Algorithm With Domain Decomposition in MREIT: Computer Simulation Study,
MedImg(27), No. 12, December 2008, pp. 1754-1761.
IEEE DOI 0812
magnetic resonance electrical impedance tomography BibRef

Ijaz, U.Z.[Umer Zeeshan],
Dynamic phase boundary estimation using electrical impedance tomography,
Ph.D.Thesis, Cheju National University, Korea, December 2007.
PDF File. BibRef 0712

Ijaz, U.Z.[Umer Zeeshan], Khambampati, A.K.[Anil Kumar], Lee, J.S.[Jeong Seong], Kim, S.[Sin], and Kim, K.Y.[Kyung Youn],
Nonstationary phase boundary estimation in electrical impedance tomography using unscented Kalman filter,
CompPhys(227), No. 15, 20 July 2008, pp. 7089-7112.
Elsevier DOI BibRef 0807

Ijaz, U.Z.[Umer Zeeshan], Chung, S.I.[Soon Il], Khambampati, A.K.[Anil Kumar], Kim, K.Y.[Kyung Youn], and Kim, S.[Sin],
Electrical resistance imaging of a time-varying interface in stratified flows using an unscented Kalman filter,
MeasureSciTech(19), 2008, paper 065501 (11pp).
DOI Link BibRef 0800

Kim, Y.S.[Yong Song], Lee, S.H.[Seong Hun], Ijaz, U.Z.[Umer Zeeshan], Kim, K.Y.[Kyung Youn], and Choi, B.Y.[Bong Yeol],
Sensitivity map generation in electrical capacitance tomography using mixed normalization models,
MeasureSciTech(18), 2007, pp. 2092-2102.
DOI Link Electrical Capacitance Tomography BibRef 0700

Kim, S.[Sin], Ijaz, U.Z.[Umer Zeeshan], Khambampati, A.K.[Anil Kumar], Kim, K.Y.[Kyung Youn], Kim, M.C.[Min Chan], and Chung, S.I.[Soon Il],
Moving interfacial boundary estimation in stratified flow of two immiscible liquids using electrical resistance tomography,
MeasureSciTech(18), 2007, pp. 1257-1269.
DOI Link BibRef 0700

Ijaz, U.Z.[Umer Zeeshan], Kim, J.H.[Jeong-Hoon], Khambampati, A.K.[Anil Kumar], Kim, M.C.[Min-Chan], Kim, S.[Sin], and Kim, K.Y.[Kyung-Youn],
Concentration distribution estimation of fluid through lectrical impedance tomography based on interacting multiple model scheme,
FlowMeasure(18), No. 1, March 2007, pp. 47-56.
Elsevier DOI BibRef 0703

Kim, B.S.[Bong Seok], Ijaz, U.Z.[Umer Zeeshan], Kim, J.H.[Jeong Hoon], Kim, M.C.[Min Chan], Kim, S.[Sin], and Kim, K.Y.[Kyung Youn],
Nonstationary phase boundary estimation in electrical impedance tomography based on the interacting multiple model scheme,
MeasureSciTech(18), 2007, pp. 62-70.
DOI Link BibRef 0700

Kim, J.H.[Jae Hyoung], Kang, B.C.[Byoung Chae], Lee, S.H.[Seong Hun], Choi, B.Y.[Bong Yeol], Kim, M.C.[Min Chan], Kim, B.S.[Bong Seok], Ijaz, U.Z.[Umer Zeeshan], Kim, K.Y.[Kyung Youn], and Kim, S.[Sin],
Phase boundary estimation in electrical resistance tomography with weighted multi-layered neural networks and front point approach,
MeasureSciTech(17), 2006, pp. 2731-2739.
DOI Link BibRef 0600

Ijaz, U.Z., Kim, J.H., Kim, M.C., Kim, S., Park, J.W., Kim, K.Y.,
Nondestructive dynamic process monitoring using electrical capacitance tomography,
KEM(321-323 II), 2006, pp. 1671-1674.
WWW Link. BibRef 0600

Kim, S.[Sin], Ijaz, U.Z., Khambampati, A.K., Kim, K.Y.[Kyung Youn], Kim, M.C.[Min Chan],
Effect of Current Injection Patterns on Dynamic Electrical Resistance Imaging for Fast Transient Processes,
Sensors06(506-509).
IEEE DOI BibRef 0600

Ijaz, U.Z.[Umer Zeeshan], Khambampati, A.K.[Anil Kumar], Lee, J.S.[Jeong Seong], Kim, K.Y.[Kyung Youn], Kim, M.C.[Min Chan], and Kim, S.[Sin],
Electrical Resistance Imaging of Two-Phase Flow Through Rod Bundles,
AIP(914), 2007, pp. 844-849.
DOI Link BibRef 0700

Ijaz, U.Z.[Umer Zeeshan], Khambampati, A.K.[Anil Kumar], Kim, M.C.[Min Chan], Kim, S.[Sin], Lee, J.S.[Jeong Seong], and Kim, K.Y.[Kyung Youn],
Particle Swarm Optimization Technique For Elliptic Region Boundary stimation In Electrical Impedance Tomography,
AIP(914), 2007, pp. 896-901.
DOI Link BibRef 0700

Ijaz, U.Z., Kim, B.S., Kao, T.J., Khambampati, A.K., Kim, M.C., Newell, J.C., Isaacson, D., Kim, K.Y.,
Mammography phantom studies using 3D electrical impedance tomography with numerical forward solver,
FBIT07(379-383).
IEEE DOI BibRef 0700

Boverman, G., Kao, T.J., Isaacson, D., Saulnier, G.J.,
An Implementation of Calderon's Method for 3-D Limited-View EIT,
MedImg(28), No. 7, July 2009, pp. 1073-1082.
IEEE DOI 0906
electrical impedance tomography BibRef

Katscher, U., Voigt, T., Findeklee, C., Vernickel, P., Nehrke, K., Dossel, O.,
Determination of Electric Conductivity and Local SAR Via B1 Mapping,
MedImg(28), No. 9, September 2009, pp. 1365-1374.
IEEE DOI 0909
Electrical properties tomography. BibRef

Murphy, E.K., Mueller, J.L.,
Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT,
MedImg(28), No. 10, October 2009, pp. 1576-1584.
IEEE DOI 0910
electrical impedance tomography. BibRef

Kim, H.J., Kim, Y.T., Minhas, A.S., Jeong, W.C., Woo, E.J., Seo, J.K., Kwon, O.J.,
In Vivo High-Resolution Conductivity Imaging of the Human Leg Using MREIT: The First Human Experiment,
MedImg(28), No. 11, November 2009, pp. 1681-1687.
IEEE DOI 0911
BibRef

Capdeboscq, Y., Fehrenbach, J., de Gournay, F., Kavian, O.,
Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements,
SIIMS(2), No. 4, 2009, pp. 1003-1030.
DOI Link inverse problem; conductivity; imaging Reconstruct impedance by power density. BibRef 0900

Maalej, N.M., Belhadj, C.A., Abdel-Galil, T.K., Habiballah, I.O.,
Visible Human Utilization to Render Induced Electric Field and Current Density Images Inside the Human,
PIEEE(97), No. 12, December 2009, pp. 2053-2059.
IEEE DOI 0912
BibRef

Borsic, A., Graham, B.M., Adler, A., Lionheart, W.R.B.,
In Vivo Impedance Imaging With Total Variation Regularization,
MedImg(29), No. 1, January 2010, pp. 44-54.
IEEE DOI 1001
BibRef

Griesmaier, R.[Roland],
Reconstruction Of Thin Tubular Inclusions in Three-Dimensional Domains Using Electrical Impedance Tomography,
SIIMS(3), No. 3, 2010, pp. 340-362.
DOI Link electrical impedance tomography; thin tubular inclusions; asymptotic expansions; factorization method BibRef 1000

Griesmaier, R.[Roland], Hanke, M.[Martin],
Multifrequency Impedance Imaging with Multiple Signal Classification,
SIIMS(8), No. 2, 2015, pp. 939-967.
DOI Link 1507
BibRef

Harrach, B., Seo, J.K., Woo, E.J.,
Factorization Method and Its Physical Justification in Frequency-Difference Electrical Impedance Tomography,
MedImg(29), No. 11, November 2010, pp. 1918-1926.
IEEE DOI 1011
BibRef

Nissinen, A., Kolehmainen, V.P., Kaipio, J.P.,
Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography,
MedImg(30), No. 2, February 2011, pp. 231-242.
IEEE DOI 1102

See also Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography. BibRef

Negishi, M., Tong, T., Constable, R.T.,
Magnetic Resonance Driven Electrical Impedance Tomography: A Simulation Study,
MedImg(30), No. 3, March 2011, pp. 828-837.
IEEE DOI 1103
BibRef

Lei, J.[Jing], Liu, S.[Shi],
An Image Reconstruction Algorithm Based on the Regularized Minimax Estimation for Electrical Capacitance Tomography,
JMIV(39), No. 3, March 2011, pp. 269-291.
WWW Link. 1103
BibRef

Xin, S., Wang, H.,
Extensible electrical capacitance tomography system for gas-liquid two-phase flow,
IET-IPR(5), No. 5, 2011, pp. 500-507.
DOI Link 1108
BibRef

Yin, W., Peyton, A.J.,
Improvement of signal-to-noise ratio and image stability in magnetic inductance tomography by exploiting transient response analysis,
IET-IPR(5), No. 5, 2011, pp. 508-512.
DOI Link 1108
BibRef

Yang, D.Y., Zhou, B., Xu, C.L., Wang, S.M.,
Thick-wall electrical capacitance tomography and its application in dense-phase pneumatic conveying under high pressure,
IET-IPR(5), No. 5, 2011, pp. 513-522.
DOI Link 1108
BibRef

Shaib, M.F.B.[Mohd Fadzli Ben_Abd], Mohamad, E.J.[Elmy Johana], Rahim, R.A.[Ruzairi Abdul], Jamil, M.B.[Mahadi Ben_Abd], Ling, L.P.[Leow Pei],
An Overview: Effectiveness of Different Arrangement for Electrode Guard in Electrical Capacitance Tomography,
Sensors(135), No. 12, December, pp. 20-26:
HTML Version. BibRef 0012

Polydorides, N.[Nick], Aghasi, A.[Alireza], Miller, E.L.[Eric L.],
High-Order Regularized Regression in Electrical Impedance Tomography,
SIIMS(5), No. 3 2012, pp. 912-943.
DOI Link 1209
BibRef

Grychtol, B., Lionheart, W.R.B., Bodenstein, M., Wolf, G.K., Adler, A.,
Impact of Model Shape Mismatch on Reconstruction Quality in Electrical Impedance Tomography,
MedImg(31), No. 9, September 2012, pp. 1754-1760.
IEEE DOI 1209
BibRef

Boyle, A., Adler, A., Lionheart, W.R.B.,
Shape Deformation in Two-Dimensional Electrical Impedance Tomography,
MedImg(31), No. 12, December 2012, pp. 2185-2193.
IEEE DOI 1212
BibRef

Dardé, J., Hyvönen, N., Seppänen, A., Staboulis, S.,
Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography,
SIIMS(6), No. 1, 2013, pp. 176-198.
DOI Link 1304
BibRef

Hamilton, S.J., Mueller, J.L.,
Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D,
MedImg(32), No. 4, April 2013, pp. 757-769.
IEEE DOI 1304
Electrical impedance tomography. BibRef

Alsaker, M.[Melody], Mueller, J.L.[Jennifer L.],
A D-Bar Algorithm with A Priori Information for 2-Dimensional Electrical Impedance Tomography,
SIIMS(9), No. 4, 2016, pp. 1619-1654.
DOI Link 1612
BibRef

Hamilton, S.J., Mueller, J.L.[Jennifer L.], Alsaker, M.[Melody],
Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities,
MedImg(36), No. 2, February 2017, pp. 457-466.
IEEE DOI 1702
Conductivity BibRef

Mamatjan, Y., Grychtol, B., Gaggero, P., Justiz, J., Koch, V.M., Adler, A.,
Evaluation and Real-Time Monitoring of Data Quality in Electrical Impedance Tomography,
MedImg(32), No. 11, 2013, pp. 1997-2005.
IEEE DOI 1312
biomedical electrodes BibRef

Malone, E., Sato dos Santos, G., Holder, D., Arridge, S.R.,
Multifrequency Electrical Impedance Tomography Using Spectral Constraints,
MedImg(33), No. 2, February 2014, pp. 340-350.
IEEE DOI 1403
bioelectric potentials BibRef

Malone, E., Sato dos Santos, G., Holder, D., Arridge, S.R.,
A Reconstruction-Classification Method for Multifrequency Electrical Impedance Tomography,
MedImg(34), No. 7, July 2015, pp. 1486-1497.
IEEE DOI 1507
Conductivity BibRef

Winkler, R., Rieder, A.,
Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography,
SIIMS(7), No. 4, 2014, pp. 2048-2077.
DOI Link 1412
BibRef

Khan, S., Manwaring, P., Borsic, A., Halter, R.,
FPGA-Based Voltage and Current Dual Drive System for High Frame Rate Electrical Impedance Tomography,
MedImg(34), No. 4, April 2015, pp. 888-901.
IEEE DOI 1504
Electrodes BibRef

Borsic, A., Perreard, I., Mahara, A., Halter, R.J.,
An Inverse Problems Approach to MR-EPT Image Reconstruction,
MedImg(35), No. 1, January 2016, pp. 244-256.
IEEE DOI 1601
Conductivity BibRef

Harrach, B., Ullrich, M.,
Resolution Guarantees in Electrical Impedance Tomography,
MedImg(34), No. 7, July 2015, pp. 1513-1521.
IEEE DOI 1507
Conductivity BibRef

Murphy, E.K., Mahara, A., Halter, R.J.,
A Novel Regularization Technique for Microendoscopic Electrical Impedance Tomography,
MedImg(35), No. 7, July 2016, pp. 1593-1603.
IEEE DOI 1608
biological organs BibRef

Murphy, E.K., Mahara, A., Halter, R.J.,
Absolute Reconstructions Using Rotational Electrical Impedance Tomography for Breast Cancer Imaging,
MedImg(36), No. 4, April 2017, pp. 892-903.
IEEE DOI 1704
Electrodes BibRef

Hamilton, S.J., Reyes, J.M., Siltanen, S., Zhang, X.,
A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography,
SIIMS(9), No. 2, 2016, pp. 770-793.
DOI Link 1608
BibRef

Alberti, G.S.[Giovanni S.], Ammari, H.[Habib], Jin, B.[Bangti], Seo, J.K.[Jin-Keun], Zhang, W.L.[Wen-Long],
The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography,
SIIMS(9), No. 4, 2016, pp. 1525-1551.
DOI Link 1612
BibRef

Elsaid, N.M.H., Nachman, A.I., Ma, W., DeMonte, T.P., Joy, M.L.G.,
The Impact of Anisotropy on the Accuracy of Conductivity Imaging: A Quantitative Validation Study,
MedImg(36), No. 2, February 2017, pp. 507-517.
IEEE DOI 1702
Conductivity BibRef

Shin, J., Kim, M.O., Cho, S., Kim, D.H.,
Fast Spin Echo Imaging-Based Electric Property Tomography With K-Space Weighting via T_2 Relaxation (rEPT),
MedImg(36), No. 8, August 2017, pp. 1615-1625.
IEEE DOI 1708
Conductivity, Frequency-domain analysis, Image reconstruction, Imaging, Magnetic fields, Modulation, Signal to noise ratio, T2MTF, FSE, MREPT, electrical conductivity, electrical, property, tomography BibRef

Ammari, H.[Habib], Kwon, H.[Hyeuknam], Lee, S.[Seungri], Seo, J.K.[Jin Keun],
Mathematical Framework for Abdominal Electrical Impedance Tomography to Assess Fatness,
SIIMS(10), No. 2, 2017, pp. 900-919.
DOI Link 1708
BibRef

Gong, B., Schullcke, B., Krueger-Ziolek, S., Vauhkonen, M., Wolf, G., Mueller-Lisse, U., Moeller, K.,
EIT Imaging Regularization Based on Spectral Graph Wavelets,
MedImg(36), No. 9, September 2017, pp. 1832-1844.
IEEE DOI 1709
bioelectric phenomena, biological tissues, electric impedance imaging, wavelet transforms, wavelet transforms, Jacobian matrices, Electricalimpedancetomography BibRef

Liu, D., Khambampati, A.K., Du, J.,
A Parametric Level Set Method for Electrical Impedance Tomography,
MedImg(37), No. 2, February 2018, pp. 451-460.
IEEE DOI 1802
Conductivity, Image reconstruction, Inverse problems, Level set, Lungs, Shape, Tomography, Electrical impedance tomography, parametric level set method BibRef

Garmatter, D.[Dominik], Harrach, B.[Bastian],
Magnetic Resonance Electrical Impedance Tomography (MREIT): Convergence and Reduced Basis Approach,
SIIMS(11), No. 1, 2018, pp. 863-887.
DOI Link 1804
BibRef

Liu, S., Jia, J., Zhang, Y.D., Yang, Y.,
Image Reconstruction in Electrical Impedance Tomography Based on Structure-Aware Sparse Bayesian Learning,
MedImg(37), No. 9, September 2018, pp. 2090-2102.
IEEE DOI 1809
Tomography, Image reconstruction, Bayes methods, Electrodes, Voltage measurement, Conductivity, Computational modeling, maximuma posteriori(MAP) estimation BibRef

Leijsen, R.L., Brink, W.M., van den Berg, C.A.T., Webb, A.G., Remis, R.F.,
3-D Contrast Source Inversion-Electrical Properties Tomography,
MedImg(37), No. 9, September 2018, pp. 2080-2089.
IEEE DOI 1809
Radio frequency, Mathematical model, Image reconstruction, Magnetic resonance imaging, electromagnetic Green's tensor field representations BibRef

Lee, K., Woo, E.J., Seo, J.K.,
A Fidelity-Embedded Regularization Method for Robust Electrical Impedance Tomography,
MedImg(37), No. 9, September 2018, pp. 1970-1977.
IEEE DOI 1809
Electrodes, Conductivity, Tomography, Image reconstruction, Voltage measurement, Jacobian matrices, motion artifacts reduction BibRef

Hamilton, S.J., Hauptmann, A.,
Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks,
MedImg(37), No. 10, October 2018, pp. 2367-2377.
IEEE DOI 1810
Tomography, Image reconstruction, Conductivity, Real-time systems, Impedance, Robustness, Current measurement, conductivity imaging BibRef

Liu, D., Smyl, D., Du, J.,
A Parametric Level Set-Based Approach to Difference Imaging in Electrical Impedance Tomography,
MedImg(38), No. 1, January 2019, pp. 145-155.
IEEE DOI 1901
Conductivity, Tomography, Image reconstruction, Computational modeling, Level set, Conductivity measurement, inverse problems BibRef

Liu, D., Gu, D., Smyl, D., Deng, J., Du, J.,
B-Spline Level Set Method for Shape Reconstruction in Electrical Impedance Tomography,
MedImg(39), No. 6, June 2020, pp. 1917-1929.
IEEE DOI 2006
Electrical impedance tomography, B-spline level set method, Inverse problems, Shape reconstruction BibRef

Liu, D., Gu, D., Smyl, D., Deng, J., Du, J.,
Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography,
MedImg(39), No. 9, September 2020, pp. 2954-2964.
IEEE DOI 2009
Shape, Image reconstruction, Conductivity, Splines (mathematics), Level set, Reconstruction algorithms, lung imaging BibRef

Ren, S., Sun, K., Liu, D., Dong, F.,
A Statistical Shape-Constrained Reconstruction Framework for Electrical Impedance Tomography,
MedImg(38), No. 10, October 2019, pp. 2400-2410.
IEEE DOI 1910
Shape, Lung, Image reconstruction, Computed tomography, Conductivity, Electrical impedance tomography, lung imaging, robust principal component analysis BibRef

Liu, D., Gu, D., Smyl, D., Deng, J., Du, J.,
B-Spline-Based Sharp Feature Preserving Shape Reconstruction Approach for Electrical Impedance Tomography,
MedImg(38), No. 11, November 2019, pp. 2533-2544.
IEEE DOI 1911
Tomography, Splines (mathematics), Shape, Image reconstruction, Conductivity, Fourier series, Numerical models, inverse problems BibRef

Liu, D., Du, J.,
A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography,
MedImg(38), No. 12, December 2019, pp. 2937-2948.
IEEE DOI 1912
Shape, Image reconstruction, Tomography, Topology, Level set, Conductivity, Electrodes, Electrical impedance tomography, inverse problems BibRef

Jiang, Y.D., Soleimani, M.,
Capacitively Coupled Electrical Impedance Tomography for Brain Imaging,
MedImg(38), No. 9, September 2019, pp. 2104-2113.
IEEE DOI 1909
Electrodes, Tomography, Impedance, Head, Conductivity, Electrical resistance measurement, multi-frequency time-difference imaging BibRef

Connell, I.R.O., Menon, R.S.,
Shape Optimization of an Electric Dipole Array for 7 Tesla Neuroimaging,
MedImg(38), No. 9, September 2019, pp. 2177-2187.
IEEE DOI 1909
Radio frequency, Optimization, Conductors, Shape, Head, Couplings, Impedance, Radio-frequency arrays, RF arrays, MRI RF coils, dipoles, shape optimization BibRef

Liang, G., Ren, S., Dong, F.,
A Shape-Based Statistical Inversion Method for EIT/URT Dual-Modality Imaging,
IP(29), 2020, pp. 4099-4113.
IEEE DOI 2002
Dual-modality imaging, inclusion boundary reconstruction, electrical impedance tomography, statistical inversion BibRef

Wei, Z., Chen, X.,
Induced-Current Learning Method for Nonlinear Reconstructions in Electrical Impedance Tomography,
MedImg(39), No. 5, May 2020, pp. 1326-1334.
IEEE DOI 2005
Tomography, Conductivity, Mathematical model, Image reconstruction, Inverse problems, Pollution measurement, Electrodes, convolutional neural network BibRef

Li, Z., Zhang, J., Liu, D., Du, J.,
CT Image-Guided Electrical Impedance Tomography for Medical Imaging,
MedImg(39), No. 6, June 2020, pp. 1822-1832.
IEEE DOI 2006
Computed tomography, cross-gradient function, electrical impedance tomography, lung imaging BibRef

Jauhiainen, J.[Jyrki], Kuusela, P.[Petri], Seppänen, A.[Aku], Valkonen, T.[Tuomo],
Relaxed Gauss-Newton Methods with Applications to Electrical Impedance Tomography,
SIIMS(13), No. 3, 2020, pp. 1415-1445.
DOI Link 2010
BibRef

Murphy, E.K., Wu, X., Everitt, A.C., Halter, R.J.,
Phantom Studies of Fused-Data TREIT Using Only Biopsy-Probe Electrodes,
MedImg(39), No. 11, November 2020, pp. 3367-3378.
IEEE DOI 2011
Electrodes, Biopsy, Probes, Tomography, Image reconstruction, Conductivity, Data fusion, electrical impedance tomography, bioimpedance BibRef

Liu, D., Smyl, D., Gu, D., Du, J.,
Shape-Driven Difference Electrical Impedance Tomography,
MedImg(39), No. 12, December 2020, pp. 3801-3812.
IEEE DOI 2012
Tomography, Conductivity, Image reconstruction, Shape, Computational modeling, Conductivity measurement, shape reconstruction BibRef

Liu, D., Gu, D., Smyl, D., Khambampati, A.K., Deng, J., Du, J.,
Shape-Driven EIT Reconstruction Using Fourier Representations,
MedImg(40), No. 2, February 2021, pp. 481-490.
IEEE DOI 2102
Shape, Image reconstruction, Tomography, Conductivity, Topology, Conductivity measurement, Current measurement, primitives BibRef

Bar, L.[Leah], Sochen, N.[Nir],
Strong Solutions for PDE-Based Tomography by Unsupervised Learning,
SIIMS(14), No. 1, 2021, pp. 128-155.
DOI Link 2104
BibRef

Smyl, D.[Danny], Tallman, T.N.[Tyler N.], Liu, D.[Dong], Hauptmann, A.[Andreas],
An Efficient Quasi-Newton Method for Nonlinear Inverse Problems via Learned Singular Values,
SPLetters(28), 2021, pp. 748-752.
IEEE DOI 2105
Jacobian matrices, Artificial neural networks, Inverse problems, Training, Computational modeling, electrical impedance tomography BibRef

Agnelli, J.P.[Juan P.], Kolehmainen, V.[Ville], Lassas, M.J.[Matti J.], Ola, P.[Petri], Siltanen, S.[Samuli],
Simultaneous Reconstruction of Conductivity, Boundary Shape, and Contact Impedances in Electrical Impedance Tomography,
SIIMS(14), No. 4, 2021, pp. 1407-1438.
DOI Link 2112
BibRef

Wang, Y.[Yaru], Yue, S.H.[Shi-Hong], Chen, J.[Jun], Li, Q.[Qi],
Conductivity characteristics of human lung tissues,
IJIST(32), No. 1, 2022, pp. 178-191.
DOI Link 2201
conductivity characteristics, electrical impedance tomography, human lung tissue, impedance spectra, priori information BibRef

Shi, Y.Y.[Yan-Yan], Tian, Z.W.[Zhi-Wei], Wang, M.[Meng], Rao, Z.G.[Zu-Guang], Fu, F.[Feng],
Reconstruction of conductivity distribution with a compound variational strategy in electrical impedance tomography,
IJIST(32), No. 1, 2022, pp. 295-306.
DOI Link 2201
conductivity distribution, electrical impedance tomography, visualization BibRef

Shi, Y.Y.[Yan-Yan], Zhang, Y.H.[Yu-Hang], Wang, M.[Meng], Gao, Z.[Zhen], Dai, M.[Meng], Fu, F.[Feng],
Image reconstruction based on a modified bird swarm optimization algorithm for electrical impedance tomography,
IJIST(33), No. 3, 2023, pp. 1062-1072.
DOI Link 2305
conductivity distribution, electrical impedance tomography, image reconstruction, modified birds swarm algorithm. BibRef

Liu, D.[Dong], Wang, J.[Junwu], Shan, Q.X.[Qian-Xue], Smyl, D.[Danny], Deng, J.S.[Jian-Song], Du, J.F.[Jiang-Feng],
DeepEIT: Deep Image Prior Enabled Electrical Impedance Tomography,
PAMI(45), No. 8, August 2023, pp. 9627-9638.
IEEE DOI 2307
Electrical impedance tomography, Image reconstruction, Electronics packaging, Artificial neural networks, Training data, unsupervised learning BibRef


Colibazzi, F.[Francesco], Lazzaro, D.[Damiana], Morigi, S.[Serena], Samorè, A.[Andrea],
Limited Electrodes Models in Electrical Impedance Tomography Reconstruction,
SSVM23(68-80).
Springer DOI 2307
BibRef

Madjid, N.A., Liatsis, P.,
Object Segmentation In Electrical Impedance Tomography For Tactile Sensing,
ICIP20(3050-3054)
IEEE DOI 2011
Image segmentation, Tomography, Image reconstruction, Sensors, Electrodes, Mathematical model, Conductivity, Active contours, tactile sensing BibRef

Li, X., Lu, Y., Wang, J., Dang, X., Wang, Q., Duan, X., Sun, Y.,
An image reconstruction framework based on deep neural network for electrical impedance tomography,
ICIP17(3585-3589)
IEEE DOI 1803
Conductivity, Finite element analysis, Image reconstruction, Mathematical model, Tomography, Training, Voltage measurement, stacked autoencoder (SAE) BibRef

Zaravi, S., Amirfattahi, R., Vahdat, B.V.,
Investigation of error propagation and measurement error for 2D block method in Electrical Impedance Tomography,
IPRIA15(1-4)
IEEE DOI 1603
bioelectric potentials BibRef

Lu, L.[Lin], Liu, L.[Lili], Hu, C.[Chun],
Analysis of the electrical impedance tomography algorithm based on finite element method and Tikhonov regularization,
ICWAPR14(36-42)
IEEE DOI 1402
Electrodes BibRef

Maimaitijiang, Y., Roula, M.A., Sobeihi, K., Watson, S., Williams, R.J., Griffiths, H.,
A parallel implementation of a Magnetic Induction Tomography: Image reconstruction algorithm on the ClearSpeed Advance accelerator board,
ICIP09(1757-1760).
IEEE DOI 0911
BibRef

Isa, M.D.[Mohd Daud], Rahmat, M.F.[Mohd Fua'ad],
Application of Digital Imaging Technique in Electrical Charge Tomography System for Image Reconstruction Validation,
ICMV09(277-281).
IEEE DOI 0912
BibRef

He, S.J.[Shi-Jun], Wang, H.X.[Hua-Xiang], Zhou, R.Y.[Ru-Yan],
A 3D Image Reconstruction Algorithm of Electrical Capacitance Tomography Based on Support Vector Machines,
CISP09(1-4).
IEEE DOI 0910
BibRef

Huang, J.J.[Ji-Jer], Cheng, K.S.[Kuo-Sheng],
The effect of electrode-skin interface model in electrical impedance imaging,
ICIP98(III: 837-840).
IEEE DOI 9810
BibRef

Martin, T., Idier, J.,
A FEM-Based Nonlinear MAP Estimator in Electrical Impedance Tomography,
ICIP97(II: 684-687).
IEEE DOI BibRef 9700

Shallof, A.M., Barber, D.C.,
Imaging the complex conductivity in electrical impedance tomography,
ICIP96(III: 543-546).
IEEE DOI 9610
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Image Generation, Cone-Beam, Fan-Beam, Helical, Spiral Reconstruction .


Last update:Mar 16, 2024 at 20:36:19