Badler, N.I.,
O'Rourke, J., and
Toltzis, H.,
A Spherical Representation of a Human Body for Visualizing Movement,
PIEEE(67), 1979, pp. 1397-1403.
BibRef
7900
O'Rourke, J., and
Badler, N.I.,
Decomposition of Three-Dimensional Objects into Spheres,
PAMI(1), No. 3, July 1979, pp. 295-305.
BibRef
7907
And:
Correction:
PAMI(1), No. 4, October 1979, pp. 417.
BibRef
Earlier: A2, A1:
PRAI-78(157-159).
BibRef
Badler, N.I., and
Bajcsy, R.,
3D Representation for Computer Graphics and Computer Vision,
Computer Graphics(12), 1978, pp. 153-160.
BibRef
7800
Mohr, R.,
A Refinement of a Spherical Decomposition Algorithm,
PAMI(4), No. 1, January 1982, pp. 51.
BibRef
8201
Mohr, R., and
Bajcsy, R.,
Packing Volumes by Spheres,
PAMI(5), No. 1, January 1983, pp. 111-116.
BibRef
8301
Knapman, J.,
Dupin's Cyclide and the Cyclide Patch,
IVC(5), No. 2, May 1987, pp. 167-173.
Elsevier DOI Implicit surfaces.
The Dupin Cyclides can be looked at in various ways.
They are the envelope of spheres touching three other fixed spheres.
They are also the envelope of spheres with centres on a conic and
touching a sphere.
Every Dupin Cyclide is the inverse of a Torus.
BibRef
8705
Hebert, M.,
Ikeuchi, K.,
Delingette, H.,
A Spherical Representation for Recognition of Free-Form Surfaces,
PAMI(17), No. 7, July 1995, pp. 681-690.
IEEE DOI Generate descriptions from range images. Recognition using similarity of
shperical distributions (no search). Generate a mesh description, transform
to a shperical form (Spherical Attribut Image -- SAI).
BibRef
9507
Delingette, H., and
Ikeuchi, K.,
A Spherical Representation for the Recognition of Curved Objects,
ICCV93(103-112).
IEEE DOI
BibRef
9300
And:
DARPA93(831-838).
BibRef
And:
Representation and Recognition of Free-Form Surfaces,
CMU-CS-TR-92-214, CMU CS Dept., November 1992.
Functional Minimization. The initial shape is deformed until it fits. Then describe a
mapping between the mesh and the spherical mesh
BibRef
Kumar, M.A.,
Chatterji, B.N.,
Mukherjee, J., and
Das, P.P.,
Representation of 2D and 3D Binary Images Using
Medial Circles and Spheres,
PRAI(10), 1996, pp. 365-387.
BibRef
9600
Matej, S.,
Lewitt, R.M.,
Practical considerations for 3-D image reconstruction using spherically
symmetric volume elements,
MedImg(15), No. 1, February 1996, pp. 68-78.
IEEE Top Reference.
0203
BibRef
Borgefors, G.,
Nystrom, I.,
Efficient Shape Representation by Minimizing the Set of
Centers of Maximal Discs/Spheres,
PRL(18), No. 5, May 1997, pp. 465-471.
9708
BibRef
Weistrand, O.[Ola],
Parameterizations of digital surfaces homeomorphic to a sphere using
discrete harmonic functions,
PRL(27), No. 16, December 2006, pp. 1934-1941.
Elsevier DOI
0611
Shape; Shape approximation; Digital surface; Surface parameterization
BibRef
Baxansky, A.[Artemy],
Kiryati, N.[Nahum],
Calculating geometric properties of three-dimensional objects from the
spherical harmonic representation,
PR(40), No. 2, February 2007, pp. 756-770.
Elsevier DOI
0611
Spherical harmonics; Three-dimensional shape analysis; Star shaped objects;
Moments; Fourier series on spheres
BibRef
Rivera-Rovelo, J.[Jorge],
Bayro-Corrochano, E.[Eduardo],
Medical image segmentation, volume representation and registration
using spheres in the geometric algebra framework,
PR(40), No. 1, January 2007, pp. 171-188.
Elsevier DOI
0611
BibRef
Earlier:
Non-Rigid Alignment and Real-Time Tracking Using the Geometric Algebra
Framework,
ICPR06(IV: 675-678).
IEEE DOI
0609
BibRef
Earlier:
Segmentation and Volume Representation Based on Spheres for Non-rigid
Registration,
CVBIA05(449-458).
Springer DOI
0601
Image segmentation; Volumetric data representation; Marching cubes;
Non-rigid registration; Delaunay tetrahedrization; Conformal geometric algebra
BibRef
Bayro-Corrochano, E.[Eduardo],
Rivera-Rovelo, J.[Jorge],
The Use of Geometric Algebra for 3D Modeling and Registration of
Medical Data,
JMIV(34), No. 1, May 2009, pp. xx-yy.
Springer DOI
0905
BibRef
And:
Object Manipulation using Fuzzy Logic and Geometric Algebra,
ICPR06(I: 1120-1123).
IEEE DOI
0609
BibRef
Penna, M.A.[Michael A.],
Dines, K.A.[Kris A.],
A Simple Method for Fitting Sphere-Like Surfaces,
PAMI(29), No. 9, September 2007, pp. 1673-1678.
IEEE DOI
0709
Fit spheres to sparse, scattered, data points.
BibRef
Spillmann, J.[Jonas],
Becker, M.[Markus],
Teschner, M.[Matthias],
Efficient updates of bounding sphere hierarchies for geometrically
deformable models,
JVCIR(18), No. 2, April 2007, pp. 101-108.
Elsevier DOI
0711
Physically-based modeling; Collision detection; Point-based models;
Shape matching; Deformable objects
BibRef
Schmedding, R.[Ruediger],
Teschner, M.[Matthias],
Inversion handling for stable deformable modeling,
VC(24), No. 7-9, July 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Stolpner, S.[Svetlana],
Kry, P.G.[Paul G.],
Siddiqi, K.[Kaleem],
Medial Spheres for Shape Approximation,
PAMI(34), No. 6, June 2012, pp. 1234-1240.
IEEE DOI
1205
Appxoximage 3D with overlapping spheres. Efficient and tighter
approximation with fewer spheres.
BibRef
Stolpner, S.[Svetlana],
Siddiqi, K.[Kaleem],
Revealing Significant Medial Structure in Polyhedral Meshes,
3DPVT06(365-372).
IEEE DOI
0606
BibRef
Skibbe, H.[Henrik],
Reisert, M.[Marco],
Schmidt, T.[Thorsten],
Brox, T.[Thomas],
Ronneberger, O.[Olaf],
Burkhardt, H.[Hans],
Fast Rotation Invariant 3D Feature Computation Utilizing Efficient
Local Neighborhood Operators,
PAMI(34), No. 8, August 2012, pp. 1563-1575.
IEEE DOI
1206
Dense computation of features in volumeric data based on transformation to
harmonic domain. Compare to 3D SIFT.
BibRef
Skibbe, H.[Henrik],
Reisert, M.[Marco],
Ronneberger, O.[Olaf],
Burkhardt, H.[Hans],
Increasing the Dimension of Creativity in Rotation Invariant Feature
Design Using 3D Tensorial Harmonics,
DAGM09(141-150).
Springer DOI
0909
BibRef
Liu, K.[Kun],
Skibbe, H.[Henrik],
Schmidt, T.[Thorsten],
Blein, T.[Thomas],
Palme, K.[Klaus],
Brox, T.[Thomas],
Ronneberger, O.[Olaf],
Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and
Spherical Coordinates,
IJCV(106), No. 3, February 2014, pp. 342-364.
Springer DOI
1402
BibRef
Earlier: A1, A2, A3, A4, A5, A7, Only:
3D Rotation-Invariant Description from Tensor Operation on Spherical
HOG Field,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Skibbe, H.[Henrik],
Reisert, M.[Marco],
Schmidt, T.[Thorsten],
Palme, K.[Klaus],
Ronneberger, O.[Olaf],
Burkhardt, H.[Hans],
3D Object Detection Using a Fast Voxel-Wise Local Spherical Fourier
Tensor Transformation,
DAGM10(412-421).
Springer DOI
1009
See also Robust Identification of Locally Planar Objects Represented by 2D Point Clouds under Affine Distortions.
BibRef
Camurri, M.[Marco],
Vezzani, R.[Roberto],
Cucchiara, R.[Rita],
3D Hough transform for sphere recognition on point clouds,
MVA(25), No. 7, October 2014, pp. 1877-1891.
WWW Link.
1410
BibRef
Ding, K.[Ke],
Liu, Y.H.[Yun-Hui],
Sphere Image for 3-D Model Retrieval,
MultMed(16), No. 5, August 2014, pp. 1369-1376.
IEEE DOI
1410
image retrieval
BibRef
Dorst, L.[Leo],
Total Least Squares Fitting of k-Spheres in n-D Euclidean Space Using
an (n+2)-D Isometric Representation,
JMIV(50), No. 3, November 2014, pp. 214-234.
Springer DOI
1410
BibRef
Karaoguz, H.[Hakan],
Erkent, Ö.[Özgür],
Bozma, H.I.[H. Isil],
RGB-D based place representation in topological maps,
MVA(25), No. 8, November 2014, pp. 1913-1927.
Springer DOI
1411
topological space representation. Bubble space representation.
BibRef
Benkarroum, Y.[Younes],
Herman, G.T.[Gabor T.],
Rowland, S.W.[Stuart W.],
Blob parameter selection for image representation,
JOSA-A(32), No. 10, October 2015, pp. 1898-1915.
DOI Link
1511
Digital image processing.
BibRef
Tran, T.T.[Trung-Thien],
Cao, V.T.[Van-Toan],
Laurendeau, D.[Denis],
eSphere: extracting spheres from unorganized point clouds,
VC(32), No. 10, October 2016, pp. 1205-1222.
WWW Link.
1610
BibRef
Wang, L.[Liang],
Shen, C.[Chao],
Duan, F.Q.[Fu-Qing],
Lu, K.[Ke],
Energy-based automatic recognition of multiple spheres in
three-dimensional point cloud,
PRL(83, Part 3), No. 1, 2016, pp. 287-293.
Elsevier DOI
1609
Sphere recognition
BibRef
Laga, H.,
Xie, Q.[Qian],
Jermyn, I.H.[Ian H.],
Srivastava, A.[Anuj],
Numerical Inversion of SRNF Maps for Elastic Shape Analysis of
Genus-Zero Surfaces,
PAMI(39), No. 12, December 2017, pp. 2451-2464.
IEEE DOI
1711
Extraterrestrial measurements, Optimization, Shape analysis,
Statistical analysis,
Elastic shape analysis, Riemannian metrics,
BibRef
Wang, G.[Guan],
Laga, H.[Hamid],
Srivastava, A.[Anuj],
Elastic Shape Analysis of Tree-Like 3D Objects Using Extended SRVF
Representation,
PAMI(46), No. 4, April 2024, pp. 2475-2488.
IEEE DOI
2403
Shape, Measurement, Vegetation, Deformation, Bending, Topology, 3D atlas,
3D shape variability, 3D tree synthesis, correspondence, tree-shape space
BibRef
Laga, H.[Hamid],
Padilla, M.[Marcel],
Jermyn, I.H.[Ian H.],
Kurtek, S.[Sebastian],
Bennamoun, M.[Mohammed],
Srivastava, A.[Anuj],
4D Atlas: Statistical Analysis of the Spatiotemporal Variability in
Longitudinal 3D Shape Data,
PAMI(45), No. 2, February 2023, pp. 1335-1352.
IEEE DOI
2301
Observations of objects that evolve and deform over time.
Shape, Surface treatment, Solid modeling, Measurement, Strain,
Spatiotemporal phenomena, Dynamic surfaces, elastic metric, growth
BibRef
Xie, Q.[Qian],
Jermyn, I.H.[Ian H.],
Kurtek, S.[Sebastian],
Srivastava, A.[Anuj],
Numerical Inversion of SRNFs for Efficient Elastic Shape Analysis of
Star-Shaped Objects,
ECCV14(V: 485-499).
Springer DOI
1408
See also Handwritten Text Segmentation Using Elastic Shape Analysis.
BibRef
Xie, Q.[Qian],
Kurtek, S.[Sebastian],
Le, H.L.[Hui-Ling],
Srivastava, A.[Anuj],
Parallel Transport of Deformations in Shape Space of Elastic Surfaces,
ICCV13(865-872)
IEEE DOI
1403
BibRef
Pan, J.J.[Jun-Jun],
Yan, S.Z.[Shi-Zeng],
Qin, H.[Hong],
Hao, A.[Aimin],
Real-time dissection of organs via hybrid coupling of geometric
metaballs and physics-centric mesh-free method,
VC(34), No. 1, January 2018, pp. 105-116.
WWW Link.
1801
BibRef
Lin, C.,
Wu, R.,
Ma, W.,
Chi, C.,
Wang, Y.,
Maximum Volume Inscribed Ellipsoid: A New Simplex-Structured Matrix
Factorization Framework via Facet Enumeration and Convex Optimization,
SIIMS(11), No. 2, 2018, pp. 1651-1679.
DOI Link
1807
BibRef
Evangelopoulos, X.[Xenophon],
Brockmeier, A.J.[Austin J.],
Mu, T.T.[Ting-Ting],
Goulermas, J.Y.[John Y.],
Circular object arrangement using spherical embeddings,
PR(103), 2020, pp. 107192.
Elsevier DOI
2005
Combinatorial data analysis, Data sequencing,
Circular seriation, Quadratic assignment problem, Spherical embeddings
BibRef
Ulmer, B.[Benjamin],
Samavati, F.F.[Faramarz F.],
Toward volume preserving spheroid degenerated-octree grid,
GeoInfo(24), No. 3, July 2020, pp. 505-529.
WWW Link.
2006
BibRef
Wu, G.[Gang],
Shi, Y.H.[Yun-Hui],
Sun, X.Y.[Xiao-Yan],
Wang, J.[Jin],
Yin, B.C.[Bao-Cai],
SMSIR: Spherical Measure Based Spherical Image Representation,
IP(30), 2021, pp. 6377-6391.
IEEE DOI
2107
Indexing, Surface treatment, Interpolation, Image representation,
Feature extraction, Geometry, Extraterrestrial measurements,
spherical RBF
BibRef
Maalek, R.[Reza],
Lichti, D.D.[Derek D.],
Correcting the Eccentricity Error of Projected Spherical Objects in
Perspective Cameras,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Yang, R.H.[Rong-Hua],
Li, J.[Jing],
Meng, X.L.[Xiao-Lin],
You, Y.S.[Yang-Sheng],
A Rigorous Feature Extraction Algorithm for Spherical Target
Identification in Terrestrial Laser Scanning,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Tóth, T.[Tekla],
Hajder, L.[Levente],
A Minimal Solution for Image-Based Sphere Estimation,
IJCV(131), No. 6, June 2023, pp. 1428-1447.
Springer DOI
2305
BibRef
Xiao, Y.C.[Yu-Chen],
Zhuang, X.S.[Xiao-Sheng],
Spherical Framelets from Spherical Designs,
SIIMS(16), No. 4, 2023, pp. 2072-2104.
DOI Link
2312
BibRef
Sabo, K.[Kristian],
Scitovski, R.[Rudolf],
Ungar, .[ime],
Multiple Spheres Detection Problem: Center Based Clustering Approach,
PRL(176), 2023, pp. 34-41.
Elsevier DOI
2312
Multiple spheres detection, -means algorithm,
-closest spheres algorithm, algorithm
See also Multiple Circle Detection Based on Center-Based Clustering.
BibRef
Gai, K.[Kuo],
Zhang, S.H.[Shi-Hua],
Tessellating the Latent Space for Non-Adversarial Generative
Auto-Encoders,
PAMI(46), No. 2, February 2024, pp. 780-792.
IEEE DOI
2401
Centroidal Voronoi tessellation, non-adversarial generative models,
optimal transport, optimization with non-identical batches, sphere packing
BibRef
Wei, J.X.[Jia-Xin],
Liu, L.[Lige],
Cheng, R.[Ran],
Jiang, W.Q.[Wen-Qing],
Xu, M.H.[Ming-Hao],
Jiang, X.Y.[Xin-Yu],
Spotlights: Probing Shapes from Spherical Viewpoints,
ACCV22(I:469-485).
Springer DOI
2307
WWW Link.
BibRef
Vu, T.[Thang],
Kim, K.[Kookhoi],
Kang, H.[Haeyong],
Nguyen, X.T.[Xuan Thanh],
Luu, T.M.[Tung M.],
Yoo, C.D.[Chang D.],
Sphererpn: Learning Spheres for High-Quality Region Proposals on 3d
Point Clouds Object Detection,
ICIP21(3173-3177)
IEEE DOI
2201
Location awareness, Sensitivity, Image processing,
Object detection, Proposals, 3D Object Detection, Point Cloud,
Spherical Proposal
BibRef
Li, J.S.[Ji-Sheng],
He, Y.Z.[Yu-Ze],
Hu, Y.B.[Yu-Bin],
Han, Y.X.[Yu-Xing],
Wen, J.T.[Jiang-Tao],
Learning To Compose 6-DOF Omnidirectional Videos Using Multi-Sphere
Images,
ICIP21(3298-3302)
IEEE DOI
2201
Training, Performance evaluation, Image segmentation, Systematics,
Image resolution, Social networking (online),
6-DoF VR
BibRef
Cuba Lajo, R.A.[Rubén Adrián],
Loaiza Fernández, M.E.[Manuel Eduardo],
Parallel Sphere Packing for Arbitrary Domains,
ISVC21(II:447-460).
Springer DOI
2112
BibRef
Cao, H.[Hui],
Du, H.[Haikuan],
Zhang, S.[Siyu],
Cai, S.[Shen],
Inspherenet:
A Concise Representation and Classification Method for 3d Object,
MMMod20(II:327-339).
Springer DOI
2003
BibRef
Wan, L.[Liang],
Xu, X.R.[Xiao-Rui],
Zhao, Q.A.[Qi-Ang],
Feng, W.[Wei],
Spherical Superpixels: Benchmark and Evaluation,
ACCV18(VI:703-717).
Springer DOI
1906
BibRef
Jensen, P.M.[Patrick M.],
Trinderup, C.H.[Camilla H.],
Dahl, A.B.[Anders B.],
Dahl, V.A.[Vedrana A.],
Zonohedral Approximation of Spherical Structuring Element for
Volumetric Morphology,
SCIA19(128-139).
Springer DOI
1906
BibRef
Dwivedi, S.[Shivam],
Gupta, A.[Aniket],
Roy, S.[Siddhant],
Biswas, R.[Ranita],
Bhowmick, P.[Partha],
Fast and Efficient Incremental Algorithms for Circular and Spherical
Propagation in Integer Space,
DGCI17(347-359).
Springer DOI
1711
Space filling curves, circles, spheres.
BibRef
Selmi, G.,
Azouz, Z.B.,
Malouche, D.,
The Volume Radius Function:
A new descriptor for the segmentation of volumetric medical images,
ICVNZ15(1-6)
IEEE DOI
1701
image representation
BibRef
Sinha, A.[Ayan],
Bai, J.[Jing],
Ramani, K.[Karthik],
Deep Learning 3D Shape Surfaces Using Geometry Images,
ECCV16(VI: 223-240).
Springer DOI
1611
BibRef
Vaquero, D.[Daniel],
Turk, M.[Matthew],
Composition Context Photography,
WACV15(649-656)
IEEE DOI
1503
Cameras;Context;Dynamic range;Image sensors;Photography;Sensors
BibRef
Galindo, P.A.[Patricio A.],
Zayer, R.[Rhaleb],
Complementary Geometric and Optical Information for
Match-Propagation-Based 3D Reconstruction,
ACCV14(I: 689-703).
Springer DOI
1504
BibRef
Liu, K.[Kun],
Galindo, P.A.[Patricio A.],
Zayer, R.[Rhaleb],
Sphere Packing Aided Surface Reconstruction for Multi-view Data,
ISVC14(II: 173-184).
Springer DOI
1501
BibRef
Zelenka, C.[Claudius],
Koch, R.,
Blind Deconvolution on Underwater Images for Gas Bubble Measurement,
Underwater15(239-244).
DOI Link
1508
BibRef
Zelenka, C.[Claudius],
Gas Bubble Shape Measurement and Analysis,
GCPR14(743-749).
Springer DOI
1411
BibRef
Ilonen, J.[Jarmo],
Eerola, T.[Tuomas],
Mutikainen, H.[Heikki],
Lensu, L.[Lasse],
Käyhkö, J.[Jari],
Kälviäinen, H.[Heikki],
Estimation of Bubble Size Distribution Based on Power Spectrum,
CIARP14(38-45).
Springer DOI
1411
BibRef
Abuzaina, A.[Anas],
Nixon, M.S.[Mark S.],
Carter, J.N.[John N.],
Sphere Detection in Kinect Point Clouds via the 3D Hough Transform,
CAIP13(II:290-297).
Springer DOI
1311
BibRef
Li, S.G.[Shi-Gang],
Hai, Y.[Ying],
A Full-View Spherical Image Format,
ICPR10(2337-2340).
IEEE DOI
1008
BibRef
Egger, J.[Jan],
Bauer, M.H.A.[Miriam H. A.],
Kuhnt, D.[Daniela],
Carl, B.[Barbara],
Kappus, C.[Christoph],
Freisleben, B.[Bernd],
Nimsky, C.[Christopher],
Nugget-Cut: A Segmentation Scheme for Spherically- and
Elliptically-Shaped 3D Objects,
DAGM10(373-382).
Springer DOI
1009
BibRef
Broutta, A.[Alain],
Coeurjolly, D.[David],
Sivignon, I.[Isabelle],
Hierarchical Discrete Medial Axis for Sphere-Tree Construction,
IWCIA09(56-67).
Springer DOI
0911
BibRef
Witzgall, C.,
Cheok, G.S.,
Kearsley, A.J.,
Recovering Spheres from 3D Point Data,
AIPR06(8-8).
IEEE DOI
0610
BibRef
Zhou, S.J.[Shi-Jian],
Guan, Y.L.[Yun-Lan],
Zhan, X.W.[Xin-Wu],
Lu, T.D.[Tie-Ding],
Robust Algorithm for Fitting Sphere to 3D Point Clouds in Terrestrial
Laser Scanning,
ISPRS08(B5: 519 ff).
PDF File.
0807
BibRef
Rekik, W.[Wafa],
Béréziat, D.[Dominique],
Dubuisson, S.[Séverine],
3D+t Reconstruction in the Context of Locally Spheric Shaped Data
Observation,
CAIP07(482-489).
Springer DOI
0708
BibRef
Wijewickrema, S.N.R.[Sudanthi N.R.],
Paplinski, A.P.[Andrew P.],
Esson, C.E.[Charles E.],
Reconstruction of Spheres using Occluding Contours from Stereo Images,
ICPR06(I: 151-154).
IEEE DOI
0609
BibRef
Donoser, M.[Michael],
Bischof, H.[Horst],
3D Segmentation by Maximally Stable Volumes (MSVs),
ICPR06(I: 63-66).
IEEE DOI
0609
BibRef
Strand, R.[Robin],
A Classification of Centres of Maximal Balls in Z3,
SCIA05(1057-1065).
Springer DOI
0506
BibRef
Bischoff, S.,
Kobbelt, L.P.[Leif P.],
Ellipsoid decomposition of 3D-models,
3DPVT02(480-488).
IEEE DOI
0206
BibRef
Llanes, J.[Jesus],
Adan, A.[Antonio],
Salamanca, S.[Santiago],
A New Segmentation Approach for Old Fractured Pieces,
CIARP09(161-168).
Springer DOI
0911
BibRef
Adan, M.,
Adan, A.,
Cerrada, C.,
Merchan, P.,
Salamanca, S.,
Weighted cone-curvature: Applications for 3D shapes similarity,
3DIM03(458-465).
IEEE DOI
0311
BibRef
Adan, A.[Antonio],
Salamanca, S.[Santiago],
Cerrada, C.,
Merchan, P.,
Reconstruction of spherical representation models from multiple partial
models,
3DPVT02(532-535).
IEEE DOI
0206
BibRef
Salamanca, S.[Santiago],
Adán, A.[Antonio],
Cerrada, C.[Carlos],
Controlled Fusion of Multiple Partial Models to Reconstruct a
Regularized 3-D Complete Model,
VMV01(xx-yy).
PDF File.
0209
BibRef
Earlier: A1, A3, A2:
HWM: a New Spherical Representation Structure for Modeling Partial
Views of an Object,
ICPR00(Vol III: 770-773).
IEEE DOI
0009
BibRef
Ahn, J.H.[Jeong-Hwan],
Ho, Y.S.[Yo-Sung],
An Efficient Geometry Compression Method for 3D Objects in the Spherical
Coordinate System,
ICIP99(II:482-486).
IEEE DOI
BibRef
9900
Fekete, G.,
Davis, L.S.,
Property Spheres: A New Representation for 3-D Object Recognition,
CVWS84(192-201).
BibRef
8400
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Other Description Techniques .