11.12 Representations from Spheres, By Spheres

Chapter Contents (Back)
Spheres.

Badler, N.I., O'Rourke, J., and Toltzis, H.,
A Spherical Representation of a Human Body for Visualizing Movement,
PIEEE(67), 1979, pp. 1397-1403. BibRef 7900

O'Rourke, J., and Badler, N.I.,
Decomposition of Three-Dimensional Objects into Spheres,
PAMI(1), No. 3, July 1979, pp. 295-305. BibRef 7907
And: Correction: PAMI(1), No. 4, October 1979, pp. 417. BibRef
Earlier: A2, A1: PRAI-78(157-159). BibRef

Badler, N.I., and Bajcsy, R.,
3D Representation for Computer Graphics and Computer Vision,
Computer Graphics(12), 1978, pp. 153-160. BibRef 7800

Mohr, R.,
A Refinement of a Spherical Decomposition Algorithm,
PAMI(4), No. 1, January 1982, pp. 51. BibRef 8201

Mohr, R., and Bajcsy, R.,
Packing Volumes by Spheres,
PAMI(5), No. 1, January 1983, pp. 111-116. BibRef 8301

Knapman, J.,
Dupin's Cyclide and the Cyclide Patch,
IVC(5), No. 2, May 1987, pp. 167-173.
Elsevier DOI Implicit surfaces. The Dupin Cyclides can be looked at in various ways. They are the envelope of spheres touching three other fixed spheres. They are also the envelope of spheres with centres on a conic and touching a sphere. Every Dupin Cyclide is the inverse of a Torus. BibRef 8705

Hebert, M., Ikeuchi, K., Delingette, H.,
A Spherical Representation for Recognition of Free-Form Surfaces,
PAMI(17), No. 7, July 1995, pp. 681-690.
IEEE DOI Generate descriptions from range images. Recognition using similarity of shperical distributions (no search). Generate a mesh description, transform to a shperical form (Spherical Attribut Image -- SAI). BibRef 9507

Delingette, H., and Ikeuchi, K.,
A Spherical Representation for the Recognition of Curved Objects,
ICCV93(103-112).
IEEE DOI BibRef 9300
And: DARPA93(831-838). BibRef
And:
Representation and Recognition of Free-Form Surfaces,
CMU-CS-TR-92-214, CMU CS Dept., November 1992. Functional Minimization. The initial shape is deformed until it fits. Then describe a mapping between the mesh and the spherical mesh BibRef

Kumar, M.A., Chatterji, B.N., Mukherjee, J., and Das, P.P.,
Representation of 2D and 3D Binary Images Using Medial Circles and Spheres,
PRAI(10), 1996, pp. 365-387. BibRef 9600

Matej, S., Lewitt, R.M.,
Practical considerations for 3-D image reconstruction using spherically symmetric volume elements,
MedImg(15), No. 1, February 1996, pp. 68-78.
IEEE Top Reference. 0203
BibRef

Borgefors, G., Nystrom, I.,
Efficient Shape Representation by Minimizing the Set of Centers of Maximal Discs/Spheres,
PRL(18), No. 5, May 1997, pp. 465-471. 9708
BibRef

Weistrand, O.[Ola],
Parameterizations of digital surfaces homeomorphic to a sphere using discrete harmonic functions,
PRL(27), No. 16, December 2006, pp. 1934-1941.
Elsevier DOI 0611
Shape; Shape approximation; Digital surface; Surface parameterization BibRef

Baxansky, A.[Artemy], Kiryati, N.[Nahum],
Calculating geometric properties of three-dimensional objects from the spherical harmonic representation,
PR(40), No. 2, February 2007, pp. 756-770.
Elsevier DOI 0611
Spherical harmonics; Three-dimensional shape analysis; Star shaped objects; Moments; Fourier series on spheres BibRef

Rivera-Rovelo, J.[Jorge], Bayro-Corrochano, E.[Eduardo],
Medical image segmentation, volume representation and registration using spheres in the geometric algebra framework,
PR(40), No. 1, January 2007, pp. 171-188.
Elsevier DOI 0611
BibRef
Earlier:
Non-Rigid Alignment and Real-Time Tracking Using the Geometric Algebra Framework,
ICPR06(IV: 675-678).
IEEE DOI 0609
BibRef
Earlier:
Segmentation and Volume Representation Based on Spheres for Non-rigid Registration,
CVBIA05(449-458).
Springer DOI 0601
Image segmentation; Volumetric data representation; Marching cubes; Non-rigid registration; Delaunay tetrahedrization; Conformal geometric algebra BibRef

Bayro-Corrochano, E.[Eduardo], Rivera-Rovelo, J.[Jorge],
The Use of Geometric Algebra for 3D Modeling and Registration of Medical Data,
JMIV(34), No. 1, May 2009, pp. xx-yy.
Springer DOI 0905
BibRef
And:
Object Manipulation using Fuzzy Logic and Geometric Algebra,
ICPR06(I: 1120-1123).
IEEE DOI 0609
BibRef

Penna, M.A.[Michael A.], Dines, K.A.[Kris A.],
A Simple Method for Fitting Sphere-Like Surfaces,
PAMI(29), No. 9, September 2007, pp. 1673-1678.
IEEE DOI 0709
Fit spheres to sparse, scattered, data points. BibRef

Spillmann, J.[Jonas], Becker, M.[Markus], Teschner, M.[Matthias],
Efficient updates of bounding sphere hierarchies for geometrically deformable models,
JVCIR(18), No. 2, April 2007, pp. 101-108.
Elsevier DOI 0711
Physically-based modeling; Collision detection; Point-based models; Shape matching; Deformable objects BibRef

Schmedding, R.[Ruediger], Teschner, M.[Matthias],
Inversion handling for stable deformable modeling,
VC(24), No. 7-9, July 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Stolpner, S.[Svetlana], Kry, P.G.[Paul G.], Siddiqi, K.[Kaleem],
Medial Spheres for Shape Approximation,
PAMI(34), No. 6, June 2012, pp. 1234-1240.
IEEE DOI 1205
Appxoximage 3D with overlapping spheres. Efficient and tighter approximation with fewer spheres. BibRef

Stolpner, S.[Svetlana], Siddiqi, K.[Kaleem],
Revealing Significant Medial Structure in Polyhedral Meshes,
3DPVT06(365-372).
IEEE DOI 0606
BibRef

Skibbe, H.[Henrik], Reisert, M.[Marco], Schmidt, T.[Thorsten], Brox, T.[Thomas], Ronneberger, O.[Olaf], Burkhardt, H.[Hans],
Fast Rotation Invariant 3D Feature Computation Utilizing Efficient Local Neighborhood Operators,
PAMI(34), No. 8, August 2012, pp. 1563-1575.
IEEE DOI 1206
Dense computation of features in volumeric data based on transformation to harmonic domain. Compare to 3D SIFT. BibRef

Skibbe, H.[Henrik], Reisert, M.[Marco], Ronneberger, O.[Olaf], Burkhardt, H.[Hans],
Increasing the Dimension of Creativity in Rotation Invariant Feature Design Using 3D Tensorial Harmonics,
DAGM09(141-150).
Springer DOI 0909
BibRef

Liu, K.[Kun], Skibbe, H.[Henrik], Schmidt, T.[Thorsten], Blein, T.[Thomas], Palme, K.[Klaus], Brox, T.[Thomas], Ronneberger, O.[Olaf],
Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates,
IJCV(106), No. 3, February 2014, pp. 342-364.
Springer DOI 1402
BibRef
Earlier: A1, A2, A3, A4, A5, A7, Only:
3D Rotation-Invariant Description from Tensor Operation on Spherical HOG Field,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Skibbe, H.[Henrik], Reisert, M.[Marco], Schmidt, T.[Thorsten], Palme, K.[Klaus], Ronneberger, O.[Olaf], Burkhardt, H.[Hans],
3D Object Detection Using a Fast Voxel-Wise Local Spherical Fourier Tensor Transformation,
DAGM10(412-421).
Springer DOI 1009

See also Robust Identification of Locally Planar Objects Represented by 2D Point Clouds under Affine Distortions. BibRef

Camurri, M.[Marco], Vezzani, R.[Roberto], Cucchiara, R.[Rita],
3D Hough transform for sphere recognition on point clouds,
MVA(25), No. 7, October 2014, pp. 1877-1891.
WWW Link. 1410
BibRef

Ding, K.[Ke], Liu, Y.H.[Yun-Hui],
Sphere Image for 3-D Model Retrieval,
MultMed(16), No. 5, August 2014, pp. 1369-1376.
IEEE DOI 1410
image retrieval BibRef

Dorst, L.[Leo],
Total Least Squares Fitting of k-Spheres in n-D Euclidean Space Using an (n+2)-D Isometric Representation,
JMIV(50), No. 3, November 2014, pp. 214-234.
Springer DOI 1410
BibRef

Karaoguz, H.[Hakan], Erkent, Ö.[Özgür], Bozma, H.I.[H. Isil],
RGB-D based place representation in topological maps,
MVA(25), No. 8, November 2014, pp. 1913-1927.
Springer DOI 1411
topological space representation. Bubble space representation. BibRef

Benkarroum, Y.[Younes], Herman, G.T.[Gabor T.], Rowland, S.W.[Stuart W.],
Blob parameter selection for image representation,
JOSA-A(32), No. 10, October 2015, pp. 1898-1915.
DOI Link 1511
Digital image processing. BibRef

Tran, T.T.[Trung-Thien], Cao, V.T.[Van-Toan], Laurendeau, D.[Denis],
eSphere: extracting spheres from unorganized point clouds,
VC(32), No. 10, October 2016, pp. 1205-1222.
WWW Link. 1610
BibRef

Wang, L.[Liang], Shen, C.[Chao], Duan, F.Q.[Fu-Qing], Lu, K.[Ke],
Energy-based automatic recognition of multiple spheres in three-dimensional point cloud,
PRL(83, Part 3), No. 1, 2016, pp. 287-293.
Elsevier DOI 1609
Sphere recognition BibRef

Laga, H., Xie, Q.[Qian], Jermyn, I.H.[Ian H.], Srivastava, A.[Anuj],
Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces,
PAMI(39), No. 12, December 2017, pp. 2451-2464.
IEEE DOI 1711
Extraterrestrial measurements, Optimization, Shape analysis, Statistical analysis, Elastic shape analysis, Riemannian metrics, BibRef

Wang, G.[Guan], Laga, H.[Hamid], Srivastava, A.[Anuj],
Elastic Shape Analysis of Tree-Like 3D Objects Using Extended SRVF Representation,
PAMI(46), No. 4, April 2024, pp. 2475-2488.
IEEE DOI 2403
Shape, Measurement, Vegetation, Deformation, Bending, Topology, 3D atlas, 3D shape variability, 3D tree synthesis, correspondence, tree-shape space BibRef

Laga, H.[Hamid], Padilla, M.[Marcel], Jermyn, I.H.[Ian H.], Kurtek, S.[Sebastian], Bennamoun, M.[Mohammed], Srivastava, A.[Anuj],
4D Atlas: Statistical Analysis of the Spatiotemporal Variability in Longitudinal 3D Shape Data,
PAMI(45), No. 2, February 2023, pp. 1335-1352.
IEEE DOI 2301
Observations of objects that evolve and deform over time. Shape, Surface treatment, Solid modeling, Measurement, Strain, Spatiotemporal phenomena, Dynamic surfaces, elastic metric, growth BibRef

Xie, Q.[Qian], Jermyn, I.H.[Ian H.], Kurtek, S.[Sebastian], Srivastava, A.[Anuj],
Numerical Inversion of SRNFs for Efficient Elastic Shape Analysis of Star-Shaped Objects,
ECCV14(V: 485-499).
Springer DOI 1408

See also Handwritten Text Segmentation Using Elastic Shape Analysis. BibRef

Xie, Q.[Qian], Kurtek, S.[Sebastian], Le, H.L.[Hui-Ling], Srivastava, A.[Anuj],
Parallel Transport of Deformations in Shape Space of Elastic Surfaces,
ICCV13(865-872)
IEEE DOI 1403
BibRef

Pan, J.J.[Jun-Jun], Yan, S.Z.[Shi-Zeng], Qin, H.[Hong], Hao, A.[Aimin],
Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method,
VC(34), No. 1, January 2018, pp. 105-116.
WWW Link. 1801
BibRef

Lin, C., Wu, R., Ma, W., Chi, C., Wang, Y.,
Maximum Volume Inscribed Ellipsoid: A New Simplex-Structured Matrix Factorization Framework via Facet Enumeration and Convex Optimization,
SIIMS(11), No. 2, 2018, pp. 1651-1679.
DOI Link 1807
BibRef

Evangelopoulos, X.[Xenophon], Brockmeier, A.J.[Austin J.], Mu, T.T.[Ting-Ting], Goulermas, J.Y.[John Y.],
Circular object arrangement using spherical embeddings,
PR(103), 2020, pp. 107192.
Elsevier DOI 2005
Combinatorial data analysis, Data sequencing, Circular seriation, Quadratic assignment problem, Spherical embeddings BibRef

Ulmer, B.[Benjamin], Samavati, F.F.[Faramarz F.],
Toward volume preserving spheroid degenerated-octree grid,
GeoInfo(24), No. 3, July 2020, pp. 505-529.
WWW Link. 2006
BibRef

Wu, G.[Gang], Shi, Y.H.[Yun-Hui], Sun, X.Y.[Xiao-Yan], Wang, J.[Jin], Yin, B.C.[Bao-Cai],
SMSIR: Spherical Measure Based Spherical Image Representation,
IP(30), 2021, pp. 6377-6391.
IEEE DOI 2107
Indexing, Surface treatment, Interpolation, Image representation, Feature extraction, Geometry, Extraterrestrial measurements, spherical RBF BibRef

Maalek, R.[Reza], Lichti, D.D.[Derek D.],
Correcting the Eccentricity Error of Projected Spherical Objects in Perspective Cameras,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Yang, R.H.[Rong-Hua], Li, J.[Jing], Meng, X.L.[Xiao-Lin], You, Y.S.[Yang-Sheng],
A Rigorous Feature Extraction Algorithm for Spherical Target Identification in Terrestrial Laser Scanning,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Tóth, T.[Tekla], Hajder, L.[Levente],
A Minimal Solution for Image-Based Sphere Estimation,
IJCV(131), No. 6, June 2023, pp. 1428-1447.
Springer DOI 2305
BibRef

Xiao, Y.C.[Yu-Chen], Zhuang, X.S.[Xiao-Sheng],
Spherical Framelets from Spherical Designs,
SIIMS(16), No. 4, 2023, pp. 2072-2104.
DOI Link 2312
BibRef

Sabo, K.[Kristian], Scitovski, R.[Rudolf], Ungar, Š.[Šime],
Multiple Spheres Detection Problem: Center Based Clustering Approach,
PRL(176), 2023, pp. 34-41.
Elsevier DOI 2312
Multiple spheres detection, -means algorithm, -closest spheres algorithm, algorithm
See also Multiple Circle Detection Based on Center-Based Clustering. BibRef

Gai, K.[Kuo], Zhang, S.H.[Shi-Hua],
Tessellating the Latent Space for Non-Adversarial Generative Auto-Encoders,
PAMI(46), No. 2, February 2024, pp. 780-792.
IEEE DOI 2401
Centroidal Voronoi tessellation, non-adversarial generative models, optimal transport, optimization with non-identical batches, sphere packing BibRef


Regensky, A.[Andy], Heimann, V.[Viktoria], Zhang, R.[Ruoyu], Kaup, A.[André],
Improving Spherical Image Resampling Through Viewport-Adaptivity,
ICIP23(1730-1734)
IEEE DOI 2312
BibRef

Wei, J.X.[Jia-Xin], Liu, L.[Lige], Cheng, R.[Ran], Jiang, W.Q.[Wen-Qing], Xu, M.H.[Ming-Hao], Jiang, X.Y.[Xin-Yu],
Spotlights: Probing Shapes from Spherical Viewpoints,
ACCV22(I:469-485).
Springer DOI 2307

WWW Link. BibRef

Vu, T.[Thang], Kim, K.[Kookhoi], Kang, H.[Haeyong], Nguyen, X.T.[Xuan Thanh], Luu, T.M.[Tung M.], Yoo, C.D.[Chang D.],
Sphererpn: Learning Spheres for High-Quality Region Proposals on 3d Point Clouds Object Detection,
ICIP21(3173-3177)
IEEE DOI 2201
Location awareness, Sensitivity, Image processing, Object detection, Proposals, 3D Object Detection, Point Cloud, Spherical Proposal BibRef

Li, J.S.[Ji-Sheng], He, Y.Z.[Yu-Ze], Hu, Y.B.[Yu-Bin], Han, Y.X.[Yu-Xing], Wen, J.T.[Jiang-Tao],
Learning To Compose 6-DOF Omnidirectional Videos Using Multi-Sphere Images,
ICIP21(3298-3302)
IEEE DOI 2201
Training, Performance evaluation, Image segmentation, Systematics, Image resolution, Social networking (online), 6-DoF VR BibRef

Cuba Lajo, R.A.[Rubén Adrián], Loaiza Fernández, M.E.[Manuel Eduardo],
Parallel Sphere Packing for Arbitrary Domains,
ISVC21(II:447-460).
Springer DOI 2112
BibRef

Cao, H.[Hui], Du, H.[Haikuan], Zhang, S.[Siyu], Cai, S.[Shen],
Inspherenet: A Concise Representation and Classification Method for 3d Object,
MMMod20(II:327-339).
Springer DOI 2003
BibRef

Wan, L.[Liang], Xu, X.R.[Xiao-Rui], Zhao, Q.A.[Qi-Ang], Feng, W.[Wei],
Spherical Superpixels: Benchmark and Evaluation,
ACCV18(VI:703-717).
Springer DOI 1906
BibRef

Jensen, P.M.[Patrick M.], Trinderup, C.H.[Camilla H.], Dahl, A.B.[Anders B.], Dahl, V.A.[Vedrana A.],
Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology,
SCIA19(128-139).
Springer DOI 1906
BibRef

Dwivedi, S.[Shivam], Gupta, A.[Aniket], Roy, S.[Siddhant], Biswas, R.[Ranita], Bhowmick, P.[Partha],
Fast and Efficient Incremental Algorithms for Circular and Spherical Propagation in Integer Space,
DGCI17(347-359).
Springer DOI 1711
Space filling curves, circles, spheres. BibRef

Selmi, G., Azouz, Z.B., Malouche, D.,
The Volume Radius Function: A new descriptor for the segmentation of volumetric medical images,
ICVNZ15(1-6)
IEEE DOI 1701
image representation BibRef

Sinha, A.[Ayan], Bai, J.[Jing], Ramani, K.[Karthik],
Deep Learning 3D Shape Surfaces Using Geometry Images,
ECCV16(VI: 223-240).
Springer DOI 1611
BibRef

Vaquero, D.[Daniel], Turk, M.[Matthew],
Composition Context Photography,
WACV15(649-656)
IEEE DOI 1503
Cameras;Context;Dynamic range;Image sensors;Photography;Sensors BibRef

Galindo, P.A.[Patricio A.], Zayer, R.[Rhaleb],
Complementary Geometric and Optical Information for Match-Propagation-Based 3D Reconstruction,
ACCV14(I: 689-703).
Springer DOI 1504
BibRef

Liu, K.[Kun], Galindo, P.A.[Patricio A.], Zayer, R.[Rhaleb],
Sphere Packing Aided Surface Reconstruction for Multi-view Data,
ISVC14(II: 173-184).
Springer DOI 1501
BibRef

Zelenka, C.[Claudius], Koch, R.,
Blind Deconvolution on Underwater Images for Gas Bubble Measurement,
Underwater15(239-244).
DOI Link 1508
BibRef

Zelenka, C.[Claudius],
Gas Bubble Shape Measurement and Analysis,
GCPR14(743-749).
Springer DOI 1411
BibRef

Ilonen, J.[Jarmo], Eerola, T.[Tuomas], Mutikainen, H.[Heikki], Lensu, L.[Lasse], Käyhkö, J.[Jari], Kälviäinen, H.[Heikki],
Estimation of Bubble Size Distribution Based on Power Spectrum,
CIARP14(38-45).
Springer DOI 1411
BibRef

Abuzaina, A.[Anas], Nixon, M.S.[Mark S.], Carter, J.N.[John N.],
Sphere Detection in Kinect Point Clouds via the 3D Hough Transform,
CAIP13(II:290-297).
Springer DOI 1311
BibRef

Li, S.G.[Shi-Gang], Hai, Y.[Ying],
A Full-View Spherical Image Format,
ICPR10(2337-2340).
IEEE DOI 1008
BibRef

Egger, J.[Jan], Bauer, M.H.A.[Miriam H. A.], Kuhnt, D.[Daniela], Carl, B.[Barbara], Kappus, C.[Christoph], Freisleben, B.[Bernd], Nimsky, C.[Christopher],
Nugget-Cut: A Segmentation Scheme for Spherically- and Elliptically-Shaped 3D Objects,
DAGM10(373-382).
Springer DOI 1009
BibRef

Broutta, A.[Alain], Coeurjolly, D.[David], Sivignon, I.[Isabelle],
Hierarchical Discrete Medial Axis for Sphere-Tree Construction,
IWCIA09(56-67).
Springer DOI 0911
BibRef

Witzgall, C., Cheok, G.S., Kearsley, A.J.,
Recovering Spheres from 3D Point Data,
AIPR06(8-8).
IEEE DOI 0610
BibRef

Zhou, S.J.[Shi-Jian], Guan, Y.L.[Yun-Lan], Zhan, X.W.[Xin-Wu], Lu, T.D.[Tie-Ding],
Robust Algorithm for Fitting Sphere to 3D Point Clouds in Terrestrial Laser Scanning,
ISPRS08(B5: 519 ff).
PDF File. 0807
BibRef

Rekik, W.[Wafa], Béréziat, D.[Dominique], Dubuisson, S.[Séverine],
3D+t Reconstruction in the Context of Locally Spheric Shaped Data Observation,
CAIP07(482-489).
Springer DOI 0708
BibRef

Wijewickrema, S.N.R.[Sudanthi N.R.], Paplinski, A.P.[Andrew P.], Esson, C.E.[Charles E.],
Reconstruction of Spheres using Occluding Contours from Stereo Images,
ICPR06(I: 151-154).
IEEE DOI 0609
BibRef

Donoser, M.[Michael], Bischof, H.[Horst],
3D Segmentation by Maximally Stable Volumes (MSVs),
ICPR06(I: 63-66).
IEEE DOI 0609
BibRef

Strand, R.[Robin],
A Classification of Centres of Maximal Balls in Z3,
SCIA05(1057-1065).
Springer DOI 0506
BibRef

Bischoff, S., Kobbelt, L.P.[Leif P.],
Ellipsoid decomposition of 3D-models,
3DPVT02(480-488).
IEEE DOI 0206
BibRef

Llanes, J.[Jesus], Adan, A.[Antonio], Salamanca, S.[Santiago],
A New Segmentation Approach for Old Fractured Pieces,
CIARP09(161-168).
Springer DOI 0911
BibRef

Adan, M., Adan, A., Cerrada, C., Merchan, P., Salamanca, S.,
Weighted cone-curvature: Applications for 3D shapes similarity,
3DIM03(458-465).
IEEE DOI 0311
BibRef

Adan, A.[Antonio], Salamanca, S.[Santiago], Cerrada, C., Merchan, P.,
Reconstruction of spherical representation models from multiple partial models,
3DPVT02(532-535).
IEEE DOI 0206
BibRef

Salamanca, S.[Santiago], Adán, A.[Antonio], Cerrada, C.[Carlos],
Controlled Fusion of Multiple Partial Models to Reconstruct a Regularized 3-D Complete Model,
VMV01(xx-yy).
PDF File. 0209
BibRef
Earlier: A1, A3, A2:
HWM: a New Spherical Representation Structure for Modeling Partial Views of an Object,
ICPR00(Vol III: 770-773).
IEEE DOI 0009
BibRef

Ahn, J.H.[Jeong-Hwan], Ho, Y.S.[Yo-Sung],
An Efficient Geometry Compression Method for 3D Objects in the Spherical Coordinate System,
ICIP99(II:482-486).
IEEE DOI BibRef 9900

Fekete, G., Davis, L.S.,
Property Spheres: A New Representation for 3-D Object Recognition,
CVWS84(192-201). BibRef 8400

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Other Description Techniques .


Last update:Sep 15, 2024 at 16:30:49