Main, R.[Russell],
Cho, M.A.[Moses Azong],
Mathieu, R.[Renaud],
O'Kennedy, M.M.[Martha M.],
Ramoelo, A.[Abel],
Koch, S.[Susan],
An investigation into robust spectral indices for leaf chlorophyll
estimation,
PandRS(66), No. 6, November 2011, pp. 751-761.
Elsevier DOI
1112
Leaf level reflectance; Leaf chlorophyll; Red-edge; Vegetation
indices; Photosynthetic activity
BibRef
Fournier, A.,
Daumard, F.,
Champagne, S.,
Ounis, A.,
Goulas, Y.,
Moya, I.,
Effect of canopy structure on sun-induced chlorophyll fluorescence,
PandRS(68), No. 1, March 2012, pp. 112-120.
Elsevier DOI
1204
Canopy structure; Chlorophyll fluorescence measurement; Simulation;
F687/F760 fluorescence ratio; Oxygen absorption band; Band infilling
BibRef
Vuolo, F.,
Dash, J.,
Curran, P.,
Lajas, D.,
Kwiatkowska, E.,
Methodologies and Uncertainties in the Use of the Terrestrial
Chlorophyll Index for the Sentinel-3 Mission,
RS(4), No. 5, May 2012, pp. 1112-1133.
DOI Link
1205
BibRef
Igamberdiev, R.,
Bill, R.,
Schubert, H.,
Lennartz, B.,
Analysis of Cross-Seasonal Spectral Response from Kettle Holes:
Application of Remote Sensing Techniques for Chlorophyll Estimation,
RS(4), No. 11, November 2012, pp. 3481-3500.
DOI Link
1211
BibRef
Frampton, W.J.[William James],
Dash, J.[Jadunandan],
Watmough, G.[Gary],
Milton, E.J.[Edward James],
Evaluating the capabilities of Sentinel-2 for quantitative estimation
of biophysical variables in vegetation,
PandRS(82), No. 1, August 2013, pp. 83-92.
Elsevier DOI
1306
Vegetation; Sentinel-2; Chlorophyll; Red-Edge; LAI
BibRef
Rivera, J.P.[Juan Pablo],
Verrelst, J.[Jochem],
Leonenko, G.[Ganna],
Moreno, J.[José],
Multiple Cost Functions and Regularization Options for Improved
Retrieval of Leaf Chlorophyll Content and LAI through Inversion of
the PROSAIL Model,
RS(5), No. 7, 2013, pp. 3280-3304.
DOI Link
1308
BibRef
Verrelst, J.[Jochem],
Rivera, J.P.[Juan Pablo],
Moreno, J.[José],
Camps-Valls, G.[Gustavo],
Gaussian processes uncertainty estimates in experimental Sentinel-2
LAI and leaf chlorophyll content retrieval,
PandRS(86), No. 1, 2013, pp. 157-167.
Elsevier DOI
1312
Uncertainty estimates
BibRef
Sanches, I.D.[Ieda Del'Arco],
de Souza Filho, C.R.[Carlos Roberto],
Kokaly, R.F.[Raymond Floyd],
Spectroscopic remote sensing of plant stress at leaf and canopy
levels using the chlorophyll 680nm absorption feature with continuum
removal,
PandRS(97), No. 1, 2014, pp. 111-122.
Elsevier DOI
1410
Hyperspectral
BibRef
Amaral, C.H.[Cibele H.],
Roberts, D.A.[Dar A.],
Almeida, T.I.R.[Teodoro I.R.],
de Souza Filho, C.R.[Carlos Roberto],
Mapping invasive species and spectral mixture relationships with
neotropical woody formations in southeastern Brazil,
PandRS(108), No. 1, 2015, pp. 80-93.
Elsevier DOI
1511
Invasive species
BibRef
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Assessing Band Sensitivity to Atmospheric Radiation Transfer for
Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence,
RS(6), No. 11, 2014, pp. 10656-10675.
DOI Link
1412
BibRef
Croft, H.,
Chen, J.M.,
Zhang, Y.,
Simic, A.,
Noland, T.L.,
Nesbitt, N.,
Arabian, J.,
Evaluating leaf chlorophyll content prediction from multispectral
remote sensing data within a physically-based modelling framework,
PandRS(102), No. 1, 2015, pp. 85-95.
Elsevier DOI
1503
Leaf area index
BibRef
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Zhang, S.[Su],
Zhou, X.F.[Xian-Feng],
New Spectral Fitting Method for Full-Spectrum Solar-Induced
Chlorophyll Fluorescence Retrieval Based on Principal Components
Analysis,
RS(7), No. 8, 2015, pp. 10626.
DOI Link
1509
BibRef
Julitta, T.[Tommaso],
Corp, L.A.[Lawrence A.],
Rossini, M.[Micol],
Burkart, A.[Andreas],
Cogliati, S.[Sergio],
Davies, N.[Neville],
Hom, M.[Milton],
Arthur, A.M.[Alasdair Mac],
Middleton, E.M.[Elizabeth M.],
Rascher, U.[Uwe],
Schickling, A.[Anke],
Colombo, R.[Roberto],
Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained
from Four Portable Field Spectroradiometers,
RS(8), No. 2, 2016, pp. 122.
DOI Link
1603
BibRef
Sabater, N.[Neus],
Vicent, J.[Jorge],
Alonso, L.[Luis],
Verrelst, J.[Jochem],
Middleton, E.M.[Elizabeth M.],
Porcar-Castell, A.[Albert],
Moreno, J.[José],
Compensation of Oxygen Transmittance Effects for Proximal Sensing
Retrieval of Canopy-Leaving Sun-Induced Chlorophyll Fluorescence,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Pacheco-Labrador, J.[Javier],
Hueni, A.[Andreas],
Mihai, L.[Laura],
Sakowska, K.[Karolina],
Julitta, T.[Tommaso],
Kuusk, J.[Joel],
Sporea, D.[Dan],
Alonso, L.[Luis],
Burkart, A.[Andreas],
Cendrero-Mateo, M.P.[M. Pilar],
Aasen, H.[Helge],
Goulas, Y.[Yves],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations
for Proximal Spectroradiometers,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Aasen, H.[Helge],
van Wittenberghe, S.[Shari],
Medina, N.S.[Neus Sabater],
Damm, A.[Alexander],
Goulas, Y.[Yves],
Wieneke, S.[Sebastian],
Hueni, A.[Andreas],
Malenovský, Z.[Zbynek],
Alonso, L.[Luis],
Pacheco-Labrador, J.[Javier],
Cendrero-Mateo, M.P.[M. Pilar],
Tomelleri, E.[Enrico],
Burkart, A.[Andreas],
Cogliati, S.[Sergio],
Rascher, U.[Uwe],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence II: Review of Passive
Measurement Setups, Protocols, and Their Application at the Leaf to
Canopy Level,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cendrero-Mateo, M.P.[M. Pilar],
Wieneke, S.[Sebastian],
Damm, A.[Alexander],
Alonso, L.[Luis],
Pinto, F.[Francisco],
Moreno, J.[Jose],
Guanter, L.[Luis],
Celesti, M.[Marco],
Rossini, M.[Micol],
Sabater, N.[Neus],
Cogliati, S.[Sergio],
Julitta, T.[Tommaso],
Rascher, U.[Uwe],
Goulas, Y.[Yves],
Aasen, H.[Helge],
Pacheco-Labrador, J.[Javier],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence III: Benchmarking Retrieval
Methods and Sensor Characteristics for Proximal Sensing,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Rossini, M.[Micol],
Meroni, M.[Michele],
Celesti, M.[Marco],
Cogliati, S.[Sergio],
Julitta, T.[Tommaso],
Panigada, C.[Cinzia],
Rascher, U.[Uwe],
van der Tol, C.[Christiaan],
Colombo, R.[Roberto],
Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and
Their Ratio in Different Canopies Based on Observed and Modeled Data,
RS(8), No. 5, 2016, pp. 412.
DOI Link
1606
BibRef
Zhang, C.[Chao],
Filella, I.[Iolanda],
Garbulsky, M.F.[Martín F.],
Peñuelas, J.[Josep],
Affecting Factors and Recent Improvements of the Photochemical
Reflectance Index (PRI) for Remotely Sensing Foliar, Canopy and
Ecosystemic Radiation-Use Efficiencies,
RS(8), No. 9, 2016, pp. 677.
DOI Link
1610
BibRef
Davila, J.C.,
Zaremba, M.B.,
An Iterative Learning Framework for Multimodal Chlorophyll-a
Estimation,
GeoRS(54), No. 12, December 2016, pp. 7299-7308.
IEEE DOI
1612
hydrological techniques
BibRef
de Sousa, C.H.R.[Celio Helder Resende],
Hilker, T.[Thomas],
Waring, R.[Richard],
de Moura, Y.M.[Yhasmin Mendes],
Lyapustin, A.[Alexei],
Progress in Remote Sensing of Photosynthetic Activity over the Amazon
Basin,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Tong, A.[Alexander],
He, Y.H.[Yu-Hong],
Estimating and mapping chlorophyll content for a heterogeneous
grassland: Comparing prediction power of a suite of vegetation
indices across scales between years,
PandRS(126), No. 1, 2017, pp. 146-167.
Elsevier DOI
1704
Spectral indices
BibRef
Sonobe, R.[Rei],
Wang, Q.[Quan],
Towards a Universal Hyperspectral Index to Assess Chlorophyll Content
in Deciduous Forests,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Li, D.[Dong],
Cheng, T.[Tao],
Zhou, K.[Kai],
Zheng, H.B.[Heng-Biao],
Yao, X.[Xia],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
WREP: A wavelet-based technique for extracting the red edge position
from reflectance spectra for estimating leaf and canopy chlorophyll
contents of cereal crops,
PandRS(129), No. 1, 2017, pp. 103-117.
Elsevier DOI
1706
Chlorophyll content
BibRef
Pinto, F.[Francisco],
Müller-Linow, M.[Mark],
Schickling, A.[Anke],
Cendrero-Mateo, M.P.[M. Pilar],
Ballvora, A.[Agim],
Rascher, U.[Uwe],
Multiangular Observation of Canopy Sun-Induced Chlorophyll
Fluorescence by Combining Imaging Spectroscopy and Stereoscopy,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Madani, N.[Nima],
Kimball, J.S.[John S.],
Jones, L.A.[Lucas A.],
Parazoo, N.C.[Nicholas C.],
Guan, K.Y.[Kai-Yu],
Global Analysis of Bioclimatic Controls on Ecosystem Productivity
Using Satellite Observations of Solar-Induced Chlorophyll
Fluorescence,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Rahimzadeh-Bajgiran, P.[Parinaz],
Tubuxin, B.[Bayaer],
Omasa, K.[Kenji],
Estimating Chlorophyll Fluorescence Parameters Using the Joint
Fraunhofer Line Depth and Laser-Induced Saturation Pulse (FLD-LISP)
Method in Different Plant Species,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Sabater, N.[Neus],
Vicent, J.[Jorge],
Alonso, L.[Luis],
Cogliati, S.[Sergio],
Verrelst, J.[Jochem],
Moreno, J.[José],
Impact of Atmospheric Inversion Effects on Solar-Induced Chlorophyll
Fluorescence: Exploitation of the Apparent Reflectance as a Quality
Indicator,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Du, S.S.[Shan-Shan],
Liu, L.Y.[Liang-Yun],
Liu, X.J.[Xin-Jie],
Hu, J.C.[Jiao-Chan],
Response of Canopy Solar-Induced Chlorophyll Fluorescence to the
Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Verrelst, J.[Jochem],
Rivera Caicedo, J.P.[Juan Pablo],
Muñoz-Marí, J.[Jordi],
Camps-Valls, G.[Gustau],
Moreno, J.[José],
SCOPE-Based Emulators for Fast Generation of Synthetic Canopy
Reflectance and Sun-Induced Fluorescence Spectra,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
chlorophyll fluorescence
BibRef
Sun, J.[Jia],
Shi, S.[Shuo],
Yang, J.[Jian],
Du, L.[Lin],
Gong, W.[Wei],
Chen, B.[Biwu],
Song, S.[Shalei],
Analyzing the performance of PROSPECT model inversion based on
different spectral information for leaf biochemical properties
retrieval,
PandRS(135), No. Supplement C, 2018, pp. 74-83.
Elsevier DOI
1712
Leaf optical properties, PROSPECT, Hyperspectral data, Biochemistry
BibRef
Bertani, G.[Gabriel],
Wagner, F.H.[Fabien H.],
Anderson, L.O.[Liana O.],
Aragão, L.E.O.C.[Luiz E. O. C.],
Chlorophyll Fluorescence Data Reveals Climate-Related Photosynthesis
Seasonality in Amazonian Forests,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Hu, J.C.[Jiao-Chan],
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Guan, L.L.[Lin-Lin],
Evaluating the Performance of the SCOPE Model in Simulating Canopy
Solar-Induced Chlorophyll Fluorescence,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Liu, X.J.[Xin-Jie],
Guo, J.[Jian],
Hu, J.C.[Jiao-Chan],
Liu, L.Y.[Liang-Yun],
Atmospheric Correction for Tower-Based Solar-Induced Chlorophyll
Fluorescence Observations at O2-A Band,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Sala, I.[Iria],
Navarro, G.[Gabriel],
Bolado-Penagos, M.[Marina],
Echevarría, F.[Fidel],
García, C.M.[Carlos M.],
High-Chlorophyll-Area Assessment Based on Remote Sensing
Observations: The Case Study of Cape Trafalgar,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Blix, K.[Katalin],
Eltoft, T.[Torbjørn],
Machine Learning Automatic Model Selection Algorithm for Oceanic
Chlorophyll-a Content Retrieval,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Lu, X.L.[Xiao-Liang],
Liu, Z.Q.[Zhun-Qiao],
Zhou, Y.Y.[Yu-Yu],
Liu, Y.L.[Ya-Ling],
An, S.Q.[Shu-Qing],
Tang, J.[Jianwu],
Comparison of Phenology Estimated from Reflectance-Based Indices and
Solar-Induced Chlorophyll Fluorescence (SIF) Observations in a
Temperate Forest Using GPP-Based Phenology as the Standard,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Pyo, J.C.[Jong Cheol],
Ligaray, M.[Mayzonee],
Kwon, Y.S.[Yong Sung],
Ahn, M.H.[Myoung-Hwan],
Kim, K.[Kyunghyun],
Lee, H.[Hyuk],
Kang, T.[Taegu],
Cho, S.B.[Seong Been],
Park, Y.[Yongeun],
Cho, K.H.[Kyung Hwa],
High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a
Using Airborne Hyperspectral Imagery,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Hilborn, A.[Andrea],
Costa, M.[Maycira],
Applications of DINEOF to Satellite-Derived Chlorophyll-a from a
Productive Coastal Region,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Nichol, C.J.[Caroline J.],
Drolet, G.[Guillaume],
Porcar-Castell, A.[Albert],
Wade, T.[Tom],
Sabater, N.[Neus],
Middleton, E.M.[Elizabeth M.],
MacLellan, C.[Chris],
Levula, J.[Janne],
Mammarella, I.[Ivan],
Vesala, T.[Timo],
Atherton, J.[Jon],
Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and
Photosynthesis in a Boreal Scots Pine Canopy,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Campbell, P.K.E.[Petya K. E.],
Huemmrich, K.F.[Karl F.],
Middleton, E.M.[Elizabeth M.],
Ward, L.A.[Lauren A.],
Julitta, T.[Tommaso],
Daughtry, C.S.T.[Craig S. T.],
Burkart, A.[Andreas],
Russ, A.L.[Andrew L.],
Kustas, W.P.[William P.],
Diurnal and Seasonal Variations in Chlorophyll Fluorescence
Associated with Photosynthesis at Leaf and Canopy Scales,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ahlman, L.[Linnéa],
Bånkestad, D.[Daniel],
Wik, T.[Torsten],
Relation between Changes in Photosynthetic Rate and Changes in Canopy
Level Chlorophyll Fluorescence Generated by Light Excitation of
Different Led Colours in Various Background Light,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Li, X.[Xing],
Xiao, J.F.[Jing-Feng],
A Global, 0.05-Degree Product of Solar-Induced Chlorophyll
Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Jin, J.,
Wang, Q.,
Selection of Informative Spectral Bands for PLS Models to Estimate
Foliar Chlorophyll Content Using Hyperspectral Reflectance,
GeoRS(57), No. 5, May 2019, pp. 3064-3072.
IEEE DOI
1905
vegetation mapping, leaf chemical components,
informative spectral bands, informative bands,
partial least squares (PLS)
BibRef
Román, J.R.[José Raúl],
Rodríguez-Caballero, E.[Emilio],
Rodríguez-Lozano, B.[Borja],
Roncero-Ramos, B.[Beatriz],
Chamizo, S.[Sonia],
Águila-Carricondo, P.[Pilar],
Cantón, Y.[Yolanda],
Spectral Response Analysis: An Indirect and Non-Destructive
Methodology for the Chlorophyll Quantification of Biocrusts,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Vanbrabant, Y.[Yasmin],
Tits, L.[Laurent],
Delalieux, S.[Stephanie],
Pauly, K.[Klaas],
Verjans, W.[Wim],
Somers, B.[Ben],
Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from
Remotely Piloted Aircraft Systems,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Qiu, F.[Feng],
Chen, J.M.[Jing M.],
Croft, H.[Holly],
Li, J.[Jing],
Zhang, Q.[Qian],
Zhang, Y.Q.[Yong-Qin],
Ju, W.M.[Wei-Min],
Retrieving Leaf Chlorophyll Content by Incorporating Variable Leaf
Surface Reflectance in the PROSPECT Model,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Wei, J.[Jin],
Tang, X.G.[Xu-Guang],
Gu, Q.[Qing],
Wang, M.[Min],
Ma, M.G.[Ming-Guo],
Han, X.J.[Xu-Jun],
Using Solar-Induced Chlorophyll Fluorescence Observed by OCO-2 to
Predict Autumn Crop Production in China,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Brown, L.A.[Luke A.],
Ogutu, B.O.[Booker O.],
Dash, J.[Jadunandan],
Estimating Forest Leaf Area Index and Canopy Chlorophyll Content with
Sentinel-2: An Evaluation of Two Hybrid Retrieval Algorithms,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Merrick, T.[Trina],
Pau, S.[Stephanie],
Jorge, M.L.S.P.[Maria Luisa S.P.],
Silva, T.S.F.[Thiago S. F.],
Bennartz, R.[Ralf],
Spatiotemporal Patterns and Phenology of Tropical Vegetation
Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using
Satellite Observations,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Hosoi, F.[Fumiki],
Umeyama, S.[Sho],
Kuo, K.[Kuangting],
Estimating 3D Chlorophyll Content Distribution of Trees Using an
Image Fusion Method Between 2D Camera and 3D Portable Scanning Lidar,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Xie, M.M.[Meng-Meng],
Wang, Z.Q.[Zhong-Qiang],
Huete, A.[Alfredo],
Brown, L.A.[Luke A.],
Wang, H.[Heyu],
Xie, Q.Y.[Qiao-Yun],
Xu, X.P.[Xin-Peng],
Ding, Y.L.[Yan-Ling],
Estimating Peanut Leaf Chlorophyll Content with Dorsiventral Leaf
Adjusted Indices: Minimizing the Impact of Spectral Differences
between Adaxial and Abaxial Leaf Surfaces,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Lu, B.[Bing],
He, Y.H.[Yu-Hong],
Evaluating Empirical Regression, Machine Learning, and Radiative
Transfer Modelling for Estimating Vegetation Chlorophyll Content
Using Bi-Seasonal Hyperspectral Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Liu, L.Z.[Lei-Zhen],
Zhao, W.H.[Wen-Hui],
Wu, J.J.[Jian-Jun],
Liu, S.S.[Sha-Sha],
Teng, Y.G.[Yan-Guo],
Yang, J.H.[Jian-Hua],
Han, X.Y.[Xin-Yi],
The Impacts of Growth and Environmental Parameters on Solar-Induced
Chlorophyll Fluorescence at Seasonal and Diurnal Scales,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zeng, C.Q.[Chui-Qing],
Binding, C.[Caren],
The Effect of Mineral Sediments on Satellite Chlorophyll-a Retrievals
from Line-Height Algorithms Using Red and Near-Infrared Bands,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, Q.[Qian],
Zhang, X.K.[Xiao-Kang],
Li, Z.H.[Zhao-Hui],
Wu, Y.F.[Yun-Fei],
Zhang, Y.G.[Yong-Guang],
Comparison of Bi-Hemispherical and Hemispherical-Conical
Configurations for In Situ Measurements of Solar-Induced Chlorophyll
Fluorescence,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Dong, T.F.[Tai-Feng],
Shang, J.L.[Jia-Li],
Chen, J.M.[Jing M.],
Liu, J.G.[Jian-Gui],
Qian, B.[Budong],
Ma, B.[Baoluo],
Morrison, M.J.[Malcolm J.],
Zhang, C.[Chao],
Liu, Y.P.[Yu-Peng],
Shi, Y.C.[Yi-Chao],
Pan, H.[Hui],
Zhou, G.S.[Gui-Sheng],
Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf
Chlorophyll Concentration,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Miraglio, T.[Thomas],
Adeline, K.[Karine],
Huesca, M.[Margarita],
Ustin, S.[Susan],
Briottet, X.[Xavier],
Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland
Savanna Using Hyperspectral Imagery and 3D Radiative Transfer
Modeling,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
And:
Correction:
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Annala, L.[Leevi],
Honkavaara, E.[Eija],
Tuominen, S.[Sakari],
Pölönen, I.[Ilkka],
Chlorophyll Concentration Retrieval by Training Convolutional Neural
Network for Stochastic Model of Leaf Optical Properties (SLOP)
Inversion,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Kira, O.[Oz],
Sun, Y.[Ying],
Extraction of sub-pixel C3/C4 emissions of solar-induced chlorophyll
fluorescence (SIF) using artificial neural network,
PandRS(161), 2020, pp. 135-146.
Elsevier DOI
2002
solar-induced chlorophyll fluorescence (SIF),
Sub-pixel SIF extraction,
Artificial neural network (ANN)
BibRef
Guo, M.[Meng],
Li, J.[Jing],
Huang, S.[Shubo],
Wen, L.X.[Li-Xiang],
Feasibility of Using MODIS Products to Simulate Sun-Induced
Chlorophyll Fluorescence (SIF) in Boreal Forests,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Gao, Y.[Yun],
Wang, S.H.[Song-Han],
Guan, K.Y.[Kai-Yu],
Wolanin, A.[Aleksandra],
You, L.Z.[Liang-Zhi],
Ju, W.M.[Wei-Min],
Zhang, Y.G.[Yong-Guang],
The Ability of Sun-Induced Chlorophyll Fluorescence From OCO-2 and
MODIS-EVI to Monitor Spatial Variations of Soybean and Maize Yields
in the Midwestern USA,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Jin, J.[Jia],
Pratama, B.A.[Bayu Arief],
Wang, Q.[Quan],
Tracing Leaf Photosynthetic Parameters Using Hyperspectral Indices in
an Alpine Deciduous Forest,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Bendig, J.,
Malenovský, Z.,
Gautam, D.,
Lucieer, A.,
Solar-Induced Chlorophyll Fluorescence Measured From an Unmanned
Aircraft System: Sensor Etaloning and Platform Motion Correction,
GeoRS(58), No. 5, May 2020, pp. 3437-3444.
IEEE DOI
2005
Airborne spectroscopy,
solar-induced chlorophyll fluorescence (SIF), unmanned aerial vehicle (UAV)
BibRef
Mohebzadeh, H.[Hamid],
Yeom, J.[Junho],
Lee, T.[Taesam],
Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming
in South Korea,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Liu, L.Z.[Lei-Zhen],
Zhao, W.H.[Wen-Hui],
Shen, Q.[Qiu],
Wu, J.J.[Jian-Jun],
Teng, Y.G.[Yan-Guo],
Yang, J.H.[Jian-Hua],
Han, X.Y.[Xin-Yi],
Tian, F.[Feng],
Nonlinear Relationship Between the Yield of Solar-Induced Chlorophyll
Fluorescence and Photosynthetic Efficiency in Senescent Crops,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Vargas, J.Q.[Juan Quirós],
Bendig, J.[Juliane],
Arthur, A.M.[Alasdair Mac],
Burkart, A.[Andreas],
Julitta, T.[Tommaso],
Maseyk, K.[Kadmiel],
Thomas, R.[Rick],
Siegmann, B.[Bastian],
Rossini, M.[Micol],
Celesti, M.[Marco],
Schüttemeyer, D.[Dirk],
Kraska, T.[Thorsten],
Muller, O.[Onno],
Rascher, U.[Uwe],
Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced
Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging
Spectrometers: State of the Art,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ali, A.M.[Abebe Mohammed],
Darvishzadeh, R.[Roshanak],
Skidmore, A.[Andrew],
Heurich, M.[Marco],
Paganini, M.[Marc],
Heiden, U.[Uta],
Mücher, S.[Sander],
Evaluating Prediction Models for Mapping Canopy Chlorophyll Content
Across Biomes,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Syariz, M.A.[Muhammad Aldila],
Lin, C.H.[Chao-Hung],
Nguyen, M.V.[Manh Van],
Jaelani, L.M.[Lalu Muhamad],
Blanco, A.C.[Ariel C.],
WaterNet: A Convolutional Neural Network for Chlorophyll-a
Concentration Retrieval,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ma, Y.[Yan],
Liu, L.Y.[Liang-Yun],
Chen, R.N.[Ruo-Nan],
Du, S.S.[Shan-Shan],
Liu, X.J.[Xin-Jie],
Generation of a Global Spatially Continuous TanSat Solar-Induced
Chlorophyll Fluorescence Product by Considering the Impact of the
Solar Radiation Intensity,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Qian, X.J.[Xiao-Jin],
Liu, L.Y.[Liang-Yun],
Retrieving Crop Leaf Chlorophyll Content Using an Improved
Look-Up-Table Approach by Combining Multiple Canopy Structures and
Soil Backgrounds,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Bhadra, S.[Sourav],
Sagan, V.[Vasit],
Maimaitijiang, M.[Maitiniyazi],
Maimaitiyiming, M.[Matthew],
Newcomb, M.[Maria],
Shakoor, N.[Nadia],
Mockler, T.C.[Todd C.],
Quantifying Leaf Chlorophyll Concentration of Sorghum from
Hyperspectral Data Using Derivative Calculus and Machine Learning,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Pastor-Guzman, J.,
Brown, L.,
Morris, H.,
Bourg, L.,
Goryl, P.,
Dransfeld, S.,
Dash, J.,
The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm
Improvements, Spatiotemporal Consistency and Continuity with the
MERIS Archive,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Sonobe, R.[Rei],
Yamashita, H.[Hiroto],
Mihara, H.[Harumi],
Morita, A.[Akio],
Ikka, T.[Takashi],
Estimation of Leaf Chlorophyll a, b and Carotenoid Contents and Their
Ratios Using Hyperspectral Reflectance,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Hoeppner, J.M.[J. Malin],
Skidmore, A.K.[Andrew K.],
Darvishzadeh, R.[Roshanak],
Heurich, M.[Marco],
Chang, H.C.[Hsing-Chung],
Gara, T.W.[Tawanda W.],
Mapping Canopy Chlorophyll Content in a Temperate Forest Using
Airborne Hyperspectral Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zou, T.Y.[Tian-Yuan],
Zhang, J.[Jing],
A New Fluorescence Quantum Yield Efficiency Retrieval Method to
Simulate Chlorophyll Fluorescence under Natural Conditions,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Pineda, M.[Mónica],
Barón, M.[Matilde],
Pérez-Bueno, M.L.[María-Luisa],
Thermal Imaging for Plant Stress Detection and Phenotyping,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sun, Q.[Qi],
Jiao, Q.J.[Quan-Jun],
Qian, X.J.[Xiao-Jin],
Liu, L.Y.[Liang-Yun],
Liu, X.J.[Xin-Jie],
Dai, H.Y.[Hua-Yang],
Improving the Retrieval of Crop Canopy Chlorophyll Content Using
Vegetation Index Combinations,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Feng, H.Z.[Huai-Ze],
Xu, T.R.[Tong-Ren],
Liu, L.Y.[Liang-Yun],
Zhou, S.[Sha],
Zhao, J.X.[Jing-Xue],
Liu, S.M.[Shao-Min],
Xu, Z.W.[Zi-Wei],
Mao, K.[Kebiao],
He, X.L.[Xin-Lei],
Zhu, Z.L.[Zhong-Li],
Chai, L.[Linna],
Modeling Transpiration with Sun-Induced Chlorophyll Fluorescence
Observations via Carbon-Water Coupling Methods,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Park, J.E.[Ji-Eun],
Park, K.A.[Kyung-Ae],
Application of Deep Learning for Speckle Removal in GOCI
Chlorophyll-a Concentration Images (2012-2017),
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Tong, C.M.[Chi-Ming],
Bao, Y.F.[Yun-Fei],
Zhao, F.[Feng],
Fan, C.R.[Chong-Rui],
Li, Z.J.[Zhen-Jiang],
Huang, Q.L.[Qiao-Lin],
Evaluation of the FluorWPS Model and Study of the Parameter
Sensitivity for Simulating Solar-Induced Chlorophyll Fluorescence,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ogashawara, I.[Igor],
Kiel, C.[Christine],
Jechow, A.[Andreas],
Kohnert, K.[Katrin],
Ruhtz, T.[Thomas],
Grossart, H.P.[Hans-Peter],
Hölker, F.[Franz],
Nejstgaard, J.C.[Jens C.],
Berger, S.A.[Stella A.],
Wollrab, S.[Sabine],
The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment:
A Comparative Study on Different Lakes in Northern Germany,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
de Grave, C.[Charlotte],
Pipia, L.[Luca],
Siegmann, B.[Bastian],
Morcillo-Pallarés, P.[Pablo],
Rivera-Caicedo, J.P.[Juan Pablo],
Moreno, J.[José],
Verrelst, J.[Jochem],
Retrieving and Validating Leaf and Canopy Chlorophyll Content at
Moderate Resolution: A Multiscale Analysis with the Sentinel-3 OLCI
Sensor,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Bandopadhyay, S.[Subhajit],
Rastogi, A.[Anshu],
Cogliati, S.[Sergio],
Rascher, U.[Uwe],
Gabka, M.[Maciej],
Juszczak, R.[Radoslaw],
Can Vegetation Indices Serve as Proxies for Potential Sun-Induced
Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging
Spectroscopy Data,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Li, J.[Jun],
Li, T.J.[Tong-Ji],
Song, Q.J.[Qing-Jun],
Ma, C.F.[Chao-Fei],
Performance Evaluation of Four Ocean Reflectance Model,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
The ocean reflectance model (ORM), which takes into account the
chlorophyll a concentration data.
BibRef
Chen, J.H.[Jing-Hua],
Wang, S.Q.[Shao-Qiang],
Chen, B.[Bin],
Li, Y.[Yue],
Amir, M.[Muhammad],
Ma, L.[Li],
Zhu, K.[Kai],
Yang, F.T.[Feng-Ting],
Wang, X.B.[Xiao-Bo],
Liu, Y.Y.[Yuan-Yuan],
Wang, P.Y.[Peng-Yuan],
Wang, J.[Junbang],
Huang, M.[Mei],
Wang, Z.S.[Zhao-Sheng],
Comparative Analysis on the Estimation of Diurnal Solar-Induced
Chlorophyll Fluorescence Dynamics for a Subtropical Evergreen
Coniferous Forest,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Lin, W.P.[Wen-Peng],
Yu, X.[Xumiao],
Xu, D.[Di],
Sun, T.T.[Teng-Teng],
Sun, Y.[Yue],
Effect of Dust Deposition on Chlorophyll Concentration Estimation in
Urban Plants from Reflectance and Vegetation Indexes,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Lu, B.[Bing],
He, Y.H.[Yu-Hong],
Assessing the Impacts of Species Composition on the Accuracy of
Mapping Chlorophyll Content in Heterogeneous Ecosystems,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ferrera-Cobos, F.[Francisco],
Vindel, J.M.[Jose M.],
Wane, O.[Ousmane],
Navarro, A.A.[Ana A.],
Zarzalejo, L.F.[Luis F.],
Valenzuela, R.X.[Rita X.],
Combination of Models to Generate the First PAR Maps for Spain,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
Photosynthetically Active Radiation.
BibRef
Xu, X.J.[Xiao-Jun],
Tang, Y.[Yan],
Qu, Y.L.[Yi-Ling],
Zhou, Z.S.[Zhong-Sheng],
Hu, J.G.[Jun-Guo],
Global Vegetation Photosynthetic Phenology Products Based on MODIS
Vegetation Greenness and Temperature: Modeling and Evaluation,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ilteralp, M.[Melike],
Ariman, S.[Sema],
Aptoula, E.[Erchan],
A Deep Multitask Semisupervised Learning Approach for Chlorophyll-a
Retrieval from Remote Sensing Images,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Jiao, Q.J.[Quan-Jun],
Sun, Q.[Qi],
Zhang, B.[Bing],
Huang, W.J.[Wen-Jiang],
Ye, H.C.[Hui-Chun],
Zhang, Z.M.[Zhao-Ming],
Zhang, X.[Xiao],
Qian, B.X.[Bin-Xiang],
A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content
of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted
Average Leaf Angle,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ferreira, A.[Afonso],
Brito, A.C.[Ana C.],
Mendes, C.R.B.[Carlos R. B.],
Brotas, V.[Vanda],
Costa, R.R.[Raul R.],
Guerreiro, C.V.[Catarina V.],
Sá, C.[Carolina],
Jackson, T.[Thomas],
OC4-SO: A New Chlorophyll-a Algorithm for the Western Antarctic
Peninsula Using Multi-Sensor Satellite Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Song, G.[Guangman],
Wang, Q.[Quan],
Developing Hyperspectral Indices for Assessing Seasonal Variations in
the Ratio of Chlorophyll to Carotenoid in Deciduous Forests,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Liu, G.H.[Gui-Hua],
Wang, Y.S.[Yi-Song],
Chen, Y.[Yanan],
Tong, X.Q.[Xing-Qing],
Wang, Y.D.[Yuan-Dong],
Xie, J.[Jing],
Tang, X.G.[Xu-Guang],
Remotely Monitoring Vegetation Productivity in Two Contrasting
Subtropical Forest Ecosystems Using Solar-Induced Chlorophyll
Fluorescence,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Guo, M.[Meng],
Li, J.[Jing],
Li, J.[Jianuo],
Zhong, C.[Chao],
Zhou, F.F.[Fen-Fen],
Solar-Induced Chlorophyll Fluorescence Trends and Mechanisms in
Different Ecosystems in Northeastern China,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Hu, J.C.[Jiao-Chan],
Jia, J.[Jia],
Ma, Y.[Yan],
Liu, L.Y.[Liang-Yun],
Yu, H.Y.[Hao-Yang],
A Reconstructed Global Daily Seamless SIF Product at 0.05 Degree
Resolution Based on TROPOMI, MODIS and ERA5 Data,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
Solar-induced chlorophyll fluorescence.
BibRef
Tagliabue, G.[Giulia],
Boschetti, M.[Mirco],
Bramati, G.[Gabriele],
Candiani, G.[Gabriele],
Colombo, R.[Roberto],
Nutini, F.[Francesco],
Pompilio, L.[Loredana],
Rivera-Caicedo, J.P.[Juan Pablo],
Rossi, M.[Marta],
Rossini, M.[Micol],
Verrelst, J.[Jochem],
Panigada, C.[Cinzia],
Hybrid retrieval of crop traits from multi-temporal PRISMA
hyperspectral imagery,
PandRS(187), 2022, pp. 362-377.
Elsevier DOI
2205
Remote sensing, Earth Observation, Machine learning regression,
Nitrogen content, Chlorophyll content, Water content
BibRef
Nofrizal, A.Y.[Adenan Yandra],
Sonobe, R.[Rei],
Yamashita, H.[Hiroto],
Seki, H.[Haruyuki],
Mihara, H.[Harumi],
Morita, A.[Akio],
Ikka, T.[Takashi],
Evaluation of a One-Dimensional Convolution Neural Network for
Chlorophyll Content Estimation Using a Compact Spectrometer,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Han, S.[Shuai],
Liu, Z.G.[Zhi-Gang],
Chen, Z.[Zhuang],
Jiang, H.[Hao],
Xu, S.[Shan],
Zhao, H.R.[Hua-Rong],
Ren, S.[Sanxue],
Using High-Frequency PAR Measurements to Assess the Quality of the
SIF Derived from Continuous Field Observations,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
Photosynthetically active radiation.
Solar-Induced Chlorophyll Fluorescence.
BibRef
Li, M.[Meng],
Chu, R.H.[Rong-Hao],
Sha, X.Z.[Xiu-Zhu],
Xie, P.F.[Peng-Fei],
Ni, F.[Feng],
Wang, C.[Chao],
Jiang, Y.[Yuelin],
Shen, S.[Shuanghe],
Islam, A.R.M.T.[Abu Reza Md. Towfiqul],
Monitoring 2019 Drought and Assessing Its Effects on Vegetation Using
Solar-Induced Chlorophyll Fluorescence and Vegetation Indexes in the
Middle and Lower Reaches of Yangtze River, China,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
de Cannière, S.[Simon],
Vereecken, H.[Harry],
Defourny, P.[Pierre],
Jonard, F.[François],
Remote Sensing of Instantaneous Drought Stress at Canopy Level Using
Sun-Induced Chlorophyll Fluorescence and Canopy Reflectance,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Wang, C.[Cong],
Wu, Y.J.[Yi-Jin],
Hu, Q.[Qiong],
Hu, J.[Jie],
Chen, Y.P.[Yun-Ping],
Lin, S.R.[Shang-Rong],
Xie, Q.Y.[Qiao-Yun],
Comparison of Vegetation Phenology Derived from Solar-Induced
Chlorophyll Fluorescence and Enhanced Vegetation Index, and Their
Relationship with Climatic Limitations,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Verma, B.[Bhagyashree],
Prasad, R.[Rajendra],
Srivastava, P.K.[Prashant K.],
Singh, P.[Prachi],
Badola, A.[Anushree],
Sharma, J.[Jyoti],
Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral
Reconstruction Method for the Retrieval of Leaf Chlorophyll Content,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chen, J.[Jidai],
Liu, X.J.[Xin-Jie],
Ma, Y.[Yan],
Liu, L.Y.[Liang-Yun],
Effects of Low Temperature on the Relationship between Solar-Induced
Chlorophyll Fluorescence and Gross Primary Productivity across
Different Plant Function Types,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Gao, S.[Sicong],
Huete, A.[Alfredo],
Kobayashi, H.[Hideki],
Doody, T.M.[Tanya M.],
Liu, W.W.[Wei-Wei],
Wang, Y.[Yakai],
Zhang, Y.G.[Yong-Guang],
Lu, X.L.[Xiao-Liang],
Simulation of solar-induced chlorophyll fluorescence in a
heterogeneous forest using 3-D radiative transfer modelling and
airborne LiDAR,
PandRS(191), 2022, pp. 1-17.
Elsevier DOI
2208
Fluorescence escape ratio, Heterogeneous forest canopies,
Monte Carlo model, SIF field measurements, Vegetation
BibRef
Xu, M.Z.[Ming-Zhu],
Liu, R.G.[Rong-Gao],
Chen, J.M.[Jing M.],
Shang, R.[Rong],
Liu, Y.[Yang],
Qi, L.[Lin],
Croft, H.[Holly],
Ju, W.M.[Wei-Min],
Zhang, Y.G.[Yong-Guang],
He, Y.H.[Yu-Hong],
Qiu, F.[Feng],
Li, J.[Jing],
Lin, Q.[Qinan],
Retrieving global leaf chlorophyll content from MERIS data using a
neural network method,
PandRS(192), 2022, pp. 66-82.
Elsevier DOI
2209
Global mapping, Machine learning, Leaf pigment,
Leaf biochemical parameter, Phenology
BibRef
Zhang, R.F.[Run-Fei],
Yang, P.Q.[Pei-Qi],
Liu, S.Y.[Shou-Yang],
Wang, C.H.[Cai-Hong],
Liu, J.[Jing],
Evaluation of the Methods for Estimating Leaf Chlorophyll Content
with SPAD Chlorophyll Meters,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Rossini, M.[Micol],
Celesti, M.[Marco],
Bramati, G.[Gabriele],
Migliavacca, M.[Mirco],
Cogliati, S.[Sergio],
Rascher, U.[Uwe],
Colombo, R.[Roberto],
Evaluation of the Spatial Representativeness of In Situ SIF
Observations for the Validation of Medium-Resolution Satellite SIF
Products,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
SIF: Sun-Induced Fluorescence.
BibRef
Ruszczak, B.[Bogdan],
Wijata, A.M.[Agata M.],
Nalepa, J.[Jakub],
Unbiasing the Estimation of Chlorophyll from Hyperspectral Images:
A Benchmark Dataset, Validation Procedure and Baseline Results,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Impollonia, G.[Giorgio],
Croci, M.[Michele],
Blandinières, H.[Henri],
Marcone, A.[Andrea],
Amaducci, S.[Stefano],
Comparison of PROSAIL Model Inversion Methods for Estimating Leaf
Chlorophyll Content and LAI Using UAV Imagery for Hemp Phenotyping,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
He, Y.T.[Yu-Ting],
Wu, P.[Penghai],
Ma, X.S.[Xiao-Shuang],
Wang, J.[Jie],
Wu, Y.[Yanlan],
Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a
Estimation Using MODIS and Sentinel-2 MSI Data,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Sasagawa, T.[Taiga],
Akitsu, T.K.[Tomoko Kawaguchi],
Ide, R.[Reiko],
Takagi, K.[Kentaro],
Takanashi, S.[Satoru],
Nakaji, T.[Tatsuro],
Nasahara, K.N.[Kenlo Nishida],
Accuracy Assessment of Photochemical Reflectance Index (PRI) and
Chlorophyll Carotenoid Index (CCI) Derived from GCOM-C/SGLI with In
Situ Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhao, W.H.[Wen-Hui],
Wu, J.J.[Jian-Jun],
Shen, Q.[Qiu],
Yang, J.H.[Jian-Hua],
Han, X.Y.[Xin-Yi],
Exploring the Ability of Solar-Induced Chlorophyll Fluorescence for
Drought Monitoring Based on an Intelligent Irrigation Control System,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ghaziri, A.E.[Angelina El],
Bouhlel, N.[Nizar],
Sapoukhina, N.[Natalia],
Rousseau, D.[David],
On the Importance of Non-Gaussianity in Chlorophyll Fluorescence
Imaging,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Qian, X.J.[Xiao-Jin],
Liu, L.Y.[Liang-Yun],
Chen, X.[Xidong],
Zhang, X.[Xiao],
Chen, S.Y.[Si-Yuan],
Sun, Q.[Qi],
Global Leaf Chlorophyll Content Dataset (GLCC) from 2003-2012 to
2018-2020 Derived from MERIS and OLCI Satellite Data: Algorithm and
Validation,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Xu, S.[Shan],
Liu, Z.G.[Zhi-Gang],
Han, S.[Shuai],
Chen, Z.[Zhuang],
He, X.[Xue],
Zhao, H.[Huarong],
Ren, S.[Sanxue],
Exploring the Sensitivity of Solar-Induced Chlorophyll Fluorescence
at Different Wavelengths in Response to Drought,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Pang, S.Y.[Shu-Yu],
Zhu, L.P.[Li-Ping],
Liu, C.[Chong],
Ju, J.T.[Jian-Ting],
Causes and Impacts of Decreasing Chlorophyll-a in Tibet Plateau Lakes
during 1986-2021 Based on Landsat Image Inversion,
RS(15), No. 6, 2023, pp. 1503.
DOI Link
2304
BibRef
Dang, X.Y.[Xiao-Yan],
Du, J.[Jun],
Wang, C.[Chao],
Zhang, F.F.[Fang-Fang],
Wu, L.[Lin],
Liu, J.P.[Ji-Ping],
Wang, Z.[Zheng],
Yang, X.[Xu],
Wang, J.X.[Jing-Xu],
A Hybrid Chlorophyll a Estimation Method for Oligotrophic and
Mesotrophic Reservoirs Based on Optical Water Classification,
RS(15), No. 8, 2023, pp. 2209.
DOI Link
2305
BibRef
Zhu, K.[Kai],
Chen, J.H.[Jing-Hua],
Wang, S.Q.[Shao-Qiang],
Fang, H.L.[Hong-Liang],
Chen, B.[Bin],
Zhang, L.[Leiming],
Li, Y.[Yuelin],
Zheng, C.[Chen],
Amir, M.[Muhammad],
Characterization of the layered SIF distribution through
hyperspectral observation and SCOPE modeling for a subtropical
evergreen forest,
PandRS(201), 2023, pp. 78-91.
Elsevier DOI
2307
Solar-induced chlorophyll fluorescence,
Subtropical evergreen forest, Radiative transfer, Understory
BibRef
Wang, Y.[Yanan],
He, J.C.[Jing-Chi],
Shao, T.[Ting],
Tu, Y.J.[You-Jun],
Gao, Y.X.[Yu-Xin],
Li, J.L.[Jun-Li],
Exploring the Potential of Solar-Induced Chlorophyll Fluorescence
Monitoring Drought-Induced Net Primary Productivity Dynamics in the
Huang-Huai-Hai Plain Based on the SIF/NPP Ratio,
RS(15), No. 13, 2023, pp. 3276.
DOI Link
2307
BibRef
Hu, M.[Meijun],
Cheng, X.F.[Xiang-Fen],
Zhang, J.S.[Jin-Song],
Huang, H.[Hui],
Zhou, Y.[Yu],
Wang, X.[Xin],
Pan, Q.M.[Qing-Mei],
Guan, C.F.[Chong-Fan],
Temporal Variation in Tower-Based Solar-Induced Chlorophyll
Fluorescence and Its Environmental Response in a Chinese Cork Oak
Plantation,
RS(15), No. 14, 2023, pp. 3568.
DOI Link
2307
BibRef
Jacobson, J.[Josh],
Cressie, N.[Noel],
Zammit-Mangion, A.[Andrew],
Spatial Statistical Prediction of Solar-Induced Chlorophyll
Fluorescence (SIF) from Multivariate OCO-2 Data,
RS(15), No. 16, 2023, pp. 4038.
DOI Link
2309
BibRef
Zhuang, J.[Jie],
Wang, Q.[Quan],
Song, G.[Guangman],
Jin, J.[Jia],
Validating and Developing Hyperspectral Indices for Tracing Leaf
Chlorophyll Fluorescence Parameters under Varying Light Conditions,
RS(15), No. 19, 2023, pp. 4890.
DOI Link
2310
BibRef
Zhang, J.[Jingru],
Gonsamo, A.[Alemu],
Tong, X.J.[Xiao-Juan],
Xiao, J.F.[Jing-Feng],
Rogers, C.A.[Cheryl A.],
Qin, S.H.[Shu-Hong],
Liu, P.R.[Pei-Rong],
Yu, P.Y.[Pei-Yang],
Ma, P.[Pu],
Solar-induced chlorophyll fluorescence captures photosynthetic
phenology better than traditional vegetation indices,
PandRS(203), 2023, pp. 183-198.
Elsevier DOI
2310
Phenology, Gross primary productivity, PhenoCam,
Solar-induced chlorophyll fluorescence, TROPOMI, Vegetation indices
BibRef
Ahmed, K.R.[Kazi Rifat],
Paul-Limoges, E.[Eugenie],
Rascher, U.[Uwe],
Hanus, J.[Jan],
Miglietta, F.[Franco],
Colombo, R.[Roberto],
Peressotti, A.[Alessandro],
Genangeli, A.[Andrea],
Damm, A.[Alexander],
Empirical insights on the use of sun-induced chlorophyll fluorescence
to estimate short-term changes in crop transpiration under controlled
water limitation,
PandRS(203), 2023, pp. 71-85.
Elsevier DOI
2310
Transpiration, Sun-induced chlorophyll fluorescence, Penman-Monteith,
Ball-Berry-Leuning, Airborne optical data, Airborne thermal data
BibRef
Li, D.[Dasui],
Hu, Q.Q.[Qing-Qing],
Ruan, S.Q.[Si-Qi],
Liu, J.[Jun],
Zhang, J.Z.[Jin-Zhi],
Hu, C.G.[Chun-Gen],
Liu, Y.Z.[Yong-Zhong],
Dian, Y.Y.[Yuan-Yong],
Zhou, J.J.[Jing-Jing],
Utilizing Hyperspectral Reflectance and Machine Learning Algorithms
for Non-Destructive Estimation of Chlorophyll Content in Citrus
Leaves,
RS(15), No. 20, 2023, pp. 4934.
DOI Link
2310
BibRef
Falcioni, R.[Renan],
Antunes, W.C.[Werner Camargos],
de Oliveira, R.B.[Roney Berti],
Chicati, M.L.[Marcelo Luiz],
Demattê, J.A.M.[José Alexandre M.],
Nanni, M.R.[Marcos Rafael],
Assessment of Combined Reflectance, Transmittance, and Absorbance
Hyperspectral Sensors for Prediction of Chlorophyll a Fluorescence
Parameters,
RS(15), No. 20, 2023, pp. 5067.
DOI Link
2310
BibRef
Wang, C.[Cong],
Chen, Y.P.[Yun-Ping],
Tong, W.T.[Wan-Ting],
Zhou, W.[Wei],
Li, J.[Jing],
Xu, B.D.[Bao-Dong],
Hu, Q.[Qiong],
Mapping crop phenophases in reproductive growth period by satellite
solar-induced chlorophyll fluorescence: A case study in mid-temperate
zone in China,
PandRS(205), 2023, pp. 191-205.
Elsevier DOI
2311
Solar-induced chlorophyll fluorescence, Enhanced vegetation index, Maturity
BibRef
Zhang, A.[Aiwu],
Yin, S.N.[Sheng-Nan],
Wang, J.[Juan],
He, N.P.[Nian-Peng],
Chai, S.[Shatuo],
Pang, H.Y.[Hai-Yang],
Grassland Chlorophyll Content Estimation from Drone Hyperspectral
Images Combined with Fractional-Order Derivative,
RS(15), No. 23, 2023, pp. 5623.
DOI Link
2312
BibRef
Hou, Y.Q.[Yu-Qing],
Wu, Y.F.[Yun-Fei],
Wu, L.S.[Lin-Sheng],
Pei, L.[Lei],
Zhang, Z.Y.[Zhao-Ying],
Ding, D.W.[Da-Wei],
Wang, G.S.[Guang-Shuai],
Li, Z.Y.[Zhong-Yang],
Zhang, Y.G.[Yong-Guang],
Identifying Crop Growth Stages from Solar-Induced Chlorophyll
Fluorescence Data in Maize and Winter Wheat from Ground and Satellite
Measurements,
RS(15), No. 24, 2023, pp. 5689.
DOI Link
2401
BibRef
Gao, S.[Sicong],
Woodgate, W.[William],
Ma, X.L.[Xuan-Long],
Doody, T.M.[Tanya M.],
Prediction of Open Woodland Transpiration Incorporating Sun-Induced
Chlorophyll Fluorescence and Vegetation Structure,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Chu, T.J.[Tian-Jia],
Li, J.[Jing],
Zhao, J.[Jing],
Gu, C.P.[Chen-Peng],
Mumtaz, F.[Faisal],
Dong, Y.D.[Ya-Dong],
Zhang, H.[Hu],
Liu, Q.H.[Qin-Huo],
Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll
Content in Complex Terrain Regions Using a Geographic Statistical
Model,
RS(16), No. 3, 2024, pp. 479.
DOI Link
2402
BibRef
Baranoski, G.V.G.[Gladimir V. G.],
Varsa, P.M.[Petri M.],
Environmentally Induced Snow Transmittance Variations in the
Photosynthetic Spectral Domain: Photobiological Implications for
Subnivean Vegetation under Climate Warming Conditions,
RS(16), No. 5, 2024, pp. 927.
DOI Link
2403
BibRef
Zolotukhina, A.[Anastasia],
Machikhin, A.[Alexander],
Guryleva, A.[Anastasia],
Gresis, V.[Valeria],
Kharchenko, A.[Anastasia],
Dekhkanova, K.[Karina],
Polyakova, S.[Sofia],
Fomin, D.[Denis],
Nesterov, G.[Georgiy],
Pozhar, V.[Vitold],
Evaluation of Leaf Chlorophyll Content from Acousto-Optic
Hyperspectral Data: A Multi-Crop Study,
RS(16), No. 6, 2024, pp. 1073.
DOI Link
2403
BibRef
Zhang, Z.X.[Zhao-Xu],
Li, X.T.[Xu-Tong],
Qiu, Y.C.[Yu-Chen],
Shi, Z.W.[Zhen-Wei],
Gao, Z.L.[Zhong-Ling],
Jia, Y.J.[Yan-Jun],
A Spatial Downscaling Method for Solar-Induced Chlorophyll
Fluorescence Product Using Random Forest Regression and Drought
Monitoring in Henan Province,
RS(16), No. 6, 2024, pp. 963.
DOI Link
2403
BibRef
Bhadra, S.[Sourav],
Sagan, V.[Vasit],
Sarkar, S.[Supria],
Braud, M.[Maxwell],
Mockler, T.C.[Todd C.],
Eveland, A.L.[Andrea L.],
PROSAIL-Net: A transfer learning-based dual stream neural network to
estimate leaf chlorophyll and leaf angle of crops from UAV
hyperspectral images,
PandRS(210), 2024, pp. 1-24.
Elsevier DOI
2404
Radiative transfer model, PROSAIL inversion,
Artificial intelligence, Plant phenotyping
BibRef
Wang, X.C.[Xi-Chen],
Cui, J.[Jianyong],
Xu, M.M.[Ming-Ming],
A Chlorophyll-a Concentration Inversion Model Based on
Backpropagation Neural Network Optimized by an Improved Metaheuristic
Algorithm,
RS(16), No. 9, 2024, pp. 1503.
DOI Link
2405
BibRef
Wang, C.X.[Chun-Xiao],
Liu, L.[Lu],
Zhou, Y.[Yuke],
Liu, X.J.[Xiao-Juan],
Wu, J.[Jiapei],
Tan, W.[Wu],
Xu, C.[Chang],
Xiong, X.Q.[Xiao-Qing],
Comparison between Satellite Derived Solar-Induced Chlorophyll
Fluorescence, NDVI and kNDVI in Detecting Water Stress for Dense
Vegetation across Southern China,
RS(16), No. 10, 2024, pp. 1735.
DOI Link
2405
BibRef
Tadic, J.M.[Jovan M.],
Ilic, V.[Velibor],
Ilic, S.[Slobodan],
Pavlovic, M.[Marko],
Tadic, V.[Vojin],
Hybrid Machine Learning and Geostatistical Methods for Gap Filling
and Predicting Solar-Induced Fluorescence Values,
RS(16), No. 10, 2024, pp. 1707.
DOI Link
2405
BibRef
Falcioni, R.[Renan],
Oliveira, d.B.[de_Roney Berti],
Chicati, M.L.[Marcelo Luiz],
Antunes, W.C.[Werner Camargos],
Demattê, J.A.M.[José Alexandre M.],
Nanni, M.R.[Marcos Rafael],
Estimation of Biochemical Compounds in Tradescantia Leaves Using
VIS-NIR-SWIR Hyperspectral and Chlorophyll a Fluorescence Sensors,
RS(16), No. 11, 2024, pp. 1910.
DOI Link
2406
BibRef
Zhou, Y.A.[Yu-An],
Huang, Z.C.[Zi-Chen],
Zhou, W.J.[Wei-Jun],
Cen, H.Y.[Hai-Yan],
Optimized Transfer Learning for Chlorophyll Content Estimations
across Datasets of Different Species Using Sun-Induced Chlorophyll
Fluorescence and Reflectance,
RS(16), No. 11, 2024, pp. 1869.
DOI Link
2406
BibRef
Tian, S.P.[Shou-Peng],
Zhang, Y.[Yao],
Wang, J.R.[Jiao-Ru],
Zhang, R.X.[Rong-Xu],
Wu, W.Z.[Wei-Zhi],
He, Y.D.[Ya-Dong],
Wu, X.B.[Xia-Bin],
Sun, W.[Wei],
Li, D.[Dong],
Xiao, Y.X.[Yi-Xin],
Wang, F.M.[Fu-Min],
New 3-D Fluorescence Spectral Indices for Multiple Pigment Inversions
of Plant Leaves via 3-D Fluorescence Spectra,
RS(16), No. 11, 2024, pp. 1885.
DOI Link
2406
BibRef
Alam, M.M.T.[Mir Md Tasnim],
Milas, A.S.[Anita Simic],
Gašparovic, M.[Mateo],
Osei, H.P.[Henry Poku],
Retrieval of Crop Canopy Chlorophyll: Machine Learning vs. Radiative
Transfer Model,
RS(16), No. 12, 2024, pp. 2058.
DOI Link
2406
BibRef
Zhao, L.[Liang],
Sun, R.[Rui],
Zhang, J.Y.[Jing-Yu],
Liu, Z.G.[Zhi-Gang],
Li, S.R.[Shi-Rui],
Matching Satellite Sun-Induced Chlorophyll Fluorescence to Flux
Footprints Improves Its Relationship with Gross Primary Productivity,
RS(16), No. 13, 2024, pp. 2388.
DOI Link
2407
BibRef
He, Y.B.[Yan-Bo],
Leng, L.[Liang],
Ji, X.[Xue],
Wang, M.C.[Ming-Chang],
Huo, Y.P.[Yan-Ping],
Li, Z.[Zheng],
Inversion and Analysis of Global Ocean Chlorophyll-a Concentration
Based on Temperature Zoning,
RS(16), No. 13, 2024, pp. 2302.
DOI Link
2407
BibRef
Camacho, F.[Fernando],
Martínez-Sánchez, E.[Enrique],
Brown, L.A.[Luke A.],
Morris, H.[Harry],
Morrone, R.[Rosalinda],
Williams, O.[Owen],
Dash, J.[Jadunandan],
Origo, N.[Niall],
Sánchez-Zapero, J.[Jorge],
Boccia, V.[Valentina],
Validation and Conformity Testing of Sentinel-3 Green Instantaneous
FAPAR and Canopy Chlorophyll Content Products,
RS(16), No. 15, 2024, pp. 2698.
DOI Link
2408
BibRef
Zhang, L.[Liuya],
Yuan, D.[Debao],
Fan, Y.Q.[Yu-Qing],
Yang, R.[Renxu],
Zhao, M.[Maochen],
Jiang, J.B.[Jin-Bao],
Zhang, W.X.[Wen-Xuan],
Huang, Z.[Ziyi],
Ye, G.[Guidan],
Li, W.[Weining],
Hyperspectral Estimation of Chlorophyll Content in Wheat under CO2
Stress Based on Fractional Order Differentiation and Continuous
Wavelet Transforms,
RS(16), No. 17, 2024, pp. 3341.
DOI Link
2409
BibRef
Zhu, K.W.[Ke-Wei],
Zou, M.[Mingmin],
Sheng, S.[Shuli],
Wang, X.[Xuwen],
Liu, T.Q.[Tian-Qi],
Cheng, Y.P.[Yong-Ping],
Wang, H.[Hui],
Improved Methods for Retrieval of Chlorophyll Fluorescence from
Satellite Observation in the Far-Red Band Using Singular Value
Decomposition Algorithm,
RS(16), No. 18, 2024, pp. 3441.
DOI Link
2410
BibRef
Zhao, H.K.[Hong-Kai],
Zhou, Y.[Yudi],
Gu, Q.[Qiuling],
Han, Y.[Yicai],
Wu, H.[Hongda],
Xu, P.[Peituo],
Lin, L.[Lei],
Lv, W.[Weige],
Wu, L.[Lan],
Wu, L.Y.[Ling-Yun],
Jiang, C.C.[Cheng-Chong],
Chen, Y.[Yang],
Yuan, M.Z.[Ming-Zhu],
Sun, W.B.[Wen-Bo],
Liu, C.[Chong],
Liu, D.[Dong],
Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a
Concentration,
RS(16), No. 19, 2024, pp. 3579.
DOI Link
2410
BibRef
Saint, T.L.[Théo Le],
Nabucet, J.[Jean],
Hubert-Moy, L.[Laurence],
Adeline, K.[Karine],
Estimation of Urban Tree Chlorophyll Content and Leaf Area Index
Using Sentinel-2 Images and 3D Radiative Transfer Model Inversion,
RS(16), No. 20, 2024, pp. 3867.
DOI Link
2411
BibRef
Luo, Y.[Yaotao],
Xie, D.H.[Dong-Hui],
Qi, J.B.[Jian-Bo],
Yan, G.J.[Guang-Jian],
Mu, X.[Xihan],
Simulating High-Resolution Sun-Induced Chlorophyll Fluorescence Image
of Three-Dimensional Canopy Based on Photon Mapping,
RS(16), No. 20, 2024, pp. 3783.
DOI Link
2411
BibRef
Wang, S.H.[Song-Han],
Zhang, Y.G.[Yong-Guang],
Ju, W.M.[Wei-Min],
Wu, M.S.[Mou-Song],
Liu, L.[Lei],
He, W.[Wei],
Peñuelas, J.[Josep],
Temporally corrected long-term satellite solar-induced fluorescence
leads to improved estimation of global trends in vegetation
photosynthesis during 1995-2018,
PandRS(194), 2022, pp. 222-234.
Elsevier DOI
2212
Solar-induced chlorophyll fluorescence, Temporal trend,
Gross primary production Long-term global SIF data,
Spatial downscaling approach
BibRef
Chang, Y.,
Moan, S.L.,
Bailey, D.,
RGB Imaging Based Estimation of Leaf Chlorophyll Content,
IVCNZ19(1-6)
IEEE DOI
2004
cameras, image colour analysis, image sensors, neural nets,
reflectivity, regression analysis, remote sensing, vegetation,
RGB sensor
BibRef
Nguyen, M.V.,
Chu, H.J.,
Lin, C.H.,
Lalu, M.J.,
Feature Selection of Optical Satellite Images for Chlorophyll-a
Concentration Estimation,
ISSDQ19(1249-1253).
DOI Link
1912
BibRef
Irteza, S.M.,
Nichol, J.E.,
Measurement Of Sun Induced Chlorophyll Fluorescence Using Hyperspectral
Satellite Imagery,
ISPRS16(B8: 911-913).
DOI Link
1610
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Chlorophyll Estimation in Water .