Spetsakis, M.E.[Minas E.],
A Linear Algorithm for Point and Line-Based Structure from Motion,
CVGIP(56), No. 2, September 1992, pp. 230-241.
Elsevier DOI The "long sought" linear algorithm for the point and line
correspondence problem. Requires 3 frames and enough point and
line correspondences.
BibRef
9209
Spetsakis, M.E.[Minas E.],
Getting Around the Aperture Problem Using
Point and Line Correspondences,
Motion91(236-241).
BibRef
9100
Spetsakis, M.E.[Minas E.],
Aloimonos, Y.,
Structure from Motion Using Line Correspondences,
IJCV(4), No. 3, 1990, pp. 171-183.
Springer DOI
BibRef
9000
Earlier:
Closed Form Solution to the Structure from Motion Problem from
Line Correspondences,
AAAI-87(738-743).
BibRef
Spetsakis, M.E.,
Aloimonos, Y.,
Optimal Computing of Structure from Motion Using
Point Correspondences in Two Frames,
ICCV88(449-453).
IEEE DOI
BibRef
8800
Spetsakis, M.E., and
Aloimonos, Y.,
A Multi-frame Approach to Visual Motion Perception,
IJCV(6), No. 3, August 1991, pp. 245-255.
Springer DOI By using rigidity and a minimization of the squared error
find motion interpretation.
BibRef
9108
Baker, P.[Patrick],
Aloimonos, Y.F.[Yi-Fannis],
Structure from Motion of Parallel Lines,
ECCV04(Vol IV: 229-240).
Springer DOI
0405
BibRef
Azarbayejani, A.,
Pentland, A.P.,
Recursive Estimation of Motion, Structure, and Focal Length,
PAMI(17), No. 6, June 1995, pp. 562-575.
IEEE DOI
BibRef
9506
And:
Vismod--243, 1993.
Motion and point structures and focal length of points tracked through
the sequence.
HTML Version.
BibRef
Jebara, T.[Tony],
Azarbayejani, A.[Ali], and
Pentland, A.P.[Alex P.],
3D Structure from 2D Motion,
SPMag(16), No. 3, May 1999, pp. 66-84.
BibRef
9905
And:
Vismod--523. May 1999.
HTML Version. Images of people.
BibRef
Azarbayejani, A.,
Pentland, A.P.,
Real-Time Self-Calibrating Stereo Person Tracking Using
3-D Shape Estimation from Blob Features,
ICPR96(III: 627-632).
IEEE DOI
9608
(MIT, USA)
BibRef
Azarbayejani, A.,
Horowitz, B., and
Pentland, A.P.,
Recursive Estimation of Structure and Motion Using
Relative Orientation Constraints,
CVPR93(294-299).
IEEE DOI
BibRef
9300
Darrell, T.J.,
Azarbayejani, A.,
Pentland, A.P.,
Robust Estimation of Multiple Models in the
Structure from Motion Domain,
Vismod-281, 1994.
HTML Version.
BibRef
9400
Heyden, A.[Anders],
Reconstruction from Image Sequences by Means of Relative Depths,
IJCV(24), No. 2, September 1997, pp. 155-161.
DOI Link
9710
BibRef
Earlier:
ICCV95(1058-1063).
IEEE DOI
Award, Marr Prize, HM. Reformulate the 2 frame case to get only 4 parameters, for 3 images
it depends on 9 parameters, generallized for more.
BibRef
Taylor, C.J.,
Kriegman, D.J.,
Structure and Motion from Line Segments in Multiple Images,
PAMI(17), No. 11, November 1995, pp. 1021-1032.
IEEE DOI
PDF File.
BibRef
9511
Earlier:
CRA92(1615-1621).
BibRef
Taylor, C.J.,
Kriegman, D.J., and
Anandan, P.,
Structure and Motion in Two Dimensions from Multiple Images:
A Least Squares Approach,
Motion91(242-248).
2-D, Indoor motion using location of vertical lines.
BibRef
9100
Lee, S., and
Kay, Y.,
A Kalman Filter Approach for Accurate
3-D Motion Estimation from a Sequence of Stereo Images,
CVGIP(54), No. 2, September 1991, pp. 244-258.
Elsevier DOI
Kalman Filter.
Quaternion.
BibRef
9109
Earlier:
ICPR90(I: 104-108).
IEEE DOI
9006
BibRef
And:
An accurate estimation of 3-D position and orientation of
a moving object for robot stereo vision: Kalman filter approach,
CRA90(II: 414-419).
Uses error in 3-D due to image positions,
quaternions and Kalman filter approach.
BibRef
Hu, X.P.[Xiao-Ping],
Ahuja, N.[Narendra],
Motion and Structure Estimation Using Long Sequence Motion Models,
IVC(11), No. 9, November 1993, pp. 549-569.
Elsevier DOI Points.
See also Mirror Uncertainty and Uniqueness Conditions for Determining Shape and Motion from Orthographic Projection.
BibRef
9311
Hu, X.P., and
Ahuja, N.,
Motion Estimation under Orthographic Projection,
RA(7), No. 6, June 1991, pp. 848-853.
BibRef
9106
Hu, X.P.,
Ahuja, N.,
Estimating Motion of Constant Acceleration from Image Sequences,
ICPR92(I:655-659).
IEEE DOI
BibRef
9200
Sull, S., and
Ahuja, N.,
Integrated 3-D Analysis and Analysis-Guided Synthesis of
Flight Image Sequences,
PAMI(16), No. 4, April 1994, pp. 357-372.
IEEE DOI
BibRef
9404
Earlier:
Integrated 3D Analysis of Flight Image Sequences,
ECCV94(A:211-216).
Springer DOI
BibRef
And:
Integrated 3D Recovery and Visualization of Flight Image Sequences,
DARPA92(473-477).
Generating 3-D surfaces from a sequence. Analysis of errors at
different resolutions for point, line and region techniques.
Integrated is best (regions at low and points at high resolutions).
BibRef
Sull, S.,
Ahuja, N.,
Integrated Matching and Segmentation of Multiple Features in Two Views,
CVIU(62), No. 3, November 1995, pp. 279-297.
DOI Link Segment so that all features in each segment have the same 3D motion.
Divide into two 3D spaces (the 6 paraters for motion) and search each.
Matches Line features.
BibRef
9511
Sull, S.,
Ahuja, N.,
Estimation and segmentation of displacement field using multiple
features,
ICIP94(III: 53-57).
IEEE DOI
9411
BibRef
Sull, S., and
Ahuja, N.,
Estimation of Motion and Structure
of Planar Surfaces from a Sequence of Monocular Images,
CVPR91(732-733).
IEEE DOI
BibRef
9100
Earlier:
Segmentation, Matching and Estimation of Structure and
Motion of Textured Piecewise Planar Surfaces,
Motion91(274-279).
Motion, Regions. Estimate 10 parameters of motion and structure for
planar patches.
BibRef
Wu, J.J.,
Rink, R.E.,
Caelli, T.M., and
Gourishankar, V.G.,
Recovery of the 3-D Location and Motion of a Rigid Object
Through Camera Image (An Extended Kalman Filter Approach),
IJCV(2), No. 4, April 1989, pp. 373-394.
Springer DOI
Kalman Filter. Match corners, find the
location and motion using an EKF model.
BibRef
8904
Tseng, G.J., and
Sood, A.K.,
Analysis of Long Image Sequence for Structure and Motion Estimation,
SMC(19), No. 6, Nov/Dec 1989, pp. 1511-1526.
Motion, Structure. Three points in each frame, iterative update of the motion
parameters from later frames.
BibRef
8911
Yasumoto, Y., and
Medioni, G.G.,
Robust Estimation of 3-D Motion Parameters from a Sequence of
Image Frames Using Regularization,
PAMI(8), No. 4, July 1986, pp. 464-471.
BibRef
8607
USC Computer Vision
BibRef
Earlier: A2, A1:
DARPA85(117-128).
Regularization. Exploration of summing the results from several images,
regularization is needed to reduce the total errors. The results
are on synthetic data. Expansion of the CVPR85 paper with
author switched.
BibRef
Yasumoto, Y.[Yoshio], and
Medioni, G.G.,
Experiments in Estimation of 3-D Motion Parameters from a
Sequence of Image Frames,
CVPR85(89-94).
BibRef
8500
USC Computer Vision
BibRef
Ullman, S.,
The Incremental Rigidity Scheme and Long-Range Motion Correspondence,
MU88(227-267).
BibRef
8800
And:
Maximizing Rigidity: The Incremental Recovery of 3-D
Structure from Rigidity and Rubbery Motion,
Perception(13), 1984, pp. 255-274.
BibRef
Earlier:
MIT AI Memo-721, June 1983.
Motion, Structure. This introduces the long/short range names. The incremental
method adds the results from more points as they are available in
a successive approximation scheme.
BibRef
Ullman, S.,
The Correspondence Process in Motion Perception,
DARPA78(73-86).
BibRef
7800
Yuille, A.L.[Alan L.],
Ullman, S.[Shimon],
Rigidity and Smoothness of Motion,
MIT AI Memo-989, November 1987.
WWW Link.
BibRef
8711
Yuille, A.L.,
The Smoothest Velocity Field and Token Matching Schemes,
MIT AI Memo-724, August 1983.
WWW Link.
BibRef
8308
Weng, J.,
Cui, Y.T.,
Ahuja, N.,
Transitory Image Sequences, Asymptotic Properties, and Estimation of
Motion and Structure,
PAMI(19), No. 5, May 1997, pp. 451-464.
IEEE DOI
9705
No element is visible through the entire sequence.
Theoretical analysis of Camera Centered and World Centered approaches.
BibRef
Cui, N.,
Weng, J.J.,
Cohen, P.,
Recursive-Batch Estimation of Motion and Structure from
Monocular Image Sequences,
CVGIP(59), No. 2, March 1994, pp. 154-170.
DOI Link
BibRef
9403
Earlier:
Extended Structure and Motion Analysis from Monocular Image Sequences,
ICCV90(222-229).
IEEE DOI For Stereo:
See also Motion and Structure from Long Stereo Image Sequences.
BibRef
Pei, S.C.[Soo-Chang],
Liou, L.G.[Lin-Gwo],
Rigid Motion and Structure from Several Sets of Parallel Lines
in a Monocular Image Sequence,
PR(27), No. 11, November 1994, pp. 1475-1491.
Elsevier DOI
BibRef
9411
Vieville, T.[Thierry],
Faugeras, O.D.[Olivier D.],
The First-Order Expansion of Motion Equations in the Uncalibrated Case,
CVIU(64), No. 1, July 1996, pp. 128-146.
DOI Link
9608
BibRef
Earlier:
Motion Analysis with a Camera with Unknown,
and Possibly Varying Intrinsic Parameters,
ICCV95(750-756).
IEEE DOI Small motions, given point correspondences, monocular.
See also Self-Calibration from Four Views with Possibly Varying Intrinsic Parameters.
See also Using Specific Displacements to Analyze Motion without Calibration.
BibRef
Sanchiz, J.M.,
Pla, F.,
Marchant, J.A.,
Brivot, R.,
Structure-from-Motion Techniques Applied to Crop Field-Mapping,
IVC(14), No. 5, June 1 1996, pp. 353-363.
Elsevier DOI
9607
Application, Crops.
BibRef
Chaudhuri, S.,
Sharma, S.,
Chatterjee, S.,
Recursive Estimation of Motion Parameters,
CVIU(64), No. 3, November 1996, pp. 434-442.
DOI Link
9612
See also Motion Analysis of a Homogeneously Deformable Object Using Subset Correspondences.
BibRef
Lee, C.H.[Chia-Hoang],
Computing Three-Dimensional Motion Parameters:
A Hypothesis Testing Approach,
IVC(11), No. 3, April 1993, pp. 145-154.
Elsevier DOI
BibRef
9304
Kenner, M.,
Pong, T.C.,
Motion Analysis of Long Image Sequence Flow,
PRL(11), 1990, pp. 123-131.
BibRef
9000
Henriksen, K.,
Arnspang, J.,
Direct Determination of the Orientation of a
Translating 3D Straight Line,
PRL(10), 1989, pp. 251-258.
BibRef
8900
Arnspang, J.,
Direct determination of a non-accelerating greylevel scene,
ICPR90(I: 319-323).
IEEE DOI
9006
BibRef
Atherton, T.J.,
The Detection and Measurement of Visual Motion,
PRL(5), 1987, pp. 169-173.
BibRef
8700
Szeliski, R.S.,
Kang, S.B.,
Shape Ambiguities In Structure-From-Motion,
PAMI(19), No. 5, May 1997, pp. 506-512.
IEEE DOI
9705
BibRef
Earlier:
no - in title:
ECCV96(I:709-721).
BibRef
And:
Springer DOI
DEC-CRL-96-1, January 1996.
HTML Version. Examines fundamental abmiguities. For orthographic cameras,
bas-releif ambiguity is significant unless there is rotation.
For perspective cameras, large rotation and three or more frames
are required.
BibRef
Kang, S.B.[Sing Bing],
Szeliski, R.S.[Richard S.],
Extracting View-Dependent Depth Maps from a Collection of Images,
IJCV(58), No. 2, July 2004, pp. 139-163.
DOI Link
0403
BibRef
Kang, S.B.[Sing Bing],
Johnson, A.E.[Andrew E.], and
Szeliski, R.S.[Richard S.],
Extracting Concise and Realistic 3-D Models from Real Data,
DEC-CRL-95-7, October, 1995.
HTML Version.
BibRef
9510
Jayakumar, M.,
Banavar, R.N.,
Risk Sensitive Filters for Recursive Estimation of Motion from Images,
PAMI(20), No. 6, June 1998, pp. 659-666.
IEEE DOI
9807
Similar to Extended Kalman Filter approaches.
Simulation results only.
BibRef
Soatto, S.,
Perona, P.,
Reducing Structure-From-Motion:
A General Framework For Dynamic Vision Part 1: Modeling,
PAMI(20), No. 9, September 1998, pp. 933-942.
IEEE DOI
9809
BibRef
Soatto, S.[Stefano],
Perona, P.[Pietro],
Reducing Structure-From-Motion:
A General Framework for Dynamic Vision Part 2:
Implementation And Experimental Assessment,
PAMI(20), No. 9, September 1998, pp. 943-960.
IEEE DOI
9809
BibRef
And:
Corrections:
PAMI(20), No. 10, October 1998, pp. 1117.
BibRef
Earlier:
Reducing Structure from Motion:
A General Framework for Dynamic Vision with Experimental Evaluation,
CVPR96(825-832).
IEEE DOI
BibRef
Soatto, S.[Stefano],
A geometric framework for dynamic vision,
Ph.D.Thesis, 1996, Caltech.
BibRef
9600
Soatto, S.,
Perona, P.,
Frezza, R., and
Picci, G.,
Recursive Motion and Structure Estimation with Complete Error
Characterization,
CVPR93(428-433).
IEEE DOI Integration over time of the 2 view motion estimates.
BibRef
9300
Soatto, S.[Stefano],
Perona, P.[Pietro],
Motion from Fixation,
RealTimeImg(3), 1997, pp. xx-yy.
BibRef
9700
Earlier:
CVPR96(817-824).
IEEE DOI Epipolar geometry.
BibRef
Soatto, S.[Stefano],
Perona, P.[Pietro],
Dynamic Rigid Motion Estimation from Weak Perspective,
ICCV95(321-328).
IEEE DOI Motion of shallow structures.
BibRef
9500
Soatto, S.,
Frezza, R.,
Perona, P.,
Motion estimation via dynamic vision,
AC(41), No. 3, 1996, pp.393-413.
BibRef
9600
Earlier:
Motion Estimation on the Essential Manifold,
ECCV94(B:60-72).
Springer DOI
BibRef
Kim, E.T.[Eung Tae],
Kim, H.M.[Hyung-Myung],
Efficient Linear 3-Dimensional Camera Motion Estimation Method with
Applications to Video Coding,
OptEng(37), No. 3, March 1998, pp. 1065-1077.
9804
BibRef
Kim, E.T.[Eung Tae],
Kim, H.M.[Hyung-Myung],
Recursive total least squares algorithm for 3-D camera motion
estimation from image sequences,
ICIP98(I: 913-917).
IEEE DOI
9810
BibRef
Kim, E.T.[Eung Tae],
Han, J.K.[Jong-Ki],
Kim, H.M.[Hyung-Myung],
A Kalman Filtering Method for 3-D Camera Motion Estimation from
Image Sequences,
ICIP97(III: 630-633).
IEEE DOI
9710
BibRef
Giachetti, A.,
Matching techniques to compute image motion,
IVC(18), No. 3, February 2000, pp. 247-260.
Elsevier DOI
0001
BibRef
Avidan, S.[Shai],
Shashua, A.[Amnon],
Trajectory Triangulation: 3D Reconstruction of Moving Points from a
Monocular Image Sequence,
PAMI(22), No. 4, April 2000, pp. 348-357.
IEEE DOI
0006
BibRef
Earlier:
Trajectory Triangulation of Lines: Reconstruction of a 3D Point Moving
Along a Line from a Monocular Image Sequence,
CVPR99(II: 62-66).
IEEE DOI Object moving in a straight line, and camera moving. Reconstruct the
object.
BibRef
Papadimitriou, T.,
Diamantaras, K.I.,
Strintzis, M.G.,
Roumeliotis, M.,
Robust Estimation of Rigid-Body 3-D Motion Parameters Based on Point
Correspondences,
CirSysVideo(10), No. 4, June 2000, pp. 541-549.
IEEE Top Reference.
0006
BibRef
Diamantaras, K.I.,
Papadimitriou, T.,
Strintzis, M.G.,
Roumeliotis, M.,
Total least squares 3-D motion estimation,
ICIP98(I: 923-927).
IEEE DOI
9810
BibRef
Diamantaras, K.I.,
Strintzis, M.G.,
Camera motion parameter recovery under perspective projection,
ICIP96(III: 807-810).
IEEE DOI
9610
BibRef
Papadimitriou, T.,
Diamantaras, K.I.,
Strintzis, M.G.,
Roumeliotis, M.,
Video Scene Segmentation Using Spatial Contours and 3-D Robust Motion
Estimation,
CirSysVideo(14), No. 4, April 2004, pp. 485-497.
IEEE Abstract.
0407
BibRef
Oliensis, J.[John],
A Multi-Frame Structure-from-Motion Algorithm under Perspective
Projection,
IJCV(34), No. 2-3, August 1999, pp. 163-192.
DOI Link
PS File.
BibRef
9908
Earlier:
Multiframe Structure from Motion in Perspective,
RVS95(xx).
BibRef
Oliensis, J.[John],
Computing the Camera Motion Direction from Many Images,
3DPVT06(519-526).
IEEE DOI
0606
See also Fast and Accurate Algorithms for Projective Multi-Image Structure from Motion.
BibRef
Oliensis, J.A.,
Recovering Heading and Structure for Constant-Direction Motion,
NECITR, April 2000.
PS File.
BibRef
0004
Earlier:
Computing the Camera Heading from Multiple Frames,
CVPR98(203-210).
IEEE DOI
BibRef
Thomas, J.I.[J. Inigo],
Oliensis, J.[John],
Dealing with Noise in Multiframe Structure from Motion,
CVIU(76), No. 2, November 1999, pp. 109-124.
DOI Link
9911
BibRef
Earlier:
Recursive Multi-Frame Structure from Motion Incorporating Motion Error,
DARPA92(507-513).
BibRef
Earlier: A2, A1:
Incorporating Motion Error in Multi-Frame Structure from Motion,
Motion91(8-13).
Use the motion error to correct the results, a sequence process.
BibRef
Oliensis, J.[John],
Genc, Y.[Yacup],
Fast and Accurate Algorithms for Projective
Multi-Image Structure from Motion,
PAMI(23), No. 6, June 2001, pp. 546-559.
IEEE DOI and
PS File.
0106
BibRef
Earlier:
Fast Algorithms for Projective Multi-Frame Structure from Motion,
ICCV99(536-543).
IEEE DOI "Essentially" linear, moderate motion, accuracy similar to maximum-likelyhood
estimates. Better results than the
Sturm/Triggs (
See also Factorization Based Algorithm for Multi-Image Projective Structure and Motion, A. ) factorization approach.
See also New Algorithms for Two-Frame Structure from Motion.
BibRef
Oliensis, J.[John],
Structure from Linear or Planar Motions,
CVPR96(335-342).
IEEE DOI
PS File.
BibRef
9600
Oliensis, J.[John],
Direct Multi-frame Structure from Motion for Hand-held Cameras,
ICPR00(Vol I: 889-895).
IEEE DOI
PS File.
0009
Extension of
See also Fast and Accurate Algorithms for Projective Multi-Image Structure from Motion. to a direct method.
BibRef
Oliensis, J.[John],
The Error Surface for Structure from Motion,
TRNEC, August 2001.
PS File.
BibRef
0108
Oliensis, J.[John],
Werman, M.[Michael],
Structure from Motion using Points, Lines, and Intensities,
CVPR00(II: 599-606).
IEEE DOI
PS File.
0005
Factorization like approach with lines.
BibRef
Oliensis, J.[John],
A Linear Solution for Multiframe Structure from Motion,
ARPA94(II:1225-1231).
PS File. General motions.
BibRef
9400
Bayro-Corrochano, E.[Eduardo],
Zhang, Y.W.[Yi-Wen],
The Motor Extended Kalman Filter:
A Geometric Approach for Rigid Motion Estimation,
JMIV(13), No. 3, December 2000, pp. 205-228.
DOI Link
0106
BibRef
Martínez Montiel, J.M.[José María],
Montano, L.,
Probabilistic structure from camera location using straight segments,
IVC(17), No. 3/4, March 1999, pp. 263-279.
Elsevier DOI
BibRef
9903
Martínez Montiel, J.M.[José María],
Tardós, J.D.,
Montano, L.,
Structure and motion from straight line segments,
PR(33), No. 8, August 2000, pp. 1295-1307.
Elsevier DOI
0005
BibRef
Pang, C.Y.C.[Chung-Yi Chan],
Guesalaga, A.R.[Andrés R.],
Roda, V.O.[Valentín Obac],
Robust estimation of 3D trajectories from a monocular image sequence,
IJIST(12), No. 3, 2002, pp. 128-137.
0210
BibRef
Liu, Y.C.[Yun-Cai],
Zhang, X.Y.[Xiao-Yun],
Huang, T.S.[Thomas S.],
Estimation of 3D structure and motion from image corners,
PR(36), No. 6, June 2003, pp. 1269-1277.
Elsevier DOI
0304
BibRef
Earlier: A2, A1, A3:
Determining 3D structure and motion of man-made objects from image
corners,
Southwest02(26-30).
IEEE Top Reference.
0208
BibRef
Bazin, P.L.,
Vézien, J.M.,
Integration of Geometric Elements, Euclidean Relations, and Motion
Curves for Parametric Shape and Motion Estimation,
PAMI(27), No. 12, December 2005, pp. 1960-1976.
IEEE DOI
0512
BibRef
Earlier:
Motion Curves for Parametric Shape and Motion Estimation,
ECCV02(II: 262 ff.).
Springer DOI
0205
Smooth camera trajectories.
Observed features in terms of sharing Euclidean relationships.
BibRef
Bing, C.[Cheng],
Ying, W.[Wang],
Zheng, N.N.[Nan-Ning],
Bian, Z.Z.[Zheng-Zhong],
An Efficient 3d Plenoptic Representation For Approximating A Path Of
Motion To A Curved Line,
IJIG(5), No. 2, April 2005, pp. 397-412.
0504
BibRef
Sand, P.[Peter],
Teller, S.J.[Seth J.],
Video Matching,
ToG(23), 2004, No. 3, pp. 592-599.
BibRef
0400
Sand, P.[Peter],
Teller, S.J.[Seth J.],
Particle Video: Long-Range Motion Estimation Using Point Trajectories,
IJCV(80), No. 1, October 2008, pp. xx-yy.
Springer DOI
0809
BibRef
Earlier:
CVPR06(II: 2195-2202).
IEEE DOI
0606
Video motion estimation, Optical flow, Feature tracking.
Track image point through time.
BibRef
Park, H.S.[Hyun Soo],
Shiratori, T.[Takaaki],
Matthews, I.D.[Iain D.],
Sheikh, Y.[Yaser],
3D Trajectory Reconstruction under Perspective Projection,
IJCV(115), No. 2, November 2015, pp. 115-135.
Springer DOI
1511
BibRef
Earlier:
3D Reconstruction of a Moving Point from a Series of 2D Projections,
ECCV10(III: 158-171).
Springer DOI
1009
Linear solution for 3D tramectory of point.
BibRef
Wei, H.J.[Hong-Jian],
Huang, Y.P.[Ying-Ping],
Hu, F.Z.[Fu-Zhi],
Zhao, B.[Baigan],
Guo, Z.Y.[Zhi-Yang],
Zhang, R.[Rui],
Motion Estimation Using Region-Level Segmentation and Extended Kalman
Filter for Autonomous Driving,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Bourmaud, G.[Guillaume],
Mégret, R.[Rémi],
Giremus, A.[Audrey],
Berthoumieu, Y.[Yannick],
Global Motion Estimation from Relative Measurements in the Presence of
Outliers,
ACCV14(V: 366-381).
Springer DOI
1504
BibRef
And:
Global motion estimation from relative measurements using iterated
extended Kalman filter on matrix LIE groups,
ICIP14(3362-3366)
IEEE DOI
1502
Algebra
BibRef
Vidal, R.[René],
Abretske, D.[Daniel],
Nonrigid Shape and Motion from Multiple Perspective Views,
ECCV06(II: 205-218).
Springer DOI
0608
Why stop at 2 and 3 image constraints, go to multi-image constraints.
5 views, related by tensor from which linearly compute shape and motion.
BibRef
Smith, P.,
Drummond, T.W.,
Roussopoulos, K.,
Computing MAP Trajectories by Representing, Propagating and Combining
PDFs Over Groups,
ICCV03(1275-1282).
IEEE DOI
0311
Compute camera trajectories from sparse data.
BibRef
Govindu, V.M.[Venu Madhav],
Robustness in Motion Averaging,
ACCV06(II:457-466).
Springer DOI
0601
BibRef
Earlier:
Lie-algebraic averaging for globally consistent motion estimation,
CVPR04(I: 684-691).
IEEE DOI
0408
BibRef
Govindu, V.M.[Venu Madhav],
Combining Two-view Constraints for Motion Estimation,
CVPR01(II:218-225).
IEEE DOI
0110
Combine series of pairwise motion models.
BibRef
Seo, Y.D.[Yong-Duek],
Hong, K.S.[Ki-Sang],
Structure and Motion Estimation with Expectation Maximization and
Extended Kalman Smoother for Continuous Image Sequences,
CVPR01(I:1148-1154).
IEEE DOI
0110
EKF approach to real time estimation.
BibRef
Steedly, D.,
Essa, I.A.,
Dellaert, F.,
Spectral partitioning for structure from motion,
ICCV03(996-1003).
IEEE DOI
0311
BibRef
Steedly, D.[Drew],
Essa, I.A.[Irfan A.],
Propagation of Innovative Information in Non-Linear Least-Squares
Structure from Motion,
ICCV01(II: 223-229).
IEEE DOI
0106
Incorporate the new information from each new frame without optimizing
everything.
BibRef
Steinbach, E.G.[Eckehard G.],
Girod, B.[Bernd],
An Image-domain Cost Function for 3-d Rigid Body Motion Estimation,
ICPR00(Vol III: 815-818).
IEEE DOI
0009
For calibrated object motion.
BibRef
McLauchlan, P.F.[Philip F.],
A Batch/Recursive Algorithm for 3D Scene Reconstruction,
CVPR00(II: 738-743).
IEEE DOI
0005
BibRef
Alon, J.[Jonathan],
Sclaroff, S.[Stan],
Recursive Estimation of Motion and Planar Structure,
CVPR00(II: 550-556).
IEEE DOI
0005
See also Recursive Estimation of Motion, Structure, and Focal Length.
BibRef
Tan, J.K.,
Kawabata, S.,
Ishikawa, S.,
An Efficient Technique for Motion Recovery Based on Multiple Views,
MVA98(xx-yy).
BibRef
9800
Rachidi, T., and
Spacek, L.,
Motion from Ordered Sets of Curvature Points,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Earlier:
Constructing Coherent Boundaries,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Rachidi, T.,
Spacek, L.,
Boundary-based Correspondence Computation Using the Topology Constraint,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Roy, S.,
Cox, I.J.,
Motion without Structure,
ICPR96(I: 728-734).
IEEE DOI
9608
(NEC Res. Institute, Inc., USA)
BibRef
Thirion, E.[Eric], and
Ronse, C.[Christian],
Self Calibration and 3D Reconstruction from Lines
with a Single Translating Camera,
BMVC96(Poster Session 2).
9608
Universite Louis Pasteur
BibRef
And:
LSIIT report ERII-RR96/06
Univ. of StrasbourgA simple method for the 3D reconstruction of
a scene with a single translating camera and without calibration,
based on lines and requires three images.
PS File. Or
WWW Link. and follow the link to reports.
9605
BibRef
Beardsley, P.A.[Paul A.],
Hand-held 3D vision system,
US_Patent6,781,618, Aug 24, 2004
WWW Link.
BibRef
0408
Beardsley, P.A.,
Torr, P.H.S.,
Zisserman, A.,
3D Model Acquisition from Extended Image Sequences,
ECCV96(II:683-695).
Springer DOI
BibRef
9600
McLauchlan, P.F.,
Reid, I.D.,
Murray, D.W.,
Recursive Affine Structure and Motion from Image Sequences,
ECCV94(A:217-224).
Springer DOI
See also Saccade and Pursuit on an Active Head Eye Platform.
BibRef
9400
Murray, D.W.,
Pickup, D.M.,
Recursive Updating of Planar Motion,
BMVC91(xx-yy).
PDF File.
9109
BibRef
McLauchlan, P.F.[Philip F.],
Murray, D.W.[David W.],
A Unifying Framework for Structure and Motion Recovery from
Image Sequences,
ICCV95(314-320).
IEEE DOI
HTML Version. optimally compute structure from the sequence.
BibRef
9500
Pavlin, I.,
Motion from a Sequence of Images,
DARPA88(930-937).
Generate a solution of the motion with some strict assumptions
that do not seem to hold. (5 frames?) The paper needs work.
BibRef
8800
Wu, T.H., and
Chellappa, R.,
Stereoscopic Recovery of Egomotion and Structure:
Models, Uniqueness and Experimental Results,
ICPR94(A:645-648).
IEEE DOI
BibRef
9400
Wu, T.H., and
Chellappa, R.,
3-D Recovery of Structural and Kinematic Parameters
from Long Sequences of Noisy Images,
DARPA93(641-651). More on using long sequences for depth.
BibRef
9300
Wu, T.H.,
Young, G.S., and
Chellappa, R.,
A Simple Kinematic Model Based Approach for 3-D Motion and
Structure Estimation,
Draft1993,
Formulate both binocular and monocular motion and structure
estimates in terms of leas-squars minimization with both batch and
recursive formulations. This is a simplified model compared to
Broida.
BibRef
9300
Wheeler, M.D.[Mark D.],
Ikeuchi, K.[Katsushi],
Iterative Estimation of Rotation and Translation using the Quaternion,
CMU-CS-TR-95-215, December 1995.
PS File.
BibRef
9512
LeGuilloux, Y.,
Structure from Motion, Acceleration and Taylor Series,
CVPR86(400-402).
BibRef
8600
And:
Determination Automatique du Mouvement dans une Sequence d'Images.
Interet pour l'Interpretation,
Ph.D.Ecole Nationale Superierure Des Telecommunications,
June 1984.
Approximations with a few terms of the series for the true parameters.
BibRef
LeGuilloux, Y.,
A Matching Algorithm for Horizontal Motion: Application to Tracking,
ICPR86(1190-1192).
BibRef
8600
Thomas, I.,
Simoncelli, E.P.,
Bajcsy, R.,
Linear Structure From Motion,
UPennDecember 1994
GRASP Laboratory Technical Report MS-CIS-94-61.
BibRef
9412
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Shariat and Related Papers .