Lee, S.[Simon],
Brady, J.M.[J. Michael],
Integrating stereo and photometric stereo to monitor the development of
glaucoma,
IVC(9), No. 1, February 1991, pp. 39-44.
Elsevier DOI
0401
BibRef
Earlier:
BMVC90(xx-yy).
PDF File.
9009
BibRef
Corona, E.,
Mitra, S.,
Wilson, M.,
Krile, T.,
Kwon, Y.H.,
Soliz, P.,
Digital stereo image analyzer for generating automated 3-D measures of
optic disc deformation in glaucoma,
MedImg(21), No. 10, October 2002, pp. 1244-1253.
IEEE Top Reference.
0301
BibRef
Grau, V.,
Downs, J.C.,
Burgoyne, C.F.,
Segmentation of trabeculated structures using an anisotropic Markov
random field: application to the study of the optic nerve head in glaucoma,
MedImg(25), No. 3, March 2006, pp. 245-255.
IEEE DOI
0604
BibRef
Vermeer, K.A.,
Vos, F.M.,
Lo, B.,
Zhou, Q.,
Lemij, H.G.,
Vossepoel, A.M.,
van Vliet, L.J.,
Modeling of Scanning Laser Polarimetry Images of the Human Retina for
Progression Detection of Glaucoma,
MedImg(25), No. 5, May 2006, pp. 517-528.
IEEE DOI
0605
BibRef
Xu, J.[Juan],
Chutatape, O.[Opas],
Sung, E.[Eric],
Zheng, C.[Ce],
Kuan, P.C.T.[Paul Chew Tec],
Optic disk feature extraction via modified deformable model technique
for glaucoma analysis,
PR(40), No. 7, July 2007, pp. 2063-2076.
Elsevier DOI
0704
Boundary detection; Optic disk; Cup; Snake; Deformable model; Fundus image
BibRef
Hood, D.C.[Donald C.],
Relating retinal nerve fiber thickness to behavioral sensitivity in
patients with glaucoma: application of a linear model,
JOSA-A(24), No. 5, May 2007, pp. 1426-1430.
WWW Link.
0801
BibRef
Joshi, G.D.[Gopal Datt],
Sivaswamy, J.[Jayanthi],
Krishnadas, S.R.,
Optic Disk and Cup Segmentation From Monocular Color Retinal Images for
Glaucoma Assessment,
MedImg(30), No. 6, June 2011, pp. 1192-1205.
IEEE DOI
1101
BibRef
Earlier: A1, A2, Only:
Colour Retinal Image Enhancement Based on Domain Knowledge,
ICCVGIP08(591-598).
IEEE DOI
0812
BibRef
Joshi, G.D.[Gopal Datt],
Gautam, R.[Rohit],
Sivaswamy, J.[Jayanthi],
Krishnadas, S.R.,
Robust optic disk segmentation from colour retinal images,
ICCVGIP10(330-336).
DOI Link
1111
BibRef
Singh, J.[Jeetinder],
Joshi, G.D.[Gopal Datt],
Sivaswamy, J.[Jayanthi],
Appearance-based object detection in colour retinal images,
ICIP08(1432-1435).
IEEE DOI
0810
BibRef
Nath, M.K.[Malaya Kumar],
Dandapat, S.[Samarendra],
Differential entropy in wavelet sub-band for assessment of glaucoma,
IJIST(22), No. 3, September 2012, pp. 161-165.
DOI Link
1208
BibRef
Cheng, J.[Jun],
Liu, J.[Jiang],
Xu, Y.[Yanwu],
Yin, F.S.[Feng-Shou],
Wong, D.W.K.[Damon Wing Kee],
Tan, N.M.[Ngan-Meng],
Tao, D.,
Cheng, C.Y.,
Aung, T.,
Wong, T.Y.,
Superpixel Classification Based Optic Disc and Optic Cup
Segmentation for Glaucoma Screening,
MedImg(32), No. 6, 2013, pp. 1019-1032.
IEEE DOI Deformable models; Glaucoma screening; optic disc segmentation
1307
BibRef
Cheng, J.[Jun],
Liu, J.[Jiang],
Xu, Y.[Yanwu],
Yin, F.S.[Feng-Shou],
Wong, D.W.K.[Damon Wing Kee],
Tan, N.M.[Ngan-Meng],
Superpixel Classification Based Optic Disc Segmentation,
ACCV12(II:293-304).
Springer DOI
1304
BibRef
Xu, Y.[Yanwu],
Liu, J.[Jiang],
Cheng, J.[Jun],
Yin, F.[Fengshou],
Tan, N.M.[Ngan Meng],
Wong, D.W.K.[Damon Wing Kee],
Cheng, C.Y.[Ching Yu],
Tham, Y.C.[Yih Chung],
Wong, T.Y.[Tien Yin],
Efficient optic cup localization based on superpixel classification for
glaucoma diagnosis in digital fundus images,
ICPR12(49-52).
WWW Link.
1302
BibRef
Septiarini, A.[Anindita],
Harjoko, A.[Agus],
Pulungan, R.[Reza],
Ekantini, R.[Retno],
Optic disc and cup segmentation by automatic thresholding with
morphological operation for glaucoma evaluation,
SIViP(11), No. 5, July 2017, pp. 945-952.
Springer DOI
1706
BibRef
Khalil, T.[Tehmina],
Akram, M.U.[Muhammad Usman],
Khalid, S.[Samina],
Jameel, A.[Amina],
Improved automated detection of glaucoma from fundus image using hybrid
structural and textural features,
IET-IPR(11), No. 9, September 2017, pp. 693-700.
DOI Link
1709
BibRef
Fu, H.,
Xu, Y.,
Lin, S.,
Zhang, X.,
Wong, D.W.K.,
Liu, J.,
Frangi, A.F.,
Baskaran, M.,
Aung, T.,
Segmentation and Quantification for Angle-Closure Glaucoma Assessment
in Anterior Segment OCT,
MedImg(36), No. 9, September 2017, pp. 1930-1938.
IEEE DOI
1709
Cirrus high-definition-OCT data set,
ocular structure,
optical coherence tomography,
Iris, anterior chamber angle, segmentation
BibRef
Fu, H.,
Cheng, J.,
Xu, Y.,
Zhang, C.,
Wong, D.W.K.,
Liu, J.,
Cao, X.,
Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image,
MedImg(37), No. 11, November 2018, pp. 2493-2501.
IEEE DOI
1811
Streaming media, Image segmentation, Optical imaging,
Biomedical optical imaging, Visualization,
neural network
BibRef
Kirar, B.S.[Bhupendra Singh],
Agrawal, D.K.[Dheeraj Kumar],
Computer aided diagnosis of glaucoma using discrete and empirical
wavelet transform from fundus images,
IET-IPR(13), No. 1, January 2019, pp. 73-82.
DOI Link
1812
BibRef
Ramzan, A.[Aneeqa],
Akram, M.U.[Muhammad Usman],
Shaukat, A.[Arslan],
Khawaja, S.G.[Sajid Gul],
Yasin, U.U.[Ubaid Ullah],
Butt, W.H.[Wasi Haider],
Automated glaucoma detection using retinal layers segmentation and
optic cup-to-disc ratio in optical coherence tomography images,
IET-IPR(13), No. 3, February 2019, pp. 409-420.
DOI Link
1903
BibRef
Diaz-Pinto, A.[Andres],
Colomer, A.[Adrián],
Naranjo, V.[Valery],
Morales, S.[Sandra],
Xu, Y.[Yanwu],
Frangi, A.F.[Alejandro F.],
Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma
Assessment,
MedImg(38), No. 9, September 2019, pp. 2211-2218.
IEEE DOI
1909
Optical imaging, Biomedical optical imaging, Retina, Databases,
Semisupervised learning, Synthesizers,
medical imaging
BibRef
Xie, Y.P.[Ying-Peng],
Wan, Q.W.[Qi-Wei],
Xie, H.[Hai],
Xu, Y.[Yanwu],
Wang, T.F.[Tian-Fu],
Wang, S.Q.[Shu-Qiang],
Lei, B.Y.[Bai-Ying],
Fundus Image-Label Pairs Synthesis and Retinopathy Screening via GANs
With Class-Imbalanced Semi-Supervised Learning,
MedImg(42), No. 9, September 2023, pp. 2714-2725.
IEEE DOI
2310
BibRef
Xie, Y.P.[Ying-Peng],
Wan, Q.W.[Qi-Wei],
Xie, H.[Hai],
Lei, B.Y.[Bai-Ying],
Tan, E.L.[Ee-Leng],
Xu, Y.[Yanwu],
Semi-Supervised GANs with Complementary Generator Pair for
Retinopathy Screening,
ICPR21(4821-4828)
IEEE DOI
2105
Deep learning, Retinopathy, Semisupervised learning,
Feature extraction, Retina, Cameras, Generators
BibRef
Claro, M.[Maíla],
Veras, R.[Rodrigo],
Santana, A.[André],
Araújo, F.[Flávio],
Silva, R.[Romuere],
Almeida, J.[Joăo],
Leite, D.[Daniel],
An hybrid feature space from texture information and transfer
learning for glaucoma classification,
JVCIR(64), 2019, pp. 102597.
Elsevier DOI
1911
Glaucoma detection, Feature selection, Pre-trained CNNs, Transfer learning
BibRef
Zhao, X.[Xin],
Guo, F.[Fan],
Mai, Y.X.[Yu-Xiang],
Tang, J.[Jin],
Duan, X.C.[Xuan-Chu],
Zou, B.J.[Bei-Ji],
Jiang, L.Z.[Ling-Zi],
Glaucoma screening pipeline based on clinical measurements and hidden
features,
IET-IPR(13), No. 12, October 2019, pp. 2213-2223.
DOI Link
1911
BibRef
Agrawal, D.K.[Dheeraj Kumar],
Kirar, B.S.[Bhupendra Singh],
Pachori, R.B.[Ram Bilas],
Automated glaucoma detection using quasi-bivariate variational mode
decomposition from fundus images,
IET-IPR(13), No. 13, November 2019, pp. 2401-2408.
DOI Link
1911
BibRef
Garcia-Porta, N.[Nery],
Gantes-Nunez, F.J.[Francisco Javier],
Tabernero, J.[Juan],
Pardhan, S.[Shahina],
Characterization of the ocular surface temperature dynamics in
glaucoma subjects using long-wave infrared thermal imaging,
JOSA-A(36), No. 6, June 2019, pp. 1015-1021.
DOI Link
1912
BibRef
And:
Correction (funding section):
JOSA-A(36), No. 9, September 2019, pp. 1584-1584.
DOI Link
1912
Eyes, Glaucoma, Optic nerve, Refractive surgery,
Spatial resolution, Thermal infrared imaging
BibRef
Li, L.[Liu],
Xu, M.[Mai],
Liu, H.R.[Han-Ruo],
Li, Y.[Yang],
Wang, X.F.[Xiao-Fei],
Jiang, L.[Lai],
Wang, Z.L.[Zu-Lin],
Fan, X.[Xiang],
Wang, N.L.[Ning-Li],
A Large-Scale Database and a CNN Model for Attention-Based Glaucoma
Detection,
MedImg(39), No. 2, February 2020, pp. 413-424.
IEEE DOI
2002
Databases, Feature extraction, Optical imaging,
Biomedical optical imaging, Pathology, Deep learning,
weakly supervised
BibRef
Li, L.[Liu],
Xu, M.[Mai],
Wang, X.F.[Xiao-Fei],
Jiang, L.[Lai],
Liu, H.R.[Han-Ruo],
Attention Based Glaucoma Detection: A Large-Scale Database and CNN
Model,
CVPR19(10563-10572).
IEEE DOI
2002
BibRef
Juneja, M.[Mamta],
Thakur, S.[Sarthak],
Wani, A.[Anuj],
Uniyal, A.[Archit],
Thakur, N.[Niharika],
Jindal, P.[Prashant],
DC-Gnet for detection of glaucoma in retinal fundus imaging,
MVA(31), No. 5, July 2020, pp. Article34.
Springer DOI
2006
BibRef
Juneja, M.[Mamta],
Thakur, N.[Niharika],
Thakur, S.[Sarthak],
Uniyal, A.[Archit],
Wani, A.[Anuj],
Jindal, P.[Prashant],
GC-NET for classification of glaucoma in the retinal fundus image,
MVA(31), No. 5, July 2020, pp. Article38.
Springer DOI
2006
BibRef
Gupta, K.,
Thakur, A.,
Goldbaum, M.,
Yousefi, S.,
Glaucoma Precognition: Recognizing Preclinical Visual Functional
Signs of Glaucoma,
Precognition20(4393-4401)
IEEE DOI
2008
Visualization, Diseases, Machine learning, Dictionaries, Data models,
Neural networks
BibRef
Gour, N.[Neha],
Khanna, P.[Pritee],
Automated glaucoma detection using GIST and pyramid histogram of
oriented gradients (PHOG) descriptors,
PRL(137), 2020, pp. 3-11.
Elsevier DOI
2008
Glaucoma classification, GIST features, PHOG features,
Automated disease diagnosis
BibRef
Ajesh, F.,
Ravi, R.,
Hybrid features and optimization-driven recurrent neural network for
glaucoma detection,
IJIST(30), No. 4, 2020, pp. 1143-1161.
DOI Link
2011
glaucoma detection, optic discs, Renyi entropy, segmentation, sparking process
BibRef
Parashar, D.,
Agrawal, D.K.,
Automatic Classification of Glaucoma Stages Using Two-Dimensional
Tensor Empirical Wavelet Transform,
SPLetters(28), 2021, pp. 66-70.
IEEE DOI
2101
Feature extraction, Databases, Transforms, Filter banks,
Classification algorithms, Signal processing algorithms,
multiclass classification
BibRef
Elangovan, P.[Poonguzhali],
Nath, M.K.[Malaya Kumar],
Glaucoma assessment from color fundus images using convolutional
neural network,
IJIST(31), No. 2, 2021, pp. 955-971.
DOI Link
2105
convolutional neural network, deep learning, fundus image, glaucoma
BibRef
Elangovan, P.[Poonguzhali],
Nath, M.K.[Malaya Kumar],
En-ConvNet: A novel approach for glaucoma detection from color fundus
images using ensemble of deep convolutional neural networks,
IJIST(32), No. 6, 2022, pp. 2034-2048.
DOI Link
2212
ensemble learning, fundus image, glaucoma, pre-trained model, transfer learning
BibRef
Serte, S.[Sertan],
Serener, A.[Ali],
Graph-based saliency and ensembles of convolutional neural networks
for glaucoma detection,
IET-IPR(15), No. 3, 2021, pp. 797-804.
DOI Link
2106
BibRef
Khalil, T.[Tehmina],
Akram, M.U.[Muhammad Usman],
Khalid, S.[Samina],
Dar, S.H.[Saadat Hanif],
Ali, N.[Nouman],
A study to identify limitations of existing automated systems to
detect glaucoma at initial and curable stage,
IJIST(31), No. 3, 2021, pp. 1155-1173.
DOI Link
2108
glaucoma diagnosis, image processing, machine learning,
opthalmic imaging technologies
BibRef
Song, D.P.[Di-Ping],
Fu, B.[Bin],
Li, F.[Fei],
Xiong, J.[Jian],
He, J.J.[Jun-Jun],
Zhang, X.[Xiulan],
Qiao, Y.[Yu],
Deep Relation Transformer for Diagnosing Glaucoma With Optical
Coherence Tomography and Visual Field Function,
MedImg(40), No. 9, September 2021, pp. 2392-2402.
IEEE DOI
2109
Visualization, Feature extraction, Optical imaging, Retina,
Cognition, Optical sensors, Optical attenuators,
interaction transformer mechanism
BibRef
Gupta, K.[Krati],
Goldbaum, M.[Michael],
Yousefi, S.[Siamak],
Glaucoma Precognition Based on Confocal Scanning Laser Ophthalmoscopy
Images of the Optic Disc Using Convolutional Neural Network,
Precognition21(2259-2267)
IEEE DOI
2109
Optical design, Optical computing, Predictive models,
Optical fiber networks, Feature extraction, Optical imaging, Optical receivers
BibRef
Natarajan, D.[Deepa],
Sankaralingam, E.[Esakkirajan],
Balraj, K.[Keerthiveena],
Karuppusamy, S.[Selvakumar],
A deep learning framework for glaucoma detection based on robust
optic disc segmentation and transfer learning,
IJIST(32), No. 1, 2022, pp. 230-250.
DOI Link
2201
glaucoma, GMM super pixel, SqueezeNet, transfer learning, UNet
BibRef
Abdel-Hamid, L.[Lamiaa],
TWEEC: Computer-aided glaucoma diagnosis from retinal images using
deep learning techniques,
IJIST(32), No. 1, 2022, pp. 387-401.
DOI Link
2201
computer-aided glaucoma diagnosis,
convolutional neural networks, deep learning, retinal images, wavelet transform
BibRef
Patel, R.K.[Rajneesh Kumar],
Kashyap, M.[Manish],
Automated screening of glaucoma stages from retinal fundus images
using BPS and LBP based GLCM features,
IJIST(33), No. 1, 2023, pp. 246-261.
DOI Link
2301
BPS, glaucoma, LBP, LS-SVM, medical imaging, PCA
BibRef
Elmoufidi, A.[Abdelali],
Skouta, A.[Ayoub],
Jai-Andaloussi, S.[Said],
Ouchetto, O.[Ouail],
CNN with Multiple Inputs for Automatic Glaucoma Assessment Using Fundus
Images,
IJIG(23), No. 1 2023, pp. 2350012.
DOI Link
2302
BibRef
Hu, X.Y.[Xiao-Yan],
Zhang, L.X.[Ling-Xiao],
Gao, L.[Lin],
Dai, W.W.[Wei-Wei],
Han, X.G.[Xiao-Guang],
Lai, Y.K.[Yu-Kun],
Chen, Y.Q.[Yi-Qiang],
GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly
Sampled Sequential Fundus Images,
MedImg(42), No. 6, June 2023, pp. 1875-1884.
IEEE DOI
2306
Transformers, Feature extraction, Predictive models,
Image segmentation, Deep learning, Biomedical imaging, fundus image
BibRef
Fan, R.[Rui],
Bowd, C.[Christopher],
Brye, N.[Nicole],
Christopher, M.[Mark],
Weinreb, R.N.[Robert N.],
Kriegman, D.J.[David J.],
Zangwill, L.M.[Linda M.],
One-Vote Veto: Semi-Supervised Learning for Low-Shot Glaucoma
Diagnosis,
MedImg(42), No. 12, December 2023, pp. 3764-3778.
IEEE DOI
2312
BibRef
de Vente, C.[Coen],
Vermeer, K.A.[Koenraad A.],
Jaccard, N.[Nicolas],
Wang, H.[He],
Sun, H.Y.[Hong-Yi],
Khader, F.[Firas],
Truhn, D.[Daniel],
Aimyshev, T.[Temirgali],
Zhanibekuly, Y.[Yerkebulan],
Le, T.D.[Tien-Dung],
Galdran, A.[Adrian],
Ballester, M.Á.G.[Miguel Ángel González],
Carneiro, G.[Gustavo],
Devika, R.G.,
Sethumadhavan, H.P.[Hrishikesh Panikkasseril],
Puthussery, D.[Densen],
Liu, H.[Hong],
Yang, Z.[Zekang],
Kondo, S.[Satoshi],
Kasai, S.[Satoshi],
Wang, E.[Edward],
Durvasula, A.[Ashritha],
Heras, J.[Jónathan],
Zapata, M.Á.[Miguel Ángel],
Araújo, T.[Teresa],
Aresta, G.[Guilherme],
Bogunovic, H.[Hrvoje],
Arikan, M.[Mustafa],
Lee, Y.C.[Yeong Chan],
Cho, H.B.[Hyun Bin],
Choi, Y.H.[Yoon Ho],
Qayyum, A.[Abdul],
Razzak, I.[Imran],
van Ginneken, B.[Bram],
Lemij, H.G.[Hans G.],
Sánchez, C.I.[Clara I.],
AIROGS: Artificial Intelligence for Robust Glaucoma Screening
Challenge,
MedImg(43), No. 1, January 2024, pp. 542-557.
IEEE DOI
2401
BibRef
Luo, Y.[Yan],
Shi, M.[Min],
Tian, Y.[Yu],
Elze, T.[Tobias],
Wang, M.Y.[Meng-Yu],
Harvard Glaucoma Detection and Progression: A Multimodal Multitask
Dataset and Generalization-Reinforced Semi-Supervised Learning,
ICCV23(20414-20425)
IEEE DOI Code:
WWW Link.
2401
BibRef
Kiyani, I.A.[Iqra Ashraf],
Shehryar, T.[Tehmina],
Khalid, S.[Samina],
Jamil, U.[Uzma],
Syed, A.M.[Adeel Muzaffar],
Deep learning based Glaucoma Network Classification (GNC) using
retinal images,
IJIST(34), No. 2, 2024, pp. e23003.
DOI Link
2402
data augmentation, data normalization, deep learning,
fine-tuning, transfer learning
BibRef
Mulla, A.[Ahmed],
Patel, M.[Manav],
Gupta, R.K.[Rajeev Kumar],
Glaucoma Classification Using Deep Learning and Image Processing,
ICCVMI23(1-6)
IEEE DOI
2403
Glaucoma, Image segmentation, Biomedical optical imaging, Codes,
Ultraviolet sources, Computational modeling, UNet
BibRef
Wang, Y.[Yan],
Zhen, L.[Liangli],
Tan, T.E.[Tien-En],
Fu, H.Z.[Hua-Zhu],
Feng, Y.Q.[Yang-Qin],
Wang, Z.Z.[Zi-Zhou],
Xu, X.X.[Xin-Xing],
Goh, R.S.M.[Rick Siow Mong],
Ng, Y.[Yipin],
Calhoun, C.[Claire],
Tan, G.S.W.[Gavin Siew Wei],
Sun, J.K.[Jennifer K.],
Liu, Y.[Yong],
Ting, D.S.W.[Daniel Shu Wei],
Geometric Correspondence-Based Multimodal Learning for Ophthalmic
Image Analysis,
MedImg(43), No. 5, May 2024, pp. 1945-1957.
IEEE DOI
2405
Feature extraction, Retina, Imaging, Lesions, Glaucoma, Correlation,
Multimodal learning, multimodal fusion,
ophthalmic image analysis
BibRef
Das, D.[Dipankar],
Nayak, D.R.[Deepak Ranjan],
Pachori, R.B.[Ram Bilas],
AES-Net: An adapter and enhanced self-attention guided network for
multi-stage glaucoma classification using fundus images,
IVC(146), 2024, pp. 105042.
Elsevier DOI
2405
BibRef
Earlier: A1, A2, Only:
GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma
Classification,
ICIP23(3454-3458)
IEEE DOI
2312
Multi-stage glaucoma classification, Fundus image,
Spatial-adapter module, AES-Net
BibRef
Luo, Y.[Yan],
Tian, Y.[Yu],
Shi, M.[Min],
Pasquale, L.R.[Louis R.],
Shen, L.Q.[Lucy Q.],
Zebardast, N.[Nazlee],
Elze, T.[Tobias],
Wang, M.Y.[Meng-Yu],
Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for
Fairness Learning and Fair Identity Normalization,
MedImg(43), No. 7, July 2024, pp. 2623-2633.
IEEE DOI Code:
WWW Link.
2407
Glaucoma, Biomedical imaging, Data models, Finance, Medical services,
Measurement, AI for eye disease screening, fairness learning
BibRef
Velpula, V.K.[Vijaya Kumar],
Sharma, D.[Diksha],
Sharma, L.D.[Lakhan Dev],
Roy, A.[Amarjit],
Bhuyan, M.K.[Manas Kamal],
Alfarhood, S.[Sultan],
Safran, M.[Mejdl],
Glaucoma detection with explainable AI using convolutional neural
networks based feature extraction and machine learning classifiers,
IET-IPR(18), No. 13, 2024, pp. 3827-3853.
DOI Link
2411
convolutional neural nets, image classification, medical image processing
BibRef
Singh, M.[Mohana],
Vivek, B.S.[B S],
Gubbi, J.[Jayavardhana],
Pal, A.[Arpan],
Prototype-based Interpretable Model for Glaucoma Detection,
DEF-AI-MIA24(5056-5065)
IEEE DOI
2410
Glaucoma, Training, Visualization, Pathology, Computational modeling,
Visual impairment, Prototypes, interpretable, prototype, glaucoma detection
BibRef
Brahmavar, S.B.[Shreyas Bhat],
Rajesh, R.[Rohit],
Dash, T.[Tirtharaj],
Vig, L.[Lovekesh],
Verlekar, T.T.[Tanmay Tulsidas],
Hasan, M.M.[Md Mahmudul],
Khan, T.[Tariq],
Meijering, E.[Erik],
Srinivasan, A.[Ashwin],
IKD+: Reliable Low Complexity Deep Models for Retinopathy
Classification,
ICIP23(2400-2404)
IEEE DOI
2312
BibRef
Wassel, M.[Moustafa],
Hamdi, A.M.[Ahmed M.],
Adly, N.[Noha],
Torki, M.[Marwan],
Vision Transformers Based Classification for Glaucomatous Eye
Condition,
ICPR22(5082-5088)
IEEE DOI
2212
Shape, Microprocessors,
Sensitivity and specificity, Transformers, Optical imaging, Optical sensors
BibRef
Vaghjiani, D.[Dhaval],
Saha, S.[Sajib],
Connan, Y.[Yann],
Frost, S.[Shaun],
Kanagasingam, Y.[Yogesan],
Visualizing and Understanding Inherent Image Features in CNN-based
Glaucoma Detection,
DICTA20(1-3)
IEEE DOI
2201
Visualization, Digital images, Feature extraction, Optical imaging,
Convolutional neural networks, Optical devices, Diseases,
Optic Disc
BibRef
Zhou, B.N.[Bing-Nan],
Mohammadi, F.[Farnaz],
Lim, J.S.[Jung S.],
Forouzesh, N.[Negin],
Ghasemzadeh, H.[Hassan],
Amini, N.[Navid],
Analysis of Macular Thickness Deviation Maps for Diagnosis of Glaucoma,
ISVC21(II:53-64).
Springer DOI
2112
BibRef
Urquijo, J.A.G.[Juan A. González],
Fonseca, J.D.S.[Jessica D. Sánchez],
López, J.M.L.[Juan M. López],
Suárez, S.C.[Sandra Cancino],
Novel Features for Glaucoma Detection in Fundus Images,
MCPR21(369-378).
Springer DOI
2108
BibRef
Yang, G.[Gang],
Li, F.[Fan],
Ding, D.[Dayong],
Wu, J.[Jun],
Xu, J.[Jie],
Automatic Diagnosis of Glaucoma on Color Fundus Images Using Adaptive
Mask Deep Network,
MMMod21(II:99-110).
Springer DOI
2106
BibRef
Mvoulana, A.[Amed],
Kachouri, R.[Rostom],
Akil, M.[Mohamed],
Fine-tuning Convolutional Neural Networks: a comprehensive guide and
benchmark analysis for Glaucoma Screening,
ICPR21(6120-6127)
IEEE DOI
2105
Training, Analytical models, Transfer learning, Benchmark testing,
Trademarks, Retina, Reliability engineering
BibRef
Hassan, O.N.[Osama N.],
Sahin, S.[Serhat],
Mohammadzadeh, V.[Vahid],
Yang, X.H.[Xiao-He],
Amini, N.[Navid],
Mylavarapu, A.[Apoorva],
Martinyan, J.[Jack],
Hong, T.[Tae],
Mahmoudinezhad, G.[Golnoush],
Rueckert, D.[Daniel],
Nouri-Mahdavi, K.[Kouros],
Scalzo, F.[Fabien],
Conditional GAN for Prediction of Glaucoma Progression with Macular
Optical Coherence Tomography,
ISVC20(II:761-772).
Springer DOI
2103
BibRef
García, G.[Gabriel],
del Amor, R.[Rocío],
Colomer, A.[Adrián],
Naranjo, V.[Valery],
Glaucoma Detection From Raw Circumpapillary OCT Images Using Fully
Convolutional Neural Networks,
ICIP20(2526-2530)
IEEE DOI
2011
Databases, Training, Retina, Convolutional neural networks, Neurons,
Sensitivity, Blindness, Glaucoma detection, deep learning,
class activation maps
BibRef
Khodris, C.,
Ahmed, B.,
Fouad, C.,
Meriem, A.,
Idriss, B.A.,
Tairi, H.,
Artificial intelligence in ophthalmology: the ophthalmologist's
opinion,
ISCV20(1-5)
IEEE DOI
2011
artificial intelligence, biomedical optical imaging, diseases, eye,
medical image processing, artificial intelligence,
glaucoma
BibRef
Zhao, R.C.[Rong-Chang],
Chen, X.L.[Xuan-Lin],
Chen, Z.L.[Zai-Liang],
Li, S.[Shuo],
EGDCL:
An Adaptive Curriculum Learning Framework for Unbiased Glaucoma Diagnosis,
ECCV20(XXI:190-205).
Springer DOI
2011
BibRef
Norouzifard, M.,
Nemati, A.,
GholamHosseini, H.,
Klette, R.,
Nouri-Mahdavi, K.,
Yousefi, S.,
Automated Glaucoma Diagnosis Using Deep and Transfer Learning:
Proposal of a System for Clinical Testing,
IVCNZ18(1-6)
IEEE DOI
1902
Training, Deep learning, Optical imaging, Adaptive optics,
Task analysis, Computational modeling, Testing, Glaucoma diagnosis,
InceptionResNet-V2
BibRef
Yousefi, S.,
Elze, T.,
Pasquale, L.R.,
Boland, M.,
Glaucoma Monitoring Using Manifold Learning and Unsupervised
Clustering,
IVCNZ18(1-6)
IEEE DOI
1902
Glaucoma Monitoring, Artificial Intelligence, Manifold Learning,
Unsupervised Clustering, Machine Learning, Patterns of Visual Field Loss
BibRef
Norouzifard, M.,
Dawda, A.,
Abdul-Rahman, A.,
GholamHosseini, H.,
Klette, R.,
Superpixel Segmentation Methods on Stereo Fundus Images and Disparity
Map for Glaucoma Detection,
IVCNZ18(1-6)
IEEE DOI
1902
Optical imaging, Image segmentation, Clustering algorithms,
Stereo vision, Image color analysis, Optical losses,
superpixel segmentation
BibRef
Pal, A.,
Moorthy, M.R.,
Shahina, A.,
G-Eyenet: A Convolutional Autoencoding Classifier Framework for the
Detection of Glaucoma from Retinal Fundus Images,
ICIP18(2775-2779)
IEEE DOI
1809
Optical imaging, Feature extraction, Machine learning,
Image reconstruction, Training, Biomedical optical imaging,
Classification
BibRef
Wang, L.[Lu],
Kallem, V.[Vinutha],
Bansal, M.[Mayank],
Eledath, J.[Jayan],
Sawhney, H.[Harpreet],
Pearson, D.J.[Denise J.],
Stone, R.A.[Richard A.],
Automatic 3D change detection for glaucoma diagnosis,
WACV14(401-408)
IEEE DOI
1406
Adaptive optics
BibRef
San, G.L.Y.[Gilbert Lim Yong],
Lee, M.L.[Mong Li],
Hsu, W.[Wynne],
Constrained-MSER detection of retinal pathology,
ICPR12(2059-2062).
WWW Link.
1302
BibRef
Ramani, R.G.[R. Geetha],
Balasubramanian, L.[Lakshmi],
Jacob, S.G.[Shomona Gracia],
Automatic prediction of Diabetic Retinopathy and Glaucoma through
retinal image analysis and data mining techniques,
IMVIP12(149-152).
IEEE DOI
1302
BibRef
Fondón, I.[Irene],
Núńez, F.[Francisco],
Tirado, M.[Mercedes],
Jiménez, S.[Soledad],
Alemany, P.[Pedro],
Abbas, Q.[Qaisar],
Serrano, C.[Carmen],
Acha, B.[Begońa],
Automatic Cup-to-Disc Ratio Estimation Using Active Contours and Color
Clustering in Fundus Images for Glaucoma Diagnosis,
ICIAR12(II: 390-399).
Springer DOI
1206
BibRef
El-Rafei, A.[Ahmed],
Engelhorn, T.[Tobias],
Wärntges, S.[Simone],
Dörfler, A.[Arnd],
Hornegger, J.[Joachim],
Michelson, G.[Georg],
Glaucoma Classification Based on Histogram Analysis of Diffusion Tensor
Imaging Measures in the Optic Radiation,
CAIP11(I: 529-536).
Springer DOI
1109
BibRef
Bock, R.[Rüdiger],
Meier, J.[Jörg],
Michelson, G.[Georg],
Nyúl, L.G.[László G.],
Hornegger, J.[Joachim],
Classifying Glaucoma with Image-Based Features from Fundus Photographs,
DAGM07(355-364).
Springer DOI
0709
BibRef
Meier, J.[Jörg],
Bock, R.[Rüdiger],
Michelson, G.[Georg],
Nyúl, L.G.[László G.],
Hornegger, J.[Joachim],
Effects of Preprocessing Eye Fundus Images on Appearance Based Glaucoma
Classification,
CAIP07(165-172).
Springer DOI
0708
BibRef
McIntyre, A.R.,
Heywood, M.I.,
Artes, P.H.,
Abidi, S.S.R.,
Toward glaucoma classification with moment methods,
CRV04(265-272).
IEEE DOI
0408
BibRef
Rosin, P.L.,
Marshall, A.D.,
Morgan, J.E.,
Multimodal retinal imaging: new strategies for the detection of
glaucoma,
ICIP02(III: 137-140).
IEEE DOI
PDF File.
0210
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Cataracts, Detection, Analysis, Surgery .