Ardovini, A.[Alessandro],
Cinque, L.[Luigi],
Sangineto, E.[Enver],
Identifying elephant photos by multi-curve matching,
PR(41), No. 6, June 2008, pp. 1867-1877.
Elsevier DOI
0802
Elephant photo identification; Image retrieval by shape;
Symmetric invariant multiple curve matching
BibRef
Ardovini, A.[Alessandro],
Cinque, L.[Luigi],
Rocca, F.D.[Francesca Della],
Sangineto, E.[Enver],
A Semi-automatic Approach to Photo Identification of Wild Elephants,
IbPRIA07(I: 225-232).
Springer DOI
0706
BibRef
Wawerla, J.[Jens],
Marshall, S.[Shelley],
Mori, G.[Greg],
Rothley, K.[Kristina],
Sabzmeydani, P.[Payam],
BearCam: automated wildlife monitoring at the arctic circle,
MVA(20), No. 5, July 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Zhang, W.W.[Wei-Wei],
Sun, J.[Jian],
Tang, X.[Xiaoou],
From Tiger to Panda: Animal Head Detection,
IP(20), No. 6, June 2011, pp. 1696-1708.
IEEE DOI
1106
BibRef
Earlier:
Cat Head Detection:
How to Effectively Exploit Shape and Texture Features,
ECCV08(IV: 802-816).
Springer DOI
0810
BibRef
Yong, S.P.[Suet-Peng],
Deng, J.D.[Jeremiah D.],
Purvis, M.K.[Martin K.],
Novelty detection in wildlife scenes through semantic context modelling,
PR(45), No. 9, September 2012, pp. 3439-3450.
Elsevier DOI
1206
BibRef
Earlier:
Modeling semantic context for key-frame extraction in wildlife video,
IVCNZ10(1-8).
IEEE DOI
1203
Novelty detection; Co-occurrence matrices; Semantic context; Multiple
one-class models
BibRef
Zeppelzauer, M.[Matthias],
Automated detection of elephants in wildlife video,
JIVP(2013), No. 1, 2013, pp. xx-yy.
DOI Link
1309
BibRef
Yu, X.,
Wang, J.,
Kays, R.,
Jansen, P.A.,
Wang, T.,
Huang, T.,
Automated identification of animal species in camera trap images,
JIVP(2013), No. 1, 2013, pp. 52.
DOI Link
1309
BibRef
Swanson, A.[Alexandra],
Kosmala, M.[Margaret],
Lintott, C.[Chris],
Simpson, R.[Robert],
Smith, A.[Arfon],
Packer, C.[Craig],
Snapshot Serengeti, high-frequency annotated camera trap
images of 40 mammalian species in an African savanna,
ScientificData(2), June 2015, Article 150026.
DOI Link
1506
Dataset, Animals. Covered by many news outlets. Thousands of pictures of animals from motion
activated cameras planted in the Serengeti. Includes interface for people to
identify, etc. A great resource for automated detection and identification.
BibRef
Witharana, C.[Chandi],
LaRue, M.A.[Michelle A.],
Lynch, H.J.[Heather J.],
Benchmarking of data fusion algorithms in support of earth
observation based Antarctic wildlife monitoring,
PandRS(113), No. 1, 2016, pp. 124-143.
Elsevier DOI
1602
Penguins
BibRef
Le Blanc, G.[George],
Francis, C.M.[Charles M.],
Soffer, R.[Raymond],
Kalacska, M.[Margaret],
de Gea, J.[Julie],
Spectral Reflectance of Polar Bear and Other Large Arctic Mammal
Pelts; Potential Applications to Remote Sensing Surveys,
RS(8), No. 4, 2016, pp. 273.
DOI Link
1604
BibRef
Wang, D.L.[Dong-Liang],
Shao, Q.Q.[Quan-Qin],
Yue, H.Y.[Huan-Yin],
Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned
Aerial Systems (UASs): A Review,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Giraldo-Zuluaga, J.H.[Jhony-Heriberto],
Salazar, A.[Augusto],
Gomez, A.[Alexander],
Diaz-Pulido, A.[Angélica],
Camera-trap images segmentation using multi-layer robust principal
component analysis,
VC(35), No. 3, March 2019, pp. 335-347.
Springer DOI
1906
Animal monitoring.
BibRef
Peng, J.B.[Jin-Bang],
Wang, D.L.[Dong-Liang],
Liao, X.H.[Xiao-Han],
Shao, Q.Q.[Quan-Qin],
Sun, Z.G.[Zhi-Gang],
Yue, H.Y.[Huan-Yin],
Ye, H.[Huping],
Wild animal survey using UAS imagery and deep learning: modified
Faster R-CNN for kiang detection in Tibetan Plateau,
PandRS(169), 2020, pp. 364-376.
Elsevier DOI
2011
Wild animal survey, Deep learning, Object detection,
Unmanned aircraft systems (UAS)
BibRef
Orusa, T.[Tommaso],
Orusa, R.[Riccardo],
Viani, A.[Annalisa],
Carella, E.[Emanuele],
Mondino, E.B.[Enrico Borgogno],
Geomatics and EO Data to Support Wildlife Diseases Assessment at
Landscape Level: A Pilot Experience to Map Infectious
Keratoconjunctivitis in Chamois and Phenological Trends in Aosta
Valley (NW Italy),
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Venkitasubramanian, A.N.[Aparna Nurani],
Tuytelaars, T.[Tinne],
Moens, M.F.[Marie-Francine],
Wildlife recognition in nature documentaries with weak supervision
from subtitles and external data,
PRL(81), No. 1, 2016, pp. 63-70.
Elsevier DOI
1609
Wildlife recognition
BibRef
Fudala, K.[Katarzyna],
Bialik, R.J.[Robert Józef],
Breeding Colony Dynamics of Southern Elephant Seals at Patelnia
Point, King George Island, Antarctica,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
And:
Correction:
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zhu, P.F.[Peng-Fei],
Peng, T.[Tao],
Du, D.W.[Da-Wei],
Yu, H.T.[Hong-Tao],
Zhang, L.[Libo],
Hu, Q.H.[Qing-Hua],
Graph Regularized Flow Attention Network for Video Animal Counting
From Drones,
IP(30), 2021, pp. 5339-5351.
IEEE DOI
2106
Animals, Drones, Annotations, Wildlife, Image resolution, Agriculture,
Optical losses, Animal counting, drone,
multi-granularity loss
BibRef
Lee, S.[Seunghyeon],
Song, Y.[Youngkeun],
Kil, S.H.[Sung-Ho],
Feasibility Analyses of Real-Time Detection of Wildlife Using
UAV-Derived Thermal and RGB Images,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Morgan, L.R.[Laura R.],
Marsh, K.J.[Karen J.],
Tolleson, D.R.[Douglas R.],
Youngentob, K.N.[Kara N.],
The Application of NIRS to Determine Animal Physiological Traits for
Wildlife Management and Conservation,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Wang, L.,
Ding, R.,
Zhai, Y.,
Zhang, Q.,
Tang, W.,
Zheng, N.,
Hua, G.,
Giant Panda Identification,
IP(30), 2021, pp. 2837-2849.
IEEE DOI
2102
Task analysis, Detectors, Feature extraction, Annotations,
Visualization, Face recognition, Convolution,
fine-grained recognition
BibRef
Baralle, G.[Guillaume],
Marchal, A.F.J.[Antoine F. J.],
Lejeune, P.[Philippe],
Michez, A.[Adrien],
Individual Identification of Cheetah (Acinonyx jubatus) Based on
Close-Range Remote Sensing: First Steps of a New Monitoring Technique,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kim, M.Y.[Min-Young],
Chung, O.S.[Ok-Sik],
Lee, J.K.[Jong-Koo],
A Manual for Monitoring Wild Boars (Sus scrofa) Using Thermal
Infrared Cameras Mounted on an Unmanned Aerial Vehicle (UAV),
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Fischbach, A.S.[Anthony S.],
Douglas, D.C.[David C.],
Evaluation of Satellite Imagery for Monitoring Pacific Walruses at a
Large Coastal Haulout,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Williamson, S.D.[Sandra D.],
van Dongen, R.[Richard],
Trotter, L.[Lewis],
Palmer, R.[Russell],
Robinson, T.P.[Todd P.],
Fishing for Feral Cats in a Naturally Fragmented Rocky Landscape
Using Movement Data,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Mohammadi, A.[Ahmad],
Park, P.Y.[Peter Y.],
Mukherjee, A.[Abir],
Liu, X.[Xia],
Developing a situation and threat assessment framework for a next
generation roadside animal detection system,
IET-ITS(16), No. 1, 2022, pp. 71-84.
DOI Link
2112
BibRef
Wang, S.H.[Shuai-Hang],
Hu, C.[Cheng],
Cui, K.[Kai],
Wang, R.[Rui],
Mao, H.F.[Hua-Feng],
Wu, D.L.[Dong-Li],
Animal Migration Patterns Extraction Based on Atrous-Gated CNN Deep
Learning Model,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kyaw, P.P.[Pyae Phyoe],
Macdonald, D.W.[David W.],
Penjor, U.[Ugyen],
Htun, S.[Saw],
Naing, H.[Hla],
Burnham, D.[Dawn],
Kaszta, Z.[Zaneta],
Cushman, S.A.[Samuel A.],
Investigating Carnivore Guild Structure: Spatial and Temporal
Relationships amongst Threatened Felids in Myanmar,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Christie, A.I.[Anna I.],
Colefax, A.P.[Andrew P.],
Cagnazzi, D.[Daniele],
Feasibility of Using Small UAVs to Derive Morphometric Measurements
of Australian Snubfin (Orcaella heinsohni) and Humpback (Sousa
sahulensis) Dolphins,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Connor, T.[Thomas],
Division, W.[Wildlife],
Tripp, E.[Emilio],
Bean, W.T.[William T.],
Saxon, B.J.,
Camarena, J.[Jessica],
Donahue, A.[Asa],
Sarna-Wojcicki, D.[Daniel],
Macaulay, L.[Luke],
Tripp, W.[William],
Brashares, J.[Justin],
Estimating Wildlife Density as a Function of Environmental
Heterogeneity Using Unmarked Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Feng, J.F.[Jiang-Fan],
Li, J.C.[Jun-Cai],
An Adaptive Embedding Network with Spatial Constraints for the Use of
Few-Shot Learning in Endangered-Animal Detection,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Lu, L.H.[Long-Hui],
Sun, Z.X.[Zhong-Xiang],
Qimuge, E.[Eerdeng],
Ye, H.[Huichun],
Huang, W.J.[Wen-Jiang],
Nie, C.[Chaojia],
Wang, K.[Kun],
Zhou, Y.[Yantao],
Using Remote Sensing Data and Species-Environmental Matching
Model to Predict the Potential Distribution of Grassland Rodents in
the Northern China,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Gedeon, C.I.[Csongor I.],
Árvai, M.[Mátyás],
Szatmári, G.[Gábor],
Brevik, E.C.[Eric C.],
Takáts, T.[Tünde],
Kovács, Z.A.[Zsófia A.],
Mészáros, J.[János],
Identification and Counting of European Souslik Burrows from UAV
Images by Pixel-Based Image Analysis and Random Forest
Classification: A Simple, Semi-Automated, yet Accurate Method for
Estimating Population Size,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Winsen, M.[Megan],
Denman, S.[Simon],
Corcoran, E.[Evangeline],
Hamilton, G.[Grant],
Automated Detection of Koalas with Deep Learning Ensembles,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Avots, E.[Egils],
Vecvanags, A.[Alekss],
Filipovs, J.[Jevgenijs],
Brauns, A.[Agris],
Skudrins, G.[Gundars],
Done, G.[Gundega],
Ozolins, J.[Janis],
Anbarjafari, G.[Gholamreza],
Jakovels, D.[Dainis],
Towards Automated Detection and Localization of Red Deer Cervus
elaphus Using Passive Acoustic Sensors during the Rut,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Fu, Y.W.[Yan-Wen],
Xu, G.C.[Guang-Cai],
Gao, S.[Shang],
Feng, L.M.[Li-Min],
Guo, Q.H.[Qing-Hua],
Yang, H.T.[Hai-Tao],
LiDAR Reveals the Process of Vision-Mediated Predator-Prey
Relationships,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Roberts, K.E.[Kelsey E.],
Garrison, L.P.[Lance P.],
Ortega-Ortiz, J.[Joel],
Hu, C.M.[Chuan-Min],
Zhang, Y.J.[Ying-Jun],
Sasso, C.R.[Christopher R.],
Lamont, M.[Margaret],
Hart, K.M.[Kristen M.],
The Influence of Satellite-Derived Environmental and Oceanographic
Parameters on Marine Turtle Time at Surface in the Gulf of Mexico,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Gonçalves, B.C.[Bento C.],
Wethington, M.[Michael],
Lynch, H.J.[Heather J.],
SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in
Very-High-Resolution Satellite Imagery with CNN Model Ensembles,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Paulsen, I.M.G.[Ingrid Marie Garfelt],
Pedersen, Ĺ.Ř.[Ĺshild Řnvik],
Hann, R.[Richard],
Blanchet, M.A.[Marie-Anne],
Eischeid, I.[Isabell],
van Hazendonk, C.[Charlotte],
Ravolainen, V.T.[Virve Tuulia],
Stien, A.[Audun],
Moullec, M.L.[Mathilde Le],
How Many Reindeer? UAV Surveys as an Alternative to Helicopter or
Ground Surveys for Estimating Population Abundance in Open Landscapes,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Delplanque, A.[Alexandre],
Foucher, S.[Samuel],
Théau, J.[Jérôme],
Bussičre, E.[Elsa],
Vermeulen, C.[Cédric],
Lejeune, P.[Philippe],
From crowd to herd counting: How to precisely detect and count
African mammals using aerial imagery and deep learning?,
PandRS(197), 2023, pp. 167-180.
Elsevier DOI
2303
Deep learning, Livestock, Herd, Convolutional neural networks,
Aerial survey, Protected area
BibRef
Dong, G.[Guang],
Xian, W.[Wei],
Shao, H.Y.[Huai-Yong],
Shao, Q.[Qiufang],
Qi, J.G.[Jia-Guo],
Performance of Multiple Models for Estimating Rodent Activity
Intensity in Alpine Grassland Using Remote Sensing,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Kim, D.J.[Dong-Jin],
Miao, Z.Q.[Zhong-Qi],
Guo, Y.H.[Yun-Hui],
Yu, S.X.[Stella X.],
Modeling Semantic Correlation and Hierarchy for Real-World Wildlife
Recognition,
SPLetters(30), 2023, pp. 259-263.
IEEE DOI
2303
Wildlife, Training, Neural networks, Semantics, Correlation,
Data models, Birds, Wildlife recognition, active learning, class imbalance
BibRef
Yang, X.Y.[Xin-Yu],
Burghardt, T.[Tilo],
Mirmehdi, M.[Majid],
Dynamic Curriculum Learning for Great Ape Detection in the Wild,
IJCV(131), No. 5, May 2023, pp. 1163-1181.
Springer DOI
2305
BibRef
Wich, S.A.[Serge A.],
Bonnin, N.[Noémie],
Hutschenreiter, A.[Anja],
Piel, A.K.[Alex K.],
Chitayat, A.[Adrienne],
Stewart, F.A.[Fiona A.],
Pintea, L.[Lilian],
Kerby, J.T.[Jeffrey T.],
Using Drones to Determine Chimpanzee Absences at the Edge of Their
Distribution in Western Tanzania,
RS(15), No. 8, 2023, pp. 2019.
DOI Link
2305
BibRef
Fergus, P.[Paul],
Chalmers, C.[Carl],
Longmore, S.[Steven],
Wich, S.[Serge],
Warmenhove, C.[Carmen],
Swart, J.[Jonathan],
Ngongwane, T.[Thuto],
Burger, A.[André],
Ledgard, J.[Jonathan],
Meijaard, E.[Erik],
Empowering Wildlife Guardians: An Equitable Digital Stewardship and
Reward System for Biodiversity Conservation Using Deep Learning and
3/4G Camera Traps,
RS(15), No. 11, 2023, pp. 2730.
DOI Link
2306
BibRef
Mounir, R.[Ramy],
Shahabaz, A.[Ahmed],
Gula, R.[Roman],
Theuerkauf, J.[Jörn],
Sarkar, S.[Sudeep],
Towards Automated Ethogramming: Cognitively-Inspired Event Segmentation
for Streaming Wildlife Video Monitoring,
IJCV(131), No. 9, September 2023, pp. 2267-2297.
Springer DOI
2308
BibRef
And:
Correction:
IJCV(131), No. 1, January 2023, pp. 3118-3118.
Springer DOI
2310
BibRef
Ho, K.[Katherine],
Loraamm, R.[Rebecca],
Using a Cost-Distance Time-Geographic Approach to Identify Red Deer
Habitat Use in Banff National Park, Alberta, Canada,
IJGI(12), No. 8, 2023, pp. 339.
DOI Link
2309
BibRef
McCraine, D.[Daniel],
Samiappan, S.[Sathishkumar],
Kohler, L.[Leon],
Sullivan, T.[Timo],
Will, D.J.[David J.],
Automated Hyperspectral Feature Selection and Classification of
Wildlife Using Uncrewed Aerial Vehicles,
RS(16), No. 2, 2024, pp. 406.
DOI Link
2402
BibRef
Attard, M.R.G.[Marie R. G.],
Phillips, R.A.[Richard A.],
Bowler, E.[Ellen],
Clarke, P.J.[Penny J.],
Cubaynes, H.[Hannah],
Johnston, D.W.[David W.],
Fretwell, P.T.[Peter T.],
Review of Satellite Remote Sensing and Unoccupied Aircraft Systems
for Counting Wildlife on Land,
RS(16), No. 4, 2024, pp. 627.
DOI Link
2402
BibRef
Malmström, M.[Magnus],
Kullberg, A.[Anton],
Skog, I.[Isaac],
Axehill, D.[Daniel],
Gustafsson, F.[Fredrik],
Extended Target Tracking Utilizing Machine-Learning Software-With
Applications to Animal Classification,
SPLetters(31), 2024, pp. 376-380.
IEEE DOI
2402
Signal processing algorithms, Classification algorithms, Cameras,
Target tracking, Filtering algorithms, Standards, Loss measurement,
Kalman filters
BibRef
Mou, C.[Chao],
Zhu, C.C.[Cheng-Cheng],
Liu, T.F.[Teng-Fei],
Cui, X.H.[Xiao-Hui],
A novel efficient wildlife detecting method with lightweight
deployment on UAVs based on YOLOv7,
IET-IPR(18), No. 5, 2024, pp. 1296-1314.
DOI Link
2404
image classification, object detection, real-time systems,
remote sensing, sensors
BibRef
Ma, Z.B.[Zhi-Bin],
Dong, Y.Q.[Yan-Qi],
Xia, Y.[Yi],
Xu, D.[Delong],
Xu, F.[Fu],
Chen, F.X.[Fei-Xiang],
Wildlife Real-Time Detection in Complex Forest Scenes Based on
YOLOv5s Deep Learning Network,
RS(16), No. 8, 2024, pp. 1350.
DOI Link
2405
BibRef
Oishi, Y.[Yu],
Yoshida, N.[Natsuki],
Oguma, H.[Hiroyuki],
Detecting Moving Wildlife Using the Time Difference between Two
Thermal Airborne Images,
RS(16), No. 8, 2024, pp. 1439.
DOI Link
2405
BibRef
Su, X.H.[Xiao-Hui],
Zhang, J.W.[Jia-Wei],
Ma, Z.B.[Zhi-Bin],
Dong, Y.Q.[Yan-Qi],
Zi, J.L.[Jia-Li],
Xu, N.[Nuo],
Zhang, H.Y.[Hai-Yan],
Xu, F.[Fu],
Chen, F.X.[Fei-Xiang],
Identification of Rare Wildlife in the Field Environment Based on the
Improved YOLOv5 Model,
RS(16), No. 9, 2024, pp. 1535.
DOI Link
2405
BibRef
Xu, T.Y.[Tian-Yang],
Kang, Z.[Ze],
Zhu, X.F.[Xue-Feng],
Wu, X.J.[Xiao-Jun],
Learning Adaptive Spatio-Temporal Inference Transformer for
Coarse-to-Fine Animal Visual Tracking: Algorithm and Benchmark,
IJCV(132), No. 7, July 2024, pp. Pages2698-2712.
Springer DOI
2406
BibRef
Brookes, O.[Otto],
Mirmehdi, M.[Majid],
Stephens, C.[Colleen],
Angedakin, S.[Samuel],
Corogenes, K.[Katherine],
Dowd, D.[Dervla],
Dieguez, P.[Paula],
Hicks, T.C.[Thurston C.],
Jones, S.[Sorrel],
Lee, K.[Kevin],
Leinert, V.[Vera],
Lapuente, J.[Juan],
McCarthy, M.S.[Maureen S.],
Meier, A.[Amelia],
Murai, M.[Mizuki],
Normand, E.[Emmanuelle],
Vergnes, V.[Virginie],
Wessling, E.G.[Erin G.],
Wittig, R.M.[Roman M.],
Langergraber, K.[Kevin],
Maldonado, N.[Nuria],
Yang, X.Y.[Xin-Yu],
Zuberbühler, K.[Klaus],
Boesch, C.[Christophe],
Arandjelovic, M.[Mimi],
Kühl, H.[Hjalmar],
Burghardt, T.[Tilo],
PanAf20K: A Large Video Dataset for Wild Ape Detection and Behaviour
Recognition,
IJCV(132), No. 8, August 2024, pp. 3086-3102.
Springer DOI
2408
Dataset, Apes.
BibRef
Gabeff, V.[Valentin],
Rußwurm, M.[Marc],
Tuia, D.[Devis],
Mathis, A.[Alexander],
WildCLIP: Scene and Animal Attribute Retrieval from Camera Trap Data
with Domain-Adapted Vision-Language Models,
IJCV(132), No. 1, January 2024, pp. 3770-3786.
Springer DOI
2409
BibRef
Nepovinnykh, E.[Ekaterina],
Chelak, I.[Ilia],
Eerola, T.[Tuomas],
Immonen, V.[Veikka],
Kälviäinen, H.[Heikki],
Kholiavchenko, M.[Maksim],
Stewart, C.V.[Charles V.],
Species-Agnostic Patterned Animal Re-identification by Aggregating Deep
Local Features,
IJCV(132), No. 1, January 2024, pp. 4003-4018.
Springer DOI
2409
BibRef
Gadot, T.[Tomer],
Istrate, S.[Stefan],
Kim, H.[Hyungwon],
Morris, D.[Dan],
Beery, S.[Sara],
Birch, T.[Tanya],
Ahumada, J.[Jorge],
To crop or not to crop: Comparing whole-image and cropped
classification on a large dataset of camera trap images,
IET-CV(18), No. 8, 2024, pp. 1193-1208.
DOI Link
2501
object detection
BibRef
Schneider, D.[Daniel],
Lindner, K.[Kim],
Vogelbacher, M.[Markus],
Bellafkir, H.[Hicham],
Farwig, N.[Nina],
Freisleben, B.[Bernd],
Recognition of European mammals and birds in camera trap images using
deep neural networks,
IET-CV(18), No. 8, 2024, pp. 1162-1192.
DOI Link
2501
convolutional neural nets,
image classification, image recognition, neural nets
BibRef
Shinoda, R.[Risa],
Shiohara, K.[Kaede],
Openanimaltracks: A Dataset for Animal Track Recognition,
ICIP24(110-116)
IEEE DOI Code:
WWW Link.
2411
Surveys, Image recognition, Codes, Accuracy, Animals,
Biological system modeling, Animal, Track, Classification, Detection
BibRef
Hamann, F.[Friedhelm],
Ghosh, S.[Suman],
Martínez, I.J.[Ignacio Juárez],
Hart, T.[Tom],
Kacelnik, A.[Alex],
Gallego, G.[Guillermo],
Low-power, Continuous Remote Behavioral Localization with Event
Cameras,
CVPR24(18612-18621)
IEEE DOI Code:
WWW Link.
2410
Transient response, Wildlife, Lighting, Cameras, Generators,
Antarctica, event cameras, action detection
BibRef
Li, Z.Z.[Zi-Zhang],
Litvak, D.[Dor],
Li, R.[Ruining],
Zhang, Y.Z.[Yun-Zhi],
Jakab, T.[Tomas],
Rupprecht, C.[Christian],
Wu, S.Z.[Shang-Zhe],
Vedaldi, A.[Andrea],
Wu, J.J.[Jia-Jun],
Learning the 3D Fauna of the Web,
CVPR24(9752-9762)
IEEE DOI
2410
Deformable models, Training, Solid modeling, Animals, Semantics,
Feature extraction, 3D reconstruction, animal reconstruction, single-view 3D
BibRef
Kumar, S.[Satish],
Zhang, B.[Bowen],
Gudavalli, C.[Chandrakanth],
Levenson, C.[Connor],
Hughey, L.[Lacey],
Stabach, J.A.[Jared A.],
Amoke, I.[Irene],
Ojwang, G.[Gordon],
Mukeka, J.[Joseph],
Mwiu, S.[Stephen],
Ogutu, J.[Joseph],
Frederick, H.[Howard],
Manjunath, B.S.,
WildlifeMapper: Aerial Image Analysis for Multi-Species Detection and
Identification,
CVPR24(12594-12604)
IEEE DOI Code:
WWW Link.
2410
Surveys, Image analysis, Source coding, Wildlife, Habitats,
Object recognition, Remote Sensing, Object Detection
BibRef
Cermák, V.[Vojtech],
Picek, L.[Lukas],
Adam, L.[Luká],
Papafitsoros, K.[Kostas],
WildlifeDatasets: An open-source toolkit for animal re-identification,
WACV24(5941-5951)
IEEE DOI
2404
Deep learning, Analytical models, Biological system modeling,
Computational modeling, Wildlife, Libraries, Applications,
Animals / Insects
BibRef
Karaderi, T.[Tayfun],
Burghardt, T.[Tilo],
Morard, R.[Raphaël],
Schmidt, D.N.[Daniela N.],
Deep Visual-Genetic Biometrics for Taxonomic Classification of Rare
Species,
WACV24(7100-7110)
IEEE DOI
2404
Training, Visualization, Biometrics (access control), Transforms,
Tail, Benchmark testing, Genetics, Applications, Animals / Insects,
Vision + language and/or other modalities
BibRef
Adam, L.[Luká],
Cermák, V.[Vojtech],
Papafitsoros, K.[Kostas],
Picek, L.[Lukas],
SeaTurtleID2022: A long-span dataset for reliable sea turtle
re-identification,
WACV24(7131-7141)
IEEE DOI
2404
Instance segmentation, Training, Annotations, Wildlife, Sociology,
Benchmark testing, Applications, Animals / Insects, Applications,
Environmental monitoring / climate change / ecology
BibRef
Nepovinnykh, E.[Ekaterina],
Eerola, T.[Tuomas],
Kälviäinen, H.[Heikki],
Chelak, I.[Ilia],
NORPPA: NOvel Ringed Seal Re-Identification by Pelage Pattern
Aggregation,
SmallData24(1-10)
IEEE DOI
2404
Instance segmentation, Crowdsourcing, Databases, Animals,
Image retrieval, Pipelines, Seals
BibRef
Chen, R.[Rujia],
Ghobakhlou, A.[Akbar],
Narayanan, A.[Ajit],
Pérez, M.[Matías],
Oyanadel, R.O.C.[Roberto Orlano Chavez],
Borras-Chavez, R.[Renato],
Semi-Supervised Deep Learning for Estimating Fur Seal Numbers,
IVCNZ23(1-5)
IEEE DOI
2403
Deep learning, Machine learning algorithms, Animals, Seals, Ecology,
Statistics, Climate change, Object detection,
Faster R-CNN
BibRef
Prins, F.L.[Fabian L.],
Tomanin, D.[Dario],
Kamenz, J.[Julia],
Azzopardi, G.[George],
Biometric Recognition of African Clawed Frogs,
CAIP23(II:151-161).
Springer DOI
2312
BibRef
Wu, S.Z.[Shang-Zhe],
Li, R.N.[Rui-Ning],
Jakab, T.[Tomas],
Rupprecht, C.[Christian],
Vedaldi, A.[Andrea],
MagicPony: Learning Articulated 3D Animals in the Wild,
CVPR23(8792-8802)
IEEE DOI
2309
BibRef
Rubio, Y.[Yoshio],
Contreras-Cruz, M.A.[Marco A.],
Wildlife Image Generation from Scene Graphs,
LXCV23(305-314)
IEEE DOI
2309
BibRef
Chen, J.[Jun],
Hu, M.[Ming],
Coker, D.J.[Darren J.],
Berumen, M.L.[Michael L.],
Costelloe, B.[Blair],
Beery, S.[Sara],
Rohrbach, A.[Anna],
Elhoseiny, M.[Mohamed],
MammalNet: A Large-Scale Video Benchmark for Mammal Recognition and
Behavior Understanding,
CVPR23(13052-13061)
IEEE DOI
2309
BibRef
Chen, Z.Y.[Zi-Yue],
Gao, Y.Y.[Yuan-Yuan],
Primate Recognition System Design Based on Deep Learning Model VGG16,
ICIVC22(605-610)
IEEE DOI
2301
Training, Deep learning, Visualization, Analytical models,
Image recognition, Animals, Neural networks, primates, VGG16, visualization
BibRef
Kim, J.[Jeongsoo],
Woo, S.[Sangmin],
Park, B.[Byeongjun],
Kim, C.[Changick],
Temporal Flow Mask Attention for Open-Set Long-Tailed Recognition of
Wild Animals in Camera-Trap Images,
ICIP22(2152-2156)
IEEE DOI
2211
Image motion analysis, Image recognition, Wildlife, Tail,
Feature extraction, Cameras, Open-set Long-tailed Recognition, Camera Trap
BibRef
Estrada, D.N.D.[David Norman Díaz],
Goyal, U.[Utkarsh],
Ullah, M.[Mohib],
Cheikh, F.A.[Faouzi Alaya],
Psi-NET: A Novel Encoder-Decoder Architecture for Animal Segmentation,
IPTA22(1-5)
IEEE DOI
2206
Training, Image segmentation, Animals, Cognition, Decoding,
Data mining, Task analysis, Animal segmentation, pig segmentation,
feature learning
BibRef
Rumiano, F.,
Gaucherel, C.,
Degenne, P.,
Miguel, E.,
Chamaillé-Jammes, S.,
Valls-Fox, H.,
Cornélis, D.,
de Garine-Wichatitsky, M.,
Fritz, H.,
Caron, A.,
Tran, A.,
Combined Use of Remote Sensing and Spatial Modelling: When Surface
Water Impacts Buffalo (Syncerus Caffer Caffer) Movements In Savanna
Environments,
ISPRS21(B3-2021: 631-638).
DOI Link
2201
BibRef
Parvin, N.[Nahida],
Awrangjeb, M.[Mohammad],
Irvin, M.[Marc],
Florentine, S.[Singarayer],
Murshed, M.[Manzur],
Lu, G.J.[Guo-Jun],
Detection of Malleefowl Mounds from Point Cloud Data,
DICTA21(1-7)
IEEE DOI
2201
Point cloud compression, Laser radar, Shape, Digital images,
Sociology, Manuals, Feature extraction
BibRef
Go, H.[Hyojun],
Byun, J.Y.[Jun-Young],
Park, B.[Byeongjun],
Choi, M.A.[Myung-Ae],
Yoo, S.[Seunghwa],
Kim, C.[Changick],
Fine-Grained Multi-Class Object Counting,
ICIP21(509-513)
IEEE DOI
2201
Cranes, Image processing, Wildlife, Sociology, Network architecture,
Benchmark testing, Multi-class object counting,
Counting with classification
BibRef
McEwen, B.[Ben],
Green, R.[Richard],
Gutschmidt, S.[Stefanie],
Ryan, G.[Grant],
Predictive State Estimation of Invasive Predators using Low
Resolution Thermal Cameras,
IVCNZ21(1-6)
IEEE DOI
2201
Visualization, Tracking, Animals, Cameras, Particle filters,
Kalman filters, Noise measurement, State Estimation,
Occlusion
BibRef
Zheng, X.C.[Xiao-Chen],
Kellenberger, B.[Benjamin],
Gong, R.[Rui],
Hajnsek, I.[Irena],
Tuia, D.[Devis],
Self-Supervised Pretraining and Controlled Augmentation Improve Rare
Wildlife Recognition in UAV Images,
LUAI21(732-741)
IEEE DOI
2112
Training, Deep learning, Image recognition, Annotations,
Wildlife, Supervised learning
BibRef
Cunha, F.[Fagner],
dos Santos, E.M.[Eulanda M.],
Barreto, R.[Raimundo],
Colonna, J.G.[Juan G.],
Filtering Empty Camera Trap Images in Embedded Systems,
MAI21(2438-2446)
IEEE DOI
2109
Training, Performance evaluation, Quantization (signal),
Image edge detection, Computational modeling, Wildlife, Detectors
BibRef
Weideman, H.J.,
Stewart, C.V.,
Parham, J.R.,
Holmberg, J.,
Flynn, K.,
Calambokidis, J.,
Paul, D.B.,
Bedetti, A.,
Henley, M.,
Lepirei, J.,
Pope, F.G.,
Extracting identifying contours for African elephants and humpback
whales using a learned appearance model,
WACV20(1265-1274)
IEEE DOI
2006
Training data, Ear, Training, Whales, Image edge detection, Data mining
BibRef
Cheng, X.,
Zhu, J.,
Zhang, N.,
Wang, Q.,
Zhao, Q.,
Detection Features as Attention (Defat):
A Keypoint-Free Approach to Amur Tiger Re-Identification,
ICIP20(2231-2235)
IEEE DOI
2011
Feature extraction, Pipelines, Cameras, Training, Animals, Probes,
Additives, animal re-identification, keypoint-free,
attention
BibRef
Singh, P.,
Lindshield, S.M.,
Zhu, F.,
Reibman, A.R.,
Animal Localization in Camera-Trap Images with Complex Backgrounds,
SSIAI20(66-69)
IEEE DOI
2009
biology computing, convolutional neural nets,
image motion analysis, principal component analysis, zoology,
Animal localization
BibRef
Zuffi, S.,
Kanazawa, A.,
Berger-Wolf, T.,
Black, M.,
Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture
From Images 'In the Wild',
ICCV19(5358-5367)
IEEE DOI
2004
biology computing, image capture, image texture, Computational modeling,
learning (artificial intelligence), natural scenes, optimisation.
BibRef
Körschens, M.,
Denzler, J.,
ELPephants: A Fine-Grained Dataset for Elephant Re-Identification,
CVWC19(263-270)
IEEE DOI
2004
feature extraction, image classification,
image colour analysis, image segmentation, re-identification
BibRef
Yang, X.,
Mirmehdi, M.,
Burghardt, T.,
Great Ape Detection in Challenging Jungle Camera Trap Footage via
Attention-Based Spatial and Temporal Feature Blending,
CVWC19(255-262)
IEEE DOI
2004
cameras, feature extraction, image classification,
image motion analysis, image segmentation, image sequences,
Video Object Detection
BibRef
Liu, N.,
Zhao, Q.,
Zhang, N.,
Cheng, X.,
Zhu, J.,
Pose-Guided Complementary Features Learning for Amur Tiger
Re-Identification,
CVWC19(286-293)
IEEE DOI
2004
Code, Recognition.
WWW Link. ecology, environmental science computing,
feature extraction, image classification,
Wildlife Conservation
BibRef
Yu, J.,
Su, H.,
Liu, J.,
Yang, Z.,
Zhang, Z.,
Zhu, Y.,
Yang, L.,
Jiao, B.,
A Strong Baseline for Tiger Re-ID and its Bag of Tricks,
CVWC19(302-309)
IEEE DOI
2004
Code, Recognition.
WWW Link. feature extraction, image matching, image sampling,
learning (artificial intelligence), object detection,
flip as new id
BibRef
Kupyn, O.,
Pranchuk, D.,
Fast and Efficient Model for Real-Time Tiger Detection In The Wild,
CVWC19(310-314)
IEEE DOI
2004
biology computing, cameras, object detection, supervised learning,
zoology, Amur Tiger Detection, edge devices, smart cameras,
tigers
BibRef
Liu, C.,
Zhang, R.,
Guo, L.,
Part-Pose Guided Amur Tiger Re-Identification,
CVWC19(315-322)
IEEE DOI
2004
Code, Recognition.
WWW Link. inference mechanisms, learning (artificial intelligence),
pose estimation, PlainID competitions, WildID competitions, Pose Alignment
BibRef
Shukla, A.,
Anderson, C.,
Cheema, G.S.[G. Sigh],
Gao, P.,
Onda, S.,
Anshumaan, D.,
Anand, S.,
Farrell, R.,
A Hybrid Approach to Tiger Re-Identification,
CVWC19(294-301)
IEEE DOI
2004
Code, Recognition.
WWW Link. data analysis, entropy, feature extraction,
image classification, image matching, image representation,
tigers
BibRef
Wang, H.,
Song, Y.,
Li, S.,
Dai, W.,
Liu, J.,
Transfer Learning Based Wildlife Recognition for Tele-Observation in
Field Occlusion Environment,
ICIP19(3392-3396)
IEEE DOI
1910
customized loss function, anti-occlusion, wildlife monitoring,
transfer learning, CNN
BibRef
Agarwal, M.,
Sinha, S.,
Singh, M.,
Nagpal, S.,
Singh, R.,
Vatsa, M.,
Triplet Transform Learning for Automated Primate Face Recognition,
ICIP19(3462-3466)
IEEE DOI
1910
Animal Biometrics, Transform Learning, Triplet Loss, Primate Face Recognition
BibRef
Matkowski, W.M.,
Kong, A.W.K.,
Su, H.,
Chen, P.,
Hou, R.,
Zhang, Z.,
Giant Panda Face Recognition Using Small Dataset,
ICIP19(1680-1684)
IEEE DOI
1910
biometrics, face recognition, giant panda, individual identification
BibRef
Yoshida, K.[Kumiko],
Kawasue, K.[Kikuhito],
Robust 3D Pig Measurement in Pig Farm,
3D-Wild18(I:387-400).
Springer DOI
1905
BibRef
Popova, A.[Anastasia],
Eerola, T.[Tuomas],
Kälviäinen, H.[Heikki],
Comparison of Co-segmentation Methods for Wildlife Photo-identification,
ACIVS18(139-149).
Springer DOI
1810
BibRef
Zhu, C.,
Li, T.H.,
Li, G.,
Towards Automatic Wild Animal Detection in Low Quality Camera-Trap
Images Using Two-Channeled Perceiving Residual Pyramid Networks,
Wildlife17(2860-2864)
IEEE DOI
1802
Cameras, Feature extraction, Image segmentation,
Training, Wildlife
BibRef
Weideman, H.J.,
Jablons, Z.M.,
Holmberg, J.,
Flynn, K.,
Calambokidis, J.,
Tyson, R.B.,
Allen, J.B.,
Wells, R.S.,
Hupman, K.,
Urian, K.,
Stewart, C.V.,
Integral Curvature Representation and Matching Algorithms for
Identification of Dolphins and Whales,
Wildlife17(2831-2839)
IEEE DOI
1802
Dolphins, Image edge detection, Indexing, Robustness, Shape, Whales
BibRef
Brust, C.A.,
Burghardt, T.,
Groenenberg, M.,
Kading, C.,
Kühl, H.S.,
Manguette, M.L.,
Denzler, J.,
Towards Automated Visual Monitoring of Individual Gorillas in the
Wild,
Wildlife17(2820-2830)
IEEE DOI
1802
Biodiversity, Biological system modeling, Cameras, Monitoring,
Sociology, Statistics
BibRef
Gomez, A.[Alexander],
Diez, G.[German],
Salazar, A.[Augusto],
Diaz, A.[Angelica],
Animal Identification in Low Quality Camera-Trap Images Using Very Deep
Convolutional Neural Networks and Confidence Thresholds,
ISVC16(I: 747-756).
Springer DOI
1701
BibRef
Du, S.Z.[Sheng-Zhi],
Du, C.L.[Chun-Ling],
Abdoola, R.[Rishaad],
van Wyk, B.J.[Barend Jacobus],
A Gaussian Mixture Model Feature for Wildlife Detection,
ISVC16(I: 757-765).
Springer DOI
1701
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Simon, M.[Marcel],
Loos, A.[Alexander],
Kühl, H.S.[Hjalmar S.],
Denzler, J.[Joachim],
Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting
Identities and Attributes of Primates,
GCPR16(51-63).
Springer DOI
1611
BibRef
Zhang, H.P.[Hong-Ping],
Jiang, J.[Jie],
Wei, D.[Dong],
Jiang, J.[Jie],
A Wildlife Monitoring System Based On Tianditu And Beidou:
In Case Of The Tibetan Antelope,
ISPRS16(B4: 259-262).
DOI Link
1610
BibRef
Parham, J.,
Stewart, C.,
Detecting plains and Grevy's Zebras in the realworld,
AAVWS16(1-9)
IEEE DOI
1606
Hough transforms
BibRef
Linchant, J.,
Lhoest, S.,
Quevauvillers, S.,
Semeki, J.,
Lejeune, P.,
Vermeulen, C.,
WIMUAS: Developing a Tool to Review Wildlife Data from Various UAS
Flight Plans,
GeoUAV15(379-384).
DOI Link
1602
BibRef
Lhoest, S.,
Linchant, J.,
Quevauvillers, S.,
Vermeulen, C.,
Lejeune, P.,
How Many Hippos (HOMHIP): Algorithm for Automatic Counts of Animals
with Infra-Red Thermal Imagery From UAV,
GeoUAV15(355-362).
DOI Link
1602
BibRef
Chrétien, L.P.,
Théau, J.,
Ménard, P.,
Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared
Imagery Acquired from an Unmanned Aerial Vehicle (UAV),
UAV-g15(241-248).
DOI Link
1512
BibRef
Zmarz, A.,
Korczak-Abshire, M.,
Storvold, R.,
Rodzewicz, M.,
Kedzierska, I.,
Indicator Species Population Monitoring in Antarctica with UAV,
UAV-g15(189-193).
DOI Link
1512
BibRef
Figueroa, K.[Karina],
Camarena-Ibarrola, A.[Antonio],
García, J.[Jonathan],
Villela, H.T.[Héctor Tejeda],
Fast Automatic Detection of Wildlife in Images from Trap Cameras,
CIARP14(940-947).
Springer DOI
1411
BibRef
Lahiri, M.[Mayank],
Tantipathananandh, C.[Chayant],
Warungu, R.[Rosemary],
Rubenstein, D.I.[Daniel I.],
Berger-Wolf, T.Y.[Tanya Y.],
Biometric animal databases from field photographs:
Identification of individual zebra in the wild,
ICMR11(6).
DOI Link
1301
a database of noisy photographs taken in the
wild
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Agriculture, Inspection -- Meat .