Gan, G.,
Wu, J.,
A convergence theorem for the fuzzy subspace clustering (FSC) algorithm,
PR(41), No. 6, June 2008, pp. 1939-1947.
Elsevier DOI
0802
Clustering; Subspace clustering; Analysis of algorithms; Convergence; Fuzzy set
BibRef
Deng, Z.H.[Zhao-Hong],
Choi, K.S.[Kup-Sze],
Chung, F.L.[Fu-Lai],
Wang, S.T.[Shi-Tong],
Enhanced soft subspace clustering integrating within-cluster and
between-cluster information,
PR(43), No. 3, March 2010, pp. 767-781.
Elsevier DOI
1001
Subspace clustering; Soft subspace; Weighted clustering; Gene
expression clustering analysis; Texture image segmentation;
[epsilon]-insensitive distance
Comment:
See also Comment on 'Enhanced soft subspace clustering integrating within-cluster and between-cluster information' by Z. Deng et al. (Pattern Recognition, vol. 43, pp. 767-781, 2010).
BibRef
Bai, L.[Liang],
Liang, J.[Jiye],
Dang, C.Y.[Chuang-Yin],
Cao, F.Y.[Fu-Yuan],
A novel attribute weighting algorithm for clustering high-dimensional
categorical data,
PR(44), No. 12, December 2011, pp. 2843-2861.
Elsevier DOI
1107
Cluster analysis; Optimization algorithm; High-dimensional categorical
data; Subspace clustering; Attribute weighting
BibRef
Peng, L.Q.[Liu-Qing],
Zhang, J.Y.[Jun-Ying],
An entropy weighting mixture model for subspace clustering of
high-dimensional data,
PRL(32), No. 8, 1 June 2011, pp. 1154-1161.
Elsevier DOI
1101
Subspace clustering; High-dimensional data; Gaussian mixture models;
Local feature relevance; Shape volume
BibRef
Ahmad, A.[Amir],
Dey, L.[Lipika],
A k-means type clustering algorithm for subspace clustering of mixed
numeric and categorical datasets,
PRL(32), No. 7, 1 May 2011, pp. 1062-1069.
Elsevier DOI
1101
Clustering; Subspace clustering; Mixed data; Categorical data
BibRef
Chen, X.J.[Xiao-Jun],
Ye, Y.M.[Yun-Ming],
Xu, X.F.[Xiao-Fei],
Huang, J.Z.[Joshua Zhexue],
A feature group weighting method for subspace clustering of
high-dimensional data,
PR(45), No. 1, 2012, pp. 434-446.
Elsevier DOI
1410
Data mining
BibRef
Jing, L.P.[Li-Ping],
Tian, K.[Kuang],
Huang, J.Z.[Joshua Z.],
Stratified feature sampling method for ensemble clustering of high
dimensional data,
PR(48), No. 11, 2015, pp. 3688-3702.
Elsevier DOI
1506
Stratified sampling
BibRef
Ng, T.F.[Theam Foo],
Pham, T.D.[Tuan D.],
Jia, X.P.[Xiu-Ping],
Feature interaction in subspace clustering using the Choquet integral,
PR(45), No. 7, July 2012, pp. 2645-2660.
Elsevier DOI
1203
Subspace clustering; Fuzzy clustering; Choquet integral; Fuzzy
measure; Feature interaction; Pattern recognition
BibRef
Pham, T.D.[Tuan D.],
Brandl, M.[Miriam],
Beck, D.[Dominik],
Fuzzy declustering-based vector quantization,
PR(42), No. 11, November 2009, pp. 2570-2577.
Elsevier DOI
0907
Vector quantization; Declustering; Fuzzy c-means; Fuzzy partition
entropy; Distortion measures; Pattern classification
See also Fuzzy posterior-probabilistic fusion.
BibRef
Ng, T.F.[Theam Foo],
Pham, T.D.[Tuan D.],
Sun, C.M.[Chang-Ming],
Automated Feature Weighting in Fuzzy Declustering-based Vector
Quantization,
ICPR10(686-689).
IEEE DOI
1008
BibRef
Xia, H.[Hu],
Zhuang, J.[Jian],
Yu, D.H.[De-Hong],
Novel soft subspace clustering with multi-objective evolutionary
approach for high-dimensional data,
PR(46), No. 9, September 2013, pp. 2562-2575.
Elsevier DOI
1305
Subspace clustering; Multi-objective evolutionary algorithm;
Determination of the best solution; Determination of the cluster
number
BibRef
Adler, A.,
Elad, M.[Michael],
Hel-Or, Y.[Yacov],
Probabilistic Subspace Clustering Via Sparse Representations,
SPLetters(20), No. 1, January 2013, pp. 63-66.
IEEE DOI
1212
BibRef
Liu, J.M.[Jun-Min],
Chen, Y.J.[Yi-Jun],
Zhang, J.S.[Jiang-She],
Xu, Z.B.[Zong-Ben],
Enhancing Low-Rank Subspace Clustering by Manifold Regularization,
IP(23), No. 9, September 2014, pp. 4022-4030.
IEEE DOI
1410
data structures
BibRef
Gan, G.J.[Guo-Jun],
Ng, M.K.P.[Michael Kwok-Po],
Subspace clustering using affinity propagation,
PR(48), No. 4, 2015, pp. 1455-1464.
Elsevier DOI
1502
Data clustering
BibRef
Gan, G.J.[Guo-Jun],
Ng, M.K.P.[Michael Kwok-Po],
Subspace clustering with automatic feature grouping,
PR(48), No. 11, 2015, pp. 3703-3713.
Elsevier DOI
1506
Data clustering
BibRef
Gan, G.J.[Guo-Jun],
Ng, M.K.P.[Michael Kwok-Po],
k-means clustering with outlier removal,
PRL(90), No. 1, 2017, pp. 8-14.
Elsevier DOI
1704
Data clustering
BibRef
Zhao, X.Y.[Xue-Yi],
Zhang, C.Y.[Chen-Yi],
Zhang, Z.F.[Zhong-Fei],
Distributed cross-media multiple binary subspace learning,
MultInfoRetr(4), No. 2, June 2015, pp. 153-164.
Springer DOI
1506
BibRef
Hu, H.,
Feng, J.,
Zhou, J.,
Exploiting Unsupervised and Supervised Constraints for Subspace
Clustering,
PAMI(37), No. 8, August 2015, pp. 1542-1557.
IEEE DOI
1507
Cameras
BibRef
Xu, J.[Jun],
Xu, K.[Kui],
Chen, K.[Ke],
Ruan, J.[Jishou],
Reweighted sparse subspace clustering,
CVIU(138), No. 1, 2015, pp. 25-37.
Elsevier DOI
1506
Subspace clustering
BibRef
Kang, Z.[Zhao],
Peng, C.[Chong],
Cheng, Q.A.[Qi-Ang],
Robust Subspace Clustering via Smoothed Rank Approximation,
SPLetters(22), No. 11, November 2015, pp. 2088-2092.
IEEE DOI
1509
approximation theory
BibRef
Peng, C.[Chong],
Kang, Z.[Zhao],
Cheng, Q.A.[Qi-Ang],
Subspace Clustering via Variance Regularized Ridge Regression,
CVPR17(682-691)
IEEE DOI
1711
Clustering methods, Data models, Manifolds, Mathematical model,
Optimization, Tensile stress.
BibRef
Peng, C.[Chong],
Kang, Z.[Zhao],
Yang, M.,
Cheng, Q.A.[Qi-Ang],
Feature Selection Embedded Subspace Clustering,
SPLetters(23), No. 7, July 2016, pp. 1018-1022.
IEEE DOI
1608
convex programming
BibRef
Wang, Y.[Yang],
Lin, X.M.[Xue-Min],
Wu, L.[Lin],
Zhang, W.J.[Wen-Jie],
Zhang, Q.[Qing],
Huang, X.D.[Xiao-Di],
Robust Subspace Clustering for Multi-View Data by Exploiting
Correlation Consensus,
IP(24), No. 11, November 2015, pp. 3939-3949.
IEEE DOI
1509
compressed sensing
BibRef
Yin, M.[Ming],
Gao, J.B.[Jun-Bin],
Lin, Z.C.[Zhou-Chen],
Shi, Q.F.[Qin-Feng],
Guo, Y.[Yi],
Dual Graph Regularized Latent Low-Rank Representation for Subspace
Clustering,
IP(24), No. 12, December 2015, pp. 4918-4933.
IEEE DOI
1512
computational geometry
BibRef
Yin, M.[Ming],
Xie, S.L.[Sheng-Li],
Wu, Z.Z.[Zong-Ze],
Zhang, Y.[Yun],
Gao, J.B.[Jun-Bin],
Subspace Clustering via Learning an Adaptive Low-Rank Graph,
IP(27), No. 8, August 2018, pp. 3716-3728.
IEEE DOI
1806
graph theory, image representation,
learning (artificial intelligence), matrix algebra,
subspace clustering
BibRef
Yin, M.[Ming],
Gao, J.B.[Jun-Bin],
Lin, Z.C.[Zhou-Chen],
Laplacian Regularized Low-Rank Representation and Its Applications,
PAMI(38), No. 3, March 2016, pp. 504-517.
IEEE DOI
1602
Data models
BibRef
He, R.[Ran],
Zhang, M.[Man],
Wang, L.[Liang],
Ji, Y.[Ye],
Yin, Q.Y.[Qi-Yue],
Cross-Modal Subspace Learning via Pairwise Constraints,
IP(24), No. 12, December 2015, pp. 5543-5556.
IEEE DOI
1512
Internet
BibRef
Babaeian, A.[Amir],
Babaee, M.[Mohammadreaza],
Bayestehtashk, A.[Alireza],
Bandarabadi, M.[Mojtaba],
Nonlinear subspace clustering using curvature constrained distances,
PRL(68, Part 1), No. 1, 2015, pp. 118-125.
Elsevier DOI
1512
Subspace clustering
BibRef
Chen, L.F.[Li-Fei],
Wang, S.R.[Sheng-Rui],
Wang, K.J.[Kai-Jun],
Zhu, J.P.[Jian-Ping],
Soft subspace clustering of categorical data with probabilistic
distance,
PR(51), No. 1, 2016, pp. 322-332.
Elsevier DOI
1601
Subspace clustering
BibRef
Luo, C.,
Ni, B.,
Yan, S.,
Wang, M.,
Image Classification by Selective Regularized Subspace Learning,
MultMed(18), No. 1, January 2016, pp. 40-50.
IEEE DOI
1601
Encoding
BibRef
Su, S.Z.[Shu-Zhi],
Ge, H.W.[Hong-Wei],
Yuan, Y.H.[Yun-Hao],
Kernel propagation strategy: A novel out-of-sample propagation
projection for subspace learning,
JVCIR(36), No. 1, 2016, pp. 69-79.
Elsevier DOI
1603
Kernel matrix optimization
BibRef
Washizawa, Y.[Yoshikazu],
Learning Subspace Classification Using Subset Approximated Kernel
Principal Component Analysis,
IEICE(E99-D), No. 5, May 2016, pp. 1353-1363.
WWW Link.
1605
BibRef
Washizawa, Y.[Yoshikazu],
Trace Norm Regularization and Application to Tensor Based Feature
Extraction,
Subspace10(404-413).
Springer DOI
1109
BibRef
Washizawa, Y.[Yoshikazu],
Tanaka, M.[Masayuki],
Centered Subset Kernel PCA for Denoising,
Subspace10(354-363).
Springer DOI
1109
BibRef
Washizawa, Y.[Yoshikazu],
Subset kernel PCA for pattern recognition,
Subspace09(162-169).
IEEE DOI
0910
BibRef
Washizawa, Y.[Yoshikazu],
Yamashita, Y.[Yukihiko],
Non-linear Wiener filter in reproducing kernel Hilbert space,
ICPR06(I: 967-970).
IEEE DOI
0609
BibRef
Earlier:
Kernel sample space projection classifier for pattern recognition,
ICPR04(II: 435-438).
IEEE DOI
0409
BibRef
Fang, X.Z.[Xiao-Zhao],
Xu, Y.[Yong],
Li, X.,
Lai, Z.,
Wong, W.K.,
Robust Semi-Supervised Subspace Clustering via Non-Negative Low-Rank
Representation,
Cyber(46), No. 8, August 2016, pp. 1828-1838.
IEEE DOI
1608
Clustering algorithms
BibRef
Fei, L.[Lunke],
Xu, Y.[Yong],
Fang, X.Z.[Xiao-Zhao],
Yang, J.[Jian],
Low rank representation with adaptive distance penalty for
semi-supervised subspace classification,
PR(67), No. 1, 2017, pp. 252-262.
Elsevier DOI
1704
Low rank representation
BibRef
Li, Q.[Qi],
Sun, Z.A.[Zhen-An],
Lin, Z.C.[Zhou-Chen],
He, R.[Ran],
Tan, T.N.[Tie-Niu],
Transformation invariant subspace clustering,
PR(59), No. 1, 2016, pp. 142-155.
Elsevier DOI
1609
Transformation
BibRef
Yuan, M.D.[Ming-Dong],
Feng, D.Z.[Da-Zheng],
Liu, W.J.[Wen-Juan],
Xiao, C.B.[Chun-Bao],
Collaborative representation discriminant embedding for image
classification,
JVCIR(41), No. 1, 2016, pp. 212-224.
Elsevier DOI
1612
Subspace learning
BibRef
Yin, Q.Y.[Qi-Yue],
Wu, S.[Shu],
Wang, L.[Liang],
Unified subspace learning for incomplete and unlabeled multi-view
data,
PR(67), No. 1, 2017, pp. 313-327.
Elsevier DOI
1704
Multi-view learning
BibRef
Ma, C.,
Tsang, I.W.,
Peng, F.,
Liu, C.,
Partial Hash Update via Hamming Subspace Learning,
IP(26), No. 4, April 2017, pp. 1939-1951.
IEEE DOI
1704
Binary codes
BibRef
Shi, D.M.[Da-Ming],
Wang, J.[Jun],
Cheng, D.[Dansong],
Gao, J.B.[Jun-Bin],
A global-local affinity matrix model via EigenGap for graph-based
subspace clustering,
PRL(89), No. 1, 2017, pp. 67-72.
Elsevier DOI
1704
Spectral clustering
BibRef
Wang, Z.Y.[Zi-Yu],
Xue, J.H.[Jing-Hao],
The matched subspace detector with interaction effects,
PR(68), No. 1, 2017, pp. 24-37.
Elsevier DOI
1704
Matched subspace detector (MSD)
BibRef
Peng, C.,
Kang, Z.,
Xu, F.,
Chen, Y.,
Cheng, Q.,
Image Projection Ridge Regression for Subspace Clustering,
SPLetters(24), No. 7, July 2017, pp. 991-995.
IEEE DOI
1706
image enhancement, image representation, pattern clustering,
2D data, image enhancement, image projection ridge regression,
image representation, subspace clustering method,
two-dimensional data, vector, Clustering methods, Convergence,
Covariance matrices, Face, Linear programming, Optimization,
2-diemnsional data,
Subspace clustering, spatial information, unsupervised, learning
BibRef
Brbic, M.[Maria],
Kopriva, I.[Ivica],
Multi-view low-rank sparse subspace clustering,
PR(73), No. 1, 2018, pp. 247-258.
Elsevier DOI
1709
Subspace clustering
BibRef
Yan, Q.[Qing],
Ding, Y.[Yun],
Xia, Y.[Yi],
Chong, Y.W.[Yan-Wen],
Zheng, C.H.[Chun-Hou],
Class Probability Propagation of Supervised Information Based on
Sparse Subspace Clustering for Hyperspectral Images,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Ding, Y.[Yun],
Pan, S.M.[Shao-Ming],
Chong, Y.W.[Yan-Wen],
Robust Spatial-Spectral Block-Diagonal Structure Representation With
Fuzzy Class Probability for Hyperspectral Image Classification,
GeoRS(58), No. 3, March 2020, pp. 1747-1762.
IEEE DOI
2003
Hyperspectral imaging, Semantics, Manifolds, Image restoration,
Probabilistic logic, Block-diagonal representation,
typicalness
BibRef
Li, B.[Bo],
Liu, R.S.[Ri-Sheng],
Cao, J.J.[Jun-Jie],
Zhang, J.[Jie],
Lai, Y.K.[Yu-Kun],
Liu, X.P.[Xiu-Ping],
Online Low-Rank Representation Learning for Joint Multi-Subspace
Recovery and Clustering,
IP(27), No. 1, January 2018, pp. 335-348.
IEEE DOI
1712
computational complexity, image representation,
learning (artificial intelligence), pattern clustering,
subspace learning
BibRef
Rahmani, M.,
Atia, G.K.,
Subspace Clustering via Optimal Direction Search,
SPLetters(24), No. 12, December 2017, pp. 1793-1797.
IEEE DOI
1712
convex programming, image segmentation, pattern clustering,
search problems,
unsupervised learning
BibRef
Liu, H.J.[Hai-Jun],
Cheng, J.[Jian],
Wang, F.[Feng],
Sequential Subspace Clustering via Temporal Smoothness for Sequential
Data Segmentation,
IP(27), No. 2, February 2018, pp. 866-878.
IEEE DOI
1712
BibRef
Earlier:
Sequential Subspace Clustering via Temporal Smoothness,
FG17(245-250)
IEEE DOI
1707
Clustering algorithms, Clustering methods, Data models,
Dictionaries, Encoding, Image coding, Optimization,
temporal smoothness.
Face, Linear programming.
BibRef
Tan, H.L.[Heng-Liang],
Gao, Y.[Ying],
Ma, Z.M.[Zheng-Ming],
Regularized constraint subspace based method for image set
classification,
PR(76), No. 1, 2018, pp. 434-448.
Elsevier DOI
1801
Subspace method
BibRef
Forghani, Y.[Yahya],
Comment on 'Enhanced soft subspace clustering integrating
within-cluster and between-cluster information' by Z. Deng et al.
(Pattern Recognition, vol. 43, pp. 767-781, 2010),
PR(77), 2018, pp. 456-457.
Elsevier DOI
1802
Fuzzy c-means, Enhanced soft subspace clustering, Convex, Concave
See also Enhanced soft subspace clustering integrating within-cluster and between-cluster information.
BibRef
Chen, Y.,
Li, G.,
Gu, Y.,
Active Orthogonal Matching Pursuit for Sparse Subspace Clustering,
SPLetters(25), No. 2, February 2018, pp. 164-168.
IEEE DOI
1802
computational complexity, greedy algorithms, optimisation,
pattern clustering, SSC algorithms, active OMP-SSC,
subspace detection property (SDP)
BibRef
Zhang, J.,
Li, X.,
Jing, P.,
Liu, J.,
Su, Y.,
Low-Rank Regularized Heterogeneous Tensor Decomposition for Subspace
Clustering,
SPLetters(25), No. 3, March 2018, pp. 333-337.
IEEE DOI
1802
Algorithm design and analysis, Clustering algorithms,
Matrix decomposition, Robustness, Signal processing algorithms,
tensor decomposition
BibRef
Li, B.,
Lu, H.,
Li, F.,
Wu, W.,
Subspace Clustering With K-Support Norm,
CirSysVideo(28), No. 2, February 2018, pp. 302-313.
IEEE DOI
1802
Clustering algorithms, Clustering methods, Correlation,
Data models, Databases, Optimization, Sparse matrices,
grouping effect
BibRef
Diaz-Chito, K.[Katerine],
del Rincón, J.M.[Jesús Martínez],
Hernández-Sabaté, A.[Aura],
Rusińol, M.[Marçal],
Ferri, F.J.[Francesc J.],
Fast Kernel Generalized Discriminative Common Vectors for Feature
Extraction,
JMIV(60), No. 4, May 2018, pp. 512-524.
Springer DOI
1804
Supervised subspace learning.
BibRef
Diaz-Chito, K.[Katerine],
del Rincón, J.M.[Jesús Martínez],
Rusińol, M.[Marçal],
Hernández-Sabaté, A.[Aura],
Feature Extraction by Using Dual-Generalized Discriminative Common
Vectors,
JMIV(61), No. 3, March 2019, pp. 331-351.
Springer DOI
1903
BibRef
Zhu, W.C.[Wen-Cheng],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Nonlinear subspace clustering for image clustering,
PRL(107), 2018, pp. 131-136.
Elsevier DOI
1805
BibRef
Earlier:
Nonlinear subspace clustering,
ICIP17(4497-4501)
IEEE DOI
1803
Subspace clustering, Neural network, Nonlinear transformation,
Local similarity.
Clustering algorithms, Clustering methods, Face, Laplace equations,
Neural networks, Optimization, Principal component analysis,
nonlinear transformation
BibRef
Zhu, W.C.[Wen-Cheng],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Structured general and specific multi-view subspace clustering,
PR(93), 2019, pp. 392-403.
Elsevier DOI
1906
Subspace clustering, Multi-view learning,
Structure consistence, Diversity
BibRef
Tolic, D.[Dijana],
Antulov-Fantulin, N.[Nino],
Kopriva, I.[Ivica],
A nonlinear orthogonal non-negative matrix factorization approach to
subspace clustering,
PR(82), 2018, pp. 40-55.
Elsevier DOI
1806
Subspace clustering, Non-negative matrix factorization,
Orthogonality, Kernels, Graph regularization
BibRef
Chen, H.Z.[Hua-Zhu],
Wang, W.W.[Wei-Wei],
Feng, X.C.[Xiang-Chu],
Structured Sparse Subspace Clustering with Within-Cluster Grouping,
PR(83), 2018, pp. 107-118.
Elsevier DOI
1808
Subspace clustering, Grouping-effect-within-clusters, Affinity matrix learning
BibRef
Wang, W.W.[Wei-Wei],
Yang, C.Y.[Chun-Yu],
Chen, H.Z.[Hua-Zhu],
Feng, X.C.[Xiang-Chu],
Unified Discriminative and Coherent Semi-Supervised Subspace
Clustering,
IP(27), No. 5, May 2018, pp. 2461-2470.
IEEE DOI
1804
Clustering methods, Coherence, Harmonic analysis,
Manifolds, Optimization, Sparse matrices, Discrimination, coherence,
subspace clustering
BibRef
Zhu, Y.[Ye],
Ting, K.M.[Kai Ming],
Carman, M.J.[Mark J.],
Grouping points by shared subspaces for effective subspace clustering,
PR(83), 2018, pp. 230-244.
Elsevier DOI
1808
Subspace clustering, Shared subspaces, Density-based clustering
BibRef
Peng, X.,
Feng, J.,
Xiao, S.,
Yau, W.,
Zhou, J.T.,
Yang, S.,
Structured AutoEncoders for Subspace Clustering,
IP(27), No. 10, October 2018, pp. 5076-5086.
IEEE DOI
1808
data handling, learning (artificial intelligence), neural nets,
pattern clustering, StructAE, prior structured information,
spectral clustering
BibRef
Pesevski, A.[Angelina],
Franczak, B.C.[Brian C.],
McNicholas, P.D.[Paul D.],
Subspace clustering with the multivariate-t distribution,
PRL(112), 2018, pp. 297-302.
Elsevier DOI
1809
Finite mixture models, Multivariate- distribution,
EM algorithm, Dimension reduction, Subspace clustering
BibRef
Xia, Y.Q.[Yu-Qing],
Zhang, Z.Y.[Zhen-YueA],
Rank-sparsity balanced representation for subspace clustering,
RealTimeIP(14), No. 1, January 2018, pp. 979-990.
WWW Link.
1809
BibRef
Yang, Y.Z.[Ying-Zhen],
Feng, J.S.[Jia-Shi],
Jojic, N.[Nebojsa],
Yang, J.C.[Jian-Chao],
Huang, T.S.[Thomas S.],
Subspace Learning by L0-Induced Sparsity,
IJCV(126), No. 10, October 2018, pp. 1138-1156.
Springer DOI
1809
BibRef
Xie, Y.[Yuan],
Tao, D.C.[Da-Cheng],
Zhang, W.S.[Wen-Sheng],
Liu, Y.[Yan],
Zhang, L.[Lei],
Qu, Y.Y.[Yan-Yun],
On Unifying Multi-view Self-Representations for Clustering by Tensor
Multi-rank Minimization,
IJCV(126), No. 11, November 2018, pp. 1157-1179.
Springer DOI
1809
multi-view subspace clustering problem
BibRef
Zhu, Q.H.[Qi-Hai],
Yang, Y.B.[Yu-Bin],
Subspace clustering via seeking neighbors with minimum reconstruction
error,
PRL(115), 2018, pp. 66-73.
Elsevier DOI
1812
Subsapce clustering, Sparse representation,
Minimum reconstruction error, Dictionary learning
BibRef
Lu, C.Y.[Can-Yi],
Feng, J.S.[Jia-Shi],
Lin, Z.C.[Zhou-Chen],
Mei, T.[Tao],
Yan, S.C.[Shui-Cheng],
Subspace Clustering by Block Diagonal Representation,
PAMI(41), No. 2, February 2019, pp. 487-501.
IEEE DOI
1901
Clustering methods, Symmetric matrices,
Minimization, Convergence, Optimization, Subspace clustering,
convergence analysis
BibRef
Wang, X.B.[Xiao-Bo],
Lei, Z.[Zhen],
Guo, X.J.[Xiao-Jie],
Zhang, C.Q.[Chang-Qing],
Shi, H.L.[Hai-Lin],
Li, S.Z.[Stan Z.],
Multi-view subspace clustering with intactness-aware similarity,
PR(88), 2019, pp. 50-63.
Elsevier DOI
1901
Intact space, Intactness-aware similarity, Multi-view subspace clustering
BibRef
Tang, K.W.[Ke-Wei],
Su, Z.X.[Zhi-Xun],
Liu, Y.[Yang],
Jiang, W.[Wei],
Zhang, J.[Jie],
Sun, X.[Xiyan],
Subspace segmentation with a large number of subspaces using infinity
norm minimization,
PR(89), 2019, pp. 45-54.
Elsevier DOI
1902
Subspace segmentation, Large subspace number, Infinity norm,
Spectral-clustering based methods
BibRef
Xia, Y.,
Zhang, Z.,
Scalable Feedback of Spectral Projection for Subspace Learning,
SPLetters(26), No. 2, February 2019, pp. 257-261.
IEEE DOI
1902
feedback, learning (artificial intelligence), matrix algebra,
pattern clustering, scalable feedback, spectral projection,
sign searching
BibRef
Ashraphijuo, M.[Morteza],
Wang, X.D.[Xiao-Dong],
Clustering a union of low-rank subspaces of different dimensions with
missing data,
PRL(120), 2019, pp. 31-35.
Elsevier DOI
1904
Subspace clustering, Low-rank matrix completion, Union of subspaces
BibRef
Li, B.,
Lu, H.,
Zhang, Y.,
Lin, Z.,
Wu, W.,
Subspace Clustering Under Complex Noise,
CirSysVideo(29), No. 4, April 2019, pp. 930-940.
IEEE DOI
1904
Clustering methods, Clustering algorithms, Data models,
Correlation, Sparse matrices,
expectation maximization
BibRef
Struski, L.[Lukasz],
Spurek, P.[Przemyslaw],
Tabor, J.[Jacek],
Smieja, M.[Marek],
Projected memory clustering,
PRL(123), 2019, pp. 9-15.
Elsevier DOI
1906
Projected clustering, Subspaces clustering
BibRef
Yi, S.,
Liang, Y.,
He, Z.,
Li, Y.,
Cheung, Y.,
Dual Pursuit for Subspace Learning,
MultMed(21), No. 6, June 2019, pp. 1399-1411.
IEEE DOI
1906
Dictionaries, Linear programming, Optimization, Feature extraction,
Streaming media, Manifolds, Laplace equations,
graph-regularization technique
BibRef
Haralick, R.M.[Robert M.],
Dependence,
PRL(124), 2019, pp. 2-20.
Elsevier DOI
1906
Maximal correlation, Mutual information, Subspace classifiers
BibRef
Guo, X.L.[Xiang-Lin],
Xie, X.Y.[Xing-Yu],
Liu, G.C.[Guang-Can],
Wei, M.Q.[Ming-Qiang],
Wang, J.[Jun],
Robust Low-rank subspace segmentation with finite mixture noise,
PR(93), 2019, pp. 55-67.
Elsevier DOI
1906
Subspace clustering, Noises modelling, Finite mixture model,
Nonconvex and nonsmooth optimization
BibRef
Zhang, Y.[Yong],
Wang, Q.[Qi],
Gong, D.W.[Dun-Wei],
Song, X.F.[Xian-Fang],
Nonnegative Laplacian embedding guided subspace learning for
unsupervised feature selection,
PR(93), 2019, pp. 337-352.
Elsevier DOI
1906
Unsupervised feature selection,
Nonnegative Laplacian embedding, Subspace learning, Class labels
BibRef
Tang, C.,
Zhu, X.,
Liu, X.,
Li, M.,
Wang, P.,
Zhang, C.,
Wang, L.,
Learning a Joint Affinity Graph for Multiview Subspace Clustering,
MultMed(21), No. 7, July 2019, pp. 1724-1736.
IEEE DOI
1906
Matrix converters, Data models, Clustering algorithms, Redundancy,
Minimization, Optimization, Clustering methods,
affinity graph learning
BibRef
Liang, J.[Jie],
Yang, J.F.[Ju-Feng],
Cheng, M.M.[Ming-Ming],
Rosin, P.L.[Paul L.],
Wang, L.[Liang],
Simultaneous Subspace Clustering and Cluster Number Estimating Based
on Triplet Relationship,
IP(28), No. 8, August 2019, pp. 3973-3985.
IEEE DOI
1907
data structures, graph theory, matrix algebra, minimisation,
pattern clustering, simultaneous subspace clustering,
hyper-graph clustering
BibRef
Yang, J.F.[Ju-Feng],
Liang, J.[Jie],
Wang, K.[Kai],
Rosin, P.L.[Paul L.],
Yang, M.H.[Ming-Hsuan],
Subspace Clustering via Good Neighbors,
PAMI(42), No. 6, June 2020, pp. 1537-1544.
IEEE DOI
2005
Clustering algorithms, Sparse matrices, Correlation,
Clustering methods, Optimization, Minimization,
graph connectivity
BibRef
Mei, J.,
Wang, Y.,
Zhang, L.,
Zhang, B.,
Liu, S.,
Zhu, P.,
Ren, Y.,
PSASL: Pixel-Level and Superpixel-Level Aware Subspace Learning for
Hyperspectral Image Classification,
GeoRS(57), No. 7, July 2019, pp. 4278-4293.
IEEE DOI
1907
Linear programming, Dimensionality reduction, Feature extraction,
Hyperspectral imaging, Correlation, Learning systems,
subspace learning
BibRef
Chen, Z.Y.[Zheng-Yi],
Zhang, C.M.[Chun-Min],
Mu, T.[Tingkui],
Yan, T.Y.[Ting-Yu],
Chen, Z.[Zeyu],
Wang, Y.Q.[Yan-Qiang],
An Efficient Representation-Based Subspace Clustering Framework for
Polarized Hyperspectral Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Luo, J.,
Jiao, L.,
Liu, F.,
Yang, S.,
Ma, W.,
A Pareto-Based Sparse Subspace Learning Framework,
Cyber(49), No. 11, November 2019, pp. 3859-3872.
IEEE DOI
1908
Feature extraction, Optimization, Kernel, Dimensionality reduction,
Task analysis, Linear programming, Evolutionary computation,
subspace learning
BibRef
Xue, Z.,
Du, J.,
Du, D.,
Li, G.,
Huang, Q.,
Lyu, S.,
Deep Constrained Low-Rank Subspace Learning for Multi-View
Semi-Supervised Classification,
SPLetters(26), No. 8, August 2019, pp. 1177-1181.
IEEE DOI
1908
learning (artificial intelligence), matrix decomposition,
pattern classification,
semi-supervised classification
BibRef
Yang, Z.,
Xu, Q.,
Zhang, W.,
Cao, X.,
Huang, Q.,
Split Multiplicative Multi-View Subspace Clustering,
IP(28), No. 10, October 2019, pp. 5147-5160.
IEEE DOI
1909
Clustering methods, Sparse matrices, Optimization,
Periodic structures, Information security, Computer security,
image representation
BibRef
Liu, G.,
Zhang, Z.,
Liu, Q.,
Xiong, H.,
Robust Subspace Clustering With Compressed Data,
IP(28), No. 10, October 2019, pp. 5161-5170.
IEEE DOI
1909
Sparse matrices, Image coding, Sensors, Dimensionality reduction,
Automation, Information science, Principal component analysis,
low-rankness
BibRef
Dong, W.H.[Wen-Hua],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
Sparse subspace clustering via smoothed LP minimization,
PRL(125), 2019, pp. 206-211.
Elsevier DOI
1909
Sparse subspace clustering, l minimization,
Unified formulation, Alternating Direction Method
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Discriminative clustering using regularized subspace learning,
PR(96), 2019, pp. 106982.
Elsevier DOI
1909
Discriminative clustering, Subspace learning, Unsupervised learning
BibRef
Tzelepi, M.[Maria],
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Efficient Online Subclass Knowledge Distillation for Image
Classification,
ICPR21(1007-1014)
IEEE DOI
2105
Training, Deep learning, Embedded systems, Computational modeling,
Rendering (computer graphics), Image classification
BibRef
Huang, W.T.[Wei-Tian],
Yin, M.[Ming],
Li, J.Z.[Jian-Zhong],
Xie, S.L.[Sheng-Li],
Deep Clustering via Weighted k-Subspace Network,
SPLetters(26), No. 11, November 2019, pp. 1628-1632.
IEEE DOI
1911
Feature extraction, Training, Clustering algorithms,
Signal processing algorithms, Neural networks, Decoding,
autoencoder
BibRef
Su, C.C.[Chun-Chen],
Wu, Z.Z.[Zong-Ze],
Yin, M.[Ming],
Li, K.X.[Kai-Xin],
Sun, W.J.[Wei-Jun],
Subspace clustering via independent subspace analysis network,
ICIP17(4217-4221)
IEEE DOI
1803
Clustering algorithms, Computational modeling, Data models,
Databases, Kernel, Machine learning, Task analysis,
Subspace clustering
BibRef
Jaberi, M.[Maryam],
Pensky, M.[Marianna],
Foroosh, H.[Hassan],
Sparse One-Grab Sampling with Probabilistic Guarantees,
PAMI(41), No. 12, December 2019, pp. 3057-3070.
IEEE DOI
1911
BibRef
Earlier:
Probabilistic Sparse Subspace Clustering Using Delayed Association,
ICPR18(2087-2092)
IEEE DOI
1812
Data models, Sociology, Computational modeling, Mathematical model,
Sampling methods, Iterative methods, Sampling big data,
subspace clustering.
data mining, learning (artificial intelligence), optimisation,
pattern clustering, probability, clustering subspaces,
Computer science
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Hu, Q.H.[Qing-Hua],
Cao, X.C.[Xiao-Chun],
Xie, Y.[Yuan],
Tao, D.C.[Da-Cheng],
Xu, D.[Dong],
Generalized Latent Multi-View Subspace Clustering,
PAMI(42), No. 1, January 2020, pp. 86-99.
IEEE DOI
1912
Clustering methods, Correlation, Neural networks,
Task analysis, Clustering algorithms, Minimization,
neural networks
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Liu, S.[Si],
Liu, G.,
Cao, X.C.[Xiao-Chun],
Low-Rank Tensor Constrained Multiview Subspace Clustering,
ICCV15(1582-1590)
IEEE DOI
1602
Aerospace electronics
BibRef
Li, R.H.[Rui-Huang],
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Peng, X.[Xi],
Zhou, J.T.Y.[Joey Tian-Yi],
Hu, Q.H.[Qing-Hua],
Reciprocal Multi-Layer Subspace Learning for Multi-View Clustering,
ICCV19(8171-8179)
IEEE DOI
2004
learning (artificial intelligence), optimisation,
pattern clustering, multiview clustering, high-dimensional data
BibRef
Cao, X.C.[Xiao-Chun],
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Liu, S.[Si],
Zhang, H.[Hua],
Diversity-induced Multi-view Subspace Clustering,
CVPR15(586-594)
IEEE DOI
1510
BibRef
Zhang, C.Q.[Chang-Qing],
Hu, Q.H.[Qing-Hua],
Fu, H.Z.[Hua-Zhu],
Zhu, P.,
Cao, X.C.[Xiao-Chun],
Latent Multi-view Subspace Clustering,
CVPR17(4333-4341)
IEEE DOI
1711
Clustering algorithms, Clustering methods, Erbium, Kernel,
Linear programming, Optimization, Robustness
BibRef
Chen, L.[Long],
Zhong, Z.[Zhi],
Progressive graph-based subspace transductive learning for
semi-supervised classification,
IET-IPR(13), No. 14, 12 December 2019, pp. 2753-2762.
DOI Link
1912
BibRef
Zhu, W.Q.[Wen-Qi],
Yang, S.[Shuai],
Zhu, Y.S.[Yue-Sheng],
Restricted Connection Orthogonal Matching Pursuit for Sparse Subspace
Clustering,
SPLetters(26), No. 12, December 2019, pp. 1892-1896.
IEEE DOI
2001
data analysis, iterative methods, matrix algebra,
pattern clustering, RCOMP-SSC, sparse subspace clustering,
sparse subspace clustering (SSC)
BibRef
Zhong, L.[Li],
Zhu, Y.S.[Yue-Sheng],
Luo, G.[Guibo],
A New Sparse Subspace Clustering by Rotated Orthogonal Matching
Pursuit,
ICIP18(3853-3857)
IEEE DOI
1809
Matching pursuit algorithms, Sparse matrices,
Principal component analysis, Programming, Tools,
Nonnegative Matrix Factorization
BibRef
Yan, F.[Fei],
Wang, X.D.[Xiao-Dong],
Zeng, Z.Q.[Zhi-Qiang],
Hong, C.Q.[Chao-Qun],
Adaptive multi-view subspace clustering for high-dimensional data,
PRL(130), 2020, pp. 299-305.
Elsevier DOI
2002
Subspace clustering, Multi-view clustering, Adaptive learning,
Feature selection
BibRef
Yu, E.[En],
Li, J.[Jing],
Wang, L.[Li],
Zhang, J.[Jia],
Wan, W.B.[Wen-Bo],
Sun, J.[Jiande],
Multi-Class Joint Subspace Learning for Cross-Modal Retrieval,
PRL(130), 2020, pp. 165-173.
Elsevier DOI
2002
Multi-class, Cross-modal retrieval, Subspace learning
BibRef
Xie, X.Y.[Xing-Yu],
Guo, X.L.[Xiang-Lin],
Liu, G.C.[Guang-Can],
Wang, J.[Jun],
Implicit Block Diagonal Low-Rank Representation,
IP(27), No. 1, January 2018, pp. 477-489.
IEEE DOI
1712
Clustering algorithms, Clustering methods, Convergence, Kernel,
Laplace equations, Optimization, Robustness,
nonconvex optimization
BibRef
Wan, Y.,
Zhong, Y.,
Ma, A.,
Zhang, L.,
Multi-Objective Sparse Subspace Clustering for Hyperspectral Imagery,
GeoRS(58), No. 4, April 2020, pp. 2290-2307.
IEEE DOI
2004
Sparse matrices, Optimization, Hyperspectral imaging, Dictionaries,
TV, Hyperspectral image (HSI), multi-objective optimization,
sparse subspace clustering (SSC)
BibRef
Lipor, J.[John],
Balzano, L.[Laura],
Clustering quality metrics for subspace clustering,
PR(104), 2020, pp. 107328.
Elsevier DOI
2005
Subspace clustering, Clustering validation, Union of subspaces
BibRef
Zhang, B.B.[Bing-Bing],
Wang, Q.L.[Qi-Long],
Lu, X.X.[Xiao-Xiao],
Wang, F.S.[Fa-Sheng],
Li, P.H.[Pei-Hua],
Locality-constrained affine subspace coding for image classification
and retrieval,
PR(100), 2020, pp. 107167.
Elsevier DOI
2005
BibRef
Earlier: A5, A3, A2, Only:
From dictionary of visual words to subspaces:
Locality-constrained affine subspace coding,
CVPR15(2348-2357)
IEEE DOI
1510
Bag of visual words, Locality-constrained affine subspace coding,
Image retrieval
BibRef
Xie, D.[Deyan],
Nie, F.P.[Fei-Ping],
Gao, Q.X.[Quan-Xue],
Xiao, S.[Song],
Fast algorithm for large-scale subspace clustering by LRR,
IET-IPR(14), No. 8, 19 June 2020, pp. 1475-1480.
DOI Link
2005
BibRef
Chen, Y.R.[Yue-Ru],
Kuo, C.C.J.[C.C. Jay],
PixelHop: A successive subspace learning (SSL) method for object
recognition,
JVCIR(70), 2020, pp. 102749.
Elsevier DOI
2007
Machine learning, Subspace learning
BibRef
Chen, Y.R.[Yue-Ru],
Rouhsedaghat, M.,
You, S.,
Rao, R.,
Kuo, C.C.J.[C.C. Jay],
Pixelhop++: A Small Successive-Subspace-Learning-Based (SSL-Based)
Model For Image Classification,
ICIP20(3294-3298)
IEEE DOI
2011
Transforms, Correlation, Tensile stress, Computational modeling,
Machine learning, Feature extraction,
image classification
BibRef
Tao, H.[Hong],
Hou, C.P.[Chen-Ping],
Qian, Y.H.[Yu-Hua],
Zhu, J.B.[Ju-Bo],
Yi, D.Y.[Dong-Yun],
Latent Complete Row Space Recovery for Multi-View Subspace Clustering,
IP(29), 2020, pp. 8083-8096.
IEEE DOI
2008
Clustering algorithms, Clustering methods, Video surveillance,
Sparse matrices, Tensile stress, Unsupervised learning,
row space recovery
BibRef
Shahi, K.R.[Kasra Rafiezadeh],
Khodadadzadeh, M.[Mahdi],
Tusa, L.[Laura],
Ghamisi, P.[Pedram],
Tolosana-Delgado, R.[Raimon],
Gloaguen, R.[Richard],
Hierarchical Sparse Subspace Clustering (HESSC):
An Automatic Approach for Hyperspectral Image Analysis,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Wang, J.[Jing],
Li, W.[Wen],
Cao, X.C.[Xiao-Chun],
Hu, Q.H.[Qing-Hua],
Tensorized Multi-view Subspace Representation Learning,
IJCV(128), No. 8-9, September 2020, pp. 2344-2361.
Springer DOI
2008
BibRef
Fan, R.D.[Rui-Dong],
Luo, T.J.[Ting-Jin],
Zhuge, W.Z.[Wen-Zhang],
Qiang, S.[Sheng],
Hou, C.P.[Chen-Ping],
Multi-view subspace learning via bidirectional sparsity,
PR(108), 2020, pp. 107524.
Elsevier DOI
2008
Multi-view clustering, Subspace learning,
Bidirectional sparsity, Non-convex optimization
BibRef
Wang, Q.,
Lian, H.,
Sun, G.,
Gao, Q.,
Jiao, L.,
iCmSC: Incomplete Cross-Modal Subspace Clustering,
IP(30), 2021, pp. 305-317.
IEEE DOI
2012
Correlation, Kernel, Decoding, Clustering methods,
Generative adversarial networks, Encoding,
2-norm
BibRef
Yang, L.[Liran],
Men, M.[Min],
Xue, Y.M.[Yi-Ming],
Wen, J.[Juan],
Zhong, P.[Ping],
Transfer subspace learning based on structure preservation for JPEG
image mismatched steganalysis,
SP:IC(90), 2021, pp. 116052.
Elsevier DOI
2012
Mismatch, Steganalysis, JPEG image, Transfer subspace learning,
Structure preservation
BibRef
Zheng, J.W.[Jian-Wei],
Yang, P.[Ping],
Shen, G.J.[Guo-Jiang],
Chen, S.Y.[Sheng-Yong],
Zhang, W.[Wei],
Enhanced low-rank constraint for temporal subspace clustering and its
acceleration scheme,
PR(111), 2021, pp. 107678.
Elsevier DOI
2012
Subspace clustering, Majorization-minimization,
Nonconvex surrogate function,
Randomized singular value decomposition
BibRef
Ren, J.F.[Jian-Feng],
Jiang, X.D.[Xu-Dong],
A three-step classification framework to handle complex data
distribution for radar UAV detection,
PR(111), 2021, pp. 107709.
Elsevier DOI
2012
Radar UAV detection, Micro-Doppler signature,
Greedy subspace clustering, Subspace fusion
BibRef
Wang, B.,
Hu, Y.,
Gao, J.,
Sun, Y.,
Ju, F.,
Yin, B.,
Learning Adaptive Neighborhood Graph on Grassmann Manifolds for
Video/Image-Set Subspace Clustering,
MultMed(23), 2021, pp. 216-227.
IEEE DOI
2012
Manifolds, Laplace equations, Learning systems, Videos,
Clustering methods, Streaming media,
adaptive neighborhood regularization
BibRef
Xu, Y.[Yi],
Liu, X.L.[Xiang-Long],
Wang, B.S.[Bin-Shuai],
Tao, R.S.[Ren-Shuai],
Xia, K.[Ke],
Cao, X.B.[Xian-Bin],
Fast Nearest Subspace Search via Random Angular Hashing,
MultMed(23), 2021, pp. 342-352.
IEEE DOI
2012
Large-scale search, nearest subspace search,
locality-sensitive hash, linear subspace, subspace hashing
BibRef
Xing, L.[Lei],
Chen, B.D.[Ba-Dong],
Wang, J.J.[Jian-Ji],
Du, S.Y.[Shao-Yi],
Cao, J.W.[Jiu-Wen],
Robust High-Order Manifold Constrained Low Rank Representation for
Subspace Clustering,
CirSysVideo(31), No. 2, February 2021, pp. 533-545.
IEEE DOI
2102
Manifolds, Kernel, Laplace equations, Robustness,
Iterative methods, Dictionaries, Low rank representation (LRR),
robustness
BibRef
Liu, H.[Hui],
Wang, J.K.[Jin-Ke],
Guo, D.M.[Dong-Mei],
Fu, Y.Q.[Ya-Qing],
Chen, S.[Song],
Liu, S.[Shuang],
Dan, G.[Guo],
Robust subspace clustering based on inter-cluster correlation
reduction by low rank representation,
SP:IC(93), 2021, pp. 116137.
Elsevier DOI
2103
Subspace clustering, Inter-cluster correlation, Low rank model, Preprocessing
BibRef
Peng, C.[Chong],
Zhang, Q.[Qian],
Kang, Z.[Zhao],
Chen, C.L.[Cheng-Lizhao],
Cheng, Q.[Qiang],
Kernel two-dimensional ridge regression for subspace clustering,
PR(113), 2021, pp. 107749.
Elsevier DOI
2103
Subspace clustering, Ridge regression, 2-dimensional, Kernel
BibRef
Yang, S.,
Zhang, L.,
He, X.,
Yi, Z.,
Learning Manifold Structures With Subspace Segmentations,
Cyber(51), No. 4, April 2021, pp. 1981-1992.
IEEE DOI
2103
Clustering algorithms, Machine learning algorithms, Manifolds,
Feature extraction, Linear programming, Dimensionality reduction,
non-negative matrix factorization (NMF)
BibRef
Paul, D.[Dipanjyoti],
Saha, S.[Sriparna],
Kumar, A.[Abhishek],
Mathew, J.[Jimson],
Evolutionary multi-objective optimization based overlapping subspace
clustering,
PRL(145), 2021, pp. 208-215.
Elsevier DOI
2104
Subspace clustering, Multi-objective optimization, ICC-index,
PSM-index, MNR-index
BibRef
Mitra, S.[Sayantan],
Saha, S.[Sriparna],
A Multi-task Multi-view based Multi-objective Clustering Algorithm,
ICPR21(4720-4727)
IEEE DOI
2105
Clustering algorithms, Classification algorithms,
Indexes, Task analysis, Optimization,
Cluster validity index
BibRef
Xu, J.H.[Jin-Huan],
Xiao, L.[Liang],
Yang, J.X.[Jing-Xiang],
Unified Low-Rank Subspace Clustering with Dynamic Hypergraph for
Hyperspectral Image,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Cai, Y.M.[Yao-Ming],
Zhang, Z.J.[Zi-Jia],
Cai, Z.H.[Zhi-Hua],
Liu, X.B.[Xiao-Bo],
Jiang, X.W.[Xin-Wei],
Yan, Q.[Qin],
Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image,
GeoRS(59), No. 5, May 2021, pp. 4191-4202.
IEEE DOI
2104
Convolution, Data models, Robustness, Kernel, Sparse matrices, Geology,
Atmospheric modeling, Graph convolutional networks (GCNs),
subspace clustering
BibRef
Cao, Y.[Yun],
Mei, J.[Jie],
Wang, Y.B.[Yue-Bin],
Zhang, L.Q.[Li-Qiang],
Peng, J.H.[Jun-Huan],
Zhang, B.[Bing],
Li, L.H.[Li-Hua],
Zheng, Y.[Yibo],
SLCRF: Subspace Learning With Conditional Random Field for
Hyperspectral Image Classification,
GeoRS(59), No. 5, May 2021, pp. 4203-4217.
IEEE DOI
2104
Linear programming, Training, Decoding, Hyperspectral imaging,
Data models, Conditional random field (CRF),
subspace learning (SL)
BibRef
Hong, D.F.[Dan-Feng],
Kang, J.[Jian],
Yokoya, N.[Naoto],
Chanussot, J.[Jocelyn],
Graph-Induced Aligned Learning on Subspaces for Hyperspectral and
Multispectral Data,
GeoRS(59), No. 5, May 2021, pp. 4407-4418.
IEEE DOI
2104
Task analysis, Training, Kernel, Hyperspectral imaging, Manifolds,
Cross-modality, fusion, graph learning, hyperspectral (HS),
subspace learning
BibRef
Wu, Z.Z.[Zong-Ze],
Su, C.C.[Chun-Chen],
Yin, M.[Ming],
Ren, Z.G.[Zhi-Gang],
Xie, S.L.[Sheng-Li],
Subspace clustering via stacked independent subspace analysis
networks with sparse prior information,
PRL(146), 2021, pp. 165-171.
Elsevier DOI
2105
Subspace clustering, Independent subspace analysis,
Low-dimensional representation, Feature selection
BibRef
Lv, J.C.[Jun-Cheng],
Kang, Z.[Zhao],
Lu, X.[Xiao],
Xu, Z.L.[Zeng-Lin],
Pseudo-Supervised Deep Subspace Clustering,
IP(30), 2021, pp. 5252-5263.
IEEE DOI
2106
Training, Image reconstruction, Clustering methods, Decoding,
Manifolds, Task analysis, Robustness, Subspace clustering,
pseudo-supervision
BibRef
Liu, N.[Ning],
Lai, Z.H.[Zhi-Hui],
Li, X.C.[Xue-Chen],
Chen, Y.D.[Yu-Dong],
Mo, D.M.[Dong-Mei],
Kong, H.[Heng],
Shen, L.L.[Lin-Lin],
Locality Preserving Robust Regression for Jointly Sparse Subspace
Learning,
CirSysVideo(31), No. 6, June 2021, pp. 2274-2287.
IEEE DOI
2106
Robustness, Feature extraction, Learning systems,
Dimensionality reduction, Iterative methods, Training,
subspace learning
BibRef
Wu, F.F.[Fang-Fang],
Yuan, P.[Peng],
Shi, G.M.[Guang-Ming],
Li, X.[Xin],
Dong, W.S.[Wei-Sheng],
Wu, J.J.[Jin-Jian],
Robust subspace clustering network with dual-domain regularization,
PRL(149), 2021, pp. 44-50.
Elsevier DOI
2108
Deep subspace clustering, Self-expressive clustering,
Self-supervised clustering, Robust clustering, Dual domain regularization
BibRef
Xu, Y.[Yesong],
Chen, S.[Shuo],
Li, J.[Jun],
Luo, L.[Lei],
Yang, J.[Jian],
Learnable low-rank latent dictionary for subspace clustering,
PR(120), 2021, pp. 108142.
Elsevier DOI
2109
Subspace clustering, Low-rank, Feature extraction, Block diagonal representation
BibRef
Si, X.M.[Xiao-Meng],
Yin, Q.Y.[Qi-Yue],
Zhao, X.J.[Xiao-Jie],
Yao, L.[Li],
Consistent and diverse multi-View subspace clustering with structure
constraint,
PR(121), 2022, pp. 108196.
Elsevier DOI
2109
Subspace self-representation, Multi-view clustering,
Consistency, Diversity, Clustering structure
BibRef
Chakraborty, R.[Rudrasis],
Yang, L.[Liu],
Hauberg, S.[Sřren],
Vemuri, B.C.[Baba C.],
Intrinsic Grassmann Averages for Online Linear, Robust and Nonlinear
Subspace Learning,
PAMI(43), No. 11, November 2021, pp. 3904-3917.
IEEE DOI
2110
BibRef
Earlier: A1, A3, A4, Only:
Intrinsic Grassmann Averages for Online Linear and Robust Subspace
Learning,
CVPR17(801-809)
IEEE DOI
1711
Principal component analysis, Kernel, Approximation algorithms,
Manifolds, Distributed databases, Sparse matrices, Convergence,
fréchet median.
Algorithm design and analysis, Distributed databases, Estimation,
Optimization, Robustness
BibRef
Ye, X.L.[Xu-Lun],
Luo, S.H.[Shu-Hui],
Zhao, J.Y.[Jie-Yu],
Deep Bayesian Sparse Subspace Clustering,
SPLetters(28), 2021, pp. 1888-1892.
IEEE DOI
2110
Bayes methods, Clustering methods, Clustering algorithms,
Task analysis, Laplace equations, Kernel, Inference algorithms,
Bayesian learning
BibRef
An, J.[Jing],
Liu, X.X.[Xiao-Xia],
Shi, M.[Mei],
Guo, J.[Jun],
Gong, X.Q.[Xiao-Qing],
Li, Z.H.[Zhi-Hui],
Weighted multi-view common subspace learning method,
PRL(151), 2021, pp. 355-361.
Elsevier DOI
2110
Weighted parameter, Multi-view learning,
Common subspace learning, Supervised learning
BibRef
Wang, H.B.[Hui-Bing],
Wang, Y.[Yang],
Zhang, Z.[Zhao],
Fu, X.P.[Xian-Ping],
Zhuo, L.[Li],
Xu, M.L.[Ming-Liang],
Wang, M.[Meng],
Kernelized Multiview Subspace Analysis By Self-Weighted Learning,
MultMed(23), 2021, pp. 3828-3840.
IEEE DOI
2110
Kernel, Dimensionality reduction, Sparse matrices, Correlation,
Optimization, Laplace equations, Image retrieval, Co-regularized,
self-weighted
BibRef
Wang, Q.Q.[Qian-Qian],
Cheng, J.F.[Jia-Feng],
Gao, Q.X.[Quan-Xue],
Zhao, G.S.[Guo-Shuai],
Jiao, L.C.[Li-Cheng],
Deep Multi-View Subspace Clustering With Unified and Discriminative
Learning,
MultMed(23), 2021, pp. 3483-3493.
IEEE DOI
2110
Clustering methods, Correlation, Decoding, Feature extraction,
Intserv networks, Convolution, Databases, Multi-view clustering,
discriminative learning
BibRef
Zhao, L.[Liang],
Zhang, J.[Jie],
Wang, Q.H.[Qiu-Hao],
Chen, Z.K.[Zhi-Kui],
Dual Alignment Self-Supervised Incomplete Multi-View Subspace
Clustering Network,
SPLetters(28), 2021, pp. 2122-2126.
IEEE DOI
2112
Data models, Manifolds, Kernel, Decoding, Clustering algorithms,
Software, Semantics, Incomplete multi-view clustering,
auto-encoders
BibRef
Yuan, X.[Xu],
Gu, S.K.[Shao-Kui],
Liu, Z.J.[Zhen-Jiao],
Zhao, L.[Liang],
Mining Multi-View Clustering Space With Interpretable Space Search
Constraint,
SPLetters(30), 2023, pp. 1422-1426.
IEEE DOI
2310
BibRef
Chen, Z.K.[Zhi-Kui],
Li, Y.[Yue],
Lou, K.[Kai],
Zhao, L.[Liang],
Incomplete Multi-View Clustering With Complete View Guidance,
SPLetters(30), 2023, pp. 1247-1251.
IEEE DOI
2310
BibRef
Wang, S.W.[Si-Wei],
Liu, X.W.[Xin-Wang],
Zhu, X.Z.[Xin-Zhong],
Zhang, P.[Pei],
Zhang, Y.[Yi],
Gao, F.[Feng],
Zhu, E.[En],
Fast Parameter-Free Multi-View Subspace Clustering With Consensus
Anchor Guidance,
IP(31), 2022, pp. 556-568.
IEEE DOI
2112
Clustering algorithms, Time complexity, Optimization,
Matrix decomposition, Symmetric matrices, Convergence,
multiple view clustering
BibRef
Ma, H.M.[Hui-Min],
Wang, S.W.[Si-Wei],
Zhang, J.[Junpu],
Yu, S.J.[Sheng-Ju],
Liu, S.Y.[Su-Yuan],
Liu, X.W.[Xin-Wang],
He, K.L.[Kun-Lun],
Symmetric Multi-View Subspace Clustering With Automatic Neighbor
Discovery,
CirSysVideo(34), No. 9, September 2024, pp. 8766-8778.
IEEE DOI
2410
Symmetric matrices, Optimization, Task analysis, Laplace equations,
Kernel, Circuits and systems, Vectors,
automatic neighbor discovery
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Peng, C.[Chong],
Hua, Z.Y.[Zhong-Yun],
Zhou, Y.C.[Yi-Cong],
Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View
Subspace Clustering,
IP(30), 2021, pp. 4022-4035.
IEEE DOI
2104
Tensors, Correlation, Sparse matrices, Clustering methods,
Task analysis, Estimation, Pairwise error probability,
subspace clustering
See also Jointly Learning Kernel Representation Tensor and Affinity Matrix for Multi-View Clustering.
BibRef
Fu, L.[Lele],
Chen, Z.L.[Zhao-Liang],
Chen, Y.Y.[Yong-Yong],
Wang, S.P.[Shi-Ping],
Unified Low-Rank Tensor Learning and Spectral Embedding for
Multi-View Subspace Clustering,
MultMed(25), 2023, pp. 4972-4985.
IEEE DOI
2311
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Xiao, X.L.[Xiao-Lin],
Liu, Y.F.[You-Fa],
Hua, Z.Y.[Zhong-Yun],
Zhou, Y.C.[Yi-Cong],
Self-Paced Enhanced Low-Rank Tensor Kernelized Multi-View Subspace
Clustering,
MultMed(24), 2022, pp. 4054-4066.
IEEE DOI
2208
Tensors, Kernel, Streaming media, Feature extraction, Videos,
Reliability, Clustering methods, Multi-view clustering,
self-paced learning
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Peng, C.[Chong],
Lu, G.M.[Guang-Ming],
Zhou, Y.C.[Yi-Cong],
Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering,
CirSysVideo(32), No. 1, January 2022, pp. 92-104.
IEEE DOI
2201
Tensors, Matrix decomposition, Clustering methods,
Adaptation models, Correlation, Clustering algorithms, graph learning
BibRef
Kang, K.[Kehan],
Chen, C.[Chenglizhao],
Peng, C.[Chong],
Consensus Low-Rank Multi-View Subspace Clustering With Cross-View
Diversity Preserving,
SPLetters(30), 2023, pp. 1512-1516.
IEEE DOI
2311
BibRef
Wang, S.Q.[Shu-Qin],
Lin, Z.P.[Zhi-Ping],
Cao, Q.[Qi],
Cen, Y.G.[Yi-Gang],
Chen, Y.Y.[Yong-Yong],
Bi-Nuclear Tensor Schatten-p Norm Minimization for Multi-View
Subspace Clustering,
IP(32), 2023, pp. 4059-4072.
IEEE DOI
2307
Tensors, Clustering methods, Correlation, Minimization, Estimation,
Computational complexity, Optimization,
Schatten-p norm
BibRef
Wang, S.Q.[Shu-Qin],
Chen, Y.Y.[Yong-Yong],
Cen, Y.G.[Yi-Gang],
Zhang, L.[Linna],
Voronin, V.[Viacheslav],
Low-Rank and Sparse Tensor Representation for Multi-View Subspace
Clustering,
ICIP21(1534-1538)
IEEE DOI
2201
Tensors, Image processing, Clustering methods, Convex functions,
Sparse matrices, Optimization, Multi-view clustering,
sparse constraint.
BibRef
Li, Z.L.[Zheng-Lai],
Tang, C.[Chang],
Zheng, X.[Xiao],
Liu, X.W.[Xin-Wang],
Zhang, W.[Wei],
Zhu, E.[En],
High-Order Correlation Preserved Incomplete Multi-View Subspace
Clustering,
IP(31), 2022, pp. 2067-2080.
IEEE DOI
2203
Correlation, Tensors, Task analysis, Optimization, Kernel,
Image reconstruction, Sparse matrices,
missing view imputation
BibRef
Mehrbani, E.[Eysan],
Kahaei, M.H.[Mohammad Hossein],
Beheshti, S.A.[Seyed Aliasghar],
Tensor Laplacian Regularized Low-Rank Representation for
Non-Uniformly Distributed Data Subspace Clustering,
SPLetters(29), 2022, pp. 612-616.
IEEE DOI
2203
Tensors, Optimization, Image reconstruction, Laplace equations,
Data structures, Geometry, Data models, Clustering, low rank, tensors
BibRef
Li, Z.Z.[Zi-Zhuo],
Ma, Y.[Yong],
Mei, X.G.[Xiao-Guang],
Huang, J.[Jun],
Ma, J.Y.[Jia-Yi],
Guided neighborhood affine subspace embedding for feature matching,
PR(124), 2022, pp. 108489.
Elsevier DOI
2203
Feature matching, Image correspondence,
Neighborhood affine subspace, Multi-scale, Outlier, Mismatch removal
BibRef
Wan, M.H.[Ming-Hua],
Yao, Y.[Yu],
Zhan, T.M.[Tian-Ming],
Yang, G.W.[Guo-Wei],
Supervised Low-Rank Embedded Regression (SLRER) for Robust Subspace
Learning,
CirSysVideo(32), No. 4, April 2022, pp. 1917-1927.
IEEE DOI
2204
Manifold learning, Feature extraction, Matrix decomposition,
Linear programming, Sparse matrices, 1-norm
BibRef
Peng, Z.H.[Zhi-Hao],
Jia, Y.H.[Yu-Heng],
Liu, H.[Hui],
Hou, J.H.[Jun-Hui],
Zhang, Q.F.[Qing-Fu],
Maximum Entropy Subspace Clustering Network,
CirSysVideo(32), No. 4, April 2022, pp. 2199-2210.
IEEE DOI
2204
Sparse matrices, Couplings, Decoding, Clustering methods, Entropy,
Kernel, Training, Deep learning, subspace clustering, decoupling
BibRef
Sun, M.J.[Meng-Jing],
Wang, S.W.[Si-Wei],
Zhang, P.[Pei],
Liu, X.W.[Xin-Wang],
Guo, X.F.[Xi-Feng],
Zhou, S.H.[Si-Hang],
Zhu, E.[En],
Projective Multiple Kernel Subspace Clustering,
MultMed(24), 2022, pp. 2567-2579.
IEEE DOI
2205
Kernel, Optimization, Clustering algorithms, Integrated circuits,
Hilbert space, Redundancy, Clustering methods, Kernel clustering,
multi-view information fusion
BibRef
Peng, Z.H.[Zhi-Hao],
Liu, H.[Hui],
Jia, Y.H.[Yu-Heng],
Hou, J.H.[Jun-Hui],
Adaptive Attribute and Structure Subspace Clustering Network,
IP(31), 2022, pp. 3430-3439.
IEEE DOI
2205
Feature extraction, Decoding, Kernel, Data mining, Adaptive systems,
Symmetric matrices, Sparse matrices, Deep learning,
structure information
BibRef
Lan, M.C.[Meng-Cheng],
Meng, M.[Min],
Yu, J.[Jun],
Wu, J.G.[Ji-Gang],
Generalized Multi-View Collaborative Subspace Clustering,
CirSysVideo(32), No. 6, June 2022, pp. 3561-3574.
IEEE DOI
2206
Collaboration, Correlation, Tensors, Task analysis, Optimization,
Linear programming, Deep learning, Multi-view clustering,
low-rank representation
BibRef
Qin, Y.[Yalan],
Wu, H.Z.[Han-Zhou],
Zhao, J.[Jian],
Feng, G.R.[Guo-Rui],
Enforced block diagonal subspace clustering with closed form solution,
PR(130), 2022, pp. 108791.
Elsevier DOI
2206
Subspace clustering, General form, Analytical, Nonnegative, Symmetrical solution
BibRef
Hotta, K.[Katsuya],
Xie, H.R.[Hao-Ran],
Zhang, C.[Chao],
Component-based nearest neighbour subspace clustering,
IET-IPR(16), No. 10, 2022, pp. 2697-2708.
DOI Link
2207
BibRef
Zhou, J.H.[Jian-Hang],
Zhang, B.[Bob],
Zeng, S.N.[Shao-Ning],
Lai, Q.[Qi],
Joint Discriminative Latent Subspace Learning for Image
Classification,
CirSysVideo(32), No. 7, July 2022, pp. 4653-4666.
IEEE DOI
2207
Image reconstruction, Deep learning, Image classification,
Training, Linear programming, Image representation,
data representation
BibRef
Tang, Y.Q.[Yong-Qiang],
Xie, Y.[Yuan],
Zhang, C.Y.[Chen-Yang],
Zhang, W.[Wensheng],
Constrained Tensor Representation Learning for Multi-View
Semi-Supervised Subspace Clustering,
MultMed(24), 2022, pp. 3920-3933.
IEEE DOI
2208
Representation learning, Tensors, Correlation,
Clustering algorithms, Minimization, Task analysis, Optimization,
tensor singular value decomposition (t-SVD)
BibRef
Kang, Z.[Zhao],
Lin, Z.P.[Zhi-Ping],
Zhu, X.F.[Xiao-Feng],
Xu, W.B.[Wen-Bo],
Structured Graph Learning for Scalable Subspace Clustering:
From Single View to Multiview,
Cyber(52), No. 9, September 2022, pp. 8976-8986.
IEEE DOI
2208
Bipartite graph, Clustering methods, Periodic structures,
Laplace equations, Clustering algorithms, Videos, Training,
subspace clustering
BibRef
Chen, Q.[Qiang],
Zhao, X.W.[Xiao-Wei],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Fast Adaptive Local Subspace Learning With Regressive Regularization,
SPLetters(29), 2022, pp. 1759-1763.
IEEE DOI
2208
Adaptation models, Dimensionality reduction,
Signal processing algorithms, Data models, Optics, Entropy,
regressive regularization
BibRef
Jiang, M.X.[Meng-Xi],
Zhou, S.H.[Shi-Hao],
Li, C.[Cuihua],
Lei, Y.Q.[Yun-Qi],
JSL3d: Joint subspace learning with implicit structure supervision
for 3D pose estimation,
PR(132), 2022, pp. 108965.
Elsevier DOI
2209
BibRef
Zheng, Q.H.[Qing-Hai],
Large-Scale Multi-View Clustering via Fast Essential Subspace
Representation Learning,
SPLetters(29), 2022, pp. 1893-1897.
IEEE DOI
2209
Signal processing algorithms, Optimization, Costs,
Representation learning, Time complexity, Clustering algorithms,
linear computational complexity
BibRef
Liu, Q.L.[Qi-Liang],
Huan, W.H.[Wei-Hua],
Deng, M.[Min],
A Method with Adaptive Graphs to Constrain Multi-View Subspace
Clustering of Geospatial Big Data from Multiple Sources,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Cai, J.[Jinyu],
Fan, J.[Jicong],
Guo, W.Z.[Wen-Zhong],
Wang, S.P.[Shi-Ping],
Zhang, Y.H.[Yun-He],
Zhang, Z.[Zhao],
Efficient Deep Embedded Subspace Clustering,
CVPR22(21-30)
IEEE DOI
2210
Deep learning, Representation learning, Clustering methods,
Refining, Neural networks, Real-time systems, Machine learning,
Self- semi- meta- unsupervised learning
BibRef
Zhang, M.Y.[Meng-Yuan],
Liu, K.[Kai],
Enriched Robust Multi-View Kernel Subspace Clustering,
WiCV22(1992-2001)
IEEE DOI
2210
Clustering methods, Optimization methods,
Benchmark testing, Iterative methods, Kernel
BibRef
Chen, J.[Jie],
Yang, S.X.[Sheng-Xiang],
Mao, H.[Hua],
Fahy, C.[Conor],
Multiview Subspace Clustering Using Low-Rank Representation,
Cyber(52), No. 11, November 2022, pp. 12364-12378.
IEEE DOI
2211
Data models, Symmetric matrices, Probabilistic logic,
Feature extraction, Clustering algorithms, Adaptation models,
subspace clustering
BibRef
Zhao, J.B.[Jin-Biao],
Lu, G.F.[Gui-Fu],
Clean affinity matrix learning with rank equality constraint for
multi-view subspace clustering,
PR(134), 2023, pp. 109118.
Elsevier DOI
2212
Low-rank representation, Robust principal component analysis,
Outliers value, Affinity matrix, Low-rank matrix decomposition
BibRef
Cai, B.[Bing],
Lu, G.F.[Gui-Fu],
Yao, L.[Liang],
Li, H.[Hua],
High-order manifold regularized multi-view subspace clustering with
robust affinity matrices and weighted TNN,
PR(134), 2023, pp. 109067.
Elsevier DOI
2212
High-order manifold regularization, Robust affinity matrices,
Multi-view subspace clustering, Weighted TNN
BibRef
Guo, J.P.[Ji-Peng],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Multi-Attribute Subspace Clustering via Auto-Weighted Tensor Nuclear
Norm Minimization,
IP(31), 2022, pp. 7191-7205.
IEEE DOI
2212
Tensors, Optimization, Minimization, Correlation, Clustering methods,
Task analysis, Sun, Subspace clustering, auto-weighted tensor nuclear norm
BibRef
Guo, J.P.[Ji-Peng],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Logarithmic Schatten-p Norm Minimization for Tensorial Multi-View
Subspace Clustering,
PAMI(45), No. 3, March 2023, pp. 3396-3410.
IEEE DOI
2302
Tensors, Correlation, Clustering algorithms, Task analysis, Sun,
Periodic structures, Minimization, Convergence guarantees
BibRef
Xu, Y.[Yesong],
Chen, S.[Shuo],
Li, J.[Jun],
Xu, C.Y.[Chun-Yan],
Yang, J.[Jian],
Fast subspace clustering by learning projective block diagonal
representation,
PR(135), 2023, pp. 109152.
Elsevier DOI
2212
Subspace clustering, Block diagonal representation, Large-scale data
BibRef
Li, Y.X.[Yu-Xuan],
Li, X.[Xiang],
Yang, J.[Jian],
Spatial Group-wise Enhance: Enhancing Semantic Feature Learning in CNN,
ACCV22(V:316-332).
Springer DOI
2307
BibRef
Tan, C.[Chao],
Chen, S.[Sheng],
Geng, X.[Xin],
Ji, G.[Genlin],
A Novel Label Enhancement Algorithm Based on Manifold Learning,
PR(135), 2023, pp. 109189.
Elsevier DOI
2212
Multi-label learning, Label enhancement,
Incremental subspace learning, Label propagation, Conditional random field
BibRef
Qin, Y.L.[Ya-Lan],
Zhang, X.P.[Xin-Peng],
Shen, L.Q.[Li-Quan],
Feng, G.R.[Guo-Rui],
Maximum Block Energy Guided Robust Subspace Clustering,
PAMI(45), No. 2, February 2023, pp. 2652-2659.
IEEE DOI
2301
Principal component analysis, Machine learning algorithms,
Machine learning, Geometry, Clustering algorithms, iterative algorithm
BibRef
Shi, Z.Y.[Zhao-Yin],
Chen, L.[Long],
Chen, G.Y.[Guang-Yong],
Zhao, K.[Kai],
Chen, C.L.P.[C. L. Philip],
Manifold Enhanced 2-D Fuzzy Subspace Clustering for Image Data,
SMCS(53), No. 2, February 2023, pp. 741-752.
IEEE DOI
2301
Feature extraction, Manifolds, Clustering methods,
Computational modeling, Prototypes, Clustering algorithms,
two-dimensional (2-D) feature extraction
BibRef
Wu, H.J.[Hong-Jie],
Huang, S.D.[Shu-Dong],
Tang, C.W.[Chen-Wei],
Zhang, Y.C.[Yan-Cheng],
Lv, J.C.[Jian-Cheng],
Pure graph-guided multi-view subspace clustering,
PR(136), 2023, pp. 109187.
Elsevier DOI
2301
Multi-view learning, Subspace clustering, Graph learning, Pure graph
BibRef
Jia, H.J.[Hong-Jie],
Zhu, D.X.[Dong-Xia],
Huang, L.X.[Long-Xia],
Mao, Q.[Qirong],
Wang, L.J.[Liang-Jun],
Song, H.P.[He-Ping],
Global and local structure preserving nonnegative subspace clustering,
PR(138), 2023, pp. 109388.
Elsevier DOI
2303
Subspace clustering, Global structure, Local structure,
Nonnegative Lagrangian relaxation, Kernel clustering
BibRef
Lin, Y.L.[Yi-Ling],
Lai, Z.H.[Zhi-Hui],
Zhou, J.[Jie],
Wen, J.J.[Jia-Jun],
Kong, H.[Heng],
Multiview Jointly Sparse Discriminant Common Subspace Learning,
PR(138), 2023, pp. 109342.
Elsevier DOI
2303
Feature extraction, Small-class problem,
Multiview classification, Discriminant common-space learning
BibRef
Wang, L.[Libin],
Wang, Y.L.[Yu-Long],
Deng, H.[Hao],
Chen, H.[Hong],
Attention reweighted sparse subspace clustering,
PR(139), 2023, pp. 109438.
Elsevier DOI
2304
Subspace clustering, Sparse, Robust representation
BibRef
Lu, Y.[Yuwu],
Wong, W.K.[Wai Keung],
Zeng, B.Q.[Bi-Qing],
Lai, Z.H.[Zhi-Hui],
Li, X.L.[Xue-Long],
Guided Discrimination and Correlation Subspace Learning for Domain
Adaptation,
IP(32), 2023, pp. 2017-2032.
IEEE DOI
2304
Correlation, Task analysis, Image classification,
Artificial intelligence, Transfer learning
BibRef
Cao, L.[Lei],
Shi, L.[Long],
Wang, J.[Jun],
Yang, Z.D.[Zhen-Dong],
Chen, B.D.[Ba-Dong],
Robust Subspace Clustering by Logarithmic Hyperbolic Cosine Function,
SPLetters(30), 2023, pp. 508-512.
IEEE DOI
2305
Clustering algorithms, Signal processing algorithms,
Sparse matrices, Convergence, Behavioral sciences, Robustness,
subspace clustering
BibRef
Tang, Y.Q.[Yong-Qiang],
Xie, Y.[Yuan],
Zhang, W.[Wensheng],
Affine Subspace Robust Low-Rank Self-Representation:
From Matrix to Tensor,
PAMI(45), No. 8, August 2023, pp. 9357-9373.
IEEE DOI
2307
Tensors, Sparse matrices, Task analysis, Motion segmentation,
Clustering methods, Automation, System identification,
subspace clustering
BibRef
Zhao, Y.P.[Yin-Ping],
Dai, X.F.[Xiang-Feng],
Wang, Z.[Zhen],
Li, X.L.[Xue-Long],
Subspace Clustering via Adaptive Non-Negative Representation Learning
and Its Application to Image Segmentation,
CirSysVideo(33), No. 8, August 2023, pp. 4177-4189.
IEEE DOI
2308
Sparse matrices, Representation learning, Laplace equations, Optimization,
Image segmentation, Data models, Clustering methods, graph learning
BibRef
Fang, M.Z.[Meng-Zhu],
Gao, W.[Wei],
Feng, Z.[Zirui],
Deep robust multi-channel learning subspace clustering networks,
IVC(137), 2023, pp. 104769.
Elsevier DOI
2309
Subspace clustering, Deep networks, Unsupervised learning,
Multi-channel learning, Convolutional auto-encoder, Feature extraction
BibRef
Wang, S.Q.[Shu-Qin],
Chen, Y.Y.[Yong-Yong],
Lin, Z.P.[Zhi-Ping],
Cen, Y.G.[Yi-Gang],
Cao, Q.[Qi],
Robustness Meets Low-Rankness: Unified Entropy and Tensor Learning
for Multi-View Subspace Clustering,
CirSysVideo(33), No. 11, November 2023, pp. 6302-6316.
IEEE DOI
2311
BibRef
Shen, Q.Q.[Qiang-Qiang],
Yi, S.[Shuangyan],
Liang, Y.S.[Yong-Sheng],
Chen, Y.Y.[Yong-Yong],
Liu, W.[Wei],
Bilateral Fast Low-Rank Representation With Equivalent Transformation
for Subspace Clustering,
MultMed(25), 2023, pp. 6371-6383.
IEEE DOI
2311
BibRef
Wang, F.S.[Fu-Sheng],
Chen, C.L.Z.[Cheng-Li-Zhao],
Peng, C.[Chong],
Essential Low-Rank Sample Learning for Group-Aware Subspace
Clustering,
SPLetters(30), 2023, pp. 1537-1541.
IEEE DOI
2311
BibRef
Chen, Z.[Zhe],
Wu, X.J.[Xiao-Jun],
Xu, T.Y.[Tian-Yang],
Kittler, J.V.[Josef V.],
Fast Self-Guided Multi-View Subspace Clustering,
IP(32), 2023, pp. 6514-6525.
IEEE DOI Code:
WWW Link.
2312
BibRef
Du, Y.F.[Yang-Fan],
Lu, G.F.[Gui-Fu],
Ji, G.[Guangyan],
Robust Least Squares Regression for Subspace Clustering:
A Multi-View Clustering Perspective,
IP(33), 2024, pp. 216-227.
IEEE DOI
2312
BibRef
Zhang, H.[Hengmin],
Li, S.Y.[Shu-Yi],
Qiu, J.[Jing],
Tang, Y.[Yang],
Wen, J.[Jie],
Zha, Z.Y.[Zhi-Yuan],
Wen, B.[Bihan],
Efficient and Effective Nonconvex Low-Rank Subspace Clustering via
SVT-Free Operators,
CirSysVideo(33), No. 12, December 2023, pp. 7515-7529.
IEEE DOI
2312
BibRef
Long, Z.[Zhen],
Zhu, C.[Ce],
Chen, J.[Jie],
Li, Z.H.[Zi-Han],
Ren, Y.Z.[Ya-Zhou],
Liu, Y.P.[Yi-Peng],
Multi-View MERA Subspace Clustering,
MultMed(26), 2024, pp. 3102-3112.
IEEE DOI
2402
Tensors, Correlation, Matrix decomposition, Clustering algorithms,
Task analysis, Sparse matrices, Singular value decomposition,
self-representation learning
BibRef
Fu, H.Y.[Hong-Yu],
Yang, Y.J.[Yi-Jing],
Mishra, V.K.[Vinod K.],
Kuo, C.-.C.J.[C.-C. Jay],
Subspace learning machine (SLM):
Methodology and performance evaluation,
JVCIR(98), 2024, pp. 104058.
Elsevier DOI
2402
Machine learning, Subspace learning, Classification, Regression
BibRef
Cai, L.P.[Li-Peng],
Shi, J.[Jun],
Du, S.[Shaoyi],
Gao, Y.[Yue],
Ying, S.H.[Shi-Hui],
Self-adaptive subspace representation from a geometric intuition,
PR(149), 2024, pp. 110228.
Elsevier DOI
2403
Subspace learning, Grassmannian manifold, Geometric model, Intrinsic algorithm
BibRef
Zhang, X.Q.[Xiao-Qian],
Zhao, S.[Shuai],
Wang, J.[Jing],
Guo, L.[Li],
Wang, X.[Xiao],
Sun, H.[Huaijiang],
Purity-Preserving Kernel Tensor Low-Rank Learning for Robust Subspace
Clustering,
CirSysVideo(34), No. 3, March 2024, pp. 1900-1913.
IEEE DOI
2403
Kernel, Tensors, Clustering algorithms, Clustering methods,
Hilbert space, Task analysis, Sparse matrices, noise segregation
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Zhao, Y.P.[Yin-Ping],
Chen, C.L.P.[C. L. Philip],
Double Discrete Cosine Transform-Oriented Multi-View Subspace
Clustering,
IP(33), 2024, pp. 2491-2501.
IEEE DOI
2404
Tensors, Discrete Fourier transforms, Discrete cosine transforms,
Matrix decomposition, Correlation, Clustering methods,
discrete cosine transform
BibRef
Feng, W.[Wenyi],
Wang, Z.[Zhe],
Xiao, T.[Ting],
Yang, M.[Mengping],
Adaptive weighted dictionary representation using anchor graph for
subspace clustering,
PR(151), 2024, pp. 110350.
Elsevier DOI
2404
Dictionary representation, Subspace clustering, Anchor graph,
Projection learning
BibRef
Xu, Y.[Yesong],
Hu, P.[Ping],
Dai, J.[Jiashu],
Yan, N.[Nan],
Wang, J.[Jun],
Sparseness and Correntropy-Based Block Diagonal Representation for
Robust Subspace Clustering,
SPLetters(31), 2024, pp. 1154-1158.
IEEE DOI
2405
Noise, Sparse matrices, Robustness, Clustering algorithms, Vectors,
Optimization, Minimization, Block diagonal representation, noise
BibRef
Wang, Y.B.[Yang-Bo],
Zhou, J.[Jie],
Lu, J.L.[Jiang-Lin],
Wan, J.[Jun],
Gao, C.[Can],
Lin, Q.S.[Qing-Shui],
Robust Self-expression Learning with Adaptive Noise Perception,
PR(155), 2024, pp. 110695.
Elsevier DOI
2408
Self-expression, Noise perception, Representation learning, Subspace clustering
BibRef
Liu, K.[Kangdao],
Xiao, X.L.[Xiao-Lin],
You, J.[Jinkun],
Zhou, Y.C.[Yi-Cong],
Robust Discriminative t-Linear Subspace Learning for Image Feature
Extraction,
CirSysVideo(34), No. 8, August 2024, pp. 7315-7327.
IEEE DOI
2408
Tensors, Feature extraction, Correlation, Vectors, Learning systems,
Dimensionality reduction, Image reconstruction, t-product
BibRef
Chang, W.[Wei],
Chen, H.M.[Hui-Min],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Tensorized and Compressed Multi-View Subspace Clustering via
Structured Constraint,
PAMI(46), No. 12, December 2024, pp. 10434-10451.
IEEE DOI
2411
Dictionaries, Tensors, Costs, Bipartite graph, Optimization,
Clustering methods, Clustering algorithms,
optimal bipartite graph
BibRef
Zhu, Y.J.[Yag-Jiao],
Li, Q.[Qilin],
Liu, W.Q.[Wan-Quan],
Yin, C.[Chuancun],
Diffusion process with structural changes for subspace clustering,
PR(158), 2025, pp. 111066.
Elsevier DOI Code:
WWW Link.
2411
Subspace clustering, Diffusion process, Affinity learning,
Dropout, Structural change
BibRef
Wei, L.[Lai],
Chen, Z.W.[Zheng-Wei],
Yin, J.[Jun],
Zhu, C.M.[Chang-Ming],
Zhou, R.[Rigui],
Liu, J.[Jin],
Adaptive Graph Convolutional Subspace Clustering,
CVPR23(6262-6271)
IEEE DOI
2309
BibRef
Song, J.[Jinjoo],
Yoon, G.J.[Gang-Joon],
Baek, S.[Sangwon],
Yoon, S.M.[Sang Min],
Multi-View Feature Boosting Network for Deep Subspace Clustering,
ICIP22(496-500)
IEEE DOI
2211
Fuses, Clustering methods, Noise reduction, Neural networks,
Benchmark testing, Boosting, Feature extraction, Data mining,
Feature boosting
BibRef
Mochizuki, E.[Eri],
Sone, H.[Haruka],
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Subspace Discrimination Method for Images Using Singular Value
Decomposition,
ISVC21(II:287-298).
Springer DOI
2112
BibRef
Zhang, S.Z.[Shang-Zhi],
You, C.[Chong],
Vidal, R.[René],
Li, C.G.[Chun-Guang],
Learning a Self-Expressive Network for Subspace Clustering,
CVPR21(12388-12398)
IEEE DOI
2111
Training, Computational modeling,
Clustering methods, Neural networks, Training data, Stochastic processes
BibRef
Valanarasu, J.M.J.[Jeya Maria Jose],
Patel, V.M.[Vishal M.],
Overcomplete Deep Subspace Clustering Networks,
WACV21(746-755)
IEEE DOI
2106
Fuses, Clustering methods,
Benchmark testing, Feature extraction, Data mining
BibRef
Zeilmann, A.[Alexander],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Learning Linear Assignment Flows for Image Labeling via Exponential
Integration,
SSVM21(385-397).
Springer DOI
2106
BibRef
Savarino, F.[Fabrizio],
Albers, P.[Peter],
Schnörr, C.[Christoph],
On the Geometric Mechanics of Assignment Flows for Metric Data Labeling,
SSVM21(398-410).
Springer DOI
2106
BibRef
He, Y.C.[Yi-Cong],
Atia, G.K.[George K.],
Scalable Direction-Search-Based Approach to Subspace Clustering,
ICPR21(999-1006)
IEEE DOI
2105
Scalability, Clustering methods, Clustering algorithms,
Partitioning algorithms, Computational complexity
BibRef
Zhou, L.[Lei],
Bai, X.[Xiao],
Zhang, L.[Liang],
Zhou, J.[Jun],
Hancock, E.[Edwin],
Fast Subspace Clustering Based on the Kronecker Product,
ICPR21(1558-1565)
IEEE DOI
2105
Adaptation models, Computational modeling, Scalability,
Clustering methods, Face recognition, Memory management, Data models
BibRef
Dong, W.H.[Wen-Hua],
Wu, X.J.[Xiao-Jun],
Li, H.[Hui],
Feng, Z.H.[Zhen-Hua],
Kittler, J.V.[Josef V.],
Subspace Clustering via Joint Unsupervised Feature Selection,
ICPR21(3892-3898)
IEEE DOI
2105
Dictionaries, Clustering methods, Clustering algorithms,
Feature extraction, Data mining, Optimization, Compressed sensing,
half-quadratic
BibRef
Yang, S.[Shuai],
Zhu, W.Q.[Wen-Qi],
Zhu, Y.S.[Yue-Sheng],
Sparse-Dense Subspace Clustering,
ICPR21(247-254)
IEEE DOI
2105
Correlation, Estimation, Benchmark testing,
Sparse matrices, Iterative methods, Task analysis, Clustering, Unsupervised Learning
BibRef
Zhan, J.,
Zhu, Y.,
Bai, Z.,
An Expression-Reinforced Sparse Subspace Clustering By Orthogonal
Matching Pursuit,
ICIP20(211-215)
IEEE DOI
2011
sparse subspace clustering, signal processing,
orthogonal matching pursuit, sparse representation
BibRef
Zhan, J.,
Zhu, Y.,
Bai, Z.,
Targeted Incorporating Spatial Information in Sparse Subspace
Clustering of Hyperspectral Remote Sensing Images,
ICIP20(2531-2535)
IEEE DOI
2011
Clustering algorithms, Clustering methods, Hyperspectral imaging,
Sparse matrices, Computational complexity,
sparse representation
BibRef
Zhu, J.,
Zhang, T.,
Zhao, S.,
Low-Rank Subspace Representation from Optimal Coded-Aperture for
Unsupervised Classification of Hypersepctral Imagery,
ICIP20(2860-2864)
IEEE DOI
2011
Image coding, Encoding, Apertures, Clustering algorithms, Imaging,
Sensors, CASSI, spectral image clustering
BibRef
Zhang, M.,
Wang, Y.,
Kadam, P.,
Liu, S.,
Kuo, C.C.J.[C.C. Jay],
Pointhop++: A Lightweight Learning Model on Point Sets for 3D
Classification,
ICIP20(3319-3323)
IEEE DOI
2011
Transforms, Computational modeling,
Feature extraction, Training, Tensile stress, Complexity theory,
successive subspace learning.
BibRef
Yang, M.L.[Mu-Li],
Deng, C.[Cheng],
Yan, J.C.[Jun-Chi],
Liu, X.L.[Xiang-Long],
Tao, D.C.[Da-Cheng],
Learning Unseen Concepts via Hierarchical Decomposition and
Composition,
CVPR20(10245-10253)
IEEE DOI
2008
Visualization, Cats, Training, Feature extraction, Semantics,
Task analysis, Adaptation models
BibRef
Dang, Z.,
Deng, C.,
Yang, X.,
Huang, H.,
Multi-Scale Fusion Subspace Clustering Using Similarity Constraint,
CVPR20(6657-6666)
IEEE DOI
2008
Feature extraction, Kernel, Data mining, Fuses, Training,
Unsupervised learning, Motion segmentation
BibRef
Kheirandishfard, M.,
Zohrizadeh, F.,
Kamangar, F.,
Deep Low-Rank Subspace Clustering,
Diff-CVML20(3776-3781)
IEEE DOI
2008
Decoding, Clustering algorithms,
Data models, Kernel, Partitioning algorithms
BibRef
Chen, Y.,
Li, C.,
You, C.,
Stochastic Sparse Subspace Clustering,
CVPR20(4154-4163)
IEEE DOI
2008
Optimization, Stochastic processes, Clustering methods,
Matching pursuit algorithms, Data models, Clustering algorithms, Dictionaries
BibRef
Tang, C.,
Yuan, L.,
Tan, P.,
LSM: Learning Subspace Minimization for Low-Level Vision,
CVPR20(6234-6245)
IEEE DOI
2008
Task analysis, Minimization, Optical imaging, Subspace constraints,
Image segmentation, Training
BibRef
Ghojogh, B.[Benyamin],
Karray, F.[Fakhri],
Crowley, M.[Mark],
Generalized Subspace Learning by Roweis Discriminant Analysis,
ICIAR20(I:328-342).
Springer DOI
2007
BibRef
Kheirandishfard, M.,
Zohrizadeh, F.,
Kamangar, F.,
Multi-Level Representation Learning for Deep Subspace Clustering,
WACV20(2028-2037)
IEEE DOI
2006
Decoding, Clustering algorithms, Task analysis, Minimization, Face,
Aggregates, Computer architecture
BibRef
Lane, C.,
Boger, R.,
You, C.,
Tsakiris, M.,
Haeffele, B.,
Vidal, R.,
Classifying and Comparing Approaches to Subspace Clustering with
Missing Data,
RSL-CV19(669-677)
IEEE DOI
2004
matrix algebra, pattern clustering, complementary problem,
high-rank matrix completion, data point, representative methods,
matrix completion
BibRef
Wang, X.B.[Xiao-Bo],
Guo, X.J.[Xiao-Jie],
Lei, Z.[Zhen],
Zhang, C.Q.[Chang-Qing],
Li, S.Z.[Stan Z.],
Exclusivity-Consistency Regularized Multi-view Subspace Clustering,
CVPR17(1-9)
IEEE DOI
1711
Benchmark testing, Clustering algorithms,
Optimization, Standards
BibRef
Yamaguchi, M.,
Irie, G.,
Kawanishi, T.,
Kashino, K.,
Subspace Structure-Aware Spectral Clustering for Robust Subspace
Clustering,
ICCV19(9874-9883)
IEEE DOI
2004
expectation-maximisation algorithm, graph theory,
image processing, matrix algebra, optimisation, pattern clustering,
Sparse matrices
BibRef
You, C.,
Li, C.,
Robinson, D.,
Vidal, R.,
Is an Affine Constraint Needed for Affine Subspace Clustering?,
ICCV19(9914-9923)
IEEE DOI
2004
pattern clustering, affinely independent subspaces,
affine subspace clustering, subspace clustering methods,
Data models
BibRef
He, L.,
Yang, H.,
Zhao, L.,
Tensor Subspace Learning and Classification: Tensor Local
Discriminant Embedding for Hyperspectral Image,
RSL-CV19(589-598)
IEEE DOI
2004
data reduction, geophysical image processing, graph theory,
hyperspectral imaging, image classification, image resolution,
local discriminant embedding
BibRef
Rudolph, M.,
Wandt, B.,
Rosenhahn, B.,
Structuring Autoencoders,
RSL-CV19(615-623)
IEEE DOI
2004
image representation, learning (artificial intelligence),
neural nets, structuring autoencoders, SAE, neural networks, Subspaces
BibRef
Tang, K.,
Xu, K.,
Su, Z.,
Jiang, W.,
Luo, X.,
Sun, X.,
Structure-Constrained Feature Extraction by Autoencoders for Subspace
Clustering,
RSL-CV19(624-632)
IEEE DOI
2004
feature extraction, learning (artificial intelligence),
neural nets, pattern clustering, structured autoencoders,
Structure Constrained Feature Extraction
BibRef
Seo, J.,
Koo, J.,
Jeon, T.,
Deep Closed-Form Subspace Clustering,
RSL-CV19(633-642)
IEEE DOI
2004
learning (artificial intelligence), pattern clustering,
closed-form shallow auto-encoder,
deep subspace clustering
BibRef
Gilman, K.,
Balzano, L.,
Panoramic Video Separation with Online Grassmannian Robust Subspace
Estimation,
RSL-CV19(643-651)
IEEE DOI
2004
cameras, gradient methods, object detection,
principal component analysis, video signal processing,
video foreground background separation
BibRef
Li, Y.M.[Yuan-Man],
Zhou, J.T.[Jian-Tao],
Zheng, X.W.[Xian-Wei],
Tian, J.[Jinyu],
Tang, Y.Y.[Yuan Yan],
Robust Subspace Clustering With Independent and Piecewise Identically
Distributed Noise Modeling,
CVPR19(8712-8721).
IEEE DOI
2002
BibRef
Wu, J.,
Huang, L.,
Yang, M.,
Chang, L.,
Liu, C.,
Sparse Subspace Clustering With Sequentially Ordered and Weighted
L1-Minimization†,
ICIP19(3387-3391)
IEEE DOI
1910
Subspace clustering, sparse representation, compressive sensing
BibRef
Carvalho, J.,
Marques, M.,
Costeira, J.P.,
Recovery of Subspace Structure from High-Rank Data with Missing
Entries,
ICIP19(2010-2014)
IEEE DOI
1910
Motion Segmentation, Subspace Clustering, Missing Data,
Matrix Completion, Sparse Representation
BibRef
Hast, A.[Anders],
Lind, M.[Mats],
Vats, E.[Ekta],
Embedded Prototype Subspace Classification:
A Subspace Learning Framework,
CAIP19(II:581-592).
Springer DOI
1909
BibRef
Fathy, M.E.[Mohammed E.],
Alavi, A.[Azadeh],
Chellappa, R.[Rama],
Nonlinear Subspace Feature Enhancement for Image Set Classification,
ACCV18(IV:142-158).
Springer DOI
1906
BibRef
Zhang, T.[Tong],
Ji, P.[Pan],
Harandi, M.[Mehrtash],
Hartley, R.I.[Richard I.],
Reid, I.D.[Ian D.],
Scalable Deep k-Subspace Clustering,
ACCV18(V:466-481).
Springer DOI
1906
BibRef
Zhou, P.,
Hou, Y.,
Feng, J.,
Deep Adversarial Subspace Clustering,
CVPR18(1596-1604)
IEEE DOI
1812
Generators, Clustering methods, Fasteners, Task analysis, Feeds, Estimation
BibRef
Ma, L.,
Liu, Z.,
Hybrid Sparse Subspace Clustering for Visual Tracking,
ICPR18(1737-1742)
IEEE DOI
1812
Clustering methods, Principal component analysis, Visualization,
Adaptation models, Motion segmentation, Object tracking
BibRef
Zhang, Y.,
Wang, X.,
Gao, X.,
Adaptive Latent Representation for Multi-view Subspace Learning,
ICPR18(1229-1234)
IEEE DOI
1812
Clustering methods, Linear programming, Learning systems,
Noise measurement, Optimization methods, Sparse matrices
BibRef
Ye, Q.,
Zhang, Z.,
Rotational Invariant Discriminant Subspace Learning For Image
Classification,
ICPR18(1217-1222)
IEEE DOI
1812
Principal component analysis, Minimization, Robustness,
Iterative methods, Noise measurement, Linear matrix inequalities,
s-norm minimization
BibRef
Sznaier, M.,
Camps, O.,
SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying
Subspace Clustering Algorithms,
CVPR18(8033-8041)
IEEE DOI
1812
Optimization, Noise measurement, Level set, Reliability,
Motion segmentation
BibRef
Li, C.,
Zhang, J.,
Guo, J.,
Constrained Sparse Subspace Clustering with Side-Information,
ICPR18(2093-2099)
IEEE DOI
1812
Sparse matrices, Indexes, Data models, Task analysis,
Clustering algorithms, Cancer, Gene expression
BibRef
Zhou, L.[Lei],
Wang, S.[Shuai],
Bai, X.[Xiao],
Zhou, J.[Jun],
Hancock, E.R.[Edwin R.],
Iterative Deep Subspace Clustering,
SSSPR18(42-51).
Springer DOI
1810
BibRef
Wang, T.,
Cai, H.,
Zhang, X.,
Lan, L.,
Huang, X.,
Lu, Z.,
Graph-Laplacian Correlated Low-Rank Representation for Subspace
Clustering,
ICIP18(3748-3752)
IEEE DOI
1809
Laplace equations, Correlation, Motion segmentation,
Sparse matrices, Optimization, Manifolds,
the self-expression
BibRef
Panahi, A.,
Bian, X.,
Krim, H.,
Dai, L.,
Robust Subspace Clustering by Bi-Sparsity Pursuit:
Guarantees and Sequential Algorithm,
WACV18(1302-1311)
IEEE DOI
1806
concave programming, convex programming,
image representation, pattern clustering, bi-sparsity pursuit,
Uncertainty
BibRef
Abavisani, M.[Mahdi],
Patel, V.[Vishal],
Domain Adaptive Subspace Clustering,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Ackermann, H.,
Rosenhahn, B.,
Yang, M.Y.,
Unbiased Sparse Subspace Clustering by Selective Pursuit,
CRV17(1-7)
IEEE DOI
1804
pattern clustering, Dantzig selector, SSC, data points,
linear subspaces, motion segmentation, selective pursuit,
Subspace
BibRef
Murdock, C.[Calvin],
de la Torre, F.[Fernando],
Approximate Grassmannian Intersections:
Subspace-Valued Subspace Learning,
ICCV17(4318-4326)
IEEE DOI
1802
computational geometry, concave programming,
image representation, learning (artificial intelligence),
Training
BibRef
Gholami, B.[Behnam],
Hajisami, A.[Abolfazl],
Probabilistic Semi-Supervised Multi-Modal Hashing,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Gholami, B.,
Pavlovic, V.,
Probabilistic Temporal Subspace Clustering,
CVPR17(4313-4322)
IEEE DOI
1711
Clustering algorithms, Computational modeling,
Data models, Gaussian processes, Motion segmentation,
Probabilistic, logic
BibRef
Zhang, Y.,
Shi, D.,
Gao, J.,
Cheng, D.,
Low-Rank-Sparse Subspace Representation for Robust Regression,
CVPR17(2972-2981)
IEEE DOI
1711
Correlation, Data models, Input variables, Linear regression,
Optimization, Robustness, Support, vector, machines
BibRef
Wang, L.[Lei],
Li, D.P.[Dan-Ping],
He, T.C.[Tian-Cheng],
Xue, Z.[Zhong],
Manifold Regularized Multi-view Subspace Clustering for image
representation,
ICPR16(283-288)
IEEE DOI
1705
Clustering algorithms, Data models, Laplace equations, Manifolds,
Optimization, Sparse matrices, Standards
BibRef
Zheng, W.[Wei],
Yan, H.,
Yang, J.,
Yang, J.,
Robust unsupervised feature selection by nonnegative sparse subspace
learning,
ICPR16(3615-3620)
IEEE DOI
1705
Computational modeling, Data mining, Feature extraction,
Optimization, Robustness, Sparse matrices,
non-negative matrix factorization, subspace learning,
unsupervised, feature, selection
BibRef
Zografos, V.[Vasileios],
Krajsek, K.[Kai],
Menze, B.[Bjoern],
An Online Algorithm for Efficient and Temporally Consistent Subspace
Clustering,
ACCV16(I: 353-368).
Springer DOI
1704
BibRef
Tang, K.W.[Ke-Wei],
Liu, X.D.[Xiao-Dong],
Su, Z.X.[Zhi-Xun],
Jiang, W.[Wei],
Dong, J.X.[Jiang-Xin],
Subspace Learning Based Low-Rank Representation,
ACCV16(I: 416-431).
Springer DOI
1704
BibRef
Cao, G.,
Waris, M.A.,
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Multi-modal subspace learning with dropout regularization for
cross-modal recognition and retrieval,
IPTA16(1-6)
IEEE DOI
1703
eigenvalues and eigenfunctions
BibRef
Zhang, J.,
Li, C.G.,
Zhang, H.,
Guo, J.,
Low-rank and structured sparse subspace clustering,
VCIP16(1-4)
IEEE DOI
1701
Clustering algorithms
BibRef
You, C.[Chong],
Robinson, D.P.[Daniel P.],
Vidal, R.[René],
Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit,
CVPR16(3918-3927)
IEEE DOI
1612
BibRef
You, C.[Chong],
Li, C.[Chi],
Robinson, D.P.[Daniel P.],
Vidal, R.[René],
A Scalable Exemplar-Based Subspace Clustering Algorithm for
Class-Imbalanced Data,
ECCV18(IX: 68-85).
Springer DOI
1810
BibRef
You, C.[Chong],
Li, C.G.[Chun-Guang],
Robinson, D.P.[Daniel P.],
Vidal, R.[René],
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace
Clustering,
CVPR16(3928-3937)
IEEE DOI
1612
BibRef
Yin, M.,
Guo, Y.,
Gao, J.,
He, Z.,
Xie, S.,
Kernel Sparse Subspace Clustering on Symmetric Positive Definite
Manifolds,
CVPR16(5157-5164)
IEEE DOI
1612
BibRef
Cheng, Y.,
Wang, Y.,
Sznaier, M.,
Camps, O.,
Subspace Clustering with Priors via Sparse Quadratically Constrained
Quadratic Programming,
CVPR16(5204-5212)
IEEE DOI
1612
BibRef
Yang, Y.Z.[Ying-Zhen],
Feng, J.S.[Jia-Shi],
Jojic, N.[Nebojsa],
Yang, J.C.[Jian-Chao],
Huang, T.S.[Thomas S.],
L0-Sparse Subspace Clustering,
ECCV16(II: 731-747).
Springer DOI
1611
BibRef
Gao, H.,
Nie, F.,
Li, X.,
Huang, H.,
Multi-view Subspace Clustering,
ICCV15(4238-4246)
IEEE DOI
1602
Benchmark testing
BibRef
Ji, P.,
Salzmann, M.,
Li, H.,
Shape Interaction Matrix Revisited and Robustified:
Efficient Subspace Clustering with Corrupted and Incomplete Data,
ICCV15(4687-4695)
IEEE DOI
1602
Clustering algorithms
BibRef
Wen, X.,
Qiao, L.,
Ma, S.,
Liu, W.,
Cheng, H.,
Sparse Subspace Clustering for Incomplete Images,
RSL-CV15(859-867)
IEEE DOI
1602
Clustering algorithms
BibRef
Babaee, M.[Mohammadreza],
Babaei, M.[Maryam],
Merget, D.[Daniel],
Tiefenbacher, P.[Philipp],
Rigoll, G.[Gerhard],
Attribute constrained subspace learning,
ICIP15(3941-3945)
IEEE DOI
1512
Subspace learning
BibRef
Silvestri, F.[Francesco],
Reinelt, G.[Gerhard],
Schnörr, C.[Christoph],
A Convex Relaxation Approach to the Affine Subspace Clustering Problem,
GCPR15(67-78).
Springer DOI
1511
BibRef
Yao, T.[Ting],
Pan, Y.W.[Ying-Wei],
Ngo, C.W.[Chong-Wah],
Li, H.Q.[Hou-Qiang],
Mei, T.[Tao],
Semi-supervised Domain Adaptation with Subspace Learning for visual
recognition,
CVPR15(2142-2150)
IEEE DOI
1510
BibRef
Kim, E.[Eunwoo],
Lee, M.[Minsik],
Oh, S.H.[Song-Hwai],
Elastic-net regularization of singular values for robust subspace
learning,
CVPR15(915-923)
IEEE DOI
1510
BibRef
Lee, M.[Minsik],
Lee, J.[Jieun],
Lee, H.[Hyeogjin],
Kwak, N.[Nojun],
Membership representation for detecting block-diagonal structure in
low-rank or sparse subspace clustering,
CVPR15(1648-1656)
IEEE DOI
1510
BibRef
Li, B.H.[Bao-Hua],
Zhang, Y.[Ying],
Lin, Z.C.[Zhou-Chen],
Lu, H.C.[Hu-Chuan],
Subspace clustering by Mixture of Gaussian Regression,
CVPR15(2094-2102)
IEEE DOI
1510
BibRef
Yuan, X.T.[Xiao-Tong],
Li, P.[Ping],
Sparse Additive Subspace Clustering,
ECCV14(III: 644-659).
Springer DOI
1408
See also Sparse Subspace Clustering: Algorithm, Theory, and Applications.
BibRef
Peng, X.[Xi],
Zhang, L.[Lei],
Yi, Z.[Zhang],
Scalable Sparse Subspace Clustering,
CVPR13(430-437)
IEEE DOI
1309
Large scale dataset. Scalability and out-of-sample problems.
See also Sparse Subspace Clustering: Algorithm, Theory, and Applications.
BibRef
Tierney, S.[Stephen],
Gao, J.B.[Jun-Bin],
Guo, Y.[Yi],
Subspace Clustering for Sequential Data,
CVPR14(1019-1026)
IEEE DOI
1409
BibRef
Boulemnadjel, A.[Amel],
Hachouf, F.[Fella],
Estimating Clusters Centres Using Support Vector Machine:
An Improved Soft Subspace Clustering Algorithm,
CAIP13(254-261).
Springer DOI
1308
BibRef
Zografos, V.[Vasileios],
Ellis, L.[Liam],
Mester, R.[Rudolf],
Discriminative Subspace Clustering,
CVPR13(2107-2114)
IEEE DOI
1309
Discriminative clustering; Subspace clustering; quadratic classifier
multiple classifiers on different parts of the data.
BibRef
Lu, C.Y.[Can-Yi],
Tang, J.H.[Jin-Hui],
Lin, M.[Min],
Lin, L.[Liang],
Yan, S.C.[Shui-Cheng],
Lin, Z.C.[Zhou-Chen],
Correntropy Induced L2 Graph for Robust Subspace Clustering,
ICCV13(1801-1808)
IEEE DOI
1403
BibRef
Nasihatkon, B.[Behrooz],
Hartley, R.I.[Richard I.],
Graph connectivity in sparse subspace clustering,
CVPR11(2137-2144).
IEEE DOI
1106
Sparse Subspace Clustering (SSC). Connected for 2 or 3 dimensions, but not
more.
See also Sparse Subspace Clustering: Algorithm, Theory, and Applications.
BibRef
Ke, Q.F.[Qi-Fa],
Kanade, T.,
Robust subspace clustering by combined use of kNND metric and SVD
algorithm,
CVPR04(II: 592-599).
IEEE DOI
0408
Kth-Nearest-Neighbor, finds the clusters.
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Distance Measures, Criteria for Clustering .