Darling, Jr., E.M.[Eugene M.],
Raudseps, J.G.[Juris G.],
Non-parametric unsupervised learning with applications to image
classification,
PR(2), No. 4, December 1970, pp. 313-335.
Elsevier DOI
0309
BibRef
Rajasekaran, P.K.,
Srinath, M.D.,
Unsupervised learning in nongaussian pattern recognition,
PR(4), No. 4, December 1972, pp. 401-416.
Elsevier DOI
0309
BibRef
Gitman, I.[Israel],
A parameter-free clustering model,
PR(4), No. 3, October 1972, pp. 307-315.
Elsevier DOI
0309
BibRef
Coleman, G., and
Andrews, H.C.,
Image Segmentation and Clustering,
PIEEE(67), No. 5, May 1979, pp. 773-785.
BibRef
7905
Earlier:
A Bottom Up Image Segmentor,
DARPA77(44-54).
Clustering. Find the optimal number of clusters along with the best clusters (try all
numbers of clusters until a criterion decreases).
BibRef
Andrews, H.C.,
Analytic Results of the Coleman Segmentor,
DARPAO77(96-103).
BibRef
7700
Gowda, K.C.[K. Chidananda],
A Feature Reduction and Unsupervised Classification Algorithm for
Multispectral Data,
PR(17), No. 6, 1984, pp. 667-676.
Elsevier DOI
BibRef
8400
Veijanen, A.[Ari],
Unsupervised Image Segmentation Using An Unlabeled Region Process,
PR(27), No. 6, June 1994, pp. 841-852.
Elsevier DOI
BibRef
9406
Peng, A.,
Pieczynski, W.[Wojciech],
Adaptive Mixture Estimation and Unsupervised Local Bayesian
Image Segmentation,
GMIP(57), No. 5, September 1995, pp. 389-399.
BibRef
9509
Caillol, H.,
Pieczynski, W.,
Hillion, A.,
Estimation of Fuzzy Gaussian Mixture and Unsupervised Statistical
Image Segmentation,
IP(6), No. 3, March 1997, pp. 425-440.
IEEE DOI
9703
See also Estimation of Generalized Mixtures and Its Application in Image Segmentation.
BibRef
Braathen, B.,
Pieczynski, W.,
Masson, P.,
Global and Local Methods of Unsupervised
Bayesian Segmentation of Images,
MGV(2), No. 1, 1993, pp. 39-52.
BibRef
9300
Masson, P.,
Pieczynski, W.,
SEM Algorithm and Unsupervised Segmentation of Satellite Images,
GeoRS(31), No. 3, 1993, pp. 618-633.
BibRef
9300
Benmiloud, B.,
Pieczynski, W.,
Estimation des Parametres dans les Chaines de Markov Cachees et
Segmentation d'Images,
Traitement du Signal(12), No. 5, 1995, pp. 433-454.
BibRef
9500
Giordana, N.[Nathalie],
Pieczynski, W.[Wojciech],
Estimation of Generalized Multisensor Hidden Markov-Chains and
Unsupervised Image Segmentation,
PAMI(19), No. 5, May 1997, pp. 465-475.
IEEE DOI
9705
BibRef
Earlier:
Unsupervised Segmentation of Multisensor Images Using Generalized
Hidden Markov Chains,
ICIP96(III: 987-990).
IEEE DOI 4-Class segmentation examples.
Markov chains, not Markov Fields. And Mixture esitmation to switch
from one to another.
BibRef
Boudaren, M.E.[M. El_Yazid],
Monfrini, E.,
Pieczynski, W.,
Unsupervised Segmentation of Random Discrete Data Hidden With Switching
Noise Distributions,
SPLetters(19), No. 10, October 2012, pp. 619-622.
IEEE DOI
1209
BibRef
Habbouchi, A.,
Boudaren, M.E.[M. El_Yazid],
Aïssani, A.,
Pieczynski, W.,
Unsupervised Segmentation of Markov Random Fields Corrupted by
Nonstationary Noise,
SPLetters(23), No. 11, November 2016, pp. 1607-1611.
IEEE DOI
1609
Gaussian processes
BibRef
Giordana, N.[Nathalie],
Segmentation non Supervisee d'Images Multispectrales
par Chaines de Markov Cachees,
Ph.D.Thesis, Univ. de Tech. de Compiegne, 1996.
BibRef
9600
Bensaid, A.M.[Amine M.],
Hall, L.O.[Lawrence O.],
Bezdek, J.C.[James C.],
Clarke, L.P.[Laurence P.],
Partially Supervised Clustering for Image Segmentation,
PR(29), No. 5, May 1996, pp. 859-871.
Elsevier DOI
9605
BibRef
Acton, S.T.,
On Unsupervised Segmentation of Remotely-Sensed Imagery
Using Nonlinear-Regression,
JRS(17), No. 7, May 10 1996, pp. 1407-1415.
9605
BibRef
Hofmann, T.[Thomas], and
Buhmann, J.M.[Joachim M.],
Pairwise Data Clustering by Deterministic Annealing,
PAMI(19), No. 1, January 1997, pp. 1-14.
IEEE DOI
9702
BibRef
And:
Correction:
PAMI(19), No. 2, February 1997, pp. 192-192.
IEEE DOI A means to partition a data set and find hidden structure.
See also Unsupervised Texture Segmentation in a Deterministic Annealing Framework.
BibRef
Bigün, J.,
Unsupervised Feature Reduction in Image Segmentation
by Local Transforms,
PRL(14), 1993, pp. 573-583.
BibRef
9300
Earlier:
Unsupervised feature reduction in image segmentation by local
Karhunen-Loeve transform,
ICPR92(II:79-83).
IEEE DOI
9208
BibRef
Soh, L.K.,
Tsatsoulis, C.,
Unsupervised segmentation of ERS and Radarsat sea ice images using
multiresolution peak detection and aggregated population equalization,
JRS(20), No. 15/16, October 1999, pp. 3087.
BibRef
9910
Tang, M.[Ming],
Ma, S.D.[Song-De],
General Scheme of Region Competition Based on Scale Space,
PAMI(23), No. 12, December 2001, pp. 1366-1378.
IEEE DOI
0112
BibRef
And:
Corrections:
PAMI(24), No. 7, July 2002, pp. 1007.
IEEE DOI
0207
BibRef
Earlier:
A Fast Algorithm of Multiresolution Elastic Matching,
SCIA97(xx-yy)
HTML Version.
9705
Region segmentation. Cluster then group clusters.
See also Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation.
BibRef
Tang, M.[Ming],
Xiao, J.[Jing],
Ma, S.D.[Song-De],
Semantically Homogeneous Segmentation with Nonparametric Region
Competition,
ICPR00(Vol I: 648-651).
IEEE DOI
0009
BibRef
Heiler, M.[Matthias],
Schnörr, C.[Christoph],
Natural Image Statistics for Natural Image Segmentation,
IJCV(63), No. 1, June 2005, pp. 5-19.
Springer DOI
0501
BibRef
Earlier:
ICCV03(1259-1266).
IEEE DOI
0311
Award, Marr Prize.
BibRef
Keuchel, J.[Jens],
Schnorr, C.[Chrostoph],
Schellewald, C.[Christian],
Cremers, D.[Daniel],
Binary partitioning, perceptual grouping, and restoration with
semidefinite programming,
PAMI(25), No. 11, November 2003, pp. 1364-1379.
IEEE Abstract.
0311
BibRef
Earlier:
Unsupervised Image Partitioning with Semidefinite Programming,
DAGM02(141 ff.).
Springer DOI
0303
Figure-ground.
Segment into coherent parts.
BibRef
Heiler, M.[Matthias],
Keuchel, J.[Jens],
Schnörr, C.[Christoph],
Semidefinite Clustering for Image Segmentation with A-priori Knowledge,
DAGM05(309).
Springer DOI
0509
Award, GCPR, HM.
BibRef
Earlier: A2, A1, A3:
Hierarchical Image Segmentation Based on Semidefinite Programming,
DAGM04(120-128).
Springer DOI
0505
BibRef
Keuchel, J.[Jens],
Küttel, D.[Daniel],
Efficient Combination of Probabilistic Sampling Approximations for
Robust Image Segmentation,
DAGM06(41-50).
Springer DOI
0610
BibRef
Keuchel, J.[Jens],
Multiclass Image Labeling with Semidefinite Programming,
ECCV06(II: 454-467).
Springer DOI
0608
BibRef
Tortorella, F.[Francesco],
A ROC-based reject rule for dichotomizers,
PRL(26), No. 2, 15 January 2005, pp. 167-180.
Elsevier DOI
0501
Two classes.
BibRef
Jeon, B.K.[Byoung-Ki],
Jung, Y.B.[Yun-Beom],
Hong, K.S.[Ki-Sang],
Image Segmentation by Unsupervised Sparse Clustering,
PRL(27), No. 14, 15 October 2006, pp. 1650-1664.
Elsevier DOI
0609
BibRef
Earlier:
WACV05(I: 2-7).
IEEE DOI
0502
Positiveness; Sparse clustering; Binary tree; Model selection;
Intra- and inter-cluster measures
Cluster into regions based on positiveness.
BibRef
Cariou, C.[Claude],
Chehdi, K.[Kacem],
Unsupervised texture segmentation/classification using 2-D
autoregressive modeling and the stochastic expectation-maximization
algorithm,
PRL(29), No. 7, 1 May 2008, pp. 905-917.
Elsevier DOI
0804
Image segmentation; Classification; Texture; Stochastic modeling;
Parameter estimation; Remote sensing
BibRef
Rosenberger, C.,
Chehdi, K.,
Unsupervised Clustering Method with Optimal Estimation of the Number of
Clusters: Application to Image Segmentation,
ICPR00(Vol I: 656-659).
IEEE DOI
0009
BibRef
Choy, S.K.,
Tang, M.L.,
Tong, C.S.,
Image Segmentation Using Fuzzy Region Competition and Spatial/Frequency
Information,
IP(20), No. 6, June 2011, pp. 1473-1484.
IEEE DOI
1106
BibRef
Elhamifar, E.[Ehsan],
Vidal, R.[Rene],
Sparse Subspace Clustering: Algorithm, Theory, and Applications,
PAMI(35), No. 11, 2013, pp. 2765-2781.
IEEE DOI
1309
BibRef
Earlier:
Robust classification using structured sparse representation,
CVPR11(1873-1879).
IEEE DOI
1106
BibRef
Earlier:
Sparse subspace clustering,
CVPR09(2790-2797).
IEEE DOI
0906
Clustering algorithms.
BibRef
Elhamifar, E.[Ehsan],
Sapiro, G.[Guillermo],
Sastry, S.S.,
Dissimilarity-Based Sparse Subset Selection,
PAMI(38), No. 11, November 2016, pp. 2182-2197.
IEEE DOI
1610
Approximation algorithms
BibRef
Elhamifar, E.[Ehsan],
Sapiro, G.[Guillermo],
Vidal, R.[Rene],
See all by looking at a few:
Sparse modeling for finding representative objects,
CVPR12(1600-1607).
IEEE DOI
1208
BibRef
Liang, X.P.[Xian-Peng],
Huang, D.S.[De-Shuang],
Image segmentation fusion using weakly supervised trace-norm multi-task
learning method,
IET-IPR(12), No. 7, July 2018, pp. 1079-1085.
DOI Link
1806
BibRef
Xiong, D.[Dehui],
He, C.[Chu],
Liu, X.L.[Xin-Long],
Liao, M.S.[Ming-Sheng],
An End-To-End Bayesian Segmentation Network Based on a Generative
Adversarial Network for Remote Sensing Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
He, C.[Chu],
Li, S.L.[Sheng-Lin],
Xiong, D.[Dehui],
Fang, P.Z.[Pei-Zhang],
Liao, M.S.[Ming-Sheng],
Remote Sensing Image Semantic Segmentation Based on Edge Information
Guidance,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhang, X.Q.[Xiao-Qian],
Luo, C.[Chao],
Wang, X.[Xiao],
Li, J.H.[Jing-Hao],
Zhao, S.[Shuai],
Jiang, D.[Daojian],
Learnable Tensor Graph Fusion Framework for Natural Image
Segmentation,
MultMed(26), 2024, pp. 7160-7173.
IEEE DOI
2405
Image segmentation, Tensors, Watersheds, Feature extraction,
Transforms, Correlation, Image color analysis, Image segmentation,
spectral clustering
BibRef
Wang, B.[Bo],
Tu, Z.W.[Zhuo-Wen],
Affinity learning via self-diffusion for image segmentation and
clustering,
CVPR12(2312-2319).
IEEE DOI
1208
BibRef
Bertelli, L.[Luca],
Yu, T.L.[Tian-Li],
Vu, D.[Diem],
Gokturk, B.[Burak],
Kernelized structural SVM learning for supervised object segmentation,
CVPR11(2153-2160).
IEEE DOI
1106
BibRef
Franek, L.[Lucas],
Jiang, X.Y.[Xiao-Yi],
Evolutionary Weighted Mean Based Framework for Generalized Median
Computation with Application to Strings,
SSSPR12(70-78).
Springer DOI
1211
BibRef
Franek, L.[Lucas],
Jiang, X.Y.[Xiao-Yi],
Alternating Scheme for Supervised Parameter Learning with Application
to Image Segmentation,
CAIP11(I: 118-125).
Springer DOI
1109
BibRef
Earlier:
Adaptive Parameter Selection for Image Segmentation Based on Similarity
Estimation of Multiple Segmenters,
ACCV10(II: 697-708).
Springer DOI
1011
BibRef
Franek, L.[Lucas],
Abdala, D.D.[Daniel Duarte],
Vega-Pons, S.[Sandro],
Jiang, X.Y.[Xiao-Yi],
Image Segmentation Fusion Using General Ensemble Clustering Methods,
ACCV10(IV: 373-384).
Springer DOI
1011
BibRef
Xu, K.[Kai],
Wu, F.F.[Fang-Fang],
Qin, K.[Kun],
An image segmentation method based on Type-2 fuzzy Gaussian Mixture
Models,
IASP10(363-366).
IEEE DOI
1004
BibRef
Xiao, Z.H.[Zhi-Heng],
Shi, J.[Jun],
Chang, Q.[Qian],
Image Segmentation with Simplified PCNN,
CISP09(1-4).
IEEE DOI
0910
BibRef
Franti, P.,
Virmajoki, O.,
Kaukoranta, T.,
Branch-and-bound technique for solving optimal clustering,
ICPR02(II: 232-235).
IEEE DOI
0211
BibRef
Baggenstoss, P.M.,
The chain-rule processor:
Optimal Classification Through Signal Processing,
ICPR02(I: 230-234).
IEEE DOI
0211
BibRef
Baggenstoss, P.M.,
Niemann, H.,
A Theoretically Optimal Probabilistic Classifier Using Class-specific
Features,
ICPR00(Vol II: 763-768).
IEEE DOI
0009
BibRef
Comaniciu, D.[Dorin],
Ramesh, V.[Visvanathan],
del Bue, A.[Alessio],
Multivariate Saddle Point Detection for Statistical Clustering,
ECCV02(III: 561 ff.).
Springer DOI
0205
BibRef
Comaniciu, D.,
Image segmentation using clustering with saddle point detection,
ICIP02(III: 297-300).
IEEE DOI
0210
BibRef
Fontaine, M.[Michael],
Macaire, L.[Ludovic],
Postaire, J.G.[Jack-Gerard],
Unsupervised Segmentation Based on Connectivity Analysis,
ICPR00(Vol I: 660-663).
IEEE DOI
0009
BibRef
Kam, A.H.,
Fitzgerald, W.J.,
A General Method for Unsupervised Segmentation of Images Using a
Multiscale Approach,
ECCV00(II: 69-84).
Springer DOI
0003
BibRef
Earlier:
Unsupervised multiscale image segmentation,
CIAP99(316-321).
IEEE DOI
9909
BibRef
Guo, G.D.[Guo-Dong],
Yu, S.[Shan],
Ma, S.D.[Song-De],
Unsupervised Segmentation Based on Multi-Resolution Analysis,
Robust Statistics and Majority Game Theory,
ICPR98(Vol I: 799-801).
IEEE DOI
9808
BibRef
Iivarinen, J.,
Rauhamaa, J.,
Visa, A.,
Unsupervised Segmentation of Surface Defects,
ICPR96(IV: 356-360).
IEEE DOI
9608
(Helsinki Univ. of Technology., SF)
BibRef
Kumar, V.,
Manolakos, E.[Elias],
Unsupervised Model-Based Object Recognition by
Parameter Estimation of Hierarchical Mixtures,
ICIP96(III: 967-970).
IEEE DOI
BibRef
9600
Rouquet, C.[Catherine],
Bonton, P.[Pierre],
Region-based segmentation of textured images,
CIAP95(11-16).
Springer DOI
9509
BibRef
Derras, M.,
Debain, C.,
Berducat, M.,
Bonton, P.,
Gallice, J.,
Unsupervised Regions Segmentation:
Real Time Control of an Upkeep Machine of Natural Spaces,
ECCV94(B:207-212).
Springer DOI
BibRef
9400
Horita, Y.,
Murai, T.,
Miyahara, M.,
Region segmentation using K-mean clustering and genetic algorithms,
ICIP94(III: 1016-1020).
IEEE DOI
9411
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Neural Networks for Segmentation .