12.3.1.10 Features for Contour Matching

Chapter Contents (Back)
Curvature. Curvature, etc.

Browse, R.A.,
Feature-Based Tactile Object Recognition,
PAMI(9), No. 6, November 1987, pp. 779-786. Tactile Sensing. BibRef 8711

Sclaroff, S.[Stan], and Pentland, A.P.,
Modal Matching for Correspondence and Recognition,
PAMI(17), No. 6, June 1995, pp. 545-561.
IEEE DOI BibRef 9506
And: Vismod-304, 1994.
HTML Version. and
PS File. Code, Matching. Gelerkin Approximation. Finite Element Analysis. Applies to matching 2-D contours and points. Similar to the Proximity Matrix. formulations.
See also Closed-Form Solutions for Physically Based Shape Modeling and Recognition.
See also Modal Matching: A Method for Describing, Comparing, and Manipulating Digital Signals. BibRef

Sclaroff, S.[Stan], and Pentland, A.P.,
A Modal Framework for Correspondence and Description,
ICCV93(308-313).
IEEE DOI BibRef 9300
And:
A Finite-Element Framework for Correspondence and Shape Description,
Vismod-201, 1992.
PS File. BibRef

Pentland, A.P.[Alex P.], Sclaroff, S.[Stan],
Modal represenations,
ORCV94(249-262).
Springer DOI 9412
The next step from Eigen faces. BibRef

Sclaroff, S.,
Modal Matching: A Method for Describing, Comparing, and Manipulating Digital Signals,
Ph.D.Thesis, MIT, February 1995, BibRef 9502 Vismod-TR-311, January 1995. Also extends his 2-D work to 3-D models.
HTML Version. and
PS File.
See also Modal Matching for Correspondence and Recognition. BibRef

Sclaroff, S.[Stan], and Pentland, A.P.[Alex P.],
On Modal Modeling for Medical Images: Underconstrained Shape Description and Data Compression,
Vismod-275, 1994.
PS File. BibRef 9400

Sclaroff, S., and Pentland, A.P.,
Object Recognition and Categorization Using Modal Matching,
Vismod-267, 1994.
PS File. BibRef 9400

Chang, Y.L., Leou, J.J.,
A Model-Based Approach to Representation and Matching of Object Shape Patterns,
PRL(13), 1992, pp. 707-714. BibRef 9200

Tieng, Q.M.[Quang Minh], Boles, W.W.,
Recognition of 2D Object Contours Using the Wavelet Transform Zero-Crossing Representation,
PAMI(19), No. 8, August 1997, pp. 910-916.
IEEE DOI 9709
A wavelet based description of the contour used in matching.
See also Wavelet-Based Affine Invariant Representation: A Tool for Recognizing Planar Objects in 3D Space. BibRef

Tieng, Q.M.[Quang Minh], Boles, W.W.,
An Application of Wavelet-Based Affine-Invariant Representation,
PRL(16), No. 12, December 1995, pp. 1287-1296. BibRef 9512
Earlier:
Complex Daubechies wavelet based affine invariant representation for object recognition,
ICIP94(I: 198-202).
IEEE DOI 9411
BibRef

Tieng, Q.M.[Quang Minh], Boles, W.W.,
Space Curve Representation and Recognition Based on Wavelet Transform Zero-Crossings,
JMIV(13), No. 1, August 2000, pp. 5-16.
DOI Link 0006
BibRef

Tieng, Q.M.[Quang Minh], Boles, W.W., Deriche, M.,
Space curve recognition based on the wavelet transform and string-matching techniques,
ICIP95(II: 643-646).
IEEE DOI 9510
BibRef

Dudek, G., Tsotsos, J.K.,
Shape Representation and Recognition from Multiscale Curvature,
CVIU(68), No. 2, November 1997, pp. 170-189.
DOI Link 9712
BibRef
Earlier:
Shape Representation and Recognition from Curvature,
CVPR91(35-41).
IEEE DOI BibRef
Earlier:
Recognizing planar curves using curvature-tuned smoothing,
ICPR90(I: 130-135).
IEEE DOI 9006
Break into features and match. Similarity measure and distance metric in scale space. BibRef

Dudek, G.,
Shape Representation from Curvature,
Ph.D.Thesis (CS), Totonto, December 1990. BibRef 9012

Ventura, J.A.[Jose A.], Wan, W.H.[Wen-Hua],
Accurate Matching of 2-Dimensional Shapes Using the Minimal Tolerance Zone Error,
IVC(15), No. 12, December 1997, pp. 889-899.
Elsevier DOI 9802
Automated inspection. BibRef

Bandera Rubio, A.[Antonio], Urdiales García, C.[Cristina], Arrebola, F., Sandoval Hernández, F.[Francisco],
2D object recognition based on curvature functions obtained from local histograms of the contour chain code,
PRL(20), No. 1, January 1999, pp. 49-55. BibRef 9901

Urdiales García, C.[Cristina], Bandera Rubio, A.[Antonio], Sandoval Hernández, F.[Francisco],
Non-parametric planar shape representation based on adaptive curvature functions,
PR(35), No. 1, January 2002, pp. 43-53.
Elsevier DOI 0111
Shape description from curvature. BibRef

Yang, H.S., Lee, S.U., Lee, K.M.,
Recognition of 2D Object Contours Using Starting-Point-Independent Wavelet Coefficient Matching,
JVCIR(9), 1998, pp. 171-181. BibRef 9800

Paragios, N.[Nikos], Rousson, M.[Mikael], Ramesh, V.[Visvanathan],
Non-rigid registration using distance functions,
CVIU(89), No. 2-3, February-March 2003, pp. 142-165.
Elsevier DOI 0304
BibRef
Earlier:
Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration,
ECCV02(II: 775 ff.).
Springer DOI 0205
BibRef

Klassen, E.[Eric], Srivastava, A.[Anuj], Mio, W.[Washington], Joshi, S.H.[Shantanu H.],
Analysis of Planar Shapes Using Geodesic Paths on Shape Spaces,
PAMI(26), No. 3, March 2004, pp. 372-383.
IEEE Abstract. 0402
Shapes are elements of infinite-dimesnional space, difference using lengths of geodesics connecting them.
See also Shape Analysis of Elastic Curves in Euclidean Spaces.
See also Elastic Shape Models for Face Analysis Using Curvilinear Coordinates. BibRef

Bryner, D.[Darshan], Srivastava, A.[Anuj], Huynh, Q.,
Elastic shapes models for improving segmentation of object boundaries in synthetic aperture sonar images,
CVIU(117), No. 12, 2013, pp. 1695-1710.
Elsevier DOI 1310
Riemannian geometry BibRef

Bryner, D.[Darshan], Klassen, E.[Eric], Le, H., Srivastava, A.[Anuj],
2D Affine and Projective Shape Analysis,
PAMI(36), No. 5, May 2014, pp. 998-1011.
IEEE DOI 1405
BibRef
Earlier: A1, A4, A2, Only:
Affine-invariant, elastic shape analysis of planar contours,
CVPR12(390-397).
IEEE DOI 1208
Computational modeling BibRef

Bryner, D.[Darshan], Srivastava, A.[Anuj],
Bayesian Active Contours with Affine-Invariant, Elastic Shape Prior,
CVPR14(312-319)
IEEE DOI 1409
Active contour BibRef

Klassen, E.[Eric], Srivastava, A.[Anuj],
Geodesics Between 3D Closed Curves Using Path-Straightening,
ECCV06(I: 95-106).
Springer DOI 0608
BibRef

Gopalan, R.[Raghuraman], Taheri, S.[Sima], Turaga, P.K.[Pavan K.], Chellappa, R.[Rama],
A Blur-Robust Descriptor with Applications to Face Recognition,
PAMI(34), No. 6, June 2012, pp. 1220-1226.
IEEE DOI 1205
Combine image formation model and geometric tools. BibRef

Zhang, Z.W.[Zheng-Wu], Klassen, E.[Eric], Srivastava, A.[Anuj], Turaga, P.K.[Pavan K.], Chellappa, R.[Rama],
Blurring-invariant Riemannian metrics for comparing signals and images,
ICCV11(1770-1775).
IEEE DOI 1201
BibRef

Srivastava, A.[Anuj], Joshi, S.H.[Shantanu H.], Mio, W.[Washington], Liu, X.W.[Xiu-Wen],
Statistical Shape Analysis: Clustering, Learning, and Testing,
PAMI(27), No. 4, April 2005, pp. 590-602.
IEEE Abstract. 0501
Planar shapes, cluster images by shapes of boundaries. BibRef

Srivastava, A.[Anuj], Jain, A.[Aastha], Joshi, S.H.[Shantanu H.], Kaziska, D.[David],
Statistical Shape Models Using Elastic-String Representations,
ACCV06(I:612-621).
Springer DOI 0601
BibRef

Srivastava, A.[Anuj], Liu, W.[Wei], Joshi, S.H.[Shantanu H.],
Modeling spatial patterns of shapes,
ICIP08(1144-1147).
IEEE DOI 0810
BibRef

Xu, D.[Dong], Xu, W.L.[Wen-Li],
Description and recognition of object contours using arc length and tangent orientation,
PRL(26), No. 7, 15 May 2005, pp. 855-864.
Elsevier DOI 0506
B-spline curves for arc length and tangent. BibRef

Xie, J.[Jun], Heng, P.A.[Pheng-Ann], Shah, M.[Mubarak],
Shape matching and modeling using skeletal context,
PR(41), No. 5, May 2008, pp. 1773-1784.
Elsevier DOI 0711
Shape skeleton; Saliency structure; Shape matching; Shape modeling; Optimal matching Matching with symmetry features. BibRef

Bai, X.[Xiang], Yang, X.W.[Xing-Wei], Latecki, L.J.[Longin Jan],
Detection and recognition of contour parts based on shape similarity,
PR(41), No. 7, July 2008, pp. 2189-2199.
Elsevier DOI 0804
Shape similarity; Parts of visual form; Detection of contour parts BibRef

Lu, C.E.[Cheng-En], Adluru, N.[Nagesh], Ling, H.B.[Hai-Bin], Zhu, G.X.[Guang-Xi], Latecki, L.J.[Longin Jan],
Contour based object detection using part bundles,
CVIU(114), No. 7, July 2010, pp. 827-834.
Elsevier DOI 1007
Part bundle; Shape context; Object detection BibRef

Lu, C.E.[Cheng-En], Latecki, L.J.[Longin Jan], Adluru, N.[Nagesh], Yang, X.W.[Xing-Wei], Ling, H.B.[Hai-Bin],
Shape guided contour grouping with particle filters,
ICCV09(2288-2295).
IEEE DOI 0909
Contour based detection and recognition. Grouping and labeling. BibRef

Ma, T.Y.[Tian-Yang], Latecki, L.J.[Longin Jan],
From partial shape matching through local deformation to robust global shape similarity for object detection,
CVPR11(1441-1448).
IEEE DOI 1106
BibRef

Sun, J.[Jin], Thorpe, C.[Christopher], Xie, N.H.[Nian-Hua], Yu, J.Y.[Jing-Yi], Ling, H.B.[Hai-Bin],
Object Category Classification Using Occluding Contours,
ISVC10(I: 296-305).
Springer DOI 1011
BibRef

Xu, Y.[Yong], Zheng, C.D.[Chao-Da], Xu, R.T.[Ruo-Tao], Quan, Y.H.[Yu-Hui], Ling, H.B.[Hai-Bin],
Multi-View 3D Shape Recognition via Correspondence-Aware Deep Learning,
IP(30), 2021, pp. 5299-5312.
IEEE DOI 2106
Shape, Semantics, Automobiles, Solid modeling, Image recognition, Pipelines, 3D shape analysis, object recognition BibRef

Xu, Y.[Yong], Pan, S.H.[Shao-Hui], Xu, R.T.[Ruo-Tao], Ling, H.B.[Hai-Bin],
View-aligned pixel-level feature aggregation for 3D shape classification,
CVIU(248), 2024, pp. 104098.
Elsevier DOI 2409
Multi-view recognition, 3D model classification, Pixel-wise fusion BibRef

Wu, C.Q.[Cheng-Qian], Bai, X.[Xiang], Li, Q.N.[Quan-Nan], Yang, X.W.[Xing-Wei], Liu, W.Y.[Wen-Yu],
Contour Grouping with Partial Shape Similarity,
PSIVT09(167-178).
Springer DOI 0901
BibRef

Shotton, J.D.J.[Jamie D.J.], Blake, A.[Andrew], Cipolla, R.[Roberto],
Multiscale Categorical Object Recognition Using Contour Fragments,
PAMI(30), No. 7, July 2008, pp. 1270-1281.
IEEE DOI 0806
BibRef
Earlier:
Contour-Based Learning for Object Detection,
ICCV05(I: 503-510).
IEEE DOI 0510
Local contour features. BibRef

Shotton, J.D.J., Blake, A., Cipolla, R.,
Efficiently Combining Contour and Texture Cues for Object Recognition,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Winn, J.[John], Shotton, J.D.J.[Jamie D.J.],
The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects,
CVPR06(I: 37-44).
IEEE DOI 0606
BibRef

Baseski, E., Erdem, A.[Aykut], Tari, S.[Sibel],
Dissimilarity between two skeletal trees in a context,
PR(42), No. 3, March 2009, pp. 370-385.
Elsevier DOI 0811
Skeletal shape matching; Shape similarity; Disconnected skeleton BibRef

Erdem, A.[Aykut], Tari, S.[Sibel],
A similarity-based approach for shape classification using Aslan skeletons,
PRL(31), No. 13, 1 October 2010, pp. 2024-2032.
Elsevier DOI 1003
BibRef
Earlier:
Coarse-to-Fine Matching of Shapes Using Disconnected Skeletons by Learning Class-Specific Boundary Deformations,
GbRPR09(21-30).
Springer DOI 0905
Shape skeletons; Shape classification; Similarity-based pattern recognition BibRef

Bergbauer, J.[Julia], Tari, S.[Sibel],
Wimmelbild Analysis with Approximate Curvature Coding Distance Images,
SSVM13(489-500).
Springer DOI 1305
finding figures in a crowd (finding Waldo) BibRef

Bandera Rubio, A.[Antonio], Marfil, R., Antunez, E.,
Affine-invariant contours recognition using an incremental hybrid learning approach,
PRL(30), No. 14, 15 October 2009, pp. 1310-1320.
Elsevier DOI 0909
Planar shape recognition; Adaptive curvature function; Incremental analysis BibRef

Han, Y.X.[Yue-Xing],
Recognize objects with three kinds of information in landmarks,
PR(46), No. 11, November 2013, pp. 2860-2873.
Elsevier DOI 1306
Object recognition; Matching images; Landmark; The shape space; Angle; Feature vector; The Procrustean distance Landmark (obvious, distinct) features in objects. BibRef

Wang, W.[Wei], Jiang, Y.M.[Yong-Mei], Xiong, B.[Boli], Zhao, L.J.[Ling-Jun], Kuang, G.Y.[Gang-Yao],
Contour matching using the affine-invariant support point set,
IET-CV(8), No. 1, February 2014, pp. 35-44.
DOI Link 1404
affine transforms BibRef

Wang, W.[Wei], Xiong, B.[Boli], Yan, X., Jiang, Y.M.[Yong-Mei], Kuang, G.Y.[Gang-Yao],
Affine invariant shape projection distribution for shape matching using relaxation labelling,
IET-CV(10), No. 2, 2016, pp. 124-133.
DOI Link 1603
affine transforms BibRef

Guo, G.[Ge], Wang, Y.Z.[Yi-Zhou], Jiang, T.T.[Ting-Ting], Yuille, A.L.[Alan L.], Fang, F.[Fang], Gao, W.[Wen],
A Shape Reconstructability Measure of Object Part Importance with Applications to Object Detection and Localization,
IJCV(108), No. 3, July 2014, pp. 241-258.
Springer DOI 1407
BibRef
Earlier: A1, A2, A3, A4, A6, Only:
Computing importance of 2D contour parts by reconstructability,
ITCVPR11(1364-1371).
IEEE DOI 1201
computes the importance of 2-D object shape parts. For recognition or reconstruction. BibRef

Baghaie, A.[Ahmadreza], Yu, Z.Y.[Ze-Yun],
Curvature-Based Registration for Slice Interpolation of Medical Images,
CompIMAGE14(69-80).
Springer DOI 1407
BibRef

Zhang, X.H.[Xiao-Hong], Qu, Y.[Ying], Yang, D.[Dan], Wang, H.X.[Hong-Xing], Kymer, J.,
Laplacian Scale-Space Behavior of Planar Curve Corners,
PAMI(37), No. 11, November 2015, pp. 2207-2217.
IEEE DOI 1511
curve fitting BibRef

Yasseen, Z.[Zahraa], Verroust-Blondet, A.[Anne], Nasri, A.[Ahmad],
Shape matching by part alignment using extended chordal axis transform,
PR(57), No. 1, 2016, pp. 115-135.
Elsevier DOI 1605
Shape descriptors BibRef

Yasseen, Z.[Zahraa], Verroust-Blondet, A.[Anne], Nasri, A.[Ahmad],
View selection for sketch-based 3D model retrieval using visual part shape description,
VC(33), No. 5, May 2017, pp. 565-583.
WWW Link. 1704
BibRef

Pan, X.Q.[Xia-Qing], Chachada, S.[Sachin], Kuo, C.C.J.[C.C. Jay],
A two-stage shape retrieval (TSR) method with global and local features,
JVCIR(38), No. 1, 2016, pp. 753-762.
Elsevier DOI 1605
2D shape retrieval. First: both global and local features and use them to predict the relevance of gallery shapes. Then match on this set only. BibRef

Le Brigant, A.[Alice],
A Discrete Framework to Find the Optimal Matching Between Manifold-Valued Curves,
JMIV(61), No. 1, January 2019, pp. 40-70.
Springer DOI 1901
BibRef

Liu, H.J.[Hua-Jun], Yin, S.[Shuang], Sui, H.G.[Hai-Gang], Yang, Q.Y.[Qing-Ye], Lei, D.[Dian], Yang, W.[Wei],
Accurate Matching of Invariant Features Derived from Irregular Curves,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef


Ehm, V.[Viktoria], Roetzer, P.[Paul], Eisenberger, M.[Marvin], Gao, M.L.[Mao-Lin], Bernard, F.[Florian], Cremers, D.[Daniel],
Geometrically Consistent Partial Shape Matching,
3DV24(914-922)
IEEE DOI Code:
WWW Link. 2408
Geometry, Interpolation, Shape, Integer linear programming, Filling, partial shape matching, geometric consistency, optimization BibRef

Velich, R.[Roy], Kimmel, R.[Ron],
Learning Differential Invariants of Planar Curves,
SSVM23(575-587).
Springer DOI 2307
BibRef

Zhou, W., Zhong, B., Ma, K.,
Shape Matching Based on Rectangularized Curvature Scale-Space Maps,
ICIP19(4230-4234)
IEEE DOI 1910
shape matching, curvature scale space, shape retrieval, rectangularized CSS maps. BibRef

Yu, X., Xiong, S., Gao, Y., Yuan, X.,
Contour Covariance: A Fast Descriptor for Classification,
ICIP19(569-573)
IEEE DOI 1910
Covariance matrix, shape classification, feature descriptor, contour covariance BibRef

Ravindran, S.K., Mittal, A.,
CoMaL: Good Features to Match on Object Boundaries,
CVPR16(336-345)
IEEE DOI 1612
BibRef

Janusch, I.[Ines], Kropatsch, W.G.[Walter G.],
Persistence Based on LBP Scale Space,
CTIC16(240-252).
Springer DOI 1608
BibRef
Earlier:
Shape Classification According to LBP Persistence of Critical Points,
DGCI16(166-177).
WWW Link. 1606
BibRef

Merhy, M.[Mayss'aa], Benzinou, A.[Abdesslam], Nasreddine, K.[Kamal], Khalil, M.[Mohamad], Faour, G.[Ghaleb],
An optimal elastic partial shape matching via shape geodesics,
ICIP14(4742-4746)
IEEE DOI 1502
BibRef

Abboud, M.[Michel], Benzinou, A.[Abdesslam], Nasreddine, K.[Kamal], Jazar, M.[Mustapha],
Robust statistical shape analysis based on the tangent shape space,
ICIP15(3520-3524)
IEEE DOI 1512
BibRef
Earlier:
Geodesics-based statistical shape analysis,
ICIP14(4747-4751)
IEEE DOI 1502
Shape analysis. Databases BibRef

Xie, S.S.[Shui-Sheng], Liu, J.D.[Jun-Dong], Smith, C.D.[Charles D.],
Curve skeleton-based shape representation and classification,
ICIP12(529-532).
IEEE DOI 1302
BibRef

Luo, P.[Ping], Lin, L.[Liang], Chao, H.Y.[Hong-Yang],
Learning Shape Detector by Quantizing Curve Segments with Multiple Distance Metrics,
ECCV10(III: 342-355).
Springer DOI 1009
Shape models from curve segments BibRef

Wang, B.[Bo], Bai, X.[Xiang], Wang, X.G.[Xing-Gang], Liu, W.Y.[Wen-Yu], Tu, Z.W.[Zhuo-Wen],
Object Recognition Using Junctions,
ECCV10(V: 15-28).
Springer DOI 1009
Corner points of the contour. BibRef

Chakraborty, I.[Ishani], Elgammal, A.M.[Ahmed M.],
Contour Segment Matching by Integrating Intra and Inter Shape Cues of Objects,
BMVC09(xx-yy).
PDF File. 0909
BibRef

Ebrahim, Y.[Yasser], Ahmed, M.[Maher], Chau, S.C.[Siu-Cheung], Abdelsalam, W.[Wegdan],
Shape Matching Using a Novel Warping Distance Measure,
ICIAR08(xx-yy).
Springer DOI 0806
BibRef

Ochoa, D.[Daniel], Gautama, S.[Sidharta], Vintimilla, B.[Boris],
Contour Energy Features for Recognition of Biological Specimens in Population Images,
ICIAR07(1061-1070).
Springer DOI 0708
BibRef
And:
Detection of Individual Specimens in Populations Using Contour Energies,
ACIVS07(575-586).
Springer DOI 0708
BibRef

Schmidt, F.R.[Frank R.], Farin, D.[Dirk], Cremers, D.[Daniel],
Fast Matching of Planar Shapes in Sub-cubic Runtime,
ICCV07(1-6).
IEEE DOI 0710
BibRef

Schmidt, F.R.[Frank R.], Toppe, E.[Eno], Cremers, D.[Daniel],
Efficient planar graph cuts with applications in Computer Vision,
CVPR09(351-356).
IEEE DOI 0906
BibRef

Schmidt, F.R.[Frank R.], Töppe, E.[Eno], Cremers, D.[Daniel], Boykov, Y.Y.[Yuri Y.],
Intrinsic Mean for Semi-metrical Shape Retrieval Via Graph Cuts,
DAGM07(446-455).
Springer DOI 0709
BibRef
And:
Efficient Shape Matching Via Graph Cuts,
EMMCVPR07(39-54).
Springer DOI Or:
PDF File. 0708
BibRef

Schmidt, F.R.[Frank R.], Clausen, M.[Michael], Cremers, D.[Daniel],
Shape Matching by Variational Computation of Geodesics on a Manifold,
DAGM06(142-151).
Springer DOI 0610
BibRef

Inoue, K.[Katsufumi], Kise, K.[Koichi],
Compressed representation of feature vectors using a Bloomier filter and its application to specific object recognition,
Emergent09(2133-2140).
IEEE DOI 0910
If you skip the distance computation in NN search, you store smaller feature vector. BibRef

Klinkigt, M.[Martin], Kise, K.[Koichi],
From Local Features to Global Shape Constraints: Heterogeneous Matching Scheme for Recognizing Objects under Serious Background Clutter,
ACCV10(IV: 64-75).
Springer DOI 1011
Recognition where clutter complicates foreground. BibRef

Kise, K.[Koichi], Noguchi, K.[Kazuto], Iwamura, M.[Masakazu],
Robust and efficient recognition of low-quality images by cascaded recognizers with massive local features,
Emergent09(2125-2132).
IEEE DOI 0910
BibRef
Earlier:
Memory efficient recognition of specific objects with local features,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Kise, K.[Koichi], Nakai, T.[Tomohiro], Iwamura, M.[Masakazu], Yokota, S.[Satoshi],
Efficient Recognition of Planar Objects Based on Hashing of Keypoints: An Approach Towards Making the Physical World Clickable,
ICPR06(IV: 813-816).
IEEE DOI 0609
BibRef

Li, Z.[Zheng], Luo, X.N.[Xiao-Nan], Gao, C.Y.[Cheng-Ying],
Multi-Resolution Curve Alignment Based on Salient Features,
ICPR06(II: 357-360).
IEEE DOI 0609
BibRef

Wang, T.[Tao], Basu, A.[Anup],
Iterative Estimation of 3D Transformations for Object Alignment,
ISVC06(I: 212-221).
Springer DOI 0611
BibRef
Earlier:
Automatic Estimation of 3D Transformations using Skeletons for Object Alignment,
ICPR06(I: 51-54).
IEEE DOI 0609
BibRef

Deriche, R., Faugeras, O.D.,
2-D Curve Matching Using High Curvature Points: Application to Stereo Vision,
ICPR90(I: 240-242).
IEEE DOI BibRef 9000

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Region Properties for Matching .


Last update:Sep 28, 2024 at 17:47:54