Larios, N.[Natalia],
Deng, H.L.[Hong-Li],
Zhang, W.[Wei],
Sarpola, M.[Matt],
Yuen, J.[Jenny],
Paasch, R.[Robert],
Moldenke, A.[Andrew],
Lytle, D.A.[David A.],
Correa, S.R.[Salvador Ruiz],
Mortensen, E.N.[Eric N.],
Shapiro, L.G.[Linda G.],
Dietterich, T.G.[Thomas G.],
Automated insect identification through concatenated histograms of
local appearance features: feature vector generation and region
detection for deformable objects,
MVA(19), No. 2, March 2008, pp. 105-123.
Springer DOI
0802
BibRef
Earlier:
Automated Insect Identification through Concatenated Histograms of
Local Appearance Features,
WACV07(26-26).
IEEE DOI
0702
BibRef
Larios, N.,
Soran, B.,
Shapiro, L.G.,
Martinez-Munoz, G.,
Lin, J.,
Dietterich, T.G.,
Haar Random Forest Features and SVM Spatial Matching Kernel for
Stonefly Species Identification,
ICPR10(2624-2627).
IEEE DOI
1008
BibRef
Larios, N.[Natalia],
Lin, J.,
Zhang, M.,
Lytle, D.A.[David A.],
Moldenke, A.[Andrew],
Shapiro, L.G.,
Dietterich, T.G.,
Stacked spatial-pyramid kernel: An object-class recognition method to
combine scores from random trees,
WACV11(329-335).
IEEE DOI
1101
BibRef
Kaya, Y.[Yilmaz],
Kayci, L.[Lokman],
Application of artificial neural network for automatic detection of
butterfly species using color and texture features,
VC(30), No. 1, January 2014, pp. 71-79.
WWW Link.
1412
BibRef
Martineau, M.[Maxime],
Conte, D.[Donatello],
Raveaux, R.[Romain],
Arnault, I.[Ingrid],
Munier, D.[Damien],
Venturini, G.[Gilles],
A survey on image-based insect classification,
PR(65), No. 1, 2017, pp. 273-284.
Elsevier DOI
1702
Survey, Insects. Image-based insect recognition
BibRef
Makori, D.M.[David M.],
Fombong, A.T.[Ayuka T.],
Abdel-Rahman, E.M.[Elfatih M.],
Nkoba, K.[Kiatoko],
Ongus, J.[Juliette],
Irungu, J.[Janet],
Mosomtai, G.[Gladys],
Makau, S.[Sospeter],
Mutanga, O.[Onisimo],
Odindi, J.[John],
Raina, S.[Suresh],
Landmann, T.[Tobias],
Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using
Remotely Sensed and Bioclimatic Variables:
Key Honeybee Pests Distribution Models,
IJGI(6), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Bakkay, M.C.[Mohamed Chafik],
Chambon, S.[Sylvie],
Rashwan, H.A.[Hatem A.],
Lubat, C.[Christian],
Barsotti, S.[Sébastien],
Automatic detection of individual and touching moths from trap images
by combining contour-based and region-based segmentation,
IET-CV(12), No. 2, March 2018, pp. 138-145.
DOI Link
1804
BibRef
Rodriguez, I.F.,
Megret, R.,
Acuna, E.,
Agosto-Rivera, J.L.,
Giray, T.,
Recognition of Pollen-Bearing Bees from Video Using Convolutional
Neural Network,
WACV18(314-322)
IEEE DOI
1806
convolution, feedforward neural nets,
image classification, baseline classifiers,
Task analysis
BibRef
López-Fernández, L.[Luis],
Lagüela, S.[Susana],
Rodríguez-Gonzálvez, P.[Pablo],
Martín-Jiménez, J.A.[José Antonio],
González-Aguilera, D.[Diego],
Close-Range Photogrammetry and Infrared Imaging for Non-Invasive
Honeybee Hive Population Assessment,
IJGI(7), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Li, F.[Fan],
Xiong, Y.[Yin],
Automatic identification of butterfly species based on HoMSC and
GLCMoIB,
VC(34), No. 11, November 2018, pp. 1525-1533.
WWW Link.
1810
BibRef
Machraoui, A.N.[Ahmed Nejmedine],
Diouani, M.F.[Mohamed Fethi],
Mouelhi, A.[Aymen],
Jaouadi, K.[Kaouther],
Ghrab, J.[Jamila],
Abdelmelek, H.[Hafedh],
Sayadi, M.[Mounir],
Automatic identification and behavioral analysis of phlebotomine sand
flies using trajectory features,
VC(35), No. 5, May 2019, pp. 721-738.
Springer DOI
1906
BibRef
Wang, R.[Rui],
Hu, C.[Cheng],
Liu, C.J.[Chang-Jiang],
Long, T.[Teng],
Kong, S.Y.[Shao-Yang],
Lang, T.J.[Tian-Jiao],
Gould, P.J.L.[Philip J. L.],
Lim, J.[Jason],
Wu, K.M.[Kong-Ming],
Migratory Insect Multifrequency Radar Cross Sections for
Morphological Parameter Estimation,
GeoRS(57), No. 6, June 2019, pp. 3450-3461.
IEEE DOI
1906
Insects, Radar cross-sections, Radar detection,
Frequency estimation, Feature extraction, migratory insect,
radar cross section (RCS)
BibRef
Hu, C.[Cheng],
Kong, S.Y.[Shao-Yang],
Wang, R.[Rui],
Zhang, F.[Fan],
Wang, L.J.[Lian-Jun],
Insect Mass Estimation Based on Radar Cross Section Parameters and
Support Vector Regression Algorithm,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Hu, C.,
Li, W.,
Wang, R.,
Long, T.,
Liu, C.,
Drake, V.A.,
Insect Biological Parameter Estimation Based on the Invariant Target
Parameters of the Scattering Matrix,
GeoRS(57), No. 8, August 2019, pp. 6212-6225.
IEEE DOI
1908
eigenvalues and eigenfunctions, length measurement,
mass measurement, matrix algebra, parameter estimation,
orientation
BibRef
Hu, C.[Cheng],
Kong, S.[Shaoyang],
Wang, R.[Rui],
Zhang, F.[Fan],
Radar Measurements of Morphological Parameters and Species
Identification Analysis of Migratory Insects,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Dittrich, A.[Andreas],
Roilo, S.[Stephanie],
Sonnenschein, R.[Ruth],
Cerrato, C.[Cristiana],
Ewald, M.[Michael],
Viterbi, R.[Ramona],
Cord, A.F.[Anna F.],
Modelling Distributions of Rove Beetles in Mountainous Areas Using
Remote Sensing Data,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Hao, Z.H.[Zhen-Hua],
Drake, V.A.[V. Alistair],
Taylor, J.R.[John R.],
Warrant, E.[Eric],
Insect Target Classes Discerned from Entomological Radar Data,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Drake, V.A.[V. Alistair],
Hatty, S.[Shane],
Symons, C.[Colin],
Wang, H.[Haikou],
Insect Monitoring Radar: Maximizing Performance and Utility,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Cao, X.Y.[Xiao-Yan],
Guo, S.H.[Shi-Hui],
Lin, J.C.[Jun-Cong],
Zhang, W.S.[Wen-Shu],
Liao, M.H.[Ming-Hong],
Online tracking of ants based on deep association metrics:
Method, dataset and evaluation,
PR(103), 2020, pp. 107233.
Elsevier DOI
2005
Ant tracking, ResNet model, Mahalanobis distance, Appearance descriptors
BibRef
de Sousa, D.J.[Daniela Justiniano],
Cardoso, M.A.[Maira Arruda],
Bisch, P.M.[Paulo Mascarello],
Lopes, F.J.P.[Francisco José Pereira],
Travençolo, B.A.N.[Bruno Augusto Nassif],
Automated standardization of images of Drosophila embryos,
JVCIR(71), 2020, pp. 102758.
Elsevier DOI
2009
Embryo standardization, Anterior-posterior orientation,
Dorsal-ventral orientation, Automatic embryo positioning,
BibRef
Wang, R.[Rui],
Cai, J.[Jiong],
Hu, C.[Cheng],
Zhou, C.[Chao],
Zhang, T.R.[Tian-Ran],
A Novel Radar Detection Method for Sensing Tiny and Maneuvering
Insect Migrants,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Chen, C.L.[Chao-Liang],
Qian, J.[Jing],
Chen, X.[Xi],
Hu, Z.Y.[Zeng-Yun],
Sun, J.[Jiayu],
Wei, S.[Shujie],
Xu, K.B.[Kai-Bin],
Geographic Distribution of Desert Locusts in Africa, Asia and Europe
Using Multiple Sources of Remote-Sensing Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Wang, R.[Rui],
Zhang, Y.M.[Yi-Ming],
Tian, W.M.[Wei-Ming],
Cai, J.[Jiong],
Hu, C.[Cheng],
Zhang, T.R.[Tian-Ran],
Fast Implementation of Insect Multi-Target Detection Based on
Multimodal Optimization,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
Insects on radar.
BibRef
Kong, S.Y.[Shao-Yang],
Hu, C.[Cheng],
Wang, R.[Rui],
Zhang, F.[Fan],
Wang, L.J.[Lian-Jun],
Long, T.[Teng],
Wu, K.M.[Kong-Ming],
Insect Multifrequency Polarimetric Radar Cross Section:
Experimental Results and Analysis,
GeoRS(59), No. 8, August 2021, pp. 6573-6585.
IEEE DOI
2108
Insects, Radar cross-sections, Antenna measurements, Scattering,
Frequency measurement, Metals, Entomological radar, insect,
radar cross section (RCS)
BibRef
Fang, L.L.[Lin-Lin],
Tian, W.M.[Wei-Ming],
Wang, R.[Rui],
Zhou, C.[Chao],
Hu, C.[Cheng],
Design of Insect Target Tracking Algorithm in Clutter Based on the
Multidimensional Feature Fusion Strategy,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
Track masses of insects using radar.
BibRef
Wang, R.[Rui],
Kou, X.[Xiao],
Cui, K.[Kai],
Mao, H.F.[Hua-Feng],
Wang, S.H.[Shuai-Hang],
Sun, Z.R.[Zhuo-Ran],
Li, W.D.[Wei-Dong],
Li, Y.L.[Yun-Long],
Hu, C.[Cheng],
Insect-Equivalent Radar Cross-Section Model Based on Field
Experimental Results of Body Length and Orientation Extraction,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sun, R.Q.[Rui-Qi],
Huang, W.J.[Wen-Jiang],
Dong, Y.Y.[Ying-Ying],
Zhao, L.L.[Long-Long],
Zhang, B.[Biyao],
Ma, H.Q.[Hui-Qin],
Geng, Y.[Yun],
Ruan, C.[Chao],
Xing, N.C.[Nai-Chen],
Chen, X.D.[Xi-Dong],
Li, X.L.[Xue-Ling],
Dynamic Forecast of Desert Locust Presence Using Machine Learning
with a Multivariate Time Lag Sliding Window Technique,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
Insects.
BibRef
Addison, F.I.[Freya I.],
Dally, T.[Thomas],
Duncan, E.J.[Elizabeth J.],
Rouse, J.[James],
Evans, W.L.[William L.],
Hassall, C.[Christopher],
Neely, R.R.[Ryan R.],
Simulation of the Radar Cross Section of a Noctuid Moth,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Yu, T.[Teng],
Li, M.[Muyang],
Li, W.D.[Wei-Dong],
Cai, J.[Jiong],
Wang, R.[Rui],
Hu, C.[Cheng],
Insect Migration Flux Estimation Based on Statistical Hypothesis for
Entomological Radar,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Wang, R.[Rui],
Zhang, T.R.[Tian-Ran],
Cui, K.[Kai],
Yu, T.[Teng],
Jiang, Q.[Qi],
Zhang, R.J.[Rong-Jing],
Li, J.Y.[Jia-Yi],
Hu, C.[Cheng],
High-Resolution and Low Blind Range Waveform for Migratory
Insects' Taking-Off and Landing Behavior Observation,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Huang, Y.[Yanru],
Lv, H.[Hua],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Hu, G.[Gao],
Liu, Y.[Yang],
Chen, H.[Hui],
Geng, Y.[Yun],
Bai, J.[Jie],
Guo, P.[Peng],
Cui, Y.F.[Yi-Feng],
Mapping the Spatio-Temporal Distribution of Fall Armyworm in China by
Coupling Multi-Factors,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Buchaillot, M.L.[Ma. Luisa],
Cairns, J.[Jill],
Hamadziripi, E.[Esnath],
Wilson, K.[Kenneth],
Hughes, D.[David],
Chelal, J.[John],
McCloskey, P.[Peter],
Kehs, A.[Annalyse],
Clinton, N.[Nicholas],
Araus, J.L.[José Luis],
Kefauver, S.C.[Shawn C.],
Regional Monitoring of Fall Armyworm (FAW) Using Early Warning
Systems,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Diyap, M.[Murat],
Zadeh, A.T.[Ashkan Taremi],
Moll, J.[Jochen],
Krozer, V.[Viktor],
Numerical and Experimental Studies on the Micro-Doppler Signatures of
Freely Flying Insects at W-Band,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Klein, I.[Igor],
Cocco, A.[Arturo],
Uereyen, S.[Soner],
Mannu, R.[Roberto],
Floris, I.[Ignazio],
Oppelt, N.[Natascha],
Kuenzer, C.[Claudia],
Outbreak of Moroccan Locust in Sardinia (Italy):
A Remote Sensing Perspective,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, T.[Ting],
Waqas, M.[Muhammad],
Fang, Y.[Yu],
Liu, Z.Y.[Zhao-Ying],
Halim, Z.[Zahid],
Li, Y.J.[Yu-Jian],
Chen, S.[Sheng],
Weakly-supervised butterfly detection based on saliency map,
PR(138), 2023, pp. 109313.
Elsevier DOI
2303
Butterfly detection, Saliency map, Class activation map,
Weakly-supervised object detection
BibRef
Peignier, S.[Sergio],
Lacotte, V.[Virginie],
Duport, M.G.[Marie-Gabrielle],
Baa-Puyoulet, P.[Patrice],
Simon, J.C.[Jean-Christophe],
Calevro, F.[Federica],
Heddi, A.[Abdelaziz],
da Silva, P.[Pedro],
Detection of Aphids on Hyperspectral Images Using One-Class SVM and
Laplacian of Gaussians,
RS(15), No. 8, 2023, pp. 2103.
DOI Link
2305
BibRef
Victoriano, M.[Margarida],
Oliveira, L.[Lino],
Oliveira, H.P.[Hélder P.],
Automated Detection and Identification of Olive Fruit Fly Using Yolov7
Algorithm,
IbPRIA23(211-222).
Springer DOI
2307
BibRef
Lee, J.H.[Jae-Hyeon],
Son, C.H.[Chang-Hwan],
Trap-Based Pest Counting: Multiscale and Deformable Attention
CenterNet Integrating Internal LR and HR Joint Feature Learning,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Rahman, R.[Raiyan],
Indris, C.[Christopher],
Zhang, T.X.[Tian-Xiao],
Li, K.[Kaidong],
McCornack, B.[Brian],
Flippo, D.[Daniel],
Sharda, A.[Ajay],
Wang, G.H.[Guang-Hui],
On the Real-Time Semantic Segmentation of Aphid Clusters in the Wild,
AgriVision23(6299-6306)
IEEE DOI
2309
BibRef
Vannoy, T.C.[Trevor C.],
Sweeney, N.B.[Nathaniel B.],
Shaw, J.A.[Joseph A.],
Whitaker, B.M.[Bradley M.],
Comparison of Supervised Learning and Changepoint Detection for
Insect Detection in Lidar Data,
RS(15), No. 24, 2023, pp. 5634.
DOI Link
2401
BibRef
Shukla, K.K.[Karunesh K.],
Nigam, R.[Rahul],
Birah, A.[Ajanta],
Kanojia, A.K.,
Kumar, A.[Anoop],
Bhattacharya, B.K.[Bimal K.],
Chander, S.[Subhash],
Detection of Aphid-Infested Mustard Crop Using Ground Spectroscopy,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Huang, Y.[Yanru],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Guo, J.[Jing],
Hao, Z.Q.[Zhuo-Qing],
Zhao, M.X.[Ming-Xian],
Hu, B.[Bohai],
Cheng, X.Z.[Xiang-Zhe],
Wang, M.H.[Ming-Hao],
Predicting the Global Potential Suitable Distribution of Fall
Armyworm and Its Host Plants Based on Machine Learning Models,
RS(16), No. 12, 2024, pp. 2060.
DOI Link
2406
BibRef
Zhang, Z.Y.[Zhen-Yu],
Yang, Y.F.[Yun-Fan],
Xu, X.[Xin],
Liu, L.L.[Liang-Liang],
Yue, J.[Jibo],
Ding, R.F.[Rui-Feng],
Lu, Y.H.[Yan-Hui],
Liu, J.[Jie],
Qiao, H.B.[Hong-Bo],
GVC-YOLO: A Lightweight Real-Time Detection Method for Cotton
Aphid-Damaged Leaves Based on Edge Computing,
RS(16), No. 16, 2024, pp. 3046.
DOI Link
2408
BibRef
Wang, R.[Rui],
Ren, J.H.[Jia-Hao],
Li, W.D.[Wei-Dong],
Yu, T.[Teng],
Zhang, F.[Fan],
Wang, J.T.[Jiang-Tao],
Application of Instance Segmentation to Identifying Insect
Concentrations in Data from an Entomological Radar,
RS(16), No. 17, 2024, pp. 3330.
DOI Link
2409
BibRef
Hodges, S.[Samuel],
Hassall, C.[Christopher],
Neely, R.[Ryan],
Weather Radars Reveal Environmental Conditions for High Altitude
Insect Movement Through the Aerosphere,
RS(16), No. 23, 2024, pp. 4388.
DOI Link
2501
BibRef
Nguyen, H.Q.[Hoang-Quan],
Truong, T.D.[Thanh-Dat],
Nguyen, X.B.[Xuan Bac],
Dowling, A.[Ashley],
Li, X.[Xin],
Luu, K.[Khoa],
Insect-Foundation: A Foundation Model and Large-Scale 1M Dataset for
Visual Insect Understanding,
CVPR24(21945-21955)
IEEE DOI
2410
Precision agriculture, Training, Visualization, Solid modeling,
Attention mechanisms, Insects, Taxonomy, dataset, foundation model
BibRef
Sharma, T.[Tarun],
Wagner, J.M.[Julian M.],
Beery, S.[Sara],
Dickson, W.B.[William B.],
Dickinson, M.H.[Michael H.],
Parker, J.[Joseph],
Monitoring Social Insect Activity with Minimal Human Supervision,
FGVC24(1244-1253)
IEEE DOI
2410
Symbiosis, Shape, Insects, Wildlife, Vegetation, Cameras, Ant monitoring,
multi-object tracking, conservation technology, object detection
BibRef
Haalck, L.[Lars],
Thiele, S.[Sebastian],
Risse, B.[Benjamin],
Tracking Tiny Insects in Cluttered Natural Environments using
Refinable Recurrent Neural Networks,
WACV24(7111-7120)
IEEE DOI
2404
Heating systems, Visualization, Uncertainty, Insects, Wildlife,
Manuals, Applications, Animals / Insects, Algorithms,
Environmental monitoring / climate change / ecology
BibRef
Gebauer, E.[Eike],
Thiele, S.[Sebastian],
Ouvrard, P.[Pierre],
Sicard, A.[Adrien],
Risse, B.[Benjamin],
Towards a Dynamic Vision Sensor-based Insect Camera Trap,
WACV24(7142-7151)
IEEE DOI
2404
Deep learning, Visualization, Insects, Buildings, Wildlife, Cameras,
Real-time systems, Applications, Animals / Insects, Algorithms,
Environmental monitoring / climate change / ecology
BibRef
Tausch, F.[Frederic],
Wagner, J.[Jan],
Klaus, S.[Simon],
Pollinators as Data Collectors: Estimating Floral Diversity with Bees
and Computer Vision,
CVPPA23(643-650)
IEEE DOI
2401
BibRef
Leme, M.H.C.[Matheus H. C.],
Simm, V.S.[Vinicius S.],
Tanno, D.R.[Douglas Rorie],
Costa, Y.M.G.[Yandre M. G.],
Domingues, M.A.[Marcos Aurélio],
Stingless Bee Classification: A New Dataset and Baseline Results,
CIARP23(I:730-744).
Springer DOI
2312
BibRef
Fan, M.[Min],
Lu, Y.[Ying],
Xu, Q.[Quanyuan],
Zhang, H.[Hanrui],
Chang, J.[Jumei],
Deng, W.J.[Wei-Jie],
Identification of Papilionidae Species in Yunnan Province Based on
Deep Learning,
ICIVC22(611-614)
IEEE DOI
2301
Deep learning, Visualization, Image recognition,
Biological system modeling, Insects, Transfer learning, Adamax
BibRef
Picek, L.[Lukas],
Novozamsky, A.[Adam],
Frydrychova, R.C.[Radmila C.],
Zitova, B.[Barbara],
Mach, P.[Pavel],
Monitoring of Varroa Infestation Rate in Beehives:
A Simple AI Approach,
ICIP22(3341-3345)
IEEE DOI
2211
Machine learning algorithms, Costs, Machine learning, Hardware,
Frequency measurement, Complexity theory, Apiculture, Bee, Varroa
BibRef
Schurischuster, S.[Stefan],
Kampel, M.[Martin],
Image-based Classification of Honeybees,
IPTA20(1-6)
IEEE DOI
2206
Image segmentation, Annotations, Semantics, Tools, Real-time systems,
Task analysis, Testing
BibRef
Shams, T.[Tooba],
Desbarats, P.[Pascal],
Detection of asian hornet's nest on drone acquired FLIR and color
images using deep learning methods,
IPTA20(1-6)
IEEE DOI
2206
Biological system modeling, Computational modeling,
Neural networks, Color, Streaming media, Task analysis, Drones,
Deep Neural Networks
BibRef
Chen, X.[Xin],
Wang, B.[Bin],
Gao, Y.S.[Yong-Sheng],
Gaussian Convolution Angles: Invariant Vein and Texture Descriptors
for Butterfly Species Identification,
ICPR21(5798-5803)
IEEE DOI
2105
Image recognition, Art, Convolution, Shape, Image databases, Veins,
Lighting, butterfly species identification, image analysis,
texture features
BibRef
Tusubira, J.F.,
Nsumba, S.,
Ninsiima, F.,
Akera, B.,
Acellam, G.,
Nakatumba, J.,
Mwebaze, E.,
Quinn, J.,
Oyana, T.,
Improving In-field Cassava Whitefly Pest Surveillance with Machine
Learning,
AgriVision20(303-309)
IEEE DOI
2008
Machine learning, Training, Task analysis, Object detection,
Diseases
BibRef
Tausch, F.,
Stock, S.,
Fricke, J.,
Klein, O.,
Bumblebee Re-Identification Dataset,
WACVWS20(35-37)
IEEE DOI
2006
Insects, Risk management, Visualization, Monitoring, Sociology, Statistics
BibRef
Marstaller, J.,
Tausch, F.,
Stock, S.,
DeepBees - Building and Scaling Convolutional Neuronal Nets For Fast
and Large-Scale Visual Monitoring of Bee Hives,
CVWC19(271-278)
IEEE DOI
2004
biology computing, cloud computing,
computerised monitoring, data acquisition, beehive monitoring
BibRef
Wu, X.P.[Xiao-Ping],
Zhan, C.[Chi],
Lai, Y.K.[Yu-Kun],
Cheng, M.M.[Ming-Ming],
Yang, J.F.[Ju-Feng],
IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition,
CVPR19(8779-8788).
IEEE DOI
2002
BibRef
Park, Y.J.,
Tuxworth, G.,
Zhou, J.,
Insect Classification Using Squeeze-and-Excitation and Attention
Modules: a Benchmark Study,
ICIP19(3437-3441)
IEEE DOI
1910
Insect image classification, fine-grained image recognition,
gating and attention enhanced networks
BibRef
García, Z.[Zaira],
Yanai, K.[Keiji],
Nakano, M.[Mariko],
Arista, A.[Antonio],
Sanchez, L.C.[Laura Cleofas],
Perez, H.[Hector],
Mosquito Larvae Image Classification Based on DenseNet and Guided
Grad-CAM,
IbPRIA19(II:239-246).
Springer DOI
1910
BibRef
Murali, N.,
Schneider, J.,
Levine, J.,
Taylor, G.,
Classification and Re-Identification of Fruit Fly Individuals Across
Days With Convolutional Neural Networks,
WACV19(570-578)
IEEE DOI
1904
biology computing, convolutional neural nets, genetics,
image classification, learning (artificial intelligence),
Training
BibRef
Martineau, M.[Maxime],
Raveaux, R.[Romain],
Chatelain, C.[Clément],
Conte, D.[Donatello],
Venturini, G.[Gilles],
Effective Training of Convolutional Neural Networks for Insect Image
Recognition,
ACIVS18(426-437).
Springer DOI
1810
BibRef
Schurischuster, S.[Stefan],
Remeseiro, B.[Beatriz],
Radeva, P.[Petia],
Kampel, M.[Martin],
A Preliminary Study of Image Analysis for Parasite Detection on Honey
Bees,
ICIAR18(465-473).
Springer DOI
1807
BibRef
Nie, L.,
Wang, K.,
Fan, X.,
Gao, Y.,
Fine-Grained Butterfly Recognition with Deep Residual Networks:
A New Baseline and Benchmark,
DICTA17(1-7)
IEEE DOI
1804
biology computing, image classification, image recognition,
learning (artificial intelligence), ResNet,
Training
BibRef
Gerund, S.,
Ogawa, T.,
Haseyama, M.,
Image retrieval based on LRGA algorithm and relevance feedback for
insect identification,
ICIP17(3978-3982)
IEEE DOI
1803
Feature extraction, Image retrieval, Insects, Radio frequency,
Visual databases, Visualization, Image retrieval, LRGA,
relevance feedback
BibRef
Duan, L.,
Shen, M.,
Gao, W.,
Cui, S.,
Deussen, O.,
Bee pose estimation from single images with convolutional neural
network,
ICIP17(2836-2840)
IEEE DOI
1803
Antennas, Feature extraction, Insects, Pose estimation, Sugar, Tongue,
Training, ConvNet, Insect pose estimation
BibRef
Nguyen, N.R.,
Shin, M.C.,
Detecting Social Insects in Videos Using Spatiotemporal
Regularization,
WACV17(493-500)
IEEE DOI
1609
Insects, Optical imaging, Spatiotemporal phenomena, Training,
Training data, Videos
BibRef
Carvajal, J.A.[Juan A.],
Romero, D.G.[Dennis G.],
Sappa, A.D.[Angel D.],
Fine-Tuning Based Deep Convolutional Networks for Lepidopterous Genus
Recognition,
CIARP16(467-475).
Springer DOI
1703
BibRef
Souza, V.M.A.[Vinicius M. A.],
Identifying Aedes aegypti Mosquitoes by Sensors and One-Class
Classifiers,
CIARP16(10-18).
Springer DOI
1703
BibRef
Shen, M.[Minmin],
Duan, L.[Le],
Deussen, O.[Oliver],
Single-Image Insect Pose Estimation by Graph Based Geometric Models and
Random Forests,
BioImage16(I: 217-230).
Springer DOI
1611
BibRef
Lu, A.[An],
Hou, X.W.[Xin-Wen],
Liu, C.L.[Cheng-Lin],
Chen, X.L.[Xiao-Lin],
Insect species recognition using discriminative local soft coding,
ICPR12(1221-1224).
WWW Link.
1302
BibRef
Sun, C.,
Flemons, P.,
Gao, Y.,
Wang, D.,
Fisher, N.,
La Salle, J.,
Automated Image Analysis on Insect Soups,
DICTA16(1-6)
IEEE DOI
1701
Australia
BibRef
Nguyen, C.[Chuong],
Lovell, D.,
Oberprieler, R.,
Jennings, D.,
Adcock, M.,
Gates-Stuart, E.,
La Salle, J.[John],
Virtual 3D Models of Insects for Accelerated Quarantine Control,
AccBio13(161-167)
IEEE DOI
1403
agriculture
BibRef
Mele, K.,
Insect Soup Challenge:
Segmentation, Counting, and Simple Classification,
AccBio13(168-171)
IEEE DOI
1403
cameras
BibRef
Takahashi, A.[Akihiro],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Insect classification using Scanning Electron Microphotographs
considering magnifications,
ICIP13(3269-3273)
IEEE DOI
1412
Insect classification
BibRef
Shin, B.S.[Bok-Suk],
Russell, J.[James],
Klette, R.[Reinhard],
Feature Extraction and Classification for Insect Footprint Recognition,
CIARP12(196-203).
Springer DOI
1209
BibRef
Geng, H.[Haokun],
Russell, J.[James],
Shin, B.S.[Bok-Suk],
Nicolescu, R.[Radu],
Klette, R.[Reinhard],
A Flexible Method for Localisation and Classification of Footprints of
Small Species,
PSIVT11(II: 274-286).
Springer DOI
1111
BibRef
Shin, B.S.[Bok-Suk],
Cha, E.Y.[Eui-Young],
Woo, Y.W.[Young Woon],
Klette, R.[Reinhard],
Segmentation of Scanned Insect Footprints Using ART2 for Threshold
Selection,
PSIVT07(311-320).
Springer DOI
0712
BibRef
Lu, A.[An],
Hou, X.[Xin],
Lin, C.[Chen],
Liu, C.L.[Cheng-Lin],
Insect Species Recognition using Sparse Representation,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Zhang, X.Z.[Xiao-Zheng],
Gao, Y.S.[Yong-Sheng],
Caelli, T.,
Primitive-based 3D structure inference from a single 2D image for
insect modeling: Towards an electronic field guide for insect
identification,
ICARCV10(866-871).
IEEE DOI
1109
BibRef
Huang, S.G.[Shi-Guo],
Zhou, M.Q.[Ming-Quan],
Geng, G.H.[Guo-Hua],
Wang, X.L.[Xiu-Li],
Ontology-based insect recognition,
IASP09(176-178).
IEEE DOI
0904
BibRef
Bechar, I.[Ikhlef],
Moisan, S.[Sabine],
Thonnat, M.[Monique],
Bremond, F.[Francois],
On-Line Video Recognition and Counting of Harmful Insects,
ICPR10(4068-4071).
IEEE DOI
1008
BibRef
Roth, V.[Volker],
Steinhage, V.[Volker],
Schröder, S.[Stefan],
Cremers, A.B.[Armin B.],
Wittmann, D.[Dieter],
Pattern Recognition Combining De-noising and Linear Discriminant
Analysis within a Real World Application,
CAIP99(251-258).
Springer DOI
9909
Classify bees based on forewings.
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Lumber, Logs, Wood .