Marx, A.[Alexander],
Detection and Classification of Bark Beetle Infestation in Pure Norway
Spruce Stands with Multi-temporal RapidEye Imagery and Data Mining
Techniques,
PFG(2010), No. 4, 2010, pp. 243-252.
WWW Link.
1211
BibRef
Ortiz, S.,
Breidenbach, J.,
Kändler, G.,
Early Detection of Bark Beetle Green Attack Using TerraSAR-X and
RapidEye Data,
RS(5), No. 4, April 2013, pp. 1912-1931.
DOI Link
1305
BibRef
Neigh, C.S.R.[Christopher S.R.],
Bolton, D.K.[Douglas K.],
Diabate, M.[Mouhamad],
Williams, J.J.[Jennifer J.],
Carvalhais, N.[Nuno],
An Automated Approach to Map the History of Forest Disturbance from
Insect Mortality and Harvest with Landsat Time-Series Data,
RS(6), No. 4, 2014, pp. 2782-2808.
DOI Link
1405
BibRef
Adelabu, S.[Samuel],
Mutanga, O.[Onisimo],
Adam, E.[Elhadi],
Evaluating the impact of red-edge band from Rapideye image for
classifying insect defoliation levels,
PandRS(95), No. 1, 2014, pp. 34-41.
Elsevier DOI
1408
Random forest
BibRef
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Early Detection of Bark Beetle Infestation in Norway Spruce (Picea
abies, L.) using WorldView-2 Data,
PFG(2014), No. 5, 2014, pp. 351-367.
DOI Link
1411
BibRef
Liang, L.[Lu],
Chen, Y.L.[Yan-Lei],
Hawbaker, T.J.[Todd J.],
Zhu, Z.L.[Zhi-Liang],
Gong, P.[Peng],
Mapping Mountain Pine Beetle Mortality through Growth Trend Analysis
of Time-Series Landsat Data,
RS(6), No. 6, 2014, pp. 5696-5716.
DOI Link
1407
BibRef
Näsi, R.[Roope],
Honkavaara, E.[Eija],
Lyytikäinen-Saarenmaa, P.[Päivi],
Blomqvist, M.[Minna],
Litkey, P.[Paula],
Hakala, T.[Teemu],
Viljanen, N.[Niko],
Kantola, T.[Tuula],
Tanhuanpää, T.[Topi],
Holopainen, M.[Markus],
Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping
Bark Beetle Damage at Tree-Level,
RS(7), No. 11, 2015, pp. 15467.
DOI Link
1512
BibRef
Anderson, T.[Taylor],
Dragicevic, S.[Suzana],
A Geosimulation Approach for Data Scarce Environments: Modeling
Dynamics of Forest Insect Infestation across Different Landscapes,
IJGI(5), No. 2, 2016, pp. 9.
DOI Link
1603
BibRef
Murfitt, J.[Justin],
He, Y.H.[Yu-Hong],
Yang, J.[Jian],
Mui, A.[Amy],
de Mille, K.[Kevin],
Ash Decline Assessment in Emerald Ash Borer Infested Natural Forests
Using High Spatial Resolution Images,
RS(8), No. 3, 2016, pp. 256.
DOI Link
1604
BibRef
Hais, M.[Martin],
Wild, J.[Jan],
Berec, L.[Ludek],
Bruna, J.[Josef],
Kennedy, R.[Robert],
Braaten, J.[Justin],
Brož, Z.[Zdenek],
Landsat Imagery Spectral Trajectories: Important Variables for
Spatially Predicting the Risks of Bark Beetle Disturbance,
RS(8), No. 8, 2016, pp. 687.
DOI Link
1609
BibRef
Anees, A.[Asim],
Aryal, J.[Jagannath],
O'Reilly, M.M.[Malgorzata M.],
Gale, T.J.[Timothy J.],
Wardlaw, T.[Tim],
A robust multi-kernel change detection framework for detecting leaf
beetle defoliation using Landsat 7 ETM+ data,
PandRS(122), No. 1, 2016, pp. 167-178.
Elsevier DOI
1612
Change detection
BibRef
Lin, Q.[Qinan],
Huang, H.G.[Hua-Guo],
Yu, L.F.[Lin-Feng],
Wang, J.X.[Jing-Xu],
Detection of Shoot Beetle Stress on Yunnan Pine Forest Using a
Coupled LIBERTY2-INFORM Simulation,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Housman, I.W.[Ian W.],
Chastain, R.A.[Robert A.],
Finco, M.V.[Mark V.],
An Evaluation of Forest Health Insect and Disease Survey Data and
Satellite-Based Remote Sensing Forest Change Detection Methods: Case
Studies in the United States,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Chávez, R.O.[Roberto O.],
Rocco, R.[Ronald],
Gutiérrez, Á.G.[Álvaro G.],
Dörner, M.[Marcelo],
Estay, S.A.[Sergio A.],
A Self-Calibrated Non-Parametric Time Series Analysis Approach for
Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus
pumilio Forests,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Abdullah, H.[Haidi],
Darvishzadeh, R.[Roshanak],
Skidmore, A.K.[Andrew K.],
Heurich, M.[Marco],
Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of
Early Stage Bark Beetle (Ips typographus, L.) Infestation,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Safonova, A.[Anastasiia],
Tabik, S.[Siham],
Alcaraz-Segura, D.[Domingo],
Rubtsov, A.[Alexey],
Maglinets, Y.[Yuriy],
Herrera, F.[Francisco],
Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle in
Unmanned Aerial Vehicle Images with Deep Learning,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Kloucek, T.[Tomáš],
Komárek, J.[Jan],
Surový, P.[Peter],
Hrach, K.[Karel],
Janata, P.[Premysl],
Vašícek, B.[Bedrich],
The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle
Infestation,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Lin, Q.[Qinan],
Huang, H.G.[Hua-Guo],
Wang, J.X.[Jing-Xu],
Huang, K.[Kan],
Liu, Y.Y.[Yang-Yang],
Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at
Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Iordache, M.D.[Marian-Daniel],
Mantas, V.[Vasco],
Baltazar, E.[Elsa],
Pauly, K.[Klaas],
Lewyckyj, N.[Nicolas],
A Machine Learning Approach to Detecting Pine Wilt Disease Using
Airborne Spectral Imagery,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Fernandez-Carrillo, A.[Angel],
Patocka, Z.[Zdenek],
Dobrovolný, L.[Lumír],
Franco-Nieto, A.[Antonio],
Revilla-Romero, B.[Beatriz],
Monitoring Bark Beetle Forest Damage in Central Europe. A Remote
Sensing Approach Validated with Field Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Minarík, R.[Robert],
Langhammer, J.[Jakub],
Lendzioch, T.[Theodora],
Automatic Tree Crown Extraction from UAS Multispectral Imagery for
the Detection of Bark Beetle Disturbance in Mixed Forests,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zhang, B.Y.[Bi-Yao],
Ye, H.C.[Hui-Chun],
Lu, W.[Wei],
Huang, W.J.[Wen-Jiang],
Wu, B.[Bo],
Hao, Z.Q.[Zhuo-Qing],
Sun, H.[Hong],
A Spatiotemporal Change Detection Method for Monitoring Pine Wilt
Disease in a Complex Landscape Using High-Resolution Remote Sensing
Imagery,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Minarík, R.[Robert],
Langhammer, J.[Jakub],
Lendzioch, T.[Theodora],
Detection of Bark Beetle Disturbance at Tree Level Using UAS
Multispectral Imagery and Deep Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Boucher, P.B.[Peter Brehm],
Hancock, S.[Steven],
Orwig, D.A.[David A],
Duncanson, L.[Laura],
Armston, J.[John],
Tang, H.[Hao],
Krause, K.[Keith],
Cook, B.[Bruce],
Paynter, I.[Ian],
Li, Z.[Zhan],
Elmes, A.[Arthur],
Schaaf, C.[Crystal],
Detecting Change in Forest Structure with Simulated GEDI Lidar
Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges
tsugae) Infestation,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Zhong, Y.[Yuan],
Hu, B.X.[Bao-Xin],
Hall, G.B.[G. Brent],
Hoque, F.[Farah],
Xu, W.[Wei],
Gao, X.[Xin],
A Generalized Linear Mixed Model Approach to Assess Emerald Ash Borer
Diffusion,
IJGI(9), No. 7, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Hu, B.X.,
Li, J.,
Wang, J.,
Hall, G.B.,
The Early Detection of the Emerald Ash Borer (EAB) Using Advanced
Geospacial Technologies,
Geospatial14(213-219).
DOI Link
1411
BibRef
Qin, J.[Jun],
Wang, B.[Biao],
Wu, Y.[Yanlan],
Lu, Q.[Qi],
Zhu, H.C.[Hao-Chen],
Identifying Pine Wood Nematode Disease Using UAV Images and Deep
Learning Algorithms,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Klimetzek, D.[Dietrich],
Stancioiu, P.T.[Petru Tudor],
Paraschiv, M.[Marius],
Nita, M.D.[Mihai Daniel],
Ecological Monitoring with Spy Satellite Images:
The Case of Red Wood Ants in Romania,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Rodman, K.C.[Kyle C.],
Andrus, R.A.[Robert A.],
Butkiewicz, C.L.[Cori L.],
Chapman, T.B.[Teresa B.],
Gill, N.S.[Nathan S.],
Harvey, B.J.[Brian J.],
Kulakowski, D.[Dominik],
Tutland, N.J.[Niko J.],
Veblen, T.T.[Thomas T.],
Hart, S.J.[Sarah J.],
Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the
Southern Rocky Mountains, U.S.A.,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Gdulová, K.[Katerina],
Marešová, J.[Jana],
Barták, V.[Vojtech],
Szostak, M.[Marta],
Cervenka, J.[Jaroslav],
Moudrý, V.[Vítezslav],
Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused
by Bark Beetle in Central European Mountains,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Migas-Mazur, R.[Robert],
Kycko, M.[Marlena],
Zwijacz-Kozica, T.[Tomasz],
Zagajewski, B.[Bogdan],
Assessment of Sentinel-2 Images, Support Vector Machines and Change
Detection Algorithms for Bark Beetle Outbreaks Mapping in the Tatra
Mountains,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xia, L.[Lang],
Zhang, R.R.[Rui-Rui],
Chen, L.P.[Li-Ping],
Li, L.L.[Long-Long],
Yi, T.C.[Tong-Chuan],
Wen, Y.[Yao],
Ding, C.C.[Chen-Chen],
Xie, C.C.[Chun-Chun],
Evaluation of Deep Learning Segmentation Models for Detection of Pine
Wilt Disease in Unmanned Aerial Vehicle Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Pandey, P.[Piyush],
Payn, K.G.[Kitt G.],
Lu, Y.Z.[Yu-Zhen],
Heine, A.J.[Austin J.],
Walker, T.D.[Trevor D.],
Acosta, J.J.[Juan J.],
Young, S.[Sierra],
Hyperspectral Imaging Combined with Machine Learning for the
Detection of Fusiform Rust Disease Incidence in Loblolly Pine
Seedlings,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Faltan, V.[Vladimír],
Petrovic, F.[František],
Gábor, M.[Marián],
Šagát, V.[Vladimír],
Hruška, M.[Matej],
Mountain Landscape Dynamics after Large Wind and Bark Beetle
Disasters and Subsequent Logging: Case Studies from the Carpathians,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Yu, R.[Run],
Luo, Y.Q.[You-Qing],
Li, H.N.[Hao-Nan],
Yang, L.Y.[Li-Yuan],
Huang, H.G.[Hua-Guo],
Yu, L.F.[Lin-Feng],
Ren, L.[Lili],
Three-Dimensional Convolutional Neural Network Model for Early
Detection of Pine Wilt Disease Using UAV-Based Hyperspectral Images,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Hellwig, F.M.[Florian M.],
Stelmaszczuk-Górska, M.A.[Martyna A.],
Dubois, C.[Clémence],
Wolsza, M.[Marco],
Truckenbrodt, S.C.[Sina C.],
Sagichewski, H.[Herbert],
Chmara, S.[Sergej],
Bannehr, L.[Lutz],
Lausch, A.[Angela],
Schmullius, C.[Christiane],
Mapping European Spruce Bark Beetle Infestation at Its Early Phase
Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kagan, D.[Dima],
Fuhrmann Alpert, G.[Galit],
Fire, M.[Michael],
Automatic large scale detection of red palm weevil infestation using
street view images,
PandRS(182), 2021, pp. 122-133.
Elsevier DOI
2112
Data science, Data fusion
BibRef
Zhang, Y.[Yahao],
Dian, Y.[Yuanyong],
Zhou, J.J.[Jing-Jing],
Peng, S.[Shoulian],
Hu, Y.[Yue],
Hu, L.[Lei],
Han, Z.[Zemin],
Fang, X.W.[Xin-Wei],
Cui, H.X.[Hong-Xia],
Characterizing Spatial Patterns of Pine Wood Nematode Outbreaks in
Subtropical Zone in China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Abdollahnejad, A.[Azadeh],
Panagiotidis, D.[Dimitrios],
Surový, P.[Peter],
Modlinger, R.[Roman],
Investigating the Correlation between Multisource Remote Sensing Data
for Predicting Potential Spread of IPS typographus L. Spots in
Healthy Trees,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xi, G.L.[Gui-Lin],
Huang, X.J.[Xiao-Jun],
Xie, Y.W.[Yao-Wen],
Gang, B.[Bao],
Bao, Y.[Yuhai],
Dashzebeg, G.[Ganbat],
Nanzad, T.[Tsagaantsooj],
Dorjsuren, A.[Altanchimeg],
Enkhnasan, D.[Davaadorj],
Ariunaa, M.[Mungunkhuyag],
Detection of Larch Forest Stress from Jas's Larch Inchworm (Erannis
jacobsoni Djak) Attack Using Hyperspectral Remote Sensing,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
You, J.[Jie],
Zhang, R.[Ruirui],
Lee, J.[Joonwhoan],
A Deep Learning-Based Generalized System for Detecting Pine Wilt
Disease Using RGB-Based UAV Images,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Junttila, S.[Samuli],
Näsi, R.[Roope],
Koivumäki, N.[Niko],
Imangholiloo, M.[Mohammad],
Saarinen, N.[Ninni],
Raisio, J.[Juha],
Holopainen, M.[Markus],
Hyyppä, H.[Hannu],
Hyyppä, J.[Juha],
Lyytikäinen-Saarenmaa, P.[Päivi],
Vastaranta, M.[Mikko],
Honkavaara, E.[Eija],
Multispectral Imagery Provides Benefits for Mapping Spruce Tree
Decline Due to Bark Beetle Infestation When Acquired Late in the
Season,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Huang, J.X.[Ji-Xia],
Lu, X.[Xiao],
Chen, L.Y.[Li-Yuan],
Sun, H.[Hong],
Wang, S.H.[Shao-Hua],
Fang, G.F.[Guo-Fei],
Accurate Identification of Pine Wood Nematode Disease with a Deep
Convolution Neural Network,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Gao, B.T.[Bing-Tao],
Yu, L.F.[Lin-Feng],
Ren, L.[Lili],
Zhan, Z.Y.[Zhong-Yi],
Luo, Y.Q.[You-Qing],
Early Detection of Dendroctonus valens Infestation with Machine
Learning Algorithms Based on Hyperspectral Reflectance,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Li, X.Y.[Xiao-Yao],
Tong, T.[Tong],
Luo, T.[Tao],
Wang, J.X.[Jing-Xu],
Rao, Y.M.[Yue-Ming],
Li, L.Y.[Lin-Yuan],
Jin, D.[Decai],
Wu, D.[Dewei],
Huang, H.G.[Hua-Guo],
Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine
Forests from Medium-Resolution Satellite Images Using the Stochastic
Radiative Transfer Theory,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zhou, Q.[Quan],
Yu, L.F.[Lin-Feng],
Zhang, X.D.[Xu-Dong],
Liu, Y.J.[Yu-Jie],
Zhan, Z.Y.[Zhong-Yi],
Ren, L.[Lili],
Luo, Y.Q.[You-Qing],
Fusion of UAV Hyperspectral Imaging and LiDAR for the Early Detection
of EAB Stress in Ash and a New EAB Detection Index: NDVI(776,678),
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
Emerald Ash Borer.
BibRef
Yu, L.F.[Lin-Feng],
Zhan, Z.Y.[Zhong-Yi],
Zhou, Q.[Quan],
Gao, B.T.[Bing-Tao],
Ren, L.[Lili],
Huang, H.G.[Hua-Guo],
Luo, Y.Q.[You-Qing],
Climate Drivers of Pine Shoot Beetle Outbreak Dynamics in Southwest
China,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Dalponte, M.[Michele],
Solano-Correa, Y.T.[Yady Tatiana],
Frizzera, L.[Lorenzo],
Gianelle, D.[Damiano],
Mapping a European Spruce Bark Beetle Outbreak Using Sentinel-2
Remote Sensing Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Han, Z.M.[Ze-Min],
Hu, W.J.[Wen-Jie],
Peng, S.L.[Shou-Lian],
Lin, H.R.[Hao-Ran],
Zhang, J.[Jian],
Zhou, J.J.[Jing-Jing],
Wang, P.C.[Peng-Cheng],
Dian, Y.Y.[Yuan-Yong],
Detection of Standing Dead Trees after Pine Wilt Disease Outbreak
with Airborne Remote Sensing Imagery by Multi-Scale Spatial Attention
Deep Learning and Gaussian Kernel Approach,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Allen, B.[Benjamin],
Dalponte, M.[Michele],
Ørka, H.O.[Hans Ole],
Næsset, E.[Erik],
Puliti, S.[Stefano],
Astrup, R.[Rasmus],
Gobakken, T.[Terje],
UAV-Based Hyperspectral Imagery for Detection of Root, Butt, and Stem
Rot in Norway Spruce,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, X.J.[Xiu-Juan],
Liu, Y.X.[Yong-Xin],
Huang, P.P.[Ping-Ping],
Tong, T.[Tong],
Li, L.Y.[Lin-Yuan],
Chen, Y.[Yuejuan],
Hou, T.[Ting],
Su, Y.[Yun],
Lv, X.Q.[Xiao-Qi],
Fu, W.X.[Wen-Xue],
Huang, X.J.[Xiao-Jun],
Integrating Multi-Scale Remote-Sensing Data to Monitor Severe Forest
Infestation in Response to Pine Wilt Disease,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Aeberli, A.[Aaron],
Robson, A.[Andrew],
Phinn, S.[Stuart],
Lamb, D.W.[David W.],
Johansen, K.[Kasper],
A Comparison of Analytical Approaches for the Spectral Discrimination
and Characterisation of Mite Infestations on Banana Plants,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Candotti, A.[Anna],
de Giglio, M.[Michaela],
Dubbini, M.[Marco],
Tomelleri, E.[Enrico],
A Sentinel-2 Based Multi-Temporal Monitoring Framework for Wind and
Bark Beetle Detection and Damage Mapping,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, J.H.[Jia-Hao],
Zhao, J.H.[Jun-Hao],
Sun, H.[Hong],
Lu, X.[Xiao],
Huang, J.X.[Ji-Xia],
Wang, S.H.[Shao-Hua],
Fang, G.F.[Guo-Fei],
Satellite Remote Sensing Identification of Discolored Standing Trees
for Pine Wilt Disease Based on Semi-Supervised Deep Learning,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Simovic, I.[Isidora],
Šikoparija, B.[Branko],
Panic, M.[Marko],
Radulovic, M.[Mirjana],
Lugonja, P.[Predrag],
Remote Sensing of Poplar Phenophase and Leaf Miner Attack in Urban
Forests,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Kanerva, H.[Heini],
Honkavaara, E.[Eija],
Näsi, R.[Roope],
Hakala, T.[Teemu],
Junttila, S.[Samuli],
Karila, K.[Kirsi],
Koivumäki, N.[Niko],
Oliveira, R.A.[Raquel Alves],
Pelto-Arvo, M.[Mikko],
Pölönen, I.[Ilkka],
Tuviala, J.[Johanna],
Östersund, M.[Madeleine],
Lyytikäinen-Saarenmaa, P.[Päivi],
Estimating Tree Health Decline Caused by Ips typographus L. from UAS
RGB Images Using a Deep One-Stage Object Detection Neural Network,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Long, L.[Lin],
Chen, Y.Y.[Yuan-Yuan],
Song, S.J.[Shao-Jun],
Zhang, X.L.[Xiao-Li],
Jia, X.[Xiang],
Lu, Y.G.[Ya-Gang],
Liu, G.[Gao],
Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series
Remote Sensing Index,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wu, D.[Dewei],
Yu, L.F.[Lin-Feng],
Yu, R.[Run],
Zhou, Q.[Quan],
Li, J.X.[Jia-Xing],
Zhang, X.D.[Xu-Dong],
Ren, L.[Lili],
Luo, Y.Q.[You-Qing],
Detection of the Monitoring Window for Pine Wilt Disease Using
Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning
Algorithms,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Hofinger, P.[Peter],
Klemmt, H.J.[Hans-Joachim],
Ecke, S.[Simon],
Rogg, S.[Steffen],
Dempewolf, J.[Jan],
Application of YOLOv5 for Point Label Based Object Detection of Black
Pine Trees with Vitality Losses in UAV Data,
RS(15), No. 8, 2023, pp. 1964.
DOI Link
2305
BibRef
Cai, P.H.[Pei-Hua],
Chen, G.Z.[Guan-Zhou],
Yang, H.[Haobo],
Li, X.W.[Xian-Wei],
Zhu, K.[Kun],
Wang, T.[Tong],
Liao, P.[Puyun],
Han, M.[Mengdi],
Gong, Y.F.[Yuan-Fu],
Wang, Q.[Qing],
Zhang, X.D.[Xiao-Dong],
Detecting Individual Plants Infected with Pine Wilt Disease Using
Drones and Satellite Imagery: A Case Study in Xianning, China,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Xu, D.[Dong],
Lu, Y.W.[Yu-Wei],
Liang, H.[Heng],
Lu, Z.[Zhen],
Yu, L.[Lejun],
Liu, Q.[Qian],
Areca Yellow Leaf Disease Severity Monitoring Using UAV-Based
Multispectral and Thermal Infrared Imagery,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Li, H.C.[Hao-Cheng],
Chen, L.[Long],
Yao, Z.Q.[Zong-Qi],
Li, N.[Niwen],
Long, L.[Lin],
Zhang, X.L.[Xiao-Li],
Intelligent Identification of Pine Wilt Disease Infected Individual
Trees Using UAV-Based Hyperspectral Imagery,
RS(15), No. 13, 2023, pp. 3295.
DOI Link
2307
BibRef
Estay, S.A.[Sergio A.],
Chávez, R.O.[Roberto O.],
Lastra, J.A.[José A.],
Rocco, R.[Ronald],
Gutiérrez, Á.G.[Álvaro G.],
Decuyper, M.[Mathieu],
MODIS Time Series Reveal New Maximum Records of Defoliated Area by
Ormiscodes amphimone in Deciduous Nothofagus Forests, Southern Chile,
RS(15), No. 14, 2023, pp. 3538.
DOI Link
2307
BibRef
Kosarevych, R.[Rostyslav],
Jonek-Kowalska, I.[Izabela],
Rusyn, B.[Bohdan],
Sachenko, A.[Anatoliy],
Lutsyk, O.[Oleksiy],
Analysing Pine Disease Spread Using Random Point Process by Remote
Sensing of a Forest Stand,
RS(15), No. 16, 2023, pp. 3941.
DOI Link
2309
BibRef
Wang, G.B.[Guang-Biao],
Zhao, H.B.[Hong-Bo],
Chang, Q.[Qing],
Lyu, S.C.[Shu-Chang],
Liu, B.[Binghao],
Wang, C.L.[Chun-Lei],
Feng, W.[Wenquan],
Detection Method of Infected Wood on Digital Orthophoto Map-Digital
Surface Model Fusion Network,
RS(15), No. 17, 2023, pp. 4295.
DOI Link
2310
BibRef
Turkulainen, E.[Emma],
Honkavaara, E.[Eija],
Näsi, R.[Roope],
Oliveira, R.A.[Raquel A.],
Hakala, T.[Teemu],
Junttila, S.[Samuli],
Karila, K.[Kirsi],
Koivumäki, N.[Niko],
Pelto-Arvo, M.[Mikko],
Tuviala, J.[Johanna],
Östersund, M.[Madeleine],
Pölönen, I.[Ilkka],
Lyytikäinen-Saarenmaa, P.[Päivi],
Comparison of Deep Neural Networks in the Classification of Bark
Beetle-Induced Spruce Damage Using UAS Images,
RS(15), No. 20, 2023, pp. 4928.
DOI Link
2310
BibRef
Marvasti-Zadeh, S.M.[S. Mojtaba],
Goodsman, D.[Devin],
Ray, N.[Nilanjan],
Erbilgin, N.[Nadir],
Early Detection of Bark Beetle Attack Using Remote Sensing and
Machine Learning: A Review,
Surveys(56), No. 4, November 2023, pp. xx-yy.
DOI Link
2312
Survey, Bark Beetle. deep learning, machine learning, remote sensing,
early detection, Bark beetles
BibRef
Gao, S.[Sheng],
Chen, F.[Fulong],
Wang, Q.[Qin],
Shi, P.[Pilong],
Zhou, W.[Wei],
Zhu, M.[Meng],
Susceptibility Mapping of Unhealthy Trees in Jiuzhaigou Valley
Biosphere Reserve,
RS(15), No. 23, 2023, pp. 5516.
DOI Link
2312
BibRef
Hrdina, M.[Marek],
Surový, P.[Peter],
Internal Tree Trunk Decay Detection Using Close-Range Remote Sensing
Data and the PointNet Deep Learning Method,
RS(15), No. 24, 2023, pp. 5712.
DOI Link
2401
BibRef
Tan, C.[Cheng],
Lin, Q.[Qinan],
Du, H.Q.[Hua-Qiang],
Chen, C.[Chao],
Hu, M.C.[Meng-Chen],
Chen, J.J.[Jin-Jin],
Huang, Z.[Zihao],
Xu, Y.X.[Yan-Xin],
Detection of the Infection Stage of Pine Wilt Disease and Spread
Distance Using Monthly UAV-Based Imagery and a Deep Learning Approach,
RS(16), No. 2, 2024, pp. 364.
DOI Link
2402
BibRef
Camarretta, N.[Nicolò],
Pearse, G.D.[Grant D.],
Steer, B.S.C.[Benjamin S. C.],
McLay, E.[Emily],
Fraser, S.[Stuart],
Watt, M.S.[Michael S.],
Automatic Detection of Phytophthora pluvialis Outbreaks in Radiata
Pine Plantations Using Multi-Scene, Multi-Temporal Satellite Imagery,
RS(16), No. 2, 2024, pp. 338.
DOI Link
2402
BibRef
Crosby, M.K.[Michael K.],
McConnell, T.E.[T. Eric],
Holderieath, J.J.[Jason J.],
Meeker, J.R.[James R.],
Steiner, C.A.[Chris A.],
Strom, B.L.[Brian L.],
Johnson, C.W.[Crawford Wood],
The Use of High-Resolution Satellite Imagery to Determine the Status
of a Large-Scale Outbreak of Southern Pine Beetle,
RS(16), No. 3, 2024, pp. 582.
DOI Link
2402
BibRef
Watt, M.S.[Michael S.],
Estarija, H.J.C.[Honey Jane C.],
Bartlett, M.[Michael],
Main, R.[Russell],
Pasquini, D.[Dalila],
Yorston, W.[Warren],
McLay, E.[Emily],
Zhulanov, M.[Maria],
Dobbie, K.[Kiryn],
Wardhaugh, K.[Katherine],
Hossain, Z.[Zulfikar],
Fraser, S.[Stuart],
Buddenbaum, H.[Henning],
Early Detection of Myrtle Rust on Pohutukawa Using Indices Derived
from Hyperspectral and Thermal Imagery,
RS(16), No. 6, 2024, pp. 1050.
DOI Link
2403
BibRef
Shrestha, A.[Abhinav],
Hicke, J.A.[Jeffrey A.],
Meddens, A.J.H.[Arjan J. H.],
Karl, J.W.[Jason W.],
Stahl, A.T.[Amanda T.],
Evaluating a Novel Approach to Detect the Vertical Structure of
Insect Damage in Trees Using Multispectral and Three-Dimensional Data
from Drone Imagery in the Northern Rocky Mountains, USA,
RS(16), No. 8, 2024, pp. 1365.
DOI Link
2405
BibRef
Watt, M.S.[Michael S.],
Holdaway, A.[Andrew],
Watt, P.[Pete],
Pearse, G.D.[Grant D.],
Palmer, M.E.[Melanie E.],
Steer, B.S.C.[Benjamin S. C.],
Camarretta, N.[Nicolò],
McLay, E.[Emily],
Fraser, S.[Stuart],
Early Prediction of Regional Red Needle Cast Outbreaks Using Climatic
Data Trends and Satellite-Derived Observations,
RS(16), No. 8, 2024, pp. 1401.
DOI Link
2405
BibRef
Zwieback, S.,
Young-Robertson, J.,
Robertson, M.,
Tian, Y.,
Chang, Q.,
Morris, M.,
White, J.,
Moan, J.,
Low-severity spruce beetle infestation mapped from high-resolution
satellite imagery with a convolutional network,
PandRS(212), 2024, pp. 412-421.
Elsevier DOI
2406
Forestry, Insect outbreak, Deep learning, Satellite image
BibRef
Zhao, Y.X.[Yu-Xin],
Cui, Z.[Zeyu],
Liu, X.N.[Xiang-Nan],
Liu, M.L.[Mei-Ling],
Yang, B.[Ben],
Feng, L.[Lei],
Zhou, B.[Botian],
Zhang, T.W.[Ting-Wei],
Tan, Z.[Zheng],
Wu, L.[Ling],
EWMACD Algorithm in Early Detection of Defoliation Caused by
Dendrolimus tabulaeformis Tsai et Liu,
RS(16), No. 13, 2024, pp. 2299.
DOI Link
2407
BibRef
Veling, S.S.[Shripad S.],
Mohite-Patil, T.B.,
Multi-Disease Classification of Mango Tree Using Meta-Heuristic-Based
Weighted Feature Selection and LSTM Model,
IJIG(24), No. 4, July 2024, pp. 2450039.
DOI Link
2408
BibRef
Joll, E.G.[Elisabeth G.],
Ginzel, M.D.[Matthew D.],
Hoover, K.[Kelli],
Couture, J.J.[John J.],
Influence of Spotted Lanternfly (Lycorma delicatula) on Multiple
Maple (Acer spp.) Species Canopy Foliar Spectral and Chemical
Profiles,
RS(16), No. 15, 2024, pp. 2706.
DOI Link
2408
BibRef
Kanaskie, C.R.[Caroline R.],
Routhier, M.R.[Michael R.],
Fraser, B.T.[Benjamin T.],
Congalton, R.G.[Russell G.],
Ayres, M.P.[Matthew P.],
Garnas, J.R.[Jeff R.],
Early Detection of Southern Pine Beetle Attack by UAV-Collected
Multispectral Imagery,
RS(16), No. 14, 2024, pp. 2608.
DOI Link
2408
BibRef
Huo, L.[Langning],
Koivumäki, N.[Niko],
Oliveira, R.A.[Raquel A.],
Hakala, T.[Teemu],
Markelin, L.[Lauri],
Näsi, R.[Roope],
Suomalainen, J.[Juha],
Polvivaara, A.[Antti],
Junttila, S.[Samuli],
Honkavaara, E.[Eija],
Bark beetle pre-emergence detection using multi-temporal
hyperspectral drone images: Green shoulder indices can indicate
subtle tree vitality decline,
PandRS(216), 2024, pp. 200-216.
Elsevier DOI
2408
European spruce bark beetle, Green attack, Early detection,
Remote sensing, Hyperspectral imagery, Drone imagery
BibRef
Sun, L.K.[Le-Kang],
Zhang, L.[Li],
Dai, Q.[Qiang],
Li, Y.F.[Yue-Feng],
FP60 and FSNet: A Benchmark Dataset and a Family-Species Network for
Forestry Pest Recognition,
ICPR22(4850-4856)
IEEE DOI
2212
Training, Image recognition, Insects, Taxonomy, Forestry,
Benchmark testing, Stability analysis
BibRef
Honkavaara, E.,
Näsi, R.,
Oliveira, R.,
Viljanen, N.,
Suomalainen, J.,
Khoramshahi, E.,
Hakala, T.,
Nevalainen, O.,
Markelin, L.,
Vuorinen, M.,
Kankaanhuhta, V.,
Lyytikäinen-Saarenmaa, P.,
Haataja, L.,
Using Multitemporal Hyper- and Multispectral UAV Imaging for Detecting
Bark Beetle Infestation on Norway Spruce,
ISPRS20(B3:429-434).
DOI Link
2012
BibRef
Zhou, X.,
Liao, L.,
Cheng, D.,
Chen, X.,
Huang, Q.,
Extraction of the Individual Tree Infected By Pine Wilt Disease Using
Unmanned Aerial Vehicle Optical Imagery,
ISPRS20(B3:247-252).
DOI Link
2012
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Deforestation, Degradation .