Warner, T.A.[Timothy A.],
Steinmaus, K.[Karen],
Spatial Classification of Orchards and Vineyards with High Spatial
Resolution Panchromatic Imagery,
PhEngRS(71), No. 2, February 2005, pp. 179-188.
Spatial auto correlation measures are used to classify land cover types with distinct spatial patterns.
WWW Link.
0509
BibRef
Vineyard monitoring system combines global positioning
and NIR imaging,
VisSys(17), No. 1, January 2012.
WWW Link.
1201
BibRef
Tarantino, E.,
Figorito, B.,
Mapping Rural Areas with Widespread Plastic Covered Vineyards Using
True Color Aerial Data,
RS(4), No. 7, July 2012, pp. 1913-1928.
DOI Link
1208
See also Extracting Buildings from True Color Stereo Aerial Images Using a Decision Making Strategy.
BibRef
Zorer, R.[Roberto],
Rocchini, D.[Duccio],
Metz, M.,
Delucchi, L.[Luca],
Zottele, F.[Fabio],
Meggio, F.[Franco],
Neteler, M.[Markus],
Daily MODIS Land Surface Temperature Data for the Analysis of the Heat
Requirements of Grapevine Varieties,
GeoRS(51), No. 4, April 2013, pp. 2128-2135.
IEEE DOI
1304
BibRef
Earlier: A1, A2, A4, A5, A6, A7:
Use of multi-annual MODIS Land Surface Temperature data for the
characterization of the heat requirements for grapevine varieties,
MultiTemp11(225-228).
IEEE DOI
1109
BibRef
Mathews, A.J.[Adam J.],
Jensen, J.L.R.[Jennifer L. R.],
Visualizing and Quantifying Vineyard Canopy LAI Using an
Unmanned Aerial Vehicle (UAV) Collected High Density
Structure from Motion Point Cloud,
RS(5), No. 5, 2013, pp. 2164-2183.
DOI Link
1307
BibRef
Soliman, A.[Aiman],
Heck, R.J.[Richard J.],
Brenning, A.[Alexander],
Brown, R.[Ralph],
Miller, S.[Stephen],
Remote Sensing of Soil Moisture in Vineyards Using Airborne and
Ground-Based Thermal Inertia Data,
RS(5), No. 8, 2013, pp. 3729-3748.
DOI Link
1309
BibRef
Carrasco-Benavides, M.[Marcos],
Ortega-Farías, S.[Samuel],
Lagos, L.O.[Luis Octavio],
Kleissl, J.[Jan],
Morales-Salinas, L.[Luis],
Kilic, A.[Ayse],
Parameterization of the Satellite-Based Model (METRIC) for the
Estimation of Instantaneous Surface Energy Balance Components over a
Drip-Irrigated Vineyard,
RS(6), No. 11, 2014, pp. 11342-11371.
DOI Link
1412
BibRef
Matese, A.[Alessandro],
Toscano, P.[Piero],
di Gennaro, S.F.[Salvatore Filippo],
Genesio, L.[Lorenzo],
Vaccari, F.P.[Francesco Primo],
Primicerio, J.[Jacopo],
Belli, C.[Claudio],
Zaldei, A.[Alessandro],
Bianconi, R.[Roberto],
Gioli, B.[Beniamino],
Intercomparison of UAV, Aircraft and Satellite Remote Sensing
Platforms for Precision Viticulture,
RS(7), No. 3, 2015, pp. 2971-2990.
DOI Link
1504
BibRef
Pôças, I.[Isabel],
Rodrigues, A.[Arlete],
Gonçalves, S.[Sara],
Costa, P.M.[Patrícia M.],
Gonçalves, I.[Igor],
Pereira, L.S.[Luís S.],
Cunha, M.[Mário],
Predicting Grapevine Water Status Based on Hyperspectral Reflectance
Vegetation Indices,
RS(7), No. 12, 2015, pp. 15835.
DOI Link
1601
BibRef
Vanino, S.[Silvia],
Pulighe, G.[Giuseppe],
Nino, P.[Pasquale],
de Michele, C.[Carlo],
Bolognesi, S.F.[Salvatore Falanga],
d'Urso, G.[Guido],
Estimation of Evapotranspiration and Crop Coefficients of Tendone
Vineyards Using Multi-Sensor Remote Sensing Data in a Mediterranean
Environment,
RS(7), No. 11, 2015, pp. 14708.
DOI Link
1512
BibRef
Rey-Caramés, C.[Clara],
Diago, M.P.[María P.],
Martín, M.P.[M. Pilar],
Lobo, A.[Agustín],
Tardaguila, J.[Javier],
Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf
Development, Yield Components and Berry Composition Variability
within a Vineyard,
RS(7), No. 11, 2015, pp. 14458.
DOI Link
1512
BibRef
Karakizi, C.[Christina],
Oikonomou, M.[Marios],
Karantzalos, K.[Konstantinos],
Vineyard Detection and Vine Variety Discrimination from Very High
Resolution Satellite Data,
RS(8), No. 3, 2016, pp. 235.
DOI Link
1604
BibRef
Pham, M.T.[Minh-Tan],
Mercier, G.[Grégoire],
Regniers, O.[Oliver],
Michel, J.[Julien],
Texture Retrieval from VHR Optical Remote Sensed Images Using the
Local Extrema Descriptor with Application to Vineyard Parcel
Detection,
RS(8), No. 5, 2016, pp. 368.
DOI Link
1606
BibRef
Sepúlveda-Reyes, D.[Daniel],
Ingram, B.[Benjamin],
Bardeen, M.[Matthew],
Zúñiga, M.[Mauricio],
Ortega-Farías, S.[Samuel],
Poblete-Echeverría, C.[Carlos],
Selecting Canopy Zones and Thresholding Approaches to Assess
Grapevine Water Status by Using Aerial and Ground-Based Thermal
Imaging,
RS(8), No. 10, 2016, pp. 822.
DOI Link
1609
BibRef
Weiss, M.[Marie],
Baret, F.[Frédéric],
Using 3D Point Clouds Derived from UAV RGB Imagery to Describe
Vineyard 3D Macro-Structure,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Poblete-Echeverría, C.[Carlos],
Olmedo, G.F.[Guillermo Federico],
Ingram, B.[Ben],
Bardeen, M.[Matthew],
Detection and Segmentation of Vine Canopy in Ultra-High Spatial
Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A
Case Study in a Commercial Vineyard,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Albetis, J.[Johanna],
Duthoit, S.[Sylvie],
Guttler, F.[Fabio],
Jacquin, A.[Anne],
Goulard, M.[Michel],
Poilvé, H.[Hervé],
Féret, J.B.[Jean-Baptiste],
Dedieu, G.[Gérard],
Detection of Flavescence dorée Grapevine Disease Using Unmanned
Aerial Vehicle (UAV) Multispectral Imagery,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Sun, L.[Liang],
Gao, F.[Feng],
Anderson, M.C.[Martha C.],
Kustas, W.P.[William P.],
Alsina, M.M.[Maria M.],
Sanchez, L.[Luis],
Sams, B.[Brent],
McKee, L.[Lynn],
Dulaney, W.[Wayne],
White, W.A.[William A.],
Alfieri, J.G.[Joseph G.],
Prueger, J.H.[John H.],
Melton, F.[Forrest],
Post, K.[Kirk],
Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in
California Vineyards,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Espinoza, C.Z.[Carlos Zúñiga],
Khot, L.R.[Lav R.],
Sankaran, S.[Sindhuja],
Jacoby, P.W.[Pete W.],
High Resolution Multispectral and Thermal Remote Sensing-Based Water
Stress Assessment in Subsurface Irrigated Grapevines,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Balbontín, C.[Claudio],
Campos, I.[Isidro],
Odi-Lara, M.[Magali],
Ibacache, A.[Antonio],
Calera, A.[Alfonso],
Irrigation Performance Assessment in Table Grape Using the
Reflectance-Based Crop Coefficient,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Matese, A.[Alessandro],
Baraldi, R.[Rita],
Berton, A.[Andrea],
Cesaraccio, C.[Carla],
di Gennaro, S.F.[Salvatore Filippo],
Duce, P.[Pierpaolo],
Facini, O.[Osvaldo],
Mameli, M.G.[Massimiliano Giuseppe],
Piga, A.[Alessandra],
Zaldei, A.[Alessandro],
Estimation of Water Stress in Grapevines Using Proximal and Remote
Sensing Methods,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Silva, R.[Rui],
Gomes, V.[Véronique],
Mendes-Faia, A.[Arlete],
Melo-Pinto, P.[Pedro],
Using Support Vector Regression and Hyperspectral Imaging for the
Prediction of Oenological Parameters on Different Vintages and
Varieties of Wine Grape Berries,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Loggenberg, K.[Kyle],
Strever, A.[Albert],
Greyling, B.[Berno],
Poona, N.[Nitesh],
Modelling Water Stress in a Shiraz Vineyard Using Hyperspectral
Imaging and Machine Learning,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Duarte, L.[Lia],
Silva, P.[Pedro],
Teodoro, A.C.[Ana Cláudia],
Development of a QGIS Plugin to Obtain Parameters and Elements of
Plantation Trees and Vineyards with Aerial Photographs,
IJGI(7), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Al-Saddik, H.[Hania],
Laybros, A.[Anthony],
Billiot, B.[Bastien],
Cointault, F.[Frederic],
Using Image Texture and Spectral Reflectance Analysis to Detect
Yellowness and Esca in Grapevines at Leaf-Level,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
de Castro, A.I.[Ana I.],
Jiménez-Brenes, F.M.[Francisco M.],
Torres-Sánchez, J.[Jorge],
Peña, J.M.[José M.],
Borra-Serrano, I.[Irene],
López-Granados, F.[Francisca],
3-D Characterization of Vineyards Using a Novel UAV Imagery-Based
OBIA Procedure for Precision Viticulture Applications,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Helman, D.[David],
Bahat, I.[Idan],
Netzer, Y.S.[Yi-Shai],
Ben-Gal, A.[Alon],
Alchanatis, V.[Victor],
Peeters, A.[Aviva],
Cohen, Y.[Yafit],
Using Time Series of High-Resolution Planet Satellite Images to
Monitor Grapevine Stem Water Potential in Commercial Vineyards,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Remke, A.[Alexander],
Rodrigo-Comino, J.[Jesús],
Gyasi-Agyei, Y.[Yeboah],
Cerdà, A.[Artemi],
Ries, J.B.[Johannes B.],
Combining the Stock Unearthing Method and Structure-from-Motion
Photogrammetry for a Gapless Estimation of Soil Mobilisation in
Vineyards,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Pádua, L.[Luís],
Marques, P.[Pedro],
Hruška, J.[Jonáš],
Adão, T.[Telmo],
Peres, E.[Emanuel],
Morais, R.[Raul],
Sousa, J.J.[Joaquim J.],
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Pádua, L.[Luís],
Adão, T.[Telmo],
Sousa, A.[António],
Peres, E.[Emanuel],
Sousa, J.J.[Joaquim J.],
Individual Grapevine Analysis in a Multi-Temporal Context Using
UAV-Based Multi-Sensor Imagery,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Rançon, F.[Florian],
Bombrun, L.[Lionel],
Keresztes, B.[Barna],
Germain, C.[Christian],
Comparison of SIFT Encoded and Deep Learning Features for the
Classification and Detection of Esca Disease in Bordeaux Vineyards,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Albetis, J.[Johanna],
Jacquin, A.[Anne],
Goulard, M.[Michel],
Poilvé, H.[Hervé],
Rousseau, J.[Jacques],
Clenet, H.[Harold],
Dedieu, G.[Gerard],
Duthoit, S.[Sylvie],
On the Potentiality of UAV Multispectral Imagery to Detect
Flavescence dorée and Grapevine Trunk Diseases,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Magarreiro, C.[Clarisse],
Gouveia, C.M.[Célia M.],
Barroso, C.M.[Carla M.],
Trigo, I.F.[Isabel F.],
Modelling of Wine Production Using Land Surface Temperature and
FAPAR: The Case of the Douro Wine Region,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Khaliq, A.[Aleem],
Comba, L.[Lorenzo],
Biglia, A.[Alessandro],
Aimonino, D.R.[Davide Ricauda],
Chiaberge, M.[Marcello],
Gay, P.[Paolo],
Comparison of Satellite and UAV-Based Multispectral Imagery for
Vineyard Variability Assessment,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Tucci, G.[Grazia],
Parisi, E.I.[Erica Isabella],
Castelli, G.[Giulio],
Errico, A.[Alessandro],
Corongiu, M.[Manuela],
Sona, G.[Giovanna],
Viviani, E.[Enea],
Bresci, E.[Elena],
Preti, F.[Federico],
Multi-Sensor UAV Application for Thermal Analysis on a Dry-Stone
Terraced Vineyard in Rural Tuscany Landscape,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Maimaitiyiming, M.[Matthew],
Sagan, V.[Vasit],
Sidike, P.[Paheding],
Kwasniewski, M.T.[Misha T.],
Dual Activation Function-Based Extreme Learning Machine (ELM) for
Estimating Grapevine Berry Yield and Quality,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Cinat, P.[Paolo],
di Gennaro, S.F.[Salvatore Filippo],
Berton, A.[Andrea],
Matese, A.[Alessandro],
Comparison of Unsupervised Algorithms for Vineyard Canopy
Segmentation from UAV Multispectral Images,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Henry, D.,
Aubert, H.,
Véronèse, T.,
Proximal Radar Sensors for Precision Viticulture,
GeoRS(57), No. 7, July 2019, pp. 4624-4635.
IEEE DOI
1907
Pipelines, Radar imaging, Estimation, Radar measurements,
Optical sensors, Precision viticulture (PV), proximal sensing, radar imagery
BibRef
Mayoral, C.Q.,
González, C.G.[C. García],
Galarregui, J.C.I.,
Marín, D.,
Gastón, D.,
Miranda, C.,
Gonzalo, R.,
Maestrojuán, I.,
Santesteban, L.G.,
Ederra, I.,
Water Content Continuous Monitoring of Grapevine Xylem Tissue Using a
Portable Low-Power Cost-Effective FMCW Radar,
GeoRS(57), No. 8, August 2019, pp. 5595-5605.
IEEE DOI
1908
CW radar, FM radar, irrigation, optimisation, radar resolution,
signal classification, telecommunication power management,
xylem water content
BibRef
del-Campo-Sanchez, A.[Ana],
Moreno, M.[Miguel],
Ballesteros, R.[Rocio],
Hernandez-Lopez, D.[David],
Geometric Characterization of Vines from 3D Point Clouds Obtained
with Laser Scanner Systems,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Gong, C.Z.[Chi-Zhang],
Buddenbaum, H.[Henning],
Retzlaff, R.[Rebecca],
Udelhoven, T.[Thomas],
An Empirical Assessment of Angular Dependency for RedEdge-M in Sloped
Terrain Viticulture,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Gennaro, S.F.D.[Salvatore Filippo Di],
Dainelli, R.[Riccardo],
Palliotti, A.[Alberto],
Toscano, P.[Piero],
Matese, A.[Alessandro],
Sentinel-2 Validation for Spatial Variability Assessment in Overhead
Trellis System Viticulture Versus UAV and Agronomic Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhao, L.C.[Long-Cai],
Li, Q.Z.[Qiang-Zi],
Zhang, Y.[Yuan],
Wang, H.Y.[Hong-Yan],
Du, X.[Xin],
Integrating the Continuous Wavelet Transform and a Convolutional
Neural Network to Identify Vineyard Using Time Series Satellite
Images,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Cogato, A.[Alessia],
Pagay, V.[Vinay],
Marinello, F.[Francesco],
Meggio, F.[Franco],
Grace, P.[Peter],
de Antoni Migliorati, M.[Massimiliano],
Assessing the Feasibility of Using Sentinel-2 Imagery to Quantify the
Impact of Heatwaves on Irrigated Vineyards,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Mirzaei, M.[Mohsen],
Verrelst, J.[Jochem],
Marofi, S.[Safar],
Abbasi, M.[Mozhgan],
Azadi, H.[Hossein],
Eco-Friendly Estimation of Heavy Metal Contents in Grapevine Foliage
Using In-Field Hyperspectral Data and Multivariate Analysis,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Mesas-Carrascosa, F.J.[Francisco-Javier],
de Castro, A.I.[Ana I.],
Torres-Sánchez, J.[Jorge],
Triviño-Tarradas, P.[Paula],
Jiménez-Brenes, F.M.[Francisco M.],
García-Ferrer, A.[Alfonso],
López-Granados, F.[Francisca],
Classification of 3D Point Clouds Using Color Vegetation Indices for
Precision Viticulture and Digitizing Applications,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Nassar, A.[Ayman],
Torres-Rua, A.[Alfonso],
Kustas, W.[William],
Nieto, H.[Hector],
McKee, M.[Mac],
Hipps, L.[Lawrence],
Stevens, D.[David],
Alfieri, J.[Joseph],
Prueger, J.[John],
Alsina, M.M.[Maria Mar],
McKee, L.[Lynn],
Coopmans, C.[Calvin],
Sanchez, L.[Luis],
Dokoozlian, N.[Nick],
Influence of Model Grid Size on the Estimation of Surface Fluxes
Using the Two Source Energy Balance Model and sUAS Imagery in
Vineyards,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Jones, E.G.[Eriita G.],
Wong, S.[Sebastien],
Milton, A.[Anthony],
Sclauzero, J.[Joseph],
Whittenbury, H.[Holly],
McDonnell, M.D.[Mark D.],
The Impact of Pan-Sharpening and Spectral Resolution on Vineyard
Segmentation through Machine Learning,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Meyers, J.M.[James M.],
Dokoozlian, N.[Nick],
Ryan, C.[Casey],
Bioni, C.[Cella],
Heuvel, J.E.V.[Justine E. Vanden],
A New, Satellite NDVI-Based Sampling Protocol for Grape Maturation
Monitoring,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Zabawa, L.[Laura],
Kicherer, A.[Anna],
Klingbeil, L.[Lasse],
Töpfer, R.[Reinhard],
Kuhlmann, H.[Heiner],
Roscher, R.[Ribana],
Counting of grapevine berries in images via semantic segmentation
using convolutional neural networks,
PandRS(164), 2020, pp. 73-83.
Elsevier DOI
2005
Deep learning, Semantic segmentation, Geoinformation,
High-throughput analysis, Plant phenotyping, Vitis
BibRef
Bendel, N.[Nele],
Kicherer, A.[Anna],
Backhaus, A.[Andreas],
Köckerling, J.[Janine],
Maixner, M.[Michael],
Bleser, E.[Elvira],
Klück, H.C.[Hans-Christian],
Seiffert, U.[Udo],
Voegele, R.T.[Ralf T.],
Töpfer, R.[Reinhard],
Detection of Grapevine Leafroll-Associated Virus 1 and 3 in White and
Red Grapevine Cultivars Using Hyperspectral Imaging,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Cogato, A.[Alessia],
Meggio, F.[Franco],
Collins, C.[Cassandra],
Marinello, F.[Francesco],
Medium-Resolution Multispectral Data from Sentinel-2 to Assess the
Damage and the Recovery Time of Late Frost on Vineyards,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Chrobak, K.[Katarzyna],
Chrobak, G.[Grzegorz],
Kazak, J.K.[Jan K.],
The Use of Common Knowledge in Fuzzy Logic Approach for Vineyard Site
Selection,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Bellvert, J.[Joaquim],
Jofre-Cekalovic, C.[Christian],
Pelechá, A.[Ana],
Mata, M.[Mercè],
Nieto, H.[Hector],
Feasibility of Using the Two-Source Energy Balance Model (TSEB) with
Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal
Variability of Vine Water Status in a Vineyard,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
López-Granados, F.[Francisca],
Torres-Sánchez, J.[Jorge],
Jiménez-Brenes, F.M.[Francisco M.],
Oneka, O.[Oihane],
Marín, D.[Diana],
Loidi, M.[Maite],
de Castro, A.I.[Ana I.],
Santesteban, L.G.,
Monitoring Vineyard Canopy Management Operations Using UAV-Acquired
Photogrammetric Point Clouds,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Ohana-Levi, N.[Noa],
Knipper, K.[Kyle],
Kustas, W.P.[William P.],
Anderson, M.C.[Martha C.],
Netzer, Y.S.[Yi-Shai],
Gao, F.[Feng],
del Mar Alsina, M.[Maria],
Sanchez, L.A.[Luis A.],
Karnieli, A.[Arnon],
Using Satellite Thermal-Based Evapotranspiration Time Series for
Defining Management Zones and Spatial Association to Local Attributes
in a Vineyard,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Jurado, J.M.[Juan M.],
Pádua, L.[Luís],
Feito, F.R.[Francisco R.],
Sousa, J.J.[Joaquim J.],
Automatic Grapevine Trunk Detection on UAV-Based Point Cloud,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Maimaitiyiming, M.[Matthew],
Sagan, V.[Vasit],
Sidike, P.[Paheding],
Maimaitijiang, M.[Maitiniyazi],
Miller, A.J.[Allison J.],
Kwasniewski, M.[Misha],
Leveraging Very-High Spatial Resolution Hyperspectral and Thermal UAV
Imageries for Characterizing Diurnal Indicators of Grapevine
Physiology,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Kerkech, M.[Mohamed],
Hafiane, A.[Adel],
Canals, R.[Raphael],
VddNet: Vine Disease Detection Network Based on Multispectral Images
and Depth Map,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Moghimi, A.[Ali],
Pourreza, A.[Alireza],
Zuniga-Ramirez, G.[German],
Williams, L.E.[Larry E.],
Fidelibus, M.W.[Matthew W.],
A Novel Machine Learning Approach to Estimate Grapevine Leaf Nitrogen
Concentration Using Aerial Multispectral Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Bendel, N.[Nele],
Backhaus, A.[Andreas],
Kicherer, A.[Anna],
Köckerling, J.[Janine],
Maixner, M.[Michael],
Jarausch, B.[Barbara],
Biancu, S.[Sandra],
Klück, H.C.[Hans-Christian],
Seiffert, U.[Udo],
Voegele, R.T.[Ralf T.],
Töpfer, R.[Reinhard],
Detection of Two Different Grapevine Yellows in Vitis vinifera Using
Hyperspectral Imaging,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kalua, M.[Michael],
Rallings, A.M.[Anna M.],
Booth, L.[Lorenzo],
Medellín-Azuara, J.[Josué],
Carpin, S.[Stefano],
Viers, J.H.[Joshua H.],
sUAS Remote Sensing of Vineyard Evapotranspiration Quantifies
Spatiotemporal Uncertainty in Satellite-Borne ET Estimates,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Laroche-Pinel, E.[Eve],
Albughdadi, M.[Mohanad],
Duthoit, S.[Sylvie],
Chéret, V.[Véronique],
Rousseau, J.[Jacques],
Clenet, H.[Harold],
Understanding Vine Hyperspectral Signature through Different
Irrigation Plans: A First Step to Monitor Vineyard Water Status,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
García-Gutiérrez, V.[Víctor],
Stöckle, C.[Claudio],
Gil, P.M.[Pilar Macarena],
Meza, F.J.[Francisco Javier],
Evaluation of Penman-Monteith Model Based on Sentinel-2 Data for the
Estimation of Actual Evapotranspiration in Vineyards,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Zhou, X.X.[Xi-Xuan],
Yang, L.[Liao],
Wang, W.S.[Wei-Sheng],
Chen, B.[Baili],
UAV Data as an Alternative to Field Sampling to Monitor Vineyards
Using Machine Learning Based on UAV/Sentinel-2 Data Fusion,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Puig-Sirera, À.[Àngela],
Antichi, D.[Daniele],
Raffa, D.W.[Dylan Warren],
Rallo, G.[Giovanni],
Application of Remote Sensing Techniques to Discriminate the Effect
of Different Soil Management Treatments over Rainfed Vineyards in
Chianti Terroir,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Liu, W.[Wei],
Zhang, X.D.[Xiao-Dong],
He, F.[Fei],
Xiong, Q.[Quan],
Zan, X.L.[Xu-Li],
Liu, Z.[Zhe],
Sha, D.X.[De-Xuan],
Yang, C.W.[Chao-Wei],
Li, S.M.[Shao-Ming],
Zhao, Y.Y.[Yuan-Yuan],
Open-air grape classification and its application in parcel-level
risk assessment of late frost in the eastern Helan Mountains,
PandRS(174), 2021, pp. 132-150.
Elsevier DOI
2103
Open-air grape parcel, Late frost, Google Earth Engine,
Crop classification, Sentinel-2, OpenStreetMap, Eastern Helan Mountains
BibRef
Bahat, I.[Idan],
Netzer, Y.S.[Yi-Shai],
Grünzweig, J.M.[José M.],
Alchanatis, V.[Victor],
Peeters, A.[Aviva],
Goldshtein, E.[Eitan],
Ohana-Levi, N.[Noa],
Ben-Gal, A.[Alon],
Cohen, Y.[Yafit],
In-Season Interactions between Vine Vigor, Water Status and Wine
Quality in Terrain-Based Management-Zones in a 'Cabernet Sauvignon'
Vineyard,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Squeri, C.[Cecilia],
Poni, S.[Stefano],
di Gennaro, S.F.[Salvatore Filippo],
Matese, A.[Alessandro],
Gatti, M.[Matteo],
Comparison and Ground Truthing of Different Remote and Proximal
Sensing Platforms to Characterize Variability in a Hedgerow-Trained
Vineyard,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Gautam, D.[Deepak],
Ostendorf, B.[Bertram],
Pagay, V.[Vinay],
Estimation of Grapevine Crop Coefficient Using a Multispectral Camera
on an Unmanned Aerial Vehicle,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Calamita, F.[Federico],
Imran, H.A.[Hafiz Ali],
Vescovo, L.[Loris],
Mekhalfi, M.L.[Mohamed Lamine],
La Porta, N.[Nicola],
Early Identification of Root Rot Disease by Using Hyperspectral
Reflectance: The Case of Pathosystem Grapevine/Armillaria,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Fernández-Novales, J.[Juan],
Saiz-Rubio, V.[Verónica],
Barrio, I.[Ignacio],
Rovira-Más, F.[Francisco],
Cuenca-Cuenca, A.[Andrés],
Alves, F.S.[Fernando Santos],
Valente, J.[Joana],
Tardaguila, J.[Javier],
Diago, M.P.[María Paz],
Monitoring and Mapping Vineyard Water Status Using Non-Invasive
Technologies by a Ground Robot,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Hajjar, C.[Chantal],
Ghattas, G.[Ghassan],
Sarkis, M.K.[Maya Kharrat],
Chamoun, Y.G.[Yolla Ghorra],
Vine Identification and Characterization in Goblet-Trained Vineyards
Using Remotely Sensed Images,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Wei, H.E.[Hsiang-En],
Grafton, M.[Miles],
Bretherton, M.[Michael],
Irwin, M.[Matthew],
Sandoval, E.[Eduardo],
Evaluation of Point Hyperspectral Reflectance and Multivariate
Regression Models for Grapevine Water Status Estimation,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, W.J.[Wen-Jie],
Huang, J.F.[Jing-Feng],
Yang, L.B.[Ling-Bo],
Chen, Y.[Yan],
Fang, Y.[Yahua],
Jin, H.W.[Hong-Wei],
Sun, H.[Han],
Huang, R.[Ran],
A Practical Remote Sensing Monitoring Framework for Late Frost Damage
in Wine Grapes Using Multi-Source Satellite Data,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Debnath, S.[Sourabhi],
Paul, M.[Manoranjan],
Rahaman, D.M.M.[D. M. Motiur],
Debnath, T.[Tanmoy],
Zheng, L.H.[Li-Hong],
Baby, T.[Tintu],
Schmidtke, L.M.[Leigh M.],
Rogiers, S.Y.[Suzy Y.],
Identifying Individual Nutrient Deficiencies of Grapevine Leaves
Using Hyperspectral Imaging,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tyc, J.[Jakub],
Hensel, D.S.[Defne Sunguroglu],
Parisi, E.I.[Erica Isabella],
Tucci, G.[Grazia],
Hensel, M.U.[Michael Ulrich],
Integration of Remote Sensing Data into a Composite Voxel Model for
Environmental Performance Analysis of Terraced Vineyards in Tuscany,
Italy,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
d'Urso, G.[Guido],
Bolognesi, S.F.[Salvatore Falanga],
Kustas, W.P.[William P.],
Knipper, K.R.[Kyle R.],
Anderson, M.C.[Martha C.],
Alsina, M.M.[Maria M.],
Hain, C.R.[Christopher R.],
Alfieri, J.G.[Joseph G.],
Prueger, J.H.[John H.],
Gao, F.[Feng],
McKee, L.G.[Lynn G.],
de Michele, C.[Carlo],
McElrone, A.J.[Andrew J.],
Bambach, N.[Nicolas],
Sanchez, L.[Luis],
Belfiore, O.R.[Oscar Rosario],
Determining Evapotranspiration by Using Combination Equation Models
with Sentinel-2 Data and Comparison with Thermal-Based Energy Balance
in a California Irrigated Vineyard,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Paciolla, N.[Nicola],
Corbari, C.[Chiara],
Maltese, A.[Antonino],
Ciraolo, G.[Giuseppe],
Mancini, M.[Marco],
Proximal-Sensing-Powered Modelling of Energy-Water Fluxes in a
Vineyard: A Spatial Resolution Analysis,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chancia, R.[Robert],
Bates, T.[Terry],
Heuvel, J.V.[Justine Vanden],
van Aardt, J.[Jan],
Assessing Grapevine Nutrient Status from Unmanned Aerial System (UAS)
Hyperspectral Imagery,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Fredes, S.N.[Sandra N.],
Ruiz, L.Á.[Luis Á.],
Recio, J.A.[Jorge A.],
Modeling Phenols, Anthocyanins and Color Intensity of Wine Using
Pre-Harvest Sentinel-2 Images,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yang, R.[Rui],
Lu, X.Y.[Xiang-Yu],
Huang, J.[Jing],
Zhou, J.[Jun],
Jiao, J.[Jie],
Liu, Y.F.[Yu-Fei],
Liu, F.[Fei],
Su, B.F.[Bao-Feng],
Gu, P.[Peiwen],
A Multi-Source Data Fusion Decision-Making Method for Disease and
Pest Detection of Grape Foliage Based on ShuffleNet V2,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sassu, A.[Alberto],
Ghiani, L.[Luca],
Salvati, L.[Luca],
Mercenaro, L.[Luca],
Deidda, A.[Alessandro],
Gambella, F.[Filippo],
Integrating UAVs and Canopy Height Models in Vineyard Management:
A Time-Space Approach,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ilniyaz, O.[Osman],
Kurban, A.[Alishir],
Du, Q.Y.[Qing-Yun],
Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid
Regions Based on UAV RGB and Multispectral Data Using Machine
Learning Methods,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Rodríguez-Febereiro, M.[Marta],
Dafonte, J.[Jorge],
Fandiño, M.[María],
Cancela, J.J.[Javier J.],
Rodríguez-Pérez, J.R.[José Ramón],
Evaluation of Spectroscopy and Methodological Pre-Treatments to
Estimate Soil Nutrients in the Vineyard,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Peng, X.L.[Xue-Lian],
Chen, D.[Dianyu],
Zhou, Z.J.[Zhen-Jiang],
Zhang, Z.[Zhitao],
Xu, C.[Can],
Zha, Q.[Qing],
Wang, F.[Fang],
Hu, X.T.[Xiao-Tao],
Prediction of the Nitrogen, Phosphorus and Potassium Contents in
Grape Leaves at Different Growth Stages Based on UAV Multispectral
Remote Sensing,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Bai, H.Q.[Hui-Qing],
Sun, Z.X.[Zhong-Xiang],
Yao, X.[Xuenan],
Kong, J.H.[Jun-Hua],
Wang, Y.J.[Yong-Jian],
Zhang, X.Y.[Xiao-Yu],
Chen, W.P.[Wei-Ping],
Fan, P.[Peige],
Li, S.H.[Shao-Hua],
Liang, Z.C.[Zhen-Chang],
Dai, Z.W.[Zhan-Wu],
Viticultural Suitability Analysis Based on Multi-Source Data
Highlights Climate-Change-Induced Decrease in Potential Suitable
Areas: A Case Analysis in Ningxia, China,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Morellos, A.[Antonios],
Pantazi, X.E.[Xanthoula Eirini],
Paraskevas, C.[Charalampos],
Moshou, D.[Dimitrios],
Comparison of Deep Neural Networks in Detecting Field Grapevine
Diseases Using Transfer Learning,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Arab, S.T.[Sara Tokhi],
Ahamed, T.[Tofael],
Land Suitability Analysis for Potential Vineyards Extension in
Afghanistan at Regional Scale Using Remote Sensing Datasets,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Petrovic, I.[Igor],
Secnik, M.[Matej],
Hocevar, M.[Marko],
Berk, P.[Peter],
Vine Canopy Reconstruction and Assessment with Terrestrial Lidar and
Aerial Imaging,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wei, H.E.[Hsiang-En],
Grafton, M.[Miles],
Bretherton, M.[Mike],
Irwin, M.[Matthew],
Sandoval, E.[Eduardo],
Evaluation of the Use of UAV-Derived Vegetation Indices and
Environmental Variables for Grapevine Water Status Monitoring Based
on Machine Learning Algorithms and SHAP Analysis,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lu, S.H.[Sai-Hong],
Xuan, J.J.[Jun-Jie],
Zhang, T.[Tong],
Bai, X.[Xueer],
Tian, F.[Fei],
Ortega-Farias, S.[Samuel],
Effect of the Shadow Pixels on Evapotranspiration Inversion of
Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing
Measurements,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Palazzi, F.[Francesco],
Biddoccu, M.[Marcella],
Mondino, E.C.B.[Enrico Corrado Borgogno],
Cavallo, E.[Eugenio],
Use of Remotely Sensed Data for the Evaluation of Inter-Row Cover
Intensity in Vineyards,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Yao, Z.Y.[Zhi-Ying],
Zhao, Y.Y.[Yuan-Yuan],
Wang, H.B.[Heng-Bin],
Li, H.D.[Hong-Dong],
Yuan, X.[Xinqun],
Ren, T.W.[Tian-Wei],
Yu, L.[Le],
Liu, Z.[Zhe],
Zhang, X.D.[Xiao-Dong],
Li, S.[Shaoming],
Comparison and Assessment of Data Sources with Different Spatial and
Temporal Resolution for Efficiency Orchard Mapping:
Case Studies in Five Grape-Growing Regions,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Gao, R.[Rui],
Torres-Rua, A.F.[Alfonso F.],
Nieto, H.[Hector],
Zahn, E.[Einara],
Hipps, L.[Lawrence],
Kustas, W.P.[William P.],
Alsina, M.M.[Maria Mar],
Bambach, N.[Nicolas],
Castro, S.J.[Sebastian J.],
Prueger, J.H.[John H.],
Alfieri, J.[Joseph],
McKee, L.G.[Lynn G.],
White, W.A.[William A.],
Gao, F.[Feng],
McElrone, A.J.[Andrew J.],
Anderson, M.[Martha],
Knipper, K.[Kyle],
Coopmans, C.[Calvin],
Gowing, I.[Ian],
Agam, N.[Nurit],
Sanchez, L.[Luis],
Dokoozlian, N.[Nick],
ET Partitioning Assessment Using the TSEB Model and sUAS Information
across California Central Valley Vineyards,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Lyu, H.Y.[Hong-Yi],
Grafton, M.[Miles],
Ramilan, T.[Thiagarajah],
Irwin, M.[Matthew],
Sandoval, E.[Eduardo],
Assessing the Leaf Blade Nutrient Status of Pinot Noir Using
Hyperspectral Reflectance and Machine Learning Models,
RS(15), No. 6, 2023, pp. 1497.
DOI Link
2304
BibRef
García-Gutiérrez, V.[Víctor],
Meza, F.[Francisco],
Modeling Phenology Combining Data Assimilation Techniques and
Bioclimatic Indices in a Cabernet Sauvignon Vineyard (Vitis vinifera
L.) in Central Chile,
RS(15), No. 14, 2023, pp. 3537.
DOI Link
2307
BibRef
Payares, L.K.A.[Luz K. Atencia],
Tarquis, A.M.[Ana M.],
Peralo, R.H.[Roberto Hermoso],
Cano, J.[Jesús],
Cámara, J.[Joaquín],
Nowack, J.[Juan],
Gómez-del Campo, M.[María],
Multispectral and Thermal Sensors Onboard UAVs for Heterogeneity in
Merlot Vineyard Detection: Contribution to Zoning Maps,
RS(15), No. 16, 2023, pp. 4024.
DOI Link
2309
BibRef
Lyu, H.Y.[Hong-Yi],
Grafton, M.[Miles],
Ramilan, T.[Thiagarajah],
Irwin, M.[Matthew],
Wei, H.E.[Hsiang-En],
Sandoval, E.[Eduardo],
Using Remote and Proximal Sensing Data and Vine Vigor Parameters for
Non-Destructive and Rapid Prediction of Grape Quality,
RS(15), No. 22, 2023, pp. 5412.
DOI Link
2311
BibRef
Gavrilovic, M.[Milan],
Jovanovic, D.[Dušan],
Božovic, P.[Predrag],
Benka, P.[Pavel],
Govedarica, M.[Miro],
Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned
Aerial Vehicle Imagery,
RS(16), No. 3, 2024, pp. 584.
DOI Link
2402
BibRef
Ortuani, B.[Bianca],
Mayer, A.[Alice],
Bianchi, D.[Davide],
Sona, G.[Giovanna],
Crema, A.[Alberto],
Modina, D.[Davide],
Bolognini, M.[Martino],
Brancadoro, L.[Lucio],
Boschetti, M.[Mirco],
Facchi, A.[Arianna],
Effectiveness of Management Zones Delineated from UAV and Sentinel-2
Data for Precision Viticulture Applications,
RS(16), No. 4, 2024, pp. 635.
DOI Link
2402
BibRef
Brandmeier, M.[Melanie],
Heßdörfer, D.[Daniel],
Siebenlist, P.[Philipp],
Meyer-Spelbrink, A.[Adrian],
Kraus, A.[Anja],
Time Series Analysis of Multisensor Data for Precision Viticulture:
Assessing Microscale Variations in Plant Development with Respect to
Irrigation and Topography,
RS(16), No. 8, 2024, pp. 1419.
DOI Link
2405
BibRef
Bakon, M.[Matus],
Teixeira, A.C.[Ana Cláudia],
Pádua, L.[Luís],
Morais, R.[Raul],
Papco, J.[Juraj],
Kubica, L.[Lukas],
Rovnak, M.[Martin],
Perissin, D.[Daniele],
Sousa, J.J.[Joaquim J.],
Synthetic Aperture Radar in Vineyard Monitoring: Examples,
Demonstrations, and Future Perspectives,
RS(16), No. 12, 2024, pp. 2106.
DOI Link
2406
BibRef
Brown, L.A.[Luke A.],
Morris, H.[Harry],
MacLachlan, A.[Andrew],
D'Adamo, F.[Francesco],
Adams, J.[Jennifer],
Lopez-Baeza, E.[Ernesto],
Albero, E.[Erika],
Martínez, B.[Beatriz],
Sánchez-Ruiz, S.[Sergio],
Campos-Taberner, M.[Manuel],
Lidón, A.[Antonio],
Lull, C.[Cristina],
Bautista, I.[Inmaculada],
Clewley, D.[Daniel],
Llewellyn, G.[Gary],
Xie, Q.Y.[Qiao-Yun],
Camacho, F.[Fernando],
Pastor-Guzman, J.[Julio],
Morrone, R.[Rosalinda],
Sinclair, M.[Morven],
Williams, O.[Owen],
Hunt, M.[Merryn],
Hueni, A.[Andreas],
Boccia, V.[Valentina],
Dransfeld, S.[Steffen],
Dash, J.[Jadunandan],
Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest
and Row-Structured Vineyard Canopies,
RS(16), No. 12, 2024, pp. 2066.
DOI Link
2406
BibRef
Li, Y.F.[Ya-Feng],
Xu, X.G.[Xin-Gang],
Wu, W.[Wenbiao],
Zhu, Y.H.[Yao-Hui],
Yang, G.J.[Gui-Jun],
Yang, X.D.[Xiao-Dong],
Meng, Y.[Yang],
Jiang, X.T.[Xiang-Tai],
Xue, H.Y.[Han-Yu],
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based
on Fractional-Order Differentiation and Random Forest Algorithm,
RS(16), No. 12, 2024, pp. 2174.
DOI Link
2406
BibRef
López, A.[Alfonso],
Ogayar, C.J.[Carlos J.],
Feito, F.R.[Francisco R.],
Sousa, J.J.[Joaquim J.],
Classification of Grapevine Varieties Using UAV Hyperspectral Imaging,
RS(16), No. 12, 2024, pp. 2103.
DOI Link
2406
BibRef
del Rio, M.S.[Maria S.],
Cicuéndez, V.[Victor],
Yagüe, C.[Carlos],
Characterisation of Two Vineyards in Mexico Based on Sentinel-2 and
Meteorological Data,
RS(16), No. 14, 2024, pp. 2538.
DOI Link
2408
BibRef
Sharma, P.[Prakriti],
Villegas-Diaz, R.[Roberto],
Fennell, A.[Anne],
Predicting Grapevine Physiological Parameters Using Hyperspectral
Remote Sensing Integrated with Hybrid Convolutional Neural Network
and Ensemble Stacked Regression,
RS(16), No. 14, 2024, pp. 2626.
DOI Link
2408
BibRef
Fernandes, A.[António],
Kovac, N.[Nataša],
Fraga, H.[Hélder],
Fonseca, A.[André],
Radonjic, S.Š.[Sanja Šucur],
Simeunovic, M.[Marko],
Ratkovic, K.[Kruna],
Menz, C.[Christoph],
Costafreda-Aumedes, S.[Sergi],
Santos, J.A.[João A.],
Challenges to Viticulture in Montenegro under Climate Change,
IJGI(13), No. 8, 2024, pp. 270.
DOI Link
2408
BibRef
Musci, M.A.,
Persello, C.,
Lingua, A.M.,
UAV Images and Deep-learning Algorithms for Detecting Flavescence Doree
Disease In Grapevine Orchards,
ISPRS20(B3:1483-1489).
DOI Link
2012
BibRef
Kerkech, M.[Mohamed],
Hafiane, A.[Adel],
Canals, R.[Raphael],
Ros, F.[Frederic],
Vine Disease Detection by Deep Learning Method Combined with 3d Depth
Information,
ICISP20(82-90).
Springer DOI
2009
BibRef
Hruška, J.,
Adão, T.,
Pádua, L.,
Guimarães, N.,
Peres, E.,
Morais, R.,
Sousa, J.J.,
Evaluation of Machine Learning Techniques in Vine Leaves Disease
Detection: a Preliminary Case Study On Flavescence DorÉe,
Gi4DM19(151-156).
DOI Link
1912
BibRef
Kandylakis, Z.,
Karantzalos, K.,
Precision Viticulture From Multitemporal, Multispectral Very High
Resolution Satellite Data,
ISPRS16(B8: 919-925).
DOI Link
1610
BibRef
d'Urso, M.G.[Maria Grazia],
Marino, C.L.[Costantino Luis],
An Application Of Close-up Photogrammetry In Viticulture,
ISPRS16(B8: 1243-1250).
DOI Link
1610
BibRef
Liu, S.[Scarlett],
Whitty, M.[Mark],
Cossell, S.[Stephen],
Automatic grape bunch detection in vineyards for precise yield
estimation,
MVA15(238-241)
IEEE DOI
1507
Accuracy
BibRef
Burgos, S.,
Mota, M.,
Noll, D.,
Cannelle, B.,
Use of Very High-Resolution Airborne Images to Analyse 3D Canopy
Architecture of a Vineyard,
GeoUAV15(399-403).
DOI Link
1602
BibRef
Kalisperakis, I.,
Stentoumis, C.,
Grammatikopoulos, L.,
Karantzalos, K.,
Leaf Area Index Estimation in Vineyards from UAV Hyperspectral Data, 2D
Image Mosaics and 3D Canopy Surface Models,
UAV-g15(299-303).
DOI Link
1512
BibRef
Le Bris, A.,
Extraction Of Vineyards Out Of Aerial Ortho-image Using Texture
Information,
AnnalsPRS(I-3), No. 2012, pp. 383-388.
DOI Link
1209
BibRef
Le Bris, A.,
Boldo, D.,
Extraction of Landcover Themes out of Aerial Orthoimages in Mountainous
Areas Using External Information,
PIA07(123).
PDF File.
0711
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Cotton, Analysis and Change .