Recognition Robotics,Inc.,
2009. Recognition based on HVS techniques.
WWW Link.
Vendor, Object Recognition.
Nerual ID,
2008. Recognition based on learning.
WWW Link.
Vendor, Object Recognition.
Roberts, L.G.,
Machine Perception of 3-D Solids,
OE-OIP65(159-197).
BibRef
6500
CMetImAly77(285-323).
BibRef
And:
Ph.D.Thesis, MIT, May 1963.
Early Vision System.
Recognize Line Models.
This is the paper everyone should read. Early block analysis
using edges, lines, models, graphics, etc.
This system is the first three-dimensional vision system and contains
many of the operations in all later complete systems. It used models
of three-dimensional (polyhedral) objects and matches them to the
representations computed from the input data to find blocks in the
image. Complex shapes were composed of several blocks. Blocks are
described by their edges--a wire-frame model. Thus image edges are
extracted for the image by a simple 2X2 operator. The edges are
collected into lines based on adjacency, the small lines are
eliminated, and the long ones are extended to intersect at corners.
These lines are matched against model objects that allow changes in
the rotation and scaling parameters. Once an elementary object is
recognized, its line segments are removed from the image
representation and the match process continues with the other lines.
BibRef
Rosenthal, D.A., and
Bajcsy, R.,
Visual and Conceptual Hierarchy:
A Paradigm for Studies of Automated Generation of Recognition Strategies,
PAMI(6), No. 3, May 1984, pp. 319-325.
BibRef
8405
Bajcsy, R.,
Rosenthal, D.A.,
What One Can See on the Earth from Different Altitudes:
A Hierarchical Control Structure in Computer Vision,
PRIP77(108-111).
BibRef
7700
Rosenthal, D.A., and
Bajcsy, R.,
Conceptual and Visual Focusing in the Recognition Process
as Induced by Queries,
ICPR78(417-420).
BibRef
7800
Rosenthal, D.A.,
An Inquiry Driven Vision System Based
on Visual and Conceptual Hierarchies,
UMI Research PressAnn Arbor, MI, 1981.
BibRef
8100
Ph.D.Thesis.
Book from his thesis.
BibRef
Bajcsy, R.,
Rosenthal, D.A.,
Visual Focusing and Defocusing: An Essential Part of
Pattern Recognition Process,
CGPR75(130-134).
BibRef
7500
Rummel, P.,
Beutel, W.,
Workpiece Recognition and Inspection by a Model-Based
Scene Analysis System,
PR(17), No. 1, 1984, pp. 141-148.
Elsevier DOI
BibRef
8400
Rummel, P.,
Kollensperger, P.,
GSS: A Fast, Model-Based Vision System for Workpiece Recognition,
PRAI(2), 1988, pp. 543-556.
BibRef
8800
Chin, R.T., and
Dyer, C.R.,
Model-Based Recognition in Robot Vision,
Surveys(18), No. 1, March 1986, pp. 67-108.
Knowledge-Based Vision.
Model Based Vision.
Survey, Matching.
Survey, Robot Vision.
Matching, Models.
Robot Vision, Survey.
BibRef
8603
Earlier:
Model-Based Industrial Part Recognition: Systems and Algorithms,
Univ. of WisconsinTR 538, March 1984.
Comparison of various techniques organized by 2-D, 2.5-D and 3-D
representations considering feature extraction, modeling and
matching for each.
BibRef
Shneier, M.O.,
Lumia, R., and
Herman, M.,
Prediction-Based Vision for Robot Control,
Computer(20), No. 8, August 1987, pp. 46-55.
The use of feed-back to bring the internal
representation of the environment into registration with the real world.
BibRef
8708
Shneier, M.O.[Michael O.],
Lumia, R.[Ronald],
Kent, E.W.[Ernest W.],
Model-Based Strategies for High-Level Robot Vision,
CVGIP(33), No. 3, March 1986, pp. 293-306.
Elsevier DOI Talks about a general system, it doesn't give much specific.
BibRef
8603
Shneier, M.O.[Michael O.],
A Compact Relational Structure Representation,
IJCAI79(818-826).
BibRef
7900
Earlier:
Recognition Using Semantic Constraints,
IJCAI77(585-589).
BibRef
Fisher, R.B.,
SMS: A Suggestive Modelling System for Object Recognition,
IVC(5), No. 2, May 1987, pp. 98-104.
Elsevier DOI
BibRef
8705
Earlier:
SMS: A Suggestive Modeling System for Object Recognition,
Alvey86(xx).
BibRef
Edinburghobject modelling for visual recognition. Curve, surface and volumetric
structural descriptions.
See also Representing 3D Structures for Visual Recognition.
BibRef
Fitzgibbon, A.W.,
Fisher, R.B.,
Suggestive Modeling for Machine Vision,
SPIE(1830), 1992, pp. 315-320.
BibRef
9200
Edinburghgeometric modelling for object recognition
BibRef
Fisher, R.B.,
Model Invocation for Three Dimensional Scene Understanding,
IJCAI87(805-807).
BibRef
8700
EdinburghKW: visual model-base selection
BibRef
Brown, M.D.,
Fisher, R.B.,
A Distributed Blackboard System for Vision Applications,
BMVC90(163-168).
PDF File.
BibRef
9000
Edinburghvisual processing control
BibRef
Fisher, R.B.,
Orr, M.J.L.,
Geometric Reasoning in a Parallel Network,
IJRR(10), 1991, pp. 103-122.
BibRef
9100
Edinburgh
BibRef
Orr, M.J.L.,
Fisher, R.B.,
Geometric Reasoning for Computer Vision,
IVC(5), No. 3, August 1987, pp. 233-238.
Elsevier DOI
BibRef
8708
EdinburghGeneral reasoning tasks.
BibRef
Orr, M.J.L.,
Fisher, R.B.,
Interval-Based Geometric Reasoning in a Parallel Network,
MRSC91(xx).
BibRef
9100
Edinburgh
BibRef
Fisher, R.B.,
Orr, M.J.L.,
Experiments with a Network-Based Geometric Reasoning Engine,
IJCAI89(1623-1628).
BibRef
8900
Edinburghgeometric reasoning, pose estimation
BibRef
Fisher, R.B.,
Recognizing Objects Using Surface Information and Object Models,
IEE-ICIP86(149-153).
BibRef
8600
EdinburghJune 1986.
model-based 3D object recognition
BibRef
Kane, T.B.,
McAndrew, P.,
Wallace, A.M.,
Model-Based Object Recognition Using Probabilistic Logic and
Maximum Entropy,
PRAI(5), 1991, pp. 425-437.
BibRef
9100
Arman, F., and
Aggarwal, J.K.,
Model-Based Object Recognition in Dense Range Images,
Surveys(25), No. 1, March 1993, pp. 5-43.
Survey, Recognition.
See also Segmentation of 3-D Range Images Using Pyramidal Data Structures.
BibRef
9303
Arman, F.[Farshid],
Aggarwal, J.K.,
CAD-Based Vision:
Object Recognition in Cluttered Range Images Using Recognition Strategies,
CVGIP(58), No. 1, July 1993, pp. 33-48.
DOI Link Froa a model, overlapping objects.
BibRef
9307
Puliti, P.[Paolo],
Tascini, G.[Guido],
Knowledge-based approach to image interpretation,
IVC(11), No. 3, April 1993, pp. 122-128.
Elsevier DOI
0401
image segmentation; low level object interpretation; and high level
biomedical object interpretation.
BibRef
Stilla, U.,
Map-Aided Structural-Analysis of Aerial Images,
PandRS(50), No. 4, August 1995, pp. 3-10.
Blackboard system.
Context applied to aerial images.
BibRef
9508
Arbel, T.,
Whaite, P.,
Ferrie, F.P.,
Parametric Shape-Recognition Using a Probabilistic Inverse-Theory,
PRL(17), No. 5, May 1 1996, pp. 491-501.
9606
BibRef
Earlier:
Recognizing Volumetric Objects in the Presence of Uncertainty,
ICPR94(A:470-476).
IEEE DOI
BibRef
Arbel, T.,
Ferrie, F.P.,
Mitran, M.,
Recognizing Objects From Curvilinear Motion,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Morton, S.K.,
Popham, S.J.,
Algorithm Design Specification for Interpreting Segmented Image Data
Using Schemas and Support Logic,
IVC(5), No. 3, August 1987, pp. 206-216.
Elsevier DOI
BibRef
8708
Freytag, R.,
Haettich, W.,
Wandres, H.,
Development Tools for a Model Directed Workpiece Recognition System,
PR(19), No. 4, 1986, pp. 267-278.
Elsevier DOI From models.
BibRef
8600
Haettich, W.,
Wandres, H.,
Automatic learning of structural models for workpiece recognition
systems,
ICPR90(I: 279-281).
IEEE DOI
9006
BibRef
Ogata, H.,
Takahashi, T.,
Robotic Assembly Operation Teaching in a Virtual Environment,
RA(10), 1994, pp. 391-399.
BibRef
9400
Gao, Q.G.,
Man Made Object Recognition Based on Visual Perception,
JEI(7), No. 1, January 1998, pp. 104-110.
9807
BibRef
Robert, L.,
Malandain, G.,
Fast Binary Image Processing Using Binary Decision Diagrams,
CVIU(72), No. 1, October 1998, pp. 1-9.
DOI Link
BibRef
9810
Earlier:
CVPR97(97-102).
IEEE DOI
9704
Generate C code from BDD for simple tasks.
BibRef
Pece, A.E.C.[Arthur E.C.],
Larsen, R.[Rasmus],
Generative model based vision,
CVIU(106), No. 1, April 2007, pp. 3-4.
Elsevier DOI
0704
BibRef
Earlier: A1, Only:
IVC(21), No. 1, January 2003, pp. 1-3.
Elsevier DOI
0401
Special issue introductions.
BibRef
Estevez, L.W.,
Kehtarnavaz, N.,
Real-Time Object Specific Recognition via Raster Scan Video Processing,
RealTimeImg(5), No. 1, February 1999, pp. 49-62.
BibRef
9902
Huang, Y.,
Trinder, J.C.,
Object Recognition Based on Boundary Description,
PhEngRS(65), No. 8, August 1999, pp. 915.
Objects in the scene are reconstructed by digital photogrammetry,
models by CAD.
BibRef
9908
Batlle, J.[Joan],
Casals, A.[Alícia],
Freixenet, J.[Jordi],
Martí, J.[Joan],
A review on strategies for recognizing natural objects in colour images
of outdoor scenes,
IVC(18), No. 6-7, 1 May 2000, pp. 515-530.
Elsevier DOI
0003
BibRef
Martí, J.[Joan],
Freixenet, J.[Jordi],
Batlle, J.[Joan],
Casals, A.[Alícia],
A new approach to outdoor scene description based on learning and
top-down segmentation,
IVC(19), No. 14, December 2001, pp. 1041-1055.
Elsevier DOI
0111
BibRef
Torres-Mendez, L.A.,
Ruiz-Suarez, J.C.,
Sucar, L.E.,
Gomez, G.,
Translation, Rotation, and Scale-Invariant Object Recognition,
SMC-C(30), No. 1, February 2000, pp. 125-130.
IEEE Top Reference.
0004
BibRef
Douville, P.[Phil],
Real-Time Classification of Traffic Signs,
RealTimeImg(6), No. 3, June 2000, pp. 185-193.
0008
BibRef
Tagare, H.D.[Hemant D.],
Toyama, K.[Kentaro],
Wang, J.G.[Jonathan G.],
A Maximum-Likelihood Strategy for Directing Attention during Visual
Search,
PAMI(23), No. 5, May 2001, pp. 490-500.
IEEE DOI
0105
From the model that objects are composed of parts, hypothesize object
parts and image features that are likely from the target object.
BibRef
Meribout, M.[Mahmoud],
Nakanishi, M.[Mamoru],
Ogura, T.[Takeshi],
A parallel algorithm for real-time object recognition,
PR(35), No. 9, September 2002, pp. 1917-1931.
Elsevier DOI
0206
Generalized Hough hardware.
See also Accurate and Real-time Image Processing on a New PC-compatible Board.
BibRef
Kumar, S.[Sanjiv],
Louis, A.C.[Alexander C.],
Hebert, M.[Martial],
An observation-constrained generative approach for probabilistic
classification of image regions,
IVC(21), No. 1, January 2003, pp. 87-97.
Elsevier DOI
0301
BibRef
Schneiderman, H.[Henry],
Kanade, T.[Takeo],
Object Detection Using the Statistics of Parts,
IJCV(56), No. 3, February-March 2004, pp. 151-177.
DOI Link
0402
BibRef
Earlier:
Probabilistic Formulation for Object Recognition,
CVPR98(45-51).
IEEE DOI
Award, Longuet-Higgins. (after 10 years)
Trainable detector for faces and cars.
Exhaustive scan with multiple detectors for different sizes.
BibRef
Carmichael, O.T.,
Hebert, M.,
Shape-Based Recognition of Wiry Objects,
PAMI(26), No. 12, December 2004, pp. 1537-1552.
IEEE Abstract.
0411
BibRef
Earlier:
CVPR03(II: 401-408).
IEEE DOI
0307
Recognition of complex-shaped objects in cluttered environments based
on edge cues.
Train classifier, apply to new image to filter edges.
BibRef
Carmichael, O.T.,
Hebert, M.,
A Hybrid Object-Level/Pixel-Level Framework For Shape-based Recognition,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Carmichael, O.T.[Owen T.],
Huber, D.F.[Daniel F.],
Hebert, M.[Martial],
Large Data Sets and Confusing Scenes in
3-D Surface Matching and Recognition,
3DIM99(358-367).
IEEE DOI
9910
BibRef
Johnson, A.E.[Andrew Edie],
Carmichael, O.T.[Owen T.],
Huber, D.F.[Daniel F.],
Hebert, M.[Martial],
Toward a General 3-D matching Engine: Multiple Models, Complex scenes,
and Efficient Data Filtering,
DARPA98(1097-1108).
BibRef
9800
Ferrari, V.[Vittorio],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Simultaneous Object Recognition and Segmentation from Single or
Multiple Model Views,
IJCV(67), No. 2, April 2006, pp. 159-188.
Springer DOI
0605
BibRef
And:
Simultaneous Object Recognition and Segmentation by Image Exploration,
CLOR06(145-169).
Springer DOI
0711
BibRef
Earlier:
ECCV04(Vol I: 40-54).
Springer DOI
0405
Find initial matches, then expand the region of matches.
For high occlusion problems.
BibRef
Ferrari, V.[Vittorio],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Object Detection by Contour Segment Networks,
ECCV06(III: 14-28).
Springer DOI
0608
Find in clutter, given hand-drawn model.
BibRef
Ferrari, V.[Vittorio],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Real-Time Affine Region Tracking and Coplanar Grouping,
CVPR01(II:226-233).
IEEE DOI
0110
Track locally planar regions and group.
BibRef
Pece, A.E.C.[Arthur E.C.],
On the computational rationale for generative models,
CVIU(106), No. 1, April 2007, pp. 130-143.
Elsevier DOI
0704
Generative model; Graphical model; Generate-and-test;
Sparse coding; Basis pursuit; Top-down processing
BibRef
Demiris, Y.[Yiannis],
Billard, A.[Aude],
Guest Editorial: Special Issue on Robot Learning by Observation,
Demonstration, and Imitation,
SMC-B(37), No. 2, April 2007, pp. 254-255.
IEEE DOI
0704
BibRef
Shevchenko, M.[Mikhail],
Windridge, D.[David],
Kittler, J.V.[Josef V.],
A linear-complexity reparameterisation strategy for the hierarchical
bootstrapping of capabilities within perception-action architectures,
IVC(27), No. 11, 2 October 2009, pp. 1702-1714.
Elsevier DOI
0909
BibRef
Earlier: A2, A1, A3:
An Entropy-Based Approach to the Hierarchical Acquisition of
Perception-Action Capabilities,
CogVis08(79-92).
Springer DOI
0805
BibRef
Earlier: A3, A1, A2:
Visual Bootstrapping for Unsupervised Symbol Grounding,
ACIVS06(1037-1046).
Springer DOI
0609
Perception-action architectures; Cognitive vision; Subsumption architecture; Machine learning (unsupervised); Optimisation
Symbol grounding: i.e. assigning a symbolic name to the image features.
BibRef
Le Yaouanc, J.M.[Jean-Marie],
Saux, É.[Éric],
Claramunt, C.[Christophe],
A semantic and language-based representation of an environmental scene,
GeoInfo(14), No. 3, July 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Chang, L.B.[Lo-Bin],
Jin, Y.[Ya],
Zhang, W.[Wei],
Borenstein, E.[Eran],
Geman, S.[Stuart],
Context, Computation, and Optimal ROC Performance in Hierarchical
Models,
IJCV(93), No. 2, June 2011, pp. 117-140.
WWW Link.
1104
BibRef
Jin, Y.[Ya],
Geman, S.[Stuart],
Context and Hierarchy in a Probabilistic Image Model,
CVPR06(II: 2145-2152).
IEEE DOI
0606
Use context, apply to license plate reading.
BibRef
Geman, S.[Stuart],
Generative hierarchical models for image analysis,
SIG09(1-1).
IEEE DOI
0906
BibRef
Andreopoulos, A.[Alexander],
Tsotsos, J.K.[John K.],
50 Years of object recognition: Directions forward,
CVIU(117), No. 8, August 2013, pp. 827-891.
Elsevier DOI
1306
Survey, Object Recognition. Active vision; Object recognition; Object representations;
Object learning; Dynamic vision; Cognitive vision systems
50 year revie, limitations, drawbacks, future directions.
BibRef
Watanabe, T.[Toshinori],
Toward a compression-based self-organizing recognizer:
Preliminary implementation of PRDC-CSOR,
PRL(34), No. 14, 2013, pp. 1569-1576.
Elsevier DOI
1308
Design scheme
(Pattern Representation scheme using Data Compression - Compression
based Self ORganizing Recognizer)
BibRef
Luo, C.[Cai],
Yu, L.J.[Lei-Jian],
Yang, E.[Erfu],
Zhou, H.Y.[Hui-Yu],
Ren, P.[Peng],
A benchmark image dataset for industrial tools,
PRL(125), 2019, pp. 341-348.
Elsevier DOI
1909
Dataset, Tools. Benchmark, Industrial tools, Image dataset
BibRef
Ding, R.[Runyu],
Yang, J.[Jihan],
Xue, C.[Chuhui],
Zhang, W.Q.[Wen-Qing],
Bai, S.[Song],
Qi, X.J.[Xiao-Juan],
PLA: Language-Driven Open-Vocabulary 3D Scene Understanding,
CVPR23(7010-7019)
IEEE DOI
2309
BibRef
Xu, M.[Mingye],
Xu, M.[Mutian],
He, T.[Tong],
Ouyang, W.L.[Wan-Li],
Wang, Y.[Yali],
Han, X.G.[Xiao-Guang],
Qiao, Y.[Yu],
MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling
with Informative-Preserved Reconstruction and Self-Distilled
Consistency,
CVPR23(4380-4390)
IEEE DOI
2309
BibRef
Ishida, T.,
Hotta, K.,
Image Labeling by Integrating Local, Middle and Global Information,
DICTA15(1-8)
IEEE DOI
1603
hierarchical recognition.
BibRef
Quek, A.,
Wang, Z.Y.[Zhi-Yong],
Zhang, J.[Jian],
Feng, D.D.[David Dagan],
Structural Image Classification with Graph Neural Networks,
DICTA11(416-421).
IEEE DOI
1205
BibRef
Zhou, G.[Ge],
Wang, Z.Y.[Zhi-Yong],
Wang, J.J.[Jia-Jun],
Feng, D.D.[David Dagan],
Spatial context for visual vocabulary construction,
IASP10(176-181).
IEEE DOI
1004
BibRef
Kuno, Y.[Yoshinori],
Sakata, K.[Katsutoshi],
Kobayashi, Y.[Yoshinori],
Object recognition in service robots:
Conducting verbal interaction on color and spatial relationship,
HCI09(2025-2031).
IEEE DOI
0910
Interactive recognition.
BibRef
Luo, P.[Ping],
He, J.J.[Jia-Jie],
Lin, L.[Liang],
Chao, H.Y.[Hong-Yang],
Hierarchical 3D perception from a single image,
ICIP09(4265-4268).
IEEE DOI
0911
From HVS, decompose image into 3D relationship and 2D.
BibRef
Swadzba, A.[Agnes],
Wachsmuth, S.[Sven],
Indoor Scene Classification Using Combined 3D and Gist Features,
ACCV10(II: 201-215).
Springer DOI
1011
BibRef
Earlier:
Categorizing Perceptions of Indoor Rooms Using 3D Features,
SSPR08(734-744).
Springer DOI
0812
Room type based on 3D laser data.
BibRef
Christoudias, C.M.[C. Mario],
Urtasun, R.[Raquel],
Darrell, T.J.[Trevor J.],
Unsupervised feature selection via distributed coding for multi-view
object recognition,
CVPR08(1-8).
IEEE DOI
0806
Combine results from multiple views.
BibRef
Borzenko, O.[Olena],
Lesperance, Y.[Yves],
Jenkin, M.R.M.[Michael R.M.],
INVICON: A Toolkit for Knowledge-Based Control of Vision Systems,
CRV07(387-394).
IEEE DOI
0705
BibRef
Bowden, R.,
Ellis, L.,
Kittler, J.V.,
Shevchenko, M.,
Windridge, D.,
Unsupervised Symbol Grounding and Cognitive Bootstrapping in Cognitive
Vision,
CIAP05(27-36).
Springer DOI
0509
BibRef
Zhou, X.S.,
Comaniciu, D.,
Krishnan, A.,
Conditional feature sensitivity: a unifying view on active recognition
and feature selection,
ICCV03(1502-1509).
IEEE DOI
0311
BibRef
Juved, O.,
Shah, M.[Mubarak],
Comaniciu, D.,
A probabilistic framework for object recognition in video,
ICIP04(IV: 2713-2716).
IEEE DOI
0505
Accumulate recognition results, the most over the sequence wins.
BibRef
Moreels, P.[Pierre],
Maire, M.[Michael],
Perona, P.[Pietro],
Recognition by Probabilistic Hypothesis Construction,
ECCV04(Vol I: 55-68).
Springer DOI
0405
Compute identity and position of objects in the scene by finding the
best interpretation of the scene in terms of learned objects.
BibRef
Simard, P.Y.,
Ferrie, F.P.,
Image-Based Model Updating,
BMVC02(Poster Session).
0208
BibRef
MIT 67 Indoor Dataset,
Dataset, Indoor Images.
HTML Version.
See also Recognizing indoor scenes.
Quattoni, A.[Ariadna],
Torralba, A.B.[Antonio B.],
Recognizing indoor scenes,
CVPR09(413-420).
IEEE DOI
0906
MIT-67 Dataset.
See also MIT 67 Indoor Dataset.
BibRef
Torralba, A.B.[Antonio B.],
Sinha, P.[Pawan],
Recognizing Indoor Scenes,
MIT AIM2001-015, July 2001.
WWW Link.
0205
BibRef
Lacey, A.J.,
Thacker, N.A.,
Courtney, P.,
Pollard, S.B.,
TINA 2001: The Closed Loop 3D Model Matcher,
BMVC01(Poster Session 1).
HTML Version. University of Manchester
0110
BibRef
Harkness, M.,
Green, P.,
Parallel Chains, Delayed Rejection and Reversible Jump MCMC for Object
Recognition,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Brenner, C.[Claus],
Boehm, J.[Jan],
Goehring, J.[Jens],
CAD-based Object Recognition for a Sensor/Actor Measurement Robot,
IAPRS(32), Part 5, 1998, pp. 209-216.
Active exploration.
BibRef
9800
Li, B.X.[Bao-Xin],
Human and Object Tracking and Verification in Video,
UMD--TR4140, May 2000.
WWW Link.
WWW Link.
Motion, Human.
See also generic approach to simultaneous tracking and verification in video, A.
BibRef
0005
Li, B.X.[Bao-Xin],
Chellappa, R.[Rama],
Zheng, Q.F.[Qin-Fen],
Der, S.Z.[Sandor Z.],
Model-based Temporal Object Verification Using Video,
IP(10), No. 6, June 2001, pp. 897-908.
IEEE DOI
0106
BibRef
Earlier:
UMD--TR3998, March 1999.
WWW Link.
WWW Link.
BibRef
Reno, A.L.,
Booth, D.M.,
Using Models to Recognise Man-Made Objects,
VS99(xx-yy).
BibRef
9900
Deguchi, K.[Koichiro],
Yanai, K.[Keiji],
An Architecture of Object Recognition System for Various Images Based
on Multi-Agents,
ICPR98(Vol I: 278-281).
IEEE DOI
9808
BibRef
Pasquariello, G.,
Iannotta, M.,
Losito, S.,
Sylos-Labini, G.,
A System for 3-D Workpieces Recognition,
ICCV88(280-284).
IEEE DOI
BibRef
8800
Ude, A.,
Eivind Ekre, T.,
Stereo Grouping for Model-Based Recognition,
ICPR96(I: 223-227).
IEEE DOI
9608
(Univ. of Karlsruhe, D)
BibRef
Westling, M.,
Davis, L.S.,
Object Recognition by Fast Hypothesis Generation and
Reasoning About Object Interactions,
ICPR96(IV: 148-153).
IEEE DOI
9608
(The MITRE Corporation, USA)
BibRef
Büker, U.,
Hartmann, G.,
Knowledge Based View Control of a Neural 3-D Object Recognition System,
ICPR96(IV: 24-29).
IEEE DOI
9608
(Univ. of Paderborn, D)
BibRef
Michalski, R.S.,
Zhang, Q.,
Maloof, M.A.,
Bloedorn, E.,
The Mist Methodology and Its Application to
Natural Scene Interpretation,
ARPA96(1473-1480).
Multi-level Image Samplng and Transformation
BibRef
9600
Campbell, N.W.,
MacKeown, W.P.J.,
Thomas, B.T.,
Troscianko, T.,
Automatic Interpretation of Outdoor Scenes,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Sandakly, F.,
Giraudon, G.,
Reasoning Strategies for 3D Object Detection,
SCV95(557-562)
IEEE DOI INRIA.
Generic representation of objects, sensors and scenes.
Interpretation can improve segmentation.
BibRef
9500
Sandakly, F.,
Giraudon, G.,
Scene analysis system,
ICIP94(III: 806-810).
IEEE DOI
9411
BibRef
Abella, A.[Alicia], and
Kender, J.R.[John R.],
From Pictures to Words: Generating Locative Descriptions
of Objects in an Image,
ARPA94(II:909-918).
BibRef
9400
Qualitatively Describing Objects Using Spatial Prepositions,
WQV93(33-38).
BibRef
Ettinger, G.J.,
Large Hierarchical Object Recognition Using
Libraries of Parameterized Model Sub-Parts,
CVPR88(32-41).
IEEE DOI
Award, CVPR.
BibRef
8800
And:
Hierarchical Object Recognition Using Libraries of
Parameterized Model Sub-Parts,
MIT AI-TR-963, June 1987.
Award, CVPR.
Recognize Objects - Hierarchical. A contour matching hierarchical recognition system using simple and
compound features from the contour.
BibRef
Ramaswami, M.D., and
Jain, A.K.[Anil K.],
Rule-Based 3D Object Recognition from Range Images,
Department of Computer Science,
MSU1988.
BibRef
8800
Dekneuvel, E.,
Ghallab, M.,
Thibault, J.,
Hypotheses Management for Scene Interpretation in a
Multisensory Perception Machine,
ECAI92(795-799).
BibRef
9200
Perrott, C.G.[Chris G.],
Hamey, L.G.C.[Leonard G.C.],
Object Recognition: A Survey of the Literature,
MacQuarie Univ.1991.
Survey, Recognition.
BibRef
9100
Pope, A.R.[Arthur R.],
Model-Based Object Recognition: A Survey of Recent Research,
UBCTR-94-04, January 1994.
Survey, Recognition.
BibRef
9401
Besselman, J., and
Trivedi, M.M.,
Incorporating Map Information in Object Detection,
SPIE(786), May 1987, pp. 233-239.
BibRef
8705
Bidlack, C.R., and
Trivedi, M.M.,
Integrated Vision System for Object Identification and
Localization Using 3-D Geometrical Models,
SPIE(1468), 1991, pp. 270-280.
BibRef
9100
Mitiche, A.,
Mansouri, A.,
Meubus, C.,
A Knowledge Based Image Interpretation System,
ICPR88(II: 992-994).
IEEE DOI
BibRef
8800
Narasimhamurthi, N., and
Jain, R.C.,
Computer-Aided, Design-Based Object Recognition:
Incorporating Metric and Topological Information,
SPIE(938), April 1988, pp. 436-443.
BibRef
8804
Bar-Noy, A.,
Dolev, D.,
Petkovic, D.,
Robust multi-agent decision making in faulty environment,
ICPR88(II: 966-970).
IEEE DOI
8811
BibRef
Koons, D.B.,
McCormick, B.H.,
A Model of Visual Knowledge Representation,
ICCV87(365-372).
BibRef
8700
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Parameterized Models, Fit Model to Objects .