14.5.8.8 Adversarial Networks, Adversarial Inputs, Generative Adversarial

Chapter Contents (Back)
Adversarial Networks. Generative Networks. GAN. Deliberate noise to fool the network. Generative Adversarial Networks to generate images by countering the detection network. Also Attacks on NN based recognition. Image Synthesis: See also Adversarial Networks for Image Synthesis. And to counter them: See also Countering Adversarial Attacks, Defense, Robustness. See also Recurrent Neural Networks for Shapes and Complex Features, RNN. See also Data Augmentation, Generative Network, Convolutional Network. See also Data Hiding, Steganography, Adversarial Networks, Convolutional Networks. See also Face Synthesis, GAN, Generative Adversarial Network.

Tao, Y.T.[Yi-Ting], Xu, M.Z.[Miao-Zhong], Zhang, F.[Fan], Du, B.[Bo], Zhang, L.P.[Liang-Pei],
Unsupervised-Restricted Deconvolutional Neural Network for Very High Resolution Remote-Sensing Image Classification,
GeoRS(55), No. 12, December 2017, pp. 6805-6823.
IEEE DOI 1712
Use small number of labeled pixels. Data models, Deconvolution, Feature extraction, Image resolution, Remote sensing, Satellites, Training, very high resolution (VHR) image per-pixel classification BibRef

Hu, F.[Fan], Xia, G.S.[Gui-Song], Hu, J.W.[Jing-Wen], Zhang, L.P.[Liang-Pei],
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery,
RS(7), No. 11, 2015, pp. 14680.
DOI Link 1512
BibRef

Tao, Y.T.[Yi-Ting], Xu, M.Z.[Miao-Zhong], Zhong, Y.F.[Yan-Fei], Cheng, Y.F.[Yu-Feng],
GAN-Assisted Two-Stream Neural Network for High-Resolution Remote Sensing Image Classification,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Xu, R.D.[Ru-Dong], Tao, Y.T.[Yi-Ting], Lu, Z.Y.[Zhong-Yuan], Zhong, Y.F.[Yan-Fei],
Attention-Mechanism-Containing Neural Networks for High-Resolution Remote Sensing Image Classification,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

He, Z.[Zhi], Liu, H.[Han], Wang, Y.W.[Yi-Wen], Hu, J.[Jie],
Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

He, Z.[Zhi], Wang, Y.[Yiwen], Hu, J.[Jie],
Joint Sparse and Low-Rank Multitask Learning with Laplacian-Like Regularization for Hyperspectral Classification,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.,
Generative Adversarial Networks: An Overview,
SPMag(35), No. 1, January 2018, pp. 53-65.
IEEE DOI 1801
Convolutional codes, Data models, Generators, Image resolution, Machine learning, Semantics, Signal resolution, Training data BibRef

Gao, F.[Fei], Yang, Y.[Yue], Wang, J.[Jun], Sun, J.P.[Jin-Ping], Yang, E.[Erfu], Zhou, H.Y.[Hui-Yu],
A Deep Convolutional Generative Adversarial Networks (DCGANs)-Based Semi-Supervised Method for Object Recognition in Synthetic Aperture Radar (SAR) Images,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Chang, W.K.[Wen-Kai], Yang, G.D.[Guo-Dong], Yu, J.Z.[Jun-Zhi], Liang, Z.Z.[Zi-Ze],
Real-time segmentation of various insulators using generative adversarial networks,
IET-CV(12), No. 5, August 2018, pp. 596-602.
DOI Link 1807
BibRef

Biggio, B.[Battista], Roli, F.[Fabio],
Wild patterns: Ten years after the rise of adversarial machine learning,
PR(84), 2018, pp. 317-331.
Elsevier DOI 1809
Adversarial machine learning, Evasion attacks, Poisoning attacks, Adversarial examples, Secure learning, Deep learning BibRef

Zhu, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.,
Generative Adversarial Networks for Hyperspectral Image Classification,
GeoRS(56), No. 9, September 2018, pp. 5046-5063.
IEEE DOI 1809
Training, Hyperspectral imaging, Feature extraction, Generators, hyperspectral image (HSI) classification BibRef

Zheng, R.B.[Ruo-Bing], Wu, G.Q.[Guo-Qiang], Yan, C.[Chao], Zhang, R.[Renyu], Luo, Z.[Ze], Yan, B.P.[Bao-Ping],
Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Liu, X.L.[Xia-Lei], van de Weijer, J.[Joost], Bagdanov, A.D.[Andrew D.],
Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank,
PAMI(41), No. 8, August 2019, pp. 1862-1878.
IEEE DOI 1907
Task analysis, Training, Image quality, Visualization, Uncertainty, Labeling, Neural networks, Learning from rankings, active learning BibRef

Borji, A.[Ali],
Pros and cons of GAN evaluation measures,
CVIU(179), 2019, pp. 41-65.
Elsevier DOI 1903
Generative adversarial nets, Generative models, Evaluation, Deep learning, Neural networks BibRef

Ding, S.[Sihao], Wallin, A.[Andreas],
Towards recovery of conditional vectors from conditional generative adversarial networks,
PRL(122), 2019, pp. 66-72.
Elsevier DOI 1904
Generative adversarial networks, Conditional, Recover BibRef

Chen, L.Q.[Liu-Qing], Wang, P.[Pan], Dong, H.[Hao], Shi, F.[Feng], Han, J.[Ji], Guo, Y.[Yike], Childs, P.R.N.[Peter R.N.], Xiao, J.[Jun], Wu, C.[Chao],
An artificial intelligence based data-driven approach for design ideation,
JVCIR(61), 2019, pp. 10-22.
Elsevier DOI 1906
Idea generation, Artificial intelligence in design, Data-driven design, Generative adversarial networks, Computational creativity BibRef

Miyato, T.[Takeru], Maeda, S.I.[Shin-Ichi], Koyama, M.[Masanori], Ishii, S.[Shin],
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning,
PAMI(41), No. 8, August 2019, pp. 1979-1993.
IEEE DOI 1907
Training, Perturbation methods, Artificial neural networks, Semisupervised learning, Data models, Computational modeling, deep learning BibRef

Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.,
Unsupervised Semantic-Preserving Adversarial Hashing for Image Search,
IP(28), No. 8, August 2019, pp. 4032-4044.
IEEE DOI 1907
binary codes, file organisation, image coding, image retrieval, matrix algebra, neural nets, unsupervised learning, deep learning BibRef

Wang, X., Tan, K., Du, Q., Chen, Y., Du, P.,
Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification,
GeoRS(57), No. 9, September 2019, pp. 7232-7245.
IEEE DOI 1909
Hyperspectral imaging, Feature extraction, Generative adversarial networks, Hidden Markov models, CapsNet, triple generative adversarial network (TripleGAN) BibRef

Mopuri, K.R.[Konda Reddy], Ganeshan, A.[Aditya], Babu, R.V.[R. Venkatesh],
Generalizable Data-Free Objective for Crafting Universal Adversarial Perturbations,
PAMI(41), No. 10, October 2019, pp. 2452-2465.
IEEE DOI 1909
Perturbation methods, Task analysis, Data models, Training data, Feature extraction, Image segmentation, Machine learning, adversarial noise BibRef

Akimoto, N., Kasai, S., Hayashi, M., Aoki, Y.,
360-Degree Image Completion by Two-Stage Conditional GANs,
ICIP19(4704-4708)
IEEE DOI 1910
Generative adversarial networks, 360 degrees, image completion, extrapolation BibRef

Mao, X.D.[Xu-Dong], Li, Q.[Qing], Xie, H.R.[Hao-Ran], Lau, R.Y.K.[Raymond Y.K.], Wang, Z.[Zhen], Smolley, S.P.[Stephen Paul],
On the Effectiveness of Least Squares Generative Adversarial Networks,
PAMI(41), No. 12, December 2019, pp. 2947-2960.
IEEE DOI 1911
BibRef
Earlier:
Least Squares Generative Adversarial Networks,
ICCV17(2813-2821)
IEEE DOI 1802
Generators, Linear programming, Task analysis, Generative adversarial networks, Stability analysis, image generation. image classification, least squares approximations, unsupervised learning, LSGANs, Stability analysis BibRef

Sun, Y.[Yubao], Chen, J.[Jiwei], Liu, Q.S.[Qing-Shan], Liu, G.C.[Guang-Can],
Learning image compressed sensing with sub-pixel convolutional generative adversarial network,
PR(98), 2020, pp. 107051.
Elsevier DOI 1911
Compressed sensing, Sub-pixel convolutional GAN, Compound loss BibRef

Long, M.S.[Ming-Sheng], Cao, Y.[Yue], Cao, Z.J.[Zhang-Jie], Wang, J.M.[Jian-Min], Jordan, M.I.[Michael I.],
Transferable Representation Learning with Deep Adaptation Networks,
PAMI(41), No. 12, December 2019, pp. 3071-3085.
IEEE DOI 1911
BibRef
Earlier: A3, A1, A4, A5, Only:
Partial Transfer Learning with Selective Adversarial Networks,
CVPR18(2724-2732)
IEEE DOI 1812
Task analysis, Learning systems, Adaptation models, Convolutional neural networks, Deep learning, Domain adaptation, multiple kernel learning. Feature extraction, Task analysis, Standards, Big Data, Bridges, Training, Labeling BibRef

Wojna, Z.[Zbigniew], Ferrari, V.[Vittorio], Guadarrama, S.[Sergio], Silberman, N.[Nathan], Chen, L.C.[Liang-Chieh], Fathi, A.[Alireza], Uijlings, J.[Jasper],
The Devil is in the Decoder: Classification, Regression and GANs,
IJCV(127), No. 11-12, December 2019, pp. 1694-1706.
Springer DOI 1911
BibRef

Xie, J.W.[Jian-Wen], Lu, Y.[Yang], Gao, R.Q.[Rui-Qi], Zhu, S.C.[Song-Chun], Wu, Y.N.[Ying Nian],
Cooperative Training of Descriptor and Generator Networks,
PAMI(42), No. 1, January 2020, pp. 27-45.
IEEE DOI 1912
Generators, Training, Computational modeling, Inference algorithms, Heuristic algorithms, Analytical models, Deep generative models, MCMC teaching BibRef

Yu, Y., Li, X., Liu, F.,
Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification,
GeoRS(58), No. 1, January 2020, pp. 519-531.
IEEE DOI 2001
Learning systems, Feature extraction, Generators, Task analysis, Remote sensing, Generative adversarial networks, unsupervised deep feature learning BibRef

Wei, G.[Gang], Luo, M.[Minnan], Liu, H.[Huan], Zhang, D.H.[Dong-Hui], Zheng, Q.H.[Qing-Hua],
Progressive generative adversarial networks with reliable sample identification,
PRL(130), 2020, pp. 91-98.
Elsevier DOI 2002
Generative adversarial networks, Sample selection, Unsupervised learning BibRef

Hang, J.[Jie], Han, K.[Keji], Chen, H.[Hui], Li, Y.[Yun],
Ensemble adversarial black-box attacks against deep learning systems,
PR(101), 2020, pp. 107184.
Elsevier DOI 2003
Black-box attack, Vulnerability, Ensemble adversarial attack, Diversity, Transferability BibRef

Milbich, T.[Timo], Ghori, O.[Omair], Diego, F.[Ferran], Ommer, B.[Björn],
Unsupervised representation learning by discovering reliable image relations,
PR(102), 2020, pp. 107107.
Elsevier DOI 2003
Unsupervised learning, Visual representation learning, Unsupervised image classification, Mining reliable relations, Divide-and-conquer BibRef

Lorenz, D.[Dominik], Bereska, L.[Leonard], Milbich, T.[Timo], Ommer, B.[Bjorn],
Unsupervised Part-Based Disentangling of Object Shape and Appearance,
CVPR19(10947-10956).
IEEE DOI 2002
BibRef

Zhang, Y.G.[Yong-Gang], Tian, X.M.[Xin-Mei], Li, Y.[Ya], Wang, X.C.[Xin-Chao], Tao, D.C.[Da-Cheng],
Principal Component Adversarial Example,
IP(29), 2020, pp. 4804-4815.
IEEE DOI 2003
Manifolds, Neural networks, Perturbation methods, Distortion, Task analysis, Robustness, Principal component analysis, manifold learning BibRef

Peng, Y.[Ye], Zhao, W.T.[Wen-Tao], Cai, W.[Wei], Su, J.S.[Jin-Shu], Han, B.[Biao], Liu, Q.A.[Qi-Ang],
Evaluating Deep Learning for Image Classification in Adversarial Environment,
IEICE(E103-D), No. 4, April 2020, pp. 825-837.
WWW Link. 2004
BibRef

Feng, J.[Jie], Feng, X.L.[Xue-Liang], Chen, J.T.[Jian-Tong], Cao, X.H.[Xiang-Hai], Zhang, X.R.[Xiang-Rong], Jiao, L.C.[Li-Cheng], Yu, T.[Tao],
Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Croce, F.[Francesco], Rauber, J.[Jonas], Hein, M.[Matthias],
Scaling up the Randomized Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using Established Attacks,
IJCV(128), No. 4, April 2020, pp. 1028-1046.
Springer DOI 2004
BibRef
Earlier: A1, A3, Only:
A Randomized Gradient-Free Attack on ReLU Networks,
GCPR18(215-227).
Springer DOI 1905
BibRef

Qi, M., Wang, Y., Li, A., Luo, J.,
STC-GAN: Spatio-Temporally Coupled Generative Adversarial Networks for Predictive Scene Parsing,
IP(29), 2020, pp. 5420-5430.
IEEE DOI 2004
Predictive Scene Parsing, Generative Adversarial Networks, Coupled Architecture, Spatio-Temporal Features BibRef

Newson, A.[Alasdair], Almansa, A.[Andrés], Gousseau, Y.[Yann], Ladjal, S.[Saïd],
Processing Simple Geometric Attributes with Autoencoders,
JMIV(62), No. 3, April 2020, pp. 293-312.
Springer DOI 2004
BibRef

Romano, Y.[Yaniv], Aberdam, A.[Aviad], Sulam, J.[Jeremias], Elad, M.[Michael],
Adversarial Noise Attacks of Deep Learning Architectures: Stability Analysis via Sparse-Modeled Signals,
JMIV(62), No. 3, April 2020, pp. 313-327.
Springer DOI 2004
BibRef

Mutlu, U.[Uras], Alpaydin, E.[Ethem],
Training bidirectional generative adversarial networks with hints,
PR(103), 2020, pp. 107320.
Elsevier DOI 2005
Generative Modeling, Generative Adversarial Networks, Unsupervised Learning, Autoencoders, Neural Networks, Deep Learning BibRef

Zhang, L.[Long], Zhao, J.[Jieyu], Ye, X.[Xulun], Chen, Y.[Yu],
Cooperation: A new force for boosting generative adversarial nets with dual-network structure,
IET-IPR(14), No. 6, 11 May 2020, pp. 1073-1080.
DOI Link 2005
BibRef

Qi, G.J.[Guo-Jun],
Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities,
IJCV(128), No. 5, May 2020, pp. 1118-1140.
Springer DOI 2005
BibRef

Ravat, R.S.[Rajvardhan Singh], Verma, Y.[Yashaswi],
A retrieval-based approach for diverse and image-specific adversary selection,
MultInfoRetr(9), No. 2, June 2020, pp. 125-133.
Springer DOI 2005
BibRef

Wan, D.[Diwen], Shen, F.[Fumin], Liu, L.[Li], Zhu, F.[Fan], Huang, L.[Lei], Yu, M.Y.[Meng-Yang], Shen, H.T.[Heng Tao], Shao, L.[Ling],
Deep quantization generative networks,
PR(105), 2020, pp. 107338.
Elsevier DOI 2006
Compression, Acceleration, Generative models, Network quantization BibRef

Zhang, Z.H.[Zhi-Hong], Zeng, Y.[Yangbin], Bai, L.[Lu], Hu, Y.Q.[Yi-Qun], Wu, M.[Meihong], Wang, S.[Shuai], Hancock, E.R.[Edwin R.],
Spectral bounding: Strictly satisfying the 1-Lipschitz property for generative adversarial networks,
PR(105), 2020, pp. 107179.
Elsevier DOI 2006
Generative adversarial networks, 1-Lipschitz constraint, Spectral bounding, Image generation BibRef

Mishra, D.[Deepak], Jayendran, A.[Aravind], Prathosh, A.P.,
Effect of the Latent Structure on Clustering With GANs,
SPLetters(27), 2020, pp. 900-904.
IEEE DOI 2006
Random variables, Generative adversarial networks, Generators, Data models, neural networks BibRef

Serban, A.[Alex], Poll, E.[Erik], Visser, J.[Joost],
Adversarial Examples on Object Recognition: A Comprehensive Survey,
Surveys(53), No. 3, June 2020, pp. xx-yy.
DOI Link 2007
Survey, Adversairal Networks. security, robustness, machine learning, Adversarial examples BibRef

Song, J.K.[Jing-Kuan], He, T.[Tao], Gao, L.L.[Lian-Li], Xu, X.[Xing], Hanjalic, A.[Alan], Shen, H.T.[Heng Tao],
Unified Binary Generative Adversarial Network for Image Retrieval and Compression,
IJCV(128), No. 8-9, September 2020, pp. 2243-2264.
Springer DOI 2008
BibRef

Saito, M.[Masaki], Saito, S.[Shunta], Koyama, M.[Masanori], Kobayashi, S.[Sosuke],
Train Sparsely, Generate Densely: Memory-Efficient Unsupervised Training of High-Resolution Temporal GAN,
IJCV(128), No. 10-11, November 2020, pp. 2586-2606.
Springer DOI 2009
BibRef

Saito, M., Matsumoto, E., Saito, S.,
Temporal Generative Adversarial Nets with Singular Value Clipping,
ICCV17(2849-2858)
IEEE DOI 1802
Bayes methods, deconvolution, learning (artificial intelligence), unsupervised learning, video signal processing, generative model, Videos BibRef

Abbasnejad, M.E.[M. Ehsan], Shi, J.[Javen], van den Hengel, A.J.[Anton J.], Liu, L.Q.[Ling-Qiao],
GADE: A Generative Adversarial Approach to Density Estimation and its Applications,
IJCV(128), No. 10-11, November 2020, pp. 2731-2743.
Springer DOI 2009
BibRef

Abbasnejad, M.E.[M. Ehsan], Shi, Q.[Qinfeng], van den Hengel, A.J.[Anton J.], Liu, L.Q.[Ling-Qiao],
A Generative Adversarial Density Estimator,
CVPR19(10774-10783).
IEEE DOI 2002
BibRef

Goodfellow, I.[Ian], Pouget-Abadie, J.[Jean], Mirza, M.[Mehdi], Xu, B.[Bing], Warde-Farley, D.[David], Ozair, S.[Sherjil], Courville, A.[Aaron], Bengio, Y.[Yoshua],
Generative Adversarial Networks,
CACM(63), No. 11, November 2020, pp. 139-144.
DOI Link 2010
Survey, GAN. BibRef

Xu, K.D.[Kai-Di], Zhang, G.Y.[Gao-Yuan], Liu, S.J.[Si-Jia], Fan, Q.F.[Quan-Fu], Sun, M.S.[Meng-Shu], Chen, H.G.[Hong-Ge], Chen, P.Y.[Pin-Yu], Wang, Y.Z.[Yan-Zhi], Lin, X.[Xue],
Adversarial T-shirt! Evading Person Detectors in a Physical World,
ECCV20(V:665-681).
Springer DOI 2011
BibRef

Li, W.[Wei], Fan, L.[Li], Wang, Z.Y.[Zhen-Yu], Ma, C.[Chao], Cui, X.H.[Xiao-Hui],
Tackling mode collapse in multi-generator GANs with orthogonal vectors,
PR(110), 2021, pp. 107646.
Elsevier DOI 2011
GANs, Mode collapse, Multiple generators, Orthogonal vectors, Minimax formula BibRef


Hu, J.[Jian], Tuo, H.Y.[Hong-Ya], Wang, C.[Chao], Qiao, L.F.[Ling-Feng], Zhong, H.W.[Hao-Wen], Yan, J.C.[Jun-Chi], Jing, Z.L.[Zhong-Liang], Leung, H.[Henry],
Discriminative Partial Domain Adversarial Network,
ECCV20(XXVII:632-648).
Springer DOI 2011
BibRef

Qu, H.[Hui], Zhang, Y.K.[Yi-Kai], Chang, Q.[Qi], Yan, Z.N.[Zhen-Nan], Chen, C.[Chao], Metaxas, D.N.[Dimitris N.],
Learn Distributed GAN with Temporary Discriminators,
ECCV20(XXVII:175-192).
Springer DOI 2011
BibRef

Yazici, Y., Foo, C.S., Winkler, S., Yap, K.H., Chandrasekhar, V.,
Empirical Analysis Of Overfitting And Mode Drop In GAN Training,
ICIP20(1651-1655)
IEEE DOI 2011
Training, Generators, Generative adversarial networks, Semantics, Noise measurement, Deep Learning BibRef

Peng, X., Bouzerdoum, A.[Abdesselam], Phung, S.L.[Son L.],
Infer the Input to the Generator of Auxiliary Classifier Generative Adversarial Networks,
ICIP20(76-80)
IEEE DOI 2011
Generators, Convolutional codes, Data models, Optimized production technology, Linear programming, ACGANs, encoder BibRef

An, D.S.[Dong-Sheng], Guo, Y.[Yang], Zhang, M.[Min], Qi, X.[Xin], Lei, N.[Na], Gu, X.[Xianfang],
AE-OT-GAN: Training GANs from Data Specific Latent Distribution,
ECCV20(XXVI:548-564).
Springer DOI 2011
BibRef

Zhu, X.Q.[Xin-Qi], Xu, C.[Chang], Tao, D.C.[Da-Cheng],
Learning Disentangled Representations with Latent Variation Predictability,
ECCV20(X:684-700).
Springer DOI 2011
BibRef

Xiong, Y.H.[Yuan-Hao], Hsieh, C.J.[Cho-Jui],
Improved Adversarial Training via Learned Optimizer,
ECCV20(VIII:85-100).
Springer DOI 2011
BibRef

Peebles, W.[William], Peebles, J.[John], Zhu, J.Y.[Jun-Yan], Efros, A.[Alexei], Torralba, A.[Antonio],
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement,
ECCV20(VI:581-597).
Springer DOI 2011
BibRef

Liu, Y.F.[Yun-Fei], Ma, X.J.[Xing-Jun], Bailey, J.[James], Lu, F.[Feng],
Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks,
ECCV20(X:182-199).
Springer DOI 2011
BibRef

Qin, Y.P.[Yi-Peng], Mitra, N.[Niloy], Wonka, P.[Peter],
How Does Lipschitz Regularization Influence GAN Training?,
ECCV20(XVI: 310-326).
Springer DOI 2010
BibRef

Zhang, X.B.[Xiao-Bing], Lu, S.J.[Shi-Jian], Gong, H.G.[Hai-Gang], Luo, Z.P.[Zhi-Peng], Liu, M.[Ming],
Amln: Adversarial-based Mutual Learning Network for Online Knowledge Distillation,
ECCV20(XII: 158-173).
Springer DOI 2010
BibRef

Feng, X.J.[Xin-Jie], Yao, H.X.[Hong-Xun], Che, W.B.[Wen-Bin], Zhang, S.P.[Sheng-Ping],
An Effective Way to Boost Black-box Adversarial Attack,
MMMod20(I:393-404).
Springer DOI 2003
BibRef

Williams, F.[Francis], Parent-Lévesque, J.[Jérôme], Nowrouzezahrai, D.[Derek], Panozzo, D.[Daniele], Yi, K.M.[Kwang Moo], Tagliasacchi, A.[Andrea],
VoronoiNet: General Functional Approximators with Local Support,
L3DGM20(1069-1073)
IEEE DOI 2008
Shape, Decoding, Image reconstruction, Training, Computer architecture, Task analysis BibRef

Xing, X.L.[Xiang-Lei], Wu, T.F.[Tian-Fu], Zhu, S.C.[Song-Chun], Wu, Y.N.[Ying Nian],
Inducing Hierarchical Compositional Model by Sparsifying Generator Network,
CVPR20(14284-14293)
IEEE DOI 2008
Generators, Image generation, Training, Image reconstruction, Image coding, Computational modeling BibRef

Liu, S., Wang, T., Bau, D., Zhu, J., Torralba, A.,
Diverse Image Generation via Self-Conditioned GANs,
CVPR20(14274-14283)
IEEE DOI 2008
Generators, Training, Clustering algorithms, Partitioning algorithms, Image generation, Computational modeling BibRef

Chen, J., Konrad, J., Ishwar, P.,
A Cyclically-Trained Adversarial Network for Invariant Representation Learning,
AML-CV20(3393-3402)
IEEE DOI 2008
Training, Generators, Neural networks, Task analysis, Image generation, Decoding BibRef

Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely, N.,
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination,
CVPR20(8077-8086)
IEEE DOI 2008
Lighting, Rendering (computer graphics), Geometry, Solid modeling, Cameras, Light sources BibRef

Pumarola, A.[Albert], Popov, S.[Stefan], Moreno-Noguer, F.[Francesc], Ferrari, V.[Vittorio],
C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds,
CVPR20(7946-7955)
IEEE DOI 2008
Couplings, Data models, Shape, Solid modeling, Computational modeling BibRef

Gao, R.Q.[Rui-Qi], Nijkamp, E.[Erik], Kingma, D.P.[Diederik P.], Xu, Z.[Zhen], Dai, A.M.[Andrew M.], Wu, Y.N.[Ying Nian],
Flow Contrastive Estimation of Energy-Based Models,
CVPR20(7515-7525)
IEEE DOI 2008
Data models, Adaptation models, Maximum likelihood estimation, Computational modeling, Training BibRef

Chong, M.J.[Min Jin], Forsyth, D.A.[David A.],
Effectively Unbiased FID and Inception Score and Where to Find Them,
CVPR20(6069-6078)
IEEE DOI 2008
Fréchet Inception Distance (FID) and the Inception Score (IS)/ Generators, Computational modeling, Monte Carlo methods, Extrapolation, Entropy, Standards BibRef

Gu, J., Shen, Y., Zhou, B.,
Image Processing Using Multi-Code GAN Prior,
CVPR20(3009-3018)
IEEE DOI 2008
Image reconstruction, Task analysis, Generators, Semantics, Image resolution BibRef

Lee, D., Park, H., Pham, T., Yoo, C.D.,
Learning Augmentation Network via Influence Functions,
CVPR20(10958-10967)
IEEE DOI 2008
Training, Computational modeling, Data models, Mathematical model, Generative adversarial networks, Generators, Neural networks BibRef

Xia, H., Ding, Z.,
Structure Preserving Generative Cross-Domain Learning,
CVPR20(4363-4372)
IEEE DOI 2008
Feature extraction, Training, Measurement, Robustness, Adaptation models, Neural networks, Task analysis BibRef

Liu, Y., Deng, G., Zeng, X., Wu, S., Yu, Z., Wong, H.,
Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning,
CVPR20(5719-5728)
IEEE DOI 2008
Training, Generators, Predictive models, Image generation, Data models, Games BibRef

Zheng, S., Zhu, Z., Zhang, X., Liu, Z., Cheng, J., Zhao, Y.,
Distribution-Induced Bidirectional Generative Adversarial Network for Graph Representation Learning,
CVPR20(7222-7231)
IEEE DOI 2008
Generative adversarial networks, Robustness, Data models, Generators, Task analysis, Gaussian distribution BibRef

Costales, R., Mao, C., Norwitz, R., Kim, B., Yang, J.,
Live Trojan Attacks on Deep Neural Networks,
AML-CV20(3460-3469)
IEEE DOI 2008
Trojan horses, Computational modeling, Neural networks, Machine learning BibRef

Mopuri, K.R., Shaj, V., Babu, R.V.,
Adversarial Fooling Beyond 'Flipping the Label',
AML-CV20(3374-3382)
IEEE DOI 2008
Measurement, Semantics, Visualization, Computational modeling, Dogs, Perturbation methods, Analytical models BibRef

Agarwal, A., Vatsa, M., Singh, R., Ratha, N.K.,
Noise is Inside Me! Generating Adversarial Perturbations with Noise Derived from Natural Filters,
AML-CV20(3354-3363)
IEEE DOI 2008
Databases, Cameras, Perturbation methods, Computational modeling, Image edge detection, Data mining, Machine learning BibRef

Vivek, B.S., Revanur, A.[Ambareesh], Venkat, N.[Naveen], Babu, R.V.[R. Venkatesh],
Plug-And-Pipeline: Efficient Regularization for Single-Step Adversarial Training,
TCV20(138-146)
IEEE DOI 2008
Training, Robustness, Computational modeling, Perturbation methods, Iterative methods, Backpropagation, Data models BibRef

Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.,
Understanding Adversarial Examples From the Mutual Influence of Images and Perturbations,
CVPR20(14509-14518)
IEEE DOI 2008
Perturbation methods, Correlation, Training data, Feature extraction, Training, Task analysis, Robustness BibRef

Daras, G., Odena, A., Zhang, H., Dimakis, A.G.,
Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models,
CVPR20(14519-14527)
IEEE DOI 2008
Flow graphs, Training, Visualization, Head, Kernel, Generative adversarial networks BibRef

Zhou, R., Shen, Y.,
End-to-End Adversarial-Attention Network for Multi-Modal Clustering,
CVPR20(14607-14616)
IEEE DOI 2008
Clustering methods, Kernel, Training, Task analysis, Network architecture, Neural networks, Geometry BibRef

Haque, M., Chauhan, A., Liu, C., Yang, W.,
ILFO: Adversarial Attack on Adaptive Neural Networks,
CVPR20(14252-14261)
IEEE DOI 2008
Computational modeling, Energy consumption, Robustness, Neural networks, Adaptation models, Machine learning, Perturbation methods BibRef

Zhang, B., Li, L., Yang, S., Wang, S., Zha, Z., Huang, Q.,
State-Relabeling Adversarial Active Learning,
CVPR20(8753-8762)
IEEE DOI 2008
Task analysis, Uncertainty, Generators, Data models, Computational modeling, Image reconstruction, Learning systems BibRef

Guo, T., Xu, C., Huang, J., Wang, Y., Shi, B., Xu, C., Tao, D.,
On Positive-Unlabeled Classification in GAN,
CVPR20(8382-8390)
IEEE DOI 2008
Training, Generators, Generative adversarial networks, Linear programming, Standards, Games BibRef

Schönfeld, E., Schiele, B., Khoreva, A.,
A U-Net Based Discriminator for Generative Adversarial Networks,
CVPR20(8204-8213)
IEEE DOI 2008
Generators, Decoding, Training, Generative adversarial networks, Image segmentation, Computer architecture BibRef

Durall, R., Keuper, M., Keuper, J.,
Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions,
CVPR20(7887-7896)
IEEE DOI 2008
Convolution, Distortion, Neural networks, Training, Generative adversarial networks BibRef

Ansari, A.F.[A. Fatir], Scarlett, J., Soh, H.,
A Characteristic Function Approach to Deep Implicit Generative Modeling,
CVPR20(7476-7484)
IEEE DOI 2008
Generators, Measurement, Training, Generative adversarial networks, Optimization, Computational modeling BibRef

Karnewar, A., Wang, O.,
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks,
CVPR20(7796-7805)
IEEE DOI 2008
Generators, Image resolution, Training, Image generation, Task analysis, Generative adversarial networks BibRef

Wang, Y., Chen, Y., Zhang, X., Sun, J., Jia, J.,
Attentive Normalization for Conditional Image Generation,
CVPR20(5093-5102)
IEEE DOI 2008
Semantics, Layout, Image generation, Generative adversarial networks, Correlation BibRef

Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J., Han, S.,
GAN Compression: Efficient Architectures for Interactive Conditional GANs,
CVPR20(5283-5293)
IEEE DOI 2008
Generators, Training, Computational modeling, Computer architecture, Generative adversarial networks, Image coding BibRef

Zheng, H., Zhang, Z., Gu, J., Lee, H., Prakash, A.,
Efficient Adversarial Training With Transferable Adversarial Examples,
CVPR20(1178-1187)
IEEE DOI 2008
Training, Perturbation methods, Robustness, Computational modeling, Measurement, Iterative methods, Silicon BibRef

Tao, S., Wang, J.,
Alleviation of Gradient Exploding in GANs: Fake Can Be Real,
CVPR20(1188-1197)
IEEE DOI 2008
Training, Generators, Generative adversarial networks, Interpolation, Neural networks, Gaussian distribution BibRef

Shi, Y., Han, Y., Tian, Q.,
Polishing Decision-Based Adversarial Noise With a Customized Sampling,
CVPR20(1027-1035)
IEEE DOI 2008
Gaussian distribution, Sensitivity, Noise reduction, Optimization, Image coding, Robustness, Standards BibRef

Zhao, Z., Liu, Z., Larson, M.,
Towards Large Yet Imperceptible Adversarial Image Perturbations With Perceptual Color Distance,
CVPR20(1036-1045)
IEEE DOI 2008
Image color analysis, Perturbation methods, Optimization, Semantics, Computer vision, Visualization, Extraterrestrial measurements BibRef

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A.L., Le, Q.V.,
Adversarial Examples Improve Image Recognition,
CVPR20(816-825)
IEEE DOI 2008
Training, Robustness, Degradation, Image recognition, Perturbation methods, Standards, Supervised learning BibRef

Zhou, M., Wu, J., Liu, Y., Liu, S., Zhu, C.,
DaST: Data-Free Substitute Training for Adversarial Attacks,
CVPR20(231-240)
IEEE DOI 2008
Data models, Training, Machine learning, Perturbation methods, Task analysis, Estimation BibRef

Ghojogh, B.[Benyamin], Karray, F.[Fakhri], Crowley, M.[Mark],
Theoretical Insights into the Use of Structural Similarity Index in Generative Models and Inferential Autoencoders,
ICIAR20(II:112-117).
Springer DOI 2007
BibRef

Dabouei, A., Soleymani, S., Taherkhani, F., Dawson, J., Nasrabadi, N.M.,
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations,
WACV20(2654-2663)
IEEE DOI 2006
Perturbation methods, Frequency-domain analysis, Robustness, Training, Optimization, Network architecture, Topology BibRef

Brodie, M., Rasmussen, B., Tensmeyer, C., Corbitt, S., Martinez, T.,
CoachGAN,
WACV20(3472-3481)
IEEE DOI 2006
Training, Generators, Integrated circuits, Generative adversarial networks, Optimization, Neural networks BibRef

Huang, R., Xu, W., Lee, T., Cherian, A., Wang, Y., Marks, T.K.,
FX-GAN: Self-Supervised GAN Learning via Feature Exchange,
WACV20(3183-3191)
IEEE DOI 2006
Task analysis, Generative adversarial networks, Generators, Training, Optimization, Games BibRef

Ganeshan, A.[Aditya], Vivek, B.S., Radhakrishnan, V.B.[Venkatesh Babu],
FDA: Feature Disruptive Attack,
ICCV19(8068-8078)
IEEE DOI 2004
Deal with adversarial attacks. image classification, image representation, learning (artificial intelligence), neural nets, optimisation, BibRef

Sinha, S., Ebrahimi, S., Darrell, T.J.,
Variational Adversarial Active Learning,
ICCV19(5971-5980)
IEEE DOI 2004
image classification, image segmentation, learning (artificial intelligence), neural nets, Labeling BibRef

Han, J., Dong, X., Zhang, R., Chen, D., Zhang, W., Yu, N., Luo, P., Wang, X.,
Once a MAN: Towards Multi-Target Attack via Learning Multi-Target Adversarial Network Once,
ICCV19(5157-5166)
IEEE DOI 2004
convolutional neural nets, learning (artificial intelligence), pattern classification, security of data, Decoding BibRef

Brunner, T., Diehl, F., Le, M.T., Knoll, A.,
Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks,
ICCV19(4957-4965)
IEEE DOI 2004
application program interfaces, cloud computing, feature extraction, image classification, security of data, Training BibRef

Liu, Y.J.[Yu-Jia], Moosavi-Dezfooli, S.M.[Seyed-Mohsen], Frossard, P.[Pascal],
A Geometry-Inspired Decision-Based Attack,
ICCV19(4889-4897)
IEEE DOI 2004
Deal with adversarial attack. geometry, image classification, image recognition, neural nets, security of data, black-box settings, Gaussian noise BibRef

Li, J., Ji, R., Liu, H., Hong, X., Gao, Y., Tian, Q.,
Universal Perturbation Attack Against Image Retrieval,
ICCV19(4898-4907)
IEEE DOI 2004
feature extraction, image classification, image representation, image retrieval, learning (artificial intelligence), Pipelines BibRef

dos Santos, C.N.[Cicero Nogueira], Mroueh, Y.[Youssef], Padhi, I.[Inkit], Dognin, P.[Pierre],
Learning Implicit Generative Models by Matching Perceptual Features,
ICCV19(4460-4469)
IEEE DOI 2004
convolutional neural nets, feature extraction, image matching, learning (artificial intelligence), implicit generative models, Method of moments BibRef

Xiao, C., Deng, R., Li, B., Lee, T., Edwards, B., Yi, J., Song, D., Liu, M., Molloy, I.,
AdvIT: Adversarial Frames Identifier Based on Temporal Consistency in Videos,
ICCV19(3967-3976)
IEEE DOI 2004
feature extraction, image classification, image motion analysis, image sequences, learning (artificial intelligence), neural nets, Adaptive optics BibRef

Shu, D.[Dongwook], Park, S.W.[Sung Woo], Kwon, J.[Junseok],
3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions,
ICCV19(3858-3867)
IEEE DOI 2004
Generate 3D data. feature extraction, image classification, image matching, object detection, trees (mathematics), BibRef

Shu, H.[Han], Wang, Y.H.[Yun-He], Jia, X.[Xu], Han, K.[Kai], Chen, H.T.[Han-Ting], Xu, C.J.[Chun-Jing], Tian, Q.[Qi], Xu, C.[Chang],
Co-Evolutionary Compression for Unpaired Image Translation,
ICCV19(3234-3243)
IEEE DOI 2004
computational complexity, convolution, evolutionary computation, feature extraction, image coding, Convolution BibRef

Sadeghi, B., Yu, R., Boddeti, V.,
On the Global Optima of Kernelized Adversarial Representation Learning,
ICCV19(7970-7978)
IEEE DOI 2004
iterative methods, learning (artificial intelligence), minimax techniques, neural nets, iterative minimax optimization, Convergence BibRef

Xiang, Y., Fu, Y., Ji, P., Huang, H.,
Incremental Learning Using Conditional Adversarial Networks,
ICCV19(6618-6627)
IEEE DOI 2004
convolutional neural nets, feature extraction, image recognition, image representation, learning (artificial intelligence), BibRef

Finlay, C., Pooladian, A., Oberman, A.,
The LogBarrier Adversarial Attack: Making Effective Use of Decision Boundary Information,
ICCV19(4861-4869)
IEEE DOI 2004
gradient methods, image classification, minimisation, neural nets, security of data, LogBarrier adversarial attack, Benchmark testing BibRef

Huang, Q., Katsman, I., Gu, Z., He, H., Belongie, S., Lim, S.,
Enhancing Adversarial Example Transferability With an Intermediate Level Attack,
ICCV19(4732-4741)
IEEE DOI 2004
cryptography, neural nets, optimisation, black-box transferability, source model, target models, adversarial examples, Artificial intelligence BibRef

Croce, F., Hein, M.,
Sparse and Imperceivable Adversarial Attacks,
ICCV19(4723-4731)
IEEE DOI 2004
gradient methods, learning (artificial intelligence), neural nets, pattern classification, security of data, Image edge detection BibRef

Mullick, S.S., Datta, S., Das, S.,
Generative Adversarial Minority Oversampling,
ICCV19(1695-1704)
IEEE DOI 2004
image classification, image sampling, learning (artificial intelligence), neural nets, Tuning BibRef

Zhao, P., Liu, S., Chen, P., Hoang, N., Xu, K., Kailkhura, B., Lin, X.,
On the Design of Black-Box Adversarial Examples by Leveraging Gradient-Free Optimization and Operator Splitting Method,
ICCV19(121-130)
IEEE DOI 2004
Bayes methods, image classification, image retrieval, learning (artificial intelligence), optimisation, Estimation BibRef

Pande, S., Banerjee, A., Kumar, S., Banerjee, B., Chaudhuri, S.,
An Adversarial Approach to Discriminative Modality Distillation for Remote Sensing Image Classification,
CroMoL19(4571-4580)
IEEE DOI 2004
feature extraction, geophysical image processing, image classification, image representation, Hyperspectral images BibRef

Liu, H., Ji, R., Li, J., Zhang, B., Gao, Y., Wu, Y., Huang, F.,
Universal Adversarial Perturbation via Prior Driven Uncertainty Approximation,
ICCV19(2941-2949)
IEEE DOI 2004
gradient methods, Monte Carlo methods, neural nets, sampling methods, stochastic processes, deep learning models, Laplace equations BibRef

Mahdizadehaghdam, S., Panahi, A., Krim, H.,
Sparse Generative Adversarial Network,
CEFRL19(3063-3071)
IEEE DOI 2004
feature extraction, learning (artificial intelligence), signal reconstruction, signal representation, vectors, deep learning BibRef

Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Van Gool, L.J.,
Generative Adversarial Networks for Extreme Learned Image Compression,
ICCV19(221-231)
IEEE DOI 2004
data compression, image classification, image coding, image colour analysis, learning (artificial intelligence), Training BibRef

Krishnan, D., Teterwak, P., Sarna, A., Maschinot, A., Liu, C., Belanger, D., Freeman, W.,
Boundless: Generative Adversarial Networks for Image Extension,
ICCV19(10520-10529)
IEEE DOI 2004
image colour analysis, image restoration, image texture, neural nets, computational photography, computer graphics, Context modeling BibRef

Kundu, J.N., Gor, M., Agrawal, D., Radhakrishnan, V.B.,
GAN-Tree: An Incrementally Learned Hierarchical Generative Framework for Multi-Modal Data Distributions,
ICCV19(8190-8199)
IEEE DOI 2004
learning (artificial intelligence), neural nets, pattern clustering, tree data structures, Task analysis BibRef

Shocher, A.[Assaf], Gandelsman, Y.[Yossi], Mosseri, I.[Inbar], Yarom, M.[Michal], Irani, M.[Michal], Freeman, W.T.[William T.], Dekel, T.[Tali],
Semantic Pyramid for Image Generation,
CVPR20(7455-7464)
IEEE DOI 2008
Semantics, Feature extraction, Image reconstruction, Generators, Task analysis, Aerospace electronics BibRef

Shaham, T.R., Dekel, T., Michaeli, T.,
SinGAN: Learning a Generative Model From a Single Natural Image,
ICCV19(4569-4579)
IEEE DOI 2004
image classification, image segmentation, image texture, learning (artificial intelligence), SinGAN, Computational modeling BibRef

Raj, A., Li, Y., Bresler, Y.,
GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems,
ICCV19(5601-5610)
IEEE DOI 2004
compressed sensing, computational complexity, Gaussian processes, gradient methods, image reconstruction, inverse problems, Approximation algorithms BibRef

Liu, K., Qiu, G., Tang, W., Zhou, F.,
Spectral Regularization for Combating Mode Collapse in GANs,
ICCV19(6381-6389)
IEEE DOI 2004
neural nets, singular value decomposition, SR-GANs, SN-GANs, mode collapse problem, spectral normalized GANs, Optimization BibRef

Shama, F., Mechrez, R., Shoshan, A., Zelnik-Manor, L.,
Adversarial Feedback Loop,
ICCV19(3204-3213)
IEEE DOI 2004
feature extraction, image resolution, learning (artificial intelligence), neural nets, GAN based model, Feeds BibRef

Bau, D., Zhu, J., Wulff, J., Peebles, W., Zhou, B., Strobelt, H., Torralba, A.,
Seeing What a GAN Cannot Generate,
ICCV19(4501-4510)
IEEE DOI 2004
convolutional neural nets, data visualisation, image segmentation, object detection, object classes, GAN layer, Training BibRef

Lin, C.H., Chang, C., Chen, Y., Juan, D., Wei, W., Chen, H.,
COCO-GAN: Generation by Parts via Conditional Coordinating,
ICCV19(4511-4520)
IEEE DOI 2004
computer vision, divide and conquer methods, extrapolation, learning (artificial intelligence), neural nets, COCO-GAN, Task analysis BibRef

Wieluch, S., Schwenker, F.,
Dropout Induced Noise for Co-Creative GAN Systems,
Fashion19(3137-3140)
IEEE DOI 2004
neural nets, dropout induced noise, generative adversarial networks, latent space exploration, neural net BibRef

Che, F., Zhu, X., Yang, T., Yu, T.,
3SGAN: 3D Shape Embedded Generative Adversarial Networks,
AIM19(3305-3314)
IEEE DOI 2004
edge detection, image colour analysis, learning (artificial intelligence), neural nets, multiview BibRef

Jandial, S., Mangla, P., Varshney, S., Balasubramanian, V.,
AdvGAN++: Harnessing Latent Layers for Adversary Generation,
NeruArch19(2045-2048)
IEEE DOI 2004
feature extraction, neural nets, MNIST datasets, CIFAR-10 datasets, attack rates, realistic images, latent features, input image, AdvGAN BibRef

Al-Rawi, M., Bazazian, D., Valveny, E.,
Can Generative Adversarial Networks Teach Themselves Text Segmentation?,
AIM19(3342-3350)
IEEE DOI 2004
data mining, image segmentation, natural language processing, text analysis, unsupervised learning, scene image, F1 Score BibRef

Saha, S., Kumar, A., Sahay, P., Jose, G., Kruthiventi, S., Muralidhara, H.,
Attack Agnostic Statistical Method for Adversarial Detection,
SDL-CV19(798-802)
IEEE DOI 2004
feature extraction, image classification, learning (artificial intelligence), neural nets, Adversarial Attack BibRef

Liu, H., Gu, X., Samaras, D.,
Wasserstein GAN With Quadratic Transport Cost,
ICCV19(4831-4840)
IEEE DOI 2004
computer vision, learning (artificial intelligence), neural nets, statistical distributions, Wasserstein GAN, Linear programming BibRef

Wang, C.L.[Cheng-Long], Bunel, R.[Rudy], Dvijotham, K.[Krishnamurthy], Huang, P.S.[Po-Sen], Grefenstette, E.[Edward], Kohli, P.[Pushmeet],
Knowing When to Stop: Evaluation and Verification of Conformity to Output-Size Specifications,
CVPR19(12252-12261).
IEEE DOI 2002
ulnerability of these models to attacks aimed at changing the output-size. BibRef

Feng, Z.[Zeyu], Xu, C.[Chang], Tao, D.C.[Da-Cheng],
Self-Supervised Representation Learning by Rotation Feature Decoupling,
CVPR19(10356-10366).
IEEE DOI 2002
BibRef

Xing, X.L.[Xiang-Lei], Han, T.[Tian], Gao, R.[Ruiqi], Zhu, S.C.[Song-Chun], Wu, Y.N.[Ying Nian],
Unsupervised Disentangling of Appearance and Geometry by Deformable Generator Network,
CVPR19(10346-10355).
IEEE DOI 2002
2 separate generators. BibRef

Liu, S.H.[Shao-Hui], Zhang, X.[Xiao], Wangni, J.Q.[Jian-Qiao], Shi, J.B.[Jian-Bo],
Normalized Diversification,
CVPR19(10298-10307).
IEEE DOI 2002
BibRef

Modas, A.[Apostolos], Moosavi-Dezfooli, S.M.[Seyed-Mohsen], Frossard, P.[Pascal],
SparseFool: A Few Pixels Make a Big Difference,
CVPR19(9079-9088).
IEEE DOI 2002
sparse attack. BibRef

Wu, J.Q.[Ji-Qing], Huang, Z.W.[Zhi-Wu], Acharya, D.[Dinesh], Li, W.[Wen], Thoma, J.[Janine], Paudel, D.P.[Danda Pani], Van Gool, L.J.[Luc J.],
Sliced Wasserstein Generative Models,
CVPR19(3708-3717).
IEEE DOI 2002
BibRef

Liu, X.F.[Xiao-Feng], Li, S.[Site], Kong, L.S.[Ling-Sheng], Xie, W.Q.[Wan-Qing], Jia, P.[Ping], You, J.[Jane], Kumar, B.V.K.,
Feature-Level Frankenstein: Eliminating Variations for Discriminative Recognition,
CVPR19(637-646).
IEEE DOI 2002
BibRef

Jenni, S.[Simon], Favaro, P.[Paolo],
On Stabilizing Generative Adversarial Training With Noise,
CVPR19(12137-12145).
IEEE DOI 2002
BibRef

Zhao, J.B.J.[Jun-Bo Jake], Cho, K.H.[Kyung-Hyun],
Retrieval-Augmented Convolutional Neural Networks Against Adversarial Examples,
CVPR19(11555-11563).
IEEE DOI 2002
BibRef

Yu, B.[Bing], Wu, J.F.[Jing-Feng], Ma, J.W.[Jin-Wen], Zhu, Z.[Zhanxing],
Tangent-Normal Adversarial Regularization for Semi-Supervised Learning,
CVPR19(10668-10676).
IEEE DOI 2002
BibRef

Jaiswal, A.[Ayush], Wu, Y.[Yue], Abd Almageed, W.[Wael], Masi, I.[Iacopo], Natarajan, P.[Premkumar],
AIRD: Adversarial Learning Framework for Image Repurposing Detection,
CVPR19(11322-11331).
IEEE DOI 2002
BibRef

Taghanaki, S.A.[Saeid Asgari], Abhishek, K.[Kumar], Azizi, S.[Shekoofeh], Hamarneh, G.[Ghassan],
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations,
CVPR19(11332-11341).
IEEE DOI 2002
BibRef

Yao, Z.[Zhewei], Gholami, A.[Amir], Xu, P.[Peng], Keutzer, K.[Kurt], Mahoney, M.W.[Michael W.],
Trust Region Based Adversarial Attack on Neural Networks,
CVPR19(11342-11351).
IEEE DOI 2002
BibRef

Liang, J.[Jian], Cao, Y.[Yuren], Zhang, C.[Chenbin], Chang, S.[Shiyu], Bai, K.[Kun], Xu, Z.[Zenglin],
Additive Adversarial Learning for Unbiased Authentication,
CVPR19(11420-11429).
IEEE DOI 2002
BibRef

Liu, Z.H.[Zi-Hao], Liu, Q.[Qi], Liu, T.[Tao], Xu, N.[Nuo], Lin, X.[Xue], Wang, Y.Z.[Yan-Zhi], Wen, W.J.[Wu-Jie],
Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples,
CVPR19(860-868).
IEEE DOI 2002
BibRef

Huh, M.Y.[Min-Young], Sun, S.H.[Shao-Hua], Zhang, N.[Ning],
Feedback Adversarial Learning: Spatial Feedback for Improving Generative Adversarial Networks,
CVPR19(1476-1485).
IEEE DOI 2002
BibRef

Fu, H.[Huan], Gong, M.M.[Ming-Ming], Wang, C.[Chaohui], Batmanghelich, K.[Kayhan], Zhang, K.[Kun], Tao, D.C.[Da-Cheng],
Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping,
CVPR19(2422-2431).
IEEE DOI 2002
BibRef

Park, S.W.[Sung Woo], Kwon, J.[Junseok],
Sphere Generative Adversarial Network Based on Geometric Moment Matching,
CVPR19(4287-4296).
IEEE DOI 2002
BibRef

Zeng, X.H.[Xiao-Hui], Liu, C.X.[Chen-Xi], Wang, Y.S.[Yu-Siang], Qiu, W.[Weichao], Xie, L.X.[Ling-Xi], Tai, Y.W.[Yu-Wing], Tang, C.K.[Chi-Keung], Yuille, A.L.[Alan L.],
Adversarial Attacks Beyond the Image Space,
CVPR19(4297-4306).
IEEE DOI 2002
BibRef

Ghasedi, K.[Kamran], Wang, X.Q.[Xiao-Qian], Deng, C.[Cheng], Huang, H.[Heng],
Balanced Self-Paced Learning for Generative Adversarial Clustering Network,
CVPR19(4386-4395).
IEEE DOI 2002
BibRef

Corneanu, C.A.[Ciprian A.], Madadi, M.[Meysam], Escalera, S.[Sergio], Martinez, A.M.[Aleix M.],
What Does It Mean to Learn in Deep Networks? And, How Does One Detect Adversarial Attacks?,
CVPR19(4752-4761).
IEEE DOI 2002
BibRef

Qi, M.S.[Meng-Shi], Wang, Y.H.[Yun-Hong], Qin, J.[Jie], Li, A.[Annan],
KE-GAN: Knowledge Embedded Generative Adversarial Networks for Semi-Supervised Scene Parsing,
CVPR19(5232-5241).
IEEE DOI 2002
BibRef

Shi, Y.C.[Yu-Cheng], Wang, S.[Siyu], Han, Y.H.[Ya-Hong],
Curls and Whey: Boosting Black-Box Adversarial Attacks,
CVPR19(6512-6520).
IEEE DOI 2002
BibRef

Park, J.S.[Jae Sung], Rohrbach, M.[Marcus], Darrell, T.J.[Trevor J.], Rohrbach, A.[Anna],
Adversarial Inference for Multi-Sentence Video Description,
CVPR19(6591-6601).
IEEE DOI 2002
BibRef

Xiao, C.[Chaowei], Yang, D.[Dawei], Li, B.[Bo], Deng, J.[Jia], Liu, M.Y.[Ming-Yan],
MeshAdv: Adversarial Meshes for Visual Recognition,
CVPR19(6891-6900).
IEEE DOI 2002
BibRef

Inkawhich, N.[Nathan], Wen, W.[Wei], Li, H.(.[Hai (Helen)], Chen, Y.[Yiran],
Feature Space Perturbations Yield More Transferable Adversarial Examples,
CVPR19(7059-7067).
IEEE DOI 2002
BibRef

Heim, E.[Eric],
Constrained Generative Adversarial Networks for Interactive Image Generation,
CVPR19(10745-10753).
IEEE DOI 2002
BibRef

Gomez-Villa, A.[Alexander], Martin, A.[Adrian], Vazquez-Corral, J.[Javier], Bertalmio, M.[Marcelo],
Convolutional Neural Networks Can Be Deceived by Visual Illusions,
CVPR19(12301-12309).
IEEE DOI 2002
BibRef

Avraham, G.[Gil], Zuo, Y.[Yan], Drummond, T.[Tom],
Parallel Optimal Transport GAN,
CVPR19(4406-4415).
IEEE DOI 2002
BibRef

Liu, F.[Fang], Deng, X.M.[Xiao-Ming], Lai, Y.K.[Yu-Kun], Liu, Y.J.[Yong-Jin], Ma, C.[Cuixia], Wang, H.A.[Hong-An],
SketchGAN: Joint Sketch Completion and Recognition With Generative Adversarial Network,
CVPR19(5823-5832).
IEEE DOI 2002
BibRef

Eghbal-zadeh, H.[Hamid], Zellinger, W.[Werner], Widmer, G.[Gerhard],
Mixture Density Generative Adversarial Networks,
CVPR19(5813-5822).
IEEE DOI 2002
BibRef

Liu, X.Q.[Xuan-Qing], Hsieh, C.J.[Cho-Jui],
Rob-GAN: Generator, Discriminator, and Adversarial Attacker,
CVPR19(11226-11235).
IEEE DOI 2002
BibRef

Zhu, B.[Bin], Ngo, C.W.[Chong-Wah], Chen, J.J.[Jing-Jing], Hao, Y.[Yanbin],
R2GAN: Cross-Modal Recipe Retrieval With Generative Adversarial Network,
CVPR19(11469-11478).
IEEE DOI 2002
BibRef

Chen, T.[Ting], Zhai, X.H.[Xiao-Hua], Ritter, M.[Marvin], Lucic, M.[Mario], Houlsby, N.[Neil],
Self-Supervised GANs via Auxiliary Rotation Loss,
CVPR19(12146-12155).
IEEE DOI 2002
BibRef

Papadopoulos, D.P.[Dim P.], Tamaazousti, Y.[Youssef], Ofli, F.[Ferda], Weber, I.[Ingmar], Torralba, A.[Antonio],
How to Make a Pizza: Learning a Compositional Layer-Based GAN Model,
CVPR19(7994-8003).
IEEE DOI 2002
BibRef

Deshpande, I.[Ishan], Hu, Y.T.[Yuan-Ting], Sun, R.[Ruoyu], Pyrros, A.[Ayis], Siddiqui, N.[Nasir], Koyejo, S.[Sanmi], Zhao, Z.Z.[Zhi-Zhen], Forsyth, D.[David], Schwing, A.G.[Alexander G.],
Max-Sliced Wasserstein Distance and Its Use for GANs,
CVPR19(10640-10648).
IEEE DOI 2002
BibRef

Horiuchi, Y.[Yusuke], Iizuka, S.[Satoshi], Simo-Serra, E.[Edgar], Ishikawa, H.[Hiroshi],
Spectral Normalization and Relativistic Adversarial Training for Conditional Pose Generation with Self-Attention,
MVA19(1-5)
DOI Link 1911
image resolution, learning (artificial intelligence), pose estimation, spectral normalization, Fading channels BibRef

Vandenhende, S., de Brabandere, B., Neven, D., Van Gool, L.J.,
A Three-Player GAN: Generating Hard Samples to Improve Classification Networks,
MVA19(1-6)
DOI Link 1806
game theory, image classification, image recognition, learning (artificial intelligence), Computational modeling BibRef

Pinetz, T.[Thomas], Soukup, D.[Daniel], Pock, T.[Thomas],
On the Estimation of the Wasserstein Distance in Generative Models,
GCPR19(156-170).
Springer DOI 1911
BibRef

Gupta, P.[Puneet], Rahtu, E.[Esa],
MLAttack: Fooling Semantic Segmentation Networks by Multi-layer Attacks,
GCPR19(401-413).
Springer DOI 1911
BibRef

Kim, B., Lee, J., Kim, K., Kim, S., Kim, J.,
Collaborative Method for Incremental Learning on Classification and Generation,
ICIP19(390-394)
IEEE DOI 1910
Incremental Learning, Deep Neural Networks, Generative Adversarial Networks BibRef

Tong, X.Y.[Xin-Yi], Yin, J.H.[Ji-Hao], Han, B.N.[Bing-Nan], Qv, H.[Hui],
Few-Shot Learning With Attention-Weighted Graph Convolutional Networks For Hyperspectral Image Classification,
ICIP20(1686-1690)
IEEE DOI 2011
Information processing, Training, Remote sensing, Machine learning, Computer vision, Pattern recognition, Few-shot learning, attention mechanism BibRef

Yin, J.H.[Ji-Hao], Li, W.Y.[Wen-Yue], Han, B.N.[Bing-Nan],
Hyperspectral Image Classification Based on Generative Adversarial Network with Dropblock,
ICIP19(405-409)
IEEE DOI 1910
Hyperspectral classification, generative adversarial networks, spatial semantic information BibRef

You, Z., Ye, J., Li, K., Xu, Z., Wang, P.,
Adversarial Noise Layer: Regularize Neural Network by Adding Noise,
ICIP19(909-913)
IEEE DOI 1910
regularization, adversarial training, classification, convolutional neural network BibRef

Mao, Q., Wang, S., Zhang, X., Wang, S., Ma, S.,
Fidelity or Quality? A Region-Aware Framework for Enhanced Image Decoding via Hybrid Neural Networks,
ICIP19(2616-2620)
IEEE DOI 1910
Image restoration, generative adversarial networks, enhanced image decoding, perceptual quality, fidelity BibRef

Zhuang, Y., Hsu, C.,
Detecting Generated Image Based on a Coupled Network with Two-Step Pairwise Learning,
ICIP19(3212-3216)
IEEE DOI 1910
Forgery detection, generative adversarial networks, triplet loss, deep learning, coupled network BibRef

Lu, Y., Velipasalar, S.,
Autonomous Choice of Deep Neural Network Parameters by a Modified Generative Adversarial Network,
ICIP19(3846-3850)
IEEE DOI 1910
Deep learning, neural networks, parameter choice, generative adversarial networks BibRef

Yang, R., Nakayama, H.,
Bipolar GAN: Double Check the Solution Space and Lighten False Positive Errors in Generative Adversarial Nets,
ICIP19(4260-4264)
IEEE DOI 1910
GAN, Bipolar discriminator, Compatibility BibRef

Wang, Y., Nikkhah, M., Zhu, X., Tan, W., Liston, R.,
Learning Geographically Distributed Data for Multiple Tasks Using Generative Adversarial Networks,
ICIP19(4589-4593)
IEEE DOI 1910
distributed machine learning, generative adversarial networks (GAN), semi-supervised learning BibRef

Zhang, C., Yang, F., Qiu, G., Zhang, Q.,
Salient Object Detection With Capsule-Based Conditional Generative Adversarial Network,
ICIP19(81-85)
IEEE DOI 1910
Salient Object Detection, Image-level Saliency, Generative Adversarial Network, cGAN, Capsule Net BibRef

Caldelli, R., Becarelli, R., Carrara, F., Falchi, F., Amato, G.,
Exploiting CNN Layer Activations to Improve Adversarial Image Classification,
ICIP19(2289-2293)
IEEE DOI 1910
Adversarial images, neural networks, layer activations, adversarial detection BibRef

Barni, M., Kallas, K., Tondi, B.,
A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning,
ICIP19(101-105)
IEEE DOI 1910
Adversarial learning, security of deep learning, backdoor poisoning attacks, training with poisoned data BibRef

Nguyen, N.M., Ray, N.,
Generative Adversarial Networks Using Adaptive Convolution,
CRV19(129-134)
IEEE DOI 1908
Convolution, Generators, Generative adversarial networks, Training, Computer architecture, Adaptation models, Generative Adversarial Networks BibRef

Ge, H.W.[Hong-Wei], Yao, Y.[Yao], Chen, Z.[Zheng], Sun, L.[Liang],
Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Multi-Domain Image Translation,
ACCV18(II:398-413).
Springer DOI 1906
BibRef

Guo, W.K.[Wei-Kuo], Liang, J.[Jian], Kong, X.W.[Xiang-Wei], Song, L.X.[Ling-Xiao], He, R.[Ran],
X-GACMN: An X-Shaped Generative Adversarial Cross-Modal Network with Hypersphere Embedding,
ACCV18(V:513-529).
Springer DOI 1906
BibRef

Ying, G.H.[Guo-Hao], Zou, Y.T.[Ying-Tian], Wan, L.[Lin], Hu, Y.M.[Yi-Ming], Feng, J.[Jiashi],
Better Guider Predicts Future Better: Difference Guided Generative Adversarial Networks,
ACCV18(VI:277-292).
Springer DOI 1906
BibRef

Heljakka, A.[Ari], Solin, A.[Arno], Kannala, J.H.[Ju-Ho],
Pioneer Networks: Progressively Growing Generative Autoencoder,
ACCV18(I:22-38).
Springer DOI 1906
BibRef

Alberti, M.[Michele], Pondenkandath, V.[Vinaychandran], Würsch, M.[Marcel], Bouillon, M.[Manuel], Seuret, M.[Mathias], Ingold, R.[Rolf], Liwicki, M.[Marcus],
Are You Tampering with My Data?,
Objectionable18(II:296-312).
Springer DOI 1905
BibRef

Belagiannis, V.[Vasileios], Farshad, A.[Azade], Galasso, F.[Fabio],
Adversarial Network Compression,
CEFR-LCV18(IV:431-449).
Springer DOI 1905
BibRef

Öngün, C.[Cihan], Temizel, A.[Alptekin],
Paired 3D Model Generation with Conditional Generative Adversarial Networks,
3D-Wild18(I:473-487).
Springer DOI 1905
BibRef

Carrara, F.[Fabio], Becarelli, R.[Rudy], Caldelli, R.[Roberto], Falchi, F.[Fabrizio], Amato, G.[Giuseppe],
Adversarial Examples Detection in Features Distance Spaces,
Objectionable18(II:313-327).
Springer DOI 1905
BibRef

Assens, M.[Marc], Giro-i-Nieto, X.[Xavier], McGuinness, K.[Kevin], O'Connor, N.E.[Noel E.],
PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks,
Egocentric18(V:406-422).
Springer DOI 1905
BibRef

Zhang, W., Liu, Y., Dong, C., Qiao, Y.,
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution,
ICCV19(3096-3105)
IEEE DOI 2004

WWW Link. image resolution, neural nets, unsupervised learning, RankSRGAN, Ranker, single image super-resolution, visual quality, Image quality BibRef

Wang, X.T.[Xin-Tao], Yu, K.[Ke], Wu, S.X.[Shi-Xiang], Gu, J.J.[Jin-Jin], Liu, Y.[Yihao], Dong, C.[Chao], Qiao, Y.[Yu], Loy, C.C.[Chen Change],
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,
PerceptualRest18(V:63-79).
Springer DOI 1905
BibRef

Jaiswal, A.[Ayush], Abd-Almageed, W.[Wael], Wu, Y.[Yue], Natarajan, P.[Premkumar],
Bidirectional Conditional Generative Adversarial Networks,
ACCV18(III:216-232).
Springer DOI 1906
BibRef
Earlier:
CapsuleGAN: Generative Adversarial Capsule Network,
BrainDriven18(III:526-535).
Springer DOI 1905
BibRef

Blum, O.[Oliver], Brattoli, B.[Biagio], Ommer, B.[Björn],
X-GAN: Improving Generative Adversarial Networks with ConveX Combinations,
GCPR18(199-214).
Springer DOI 1905
BibRef

Zhao, W.[Wei], Yang, P.P.[Peng-Peng], Ni, R.R.[Rong-Rong], Zhao, Y.[Yao], Li, W.J.[Wen-Jie],
Cycle GAN-Based Attack on Recaptured Images to Fool both Human and Machine,
IWDW18(83-92).
Springer DOI 1905
BibRef

Kazemi, H., Iranmanesh, S.M., Nasrabadi, N.,
Style and Content Disentanglement in Generative Adversarial Networks,
WACV19(848-856)
IEEE DOI 1904
feature extraction, geophysical image processing, image classification, image representation, image texture, Task analysis BibRef

Han, T., Lu, Y., Wu, J., Xing, X., Wu, Y.N.,
Learning Generator Networks for Dynamic Patterns,
WACV19(809-818)
IEEE DOI 1904
convolutional neural nets, image representation, image sequences, learning (artificial intelligence), spatiotemporal phenomena, Dynamics BibRef

Shao, H.[Hang], Kumar, A.[Abhishek], Fletcher, P.T.[P. Thomas],
The Riemannian Geometry of Deep Generative Models,
Diff-CVML18(428-4288)
IEEE DOI 1812
Manifolds, Jacobian matrices, Computational modeling, Measurement, Geometry, Generators, Data models BibRef

Esser, P.[Patrick], Sutter, E.[Ekaterina],
A Variational U-Net for Conditional Appearance and Shape Generation,
CVPR18(8857-8866)
IEEE DOI 1812
Shape, Generators, Image generation, Standards, Image color analysis, Training, Footwear BibRef

Russo, P., Carlucci, F.M., Tommasi, T., Caputo, B.,
From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN,
CVPR18(8099-8108)
IEEE DOI 1812
Generators, Training, Adaptation models, Image reconstruction, Bidirectional control, Image generation BibRef

Wang, S., Shi, Y., Han, Y.,
Universal Perturbation Generation for Black-box Attack Using Evolutionary Algorithms,
ICPR18(1277-1282)
IEEE DOI 1812
Perturbation methods, Evolutionary computation, Sociology, Statistics, Training, Neural networks, Robustness BibRef

Xu, X.J.[Xiao-Jun], Chen, X.Y.[Xin-Yun], Liu, C.[Chang], Rohrbach, A.[Anna], Darrell, T.J.[Trevor J.], Song, D.[Dawn],
Fooling Vision and Language Models Despite Localization and Attention Mechanism,
CVPR18(4951-4961)
IEEE DOI 1812
Attacks. Prediction algorithms, Computational modeling, Neural networks, Knowledge discovery, Visualization, Predictive models, Natural languages BibRef

Deshpande, I.[Ishan], Zhang, Z.Y.[Zi-Yu], Schwing, A.[Alexander],
Generative Modeling Using the Sliced Wasserstein Distance,
CVPR18(3483-3491)
IEEE DOI 1812
Training, Generators, Stability analysis, Optimization, Task analysis, Computational modeling BibRef

Juefei-Xu, F., Boddeti, V.N., Savvides, M.,
Perturbative Neural Networks,
CVPR18(3310-3318)
IEEE DOI 1812
Perturbation methods, Convolution, Standards, Task analysis, Convolutional neural networks, Visualization BibRef

Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.J.,
ComboGAN: Unrestrained Scalability for Image Domain Translation,
Restoration18(896-8967)
IEEE DOI 1812
Training, Generators, Decoding, Computer vision, Task analysis, Data models BibRef

Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R.W.H., Yang, M.,
VITAL: VIsual Tracking via Adversarial Learning,
CVPR18(8990-8999)
IEEE DOI 1812
Target tracking, Training, Feature extraction, Generators, Visualization, Entropy BibRef

Oseledets, I., Khrulkov, V.,
Art of Singular Vectors and Universal Adversarial Perturbations,
CVPR18(8562-8570)
IEEE DOI 1812
Perturbation methods, Jacobian matrices, Optimization, Neural networks, Computer vision, Visualization, Correlation BibRef

Zhang, J., Ding, Z., Li, W., Ogunbona, P.,
Importance Weighted Adversarial Nets for Partial Domain Adaptation,
CVPR18(8156-8164)
IEEE DOI 1812
Feature extraction, Task analysis, Training, Games, Neural networks BibRef

Li, H., Pan, S.J., Wang, S., Kot, A.C.,
Domain Generalization with Adversarial Feature Learning,
CVPR18(5400-5409)
IEEE DOI 1812
Data models, Training, Training data, Adaptation models, Decoding, Predictive models BibRef

Zhang, W., Ouyang, W., Li, W., Xu, D.,
Collaborative and Adversarial Network for Unsupervised Domain Adaptation,
CVPR18(3801-3809)
IEEE DOI 1812
Training, Collaboration, Feature extraction, Adaptation models, Visualization, Task analysis, Computer vision BibRef

Liu, Y., Wang, Z., Jin, H., Wassell, I.,
Multi-task Adversarial Network for Disentangled Feature Learning,
CVPR18(3743-3751)
IEEE DOI 1812
Training, Generators, Task analysis, Feature extraction, Image generation, Optimization BibRef

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.,
Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks,
CVPR18(2255-2264)
IEEE DOI 1812
Trajectory, Computational modeling, Predictive models, Generators, History, Decoding BibRef

Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.,
Adversarial Complementary Learning for Weakly Supervised Object Localization,
CVPR18(1325-1334)
IEEE DOI 1812
Training, Feature extraction, Head, Legged locomotion, Task analysis, Pattern recognition, Object recognition BibRef

Chou, Y., Chen, C., Liu, K., Chen, C.,
Stingray Detection of Aerial Images Using Augmented Training Images Generated by a Conditional Generative Model,
Environmental18(1484-14846)
IEEE DOI 1812
Training, Object detection, Generators, Sea surface, Generative adversarial networks, Detectors BibRef

Li, R., Cao, W., Qian, S., Wong, H., Wu, S.,
Cross-domain Semantic Feature Learning via Adversarial Adaptation Networks,
ICPR18(37-42)
IEEE DOI 1812
Feature extraction, Semantics, Task analysis, Adaptation models, Data mining, Computational modeling, Generators, adversarial learning BibRef

Hayes, J.,
On Visible Adversarial Perturbations & Digital Watermarking,
PRIV18(1678-16787)
IEEE DOI 1812
Perturbation methods, Watermarking, Computational modeling, Visualization, Task analysis, Image restoration, Computer vision BibRef

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.,
Boosting Adversarial Attacks with Momentum,
CVPR18(9185-9193)
IEEE DOI 1812
Iterative methods, Robustness, Training, Data models, Adaptation models, Security BibRef

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., Song, D.,
Robust Physical-World Attacks on Deep Learning Visual Classification,
CVPR18(1625-1634)
IEEE DOI 1812
Perturbation methods, Roads, Cameras, Visualization, Pipelines, Autonomous vehicles, Detectors BibRef

Hong, W.X.[Wei-Xiang], Wang, Z.Z.[Zhen-Zhen], Yang, M.[Ming], Yuan, J.S.[Jun-Song],
Conditional Generative Adversarial Network for Structured Domain Adaptation,
CVPR18(1335-1344)
IEEE DOI 1812
Semantics, Image segmentation, Generators, Training, Adaptation models, Neural networks, Gallium nitride BibRef

Chen, Q.C.[Qing-Chao], Liu, Y.[Yang], Wang, Z.W.[Zhao-Wen], Wassell, I.[Ian], Chetty, K.[Kevin],
Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation,
CVPR18(7976-7985)
IEEE DOI 1812
Feature extraction, Training, Task analysis, Adaptation models, Computer vision, Neural networks, Loss measurement BibRef

Mattyus, G., Urtasun, R.,
Matching Adversarial Networks,
CVPR18(8024-8032)
IEEE DOI 1812
Generators, Training, Task analysis, Perturbation methods, Generative adversarial networks, Image segmentation BibRef

Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.,
Generate to Adapt: Aligning Domains Using Generative Adversarial Networks,
CVPR18(8503-8512)
IEEE DOI 1812
Generators, Training, Adaptation models, Image generation, Data models, Task analysis BibRef

Gao, R., Lu, Y., Zhou, J., Zhu, S., Wu, Y.N.,
Learning Generative ConvNets via Multi-grid Modeling and Sampling,
CVPR18(9155-9164)
IEEE DOI 1812
Training, Monte Carlo methods, Data models, Maximum likelihood estimation, Energy resolution, Probabilistic logic BibRef

Zhang, Z., Yang, L., Zheng, Y.,
Translating and Segmenting Multimodal Medical Volumes with Cycle- and Shape-Consistency Generative Adversarial Network,
CVPR18(9242-9251)
IEEE DOI 1812
Image segmentation, Generators, Biomedical imaging, Task analysis, Computed tomography, Training BibRef

Chavdarova, T., Fleuret, F.,
SGAN: An Alternative Training of Generative Adversarial Networks,
CVPR18(9407-9415)
IEEE DOI 1812
Computer vision, Pattern recognition BibRef

Mopuri, K.R., Ojha, U., Garg, U., Babu, R.V.,
NAG: Network for Adversary Generation,
CVPR18(742-751)
IEEE DOI 1812
Perturbation methods, Generators, Generative adversarial networks, Training, Machine learning, Neural networks BibRef

Qi, G., Zhang, L., Hu, H., Edraki, M., Wang, J., Hua, X.,
Global Versus Localized Generative Adversarial Nets,
CVPR18(1517-1525)
IEEE DOI 1812
Manifolds, Generators, Geometry, Training, Data models, Semisupervised learning BibRef

Pal, A., Balasubramanian, V.N.,
Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data,
CVPR18(1556-1565)
IEEE DOI 1812
Labeling, Data models, Generative adversarial networks, Computational modeling, Programming BibRef

Lee, K., Xu, W., Fan, F., Tu, Z.,
Wasserstein Introspective Neural Networks,
CVPR18(3702-3711)
IEEE DOI 1812
Generative adversarial networks, Training, Generators, Computational modeling, Convolutional neural networks BibRef

Poursaeed, O., Katsman, I., Gao, B., Belongie, S.,
Generative Adversarial Perturbations,
CVPR18(4422-4431)
IEEE DOI 1812
Perturbation methods, Generators, Task analysis, Semantics, Image segmentation, Iterative methods, Training BibRef

Ma, S., Fu, J., Chen, C.W., Mei, T.,
DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial Networks,
CVPR18(5657-5666)
IEEE DOI 1812
Task analysis, Semantics, Generative adversarial networks, Birds, Geometry BibRef

Shen, Y., Ji, R., Zhang, S., Zuo, W., Wang, Y.,
Generative Adversarial Learning Towards Fast Weakly Supervised Detection,
CVPR18(5764-5773)
IEEE DOI 1812
Detectors, Proposals, Generators, Training, Pipelines, Generative adversarial networks BibRef

Hosseini, H., Poovendran, R.,
Semantic Adversarial Examples,
PRIV18(1695-16955)
IEEE DOI 1812
Image color analysis, Perturbation methods, Semantics, Shape, Security, Automobiles, Marine vehicles BibRef

Dizaji, K.G., Zheng, F., Nourabadi, N.S., Yang, Y., Deng, C., Huang, H.,
Unsupervised Deep Generative Adversarial Hashing Network,
CVPR18(3664-3673)
IEEE DOI 1812
Generators, Training, Task analysis, Generative adversarial networks, Binary codes BibRef

Cao, Y., Liu, B., Long, M., Wang, J.,
HashGAN: Deep Learning to Hash with Pair Conditional Wasserstein GAN,
CVPR18(1287-1296)
IEEE DOI 1812
Generators, Quantization (signal), Training, Training data, Generative adversarial networks BibRef

Zhang, C., Feng, Y., Qiang, B., Shang, J.,
Wasserstein Generative Recurrent Adversarial Networks for Image Generating,
ICPR18(242-247)
IEEE DOI 1812
Generators, Generative adversarial networks, Training, Mathematical model, Earth, Image generation, recurrent nerual netwoks BibRef

Fang, Y., Yuan, Q., Zhang, W., Zhang, Z.,
Diversified Dual Domain-Adversarial Neural Networks,
ICPR18(615-620)
IEEE DOI 1812
Feature extraction, Adaptation models, Training, Task analysis, Neural networks, Data models BibRef

Yu, P., Song, K., Lu, J.,
Generating Adversarial Examples With Conditional Generative Adversarial Net,
ICPR18(676-681)
IEEE DOI 1812
Training, Perturbation methods, Generators, Data models, Generative adversarial networks, Computational modeling, BibRef

Sun, D., Zhang, Q., Yang, J.,
Pyramid Embedded Generative Adversarial Network for Automated Font Generation,
ICPR18(976-981)
IEEE DOI 1812
Generators, Decoding, Generative adversarial networks, Training, Task analysis, Image generation BibRef

Wu, K., Zhang, C.,
Deep Generative Adversarial Networks for the Sparse Signal Denoising,
ICPR18(1127-1132)
IEEE DOI 1812
Noise reduction, Encoding, Task analysis, Data models, Generative adversarial networks BibRef

Guo, Y.[Ye], Liu, K.[Ke], Yu, Z.Y.[Ze-Yun],
Porous Structure Design in Tissue Engineering Using Anisotropic Radial Basis Functions,
ISVC18(79-90).
Springer DOI 1811
BibRef

Makkapati, V.V.[Vishnu Vardhan], Patro, A., (2017)
Enhancing Symmetry in GAN Generated Fashion Images,
SGAI17(xx-yy).
Springer DOI LNCS 10630. 1811
BibRef

Patro, A., Makkapati, V.V.[Vishnu Vardhan], Mukhopadhyay, J.,
Evaluation of Loss Functions for Estimation of Latent Vectors from GAN,
MLSP18(1-6).
IEEE DOI 1811
BibRef

Tran, N.T.[Ngoc-Trung], Bui, T.A.[Tuan-Anh], Cheung, N.M.[Ngai-Man],
Dist-GAN: An Improved GAN Using Distance Constraints,
ECCV18(XIV: 387-401).
Springer DOI 1810
BibRef

Zhao, B.[Bo], Chang, B.[Bo], Jie, Z.[Zequn], Sigal, L.[Leonid],
Modular Generative Adversarial Networks,
ECCV18(XIV: 157-173).
Springer DOI 1810
BibRef

Zhou, W.[Wen], Hou, X.[Xin], Chen, Y.J.[Yong-Jun], Tang, M.Y.[Meng-Yun], Huang, X.Q.[Xiang-Qi], Gan, X.[Xiang], Yang, Y.[Yong],
Transferable Adversarial Perturbations,
ECCV18(XIV: 471-486).
Springer DOI 1810
BibRef

Jha, A.H.[Ananya Harsh], Anand, S.[Saket], Singh, M.[Maneesh], Veeravasarapu, V.S.R.,
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-encoders,
ECCV18(III: 829-845).
Springer DOI 1810
BibRef

Edraki, M.[Marzieh], Qi, G.J.[Guo-Jun],
Generalized Loss-Sensitive Adversarial Learning with Manifold Margins,
ECCV18(VI: 90-104).
Springer DOI 1810
BibRef

Vivek, B.S., Mopuri, K.R.[Konda Reddy], Babu, R.V.[R. Venkatesh],
Gray-Box Adversarial Training,
ECCV18(XV: 213-228).
Springer DOI 1810
BibRef

Wang, J.[Jue], Cherian, A.[Anoop], Porikli, F.M.[Fatih M.], Gould, S.,
Video Representation Learning Using Discriminative Pooling,
CVPR18(1149-1158)
IEEE DOI 1812
Support vector machines, Computational modeling, Task analysis, Feature extraction, Computer vision, Data models, Kernel BibRef

Wang, J.[Jue], Cherian, A.[Anoop],
Learning Discriminative Video Representations Using Adversarial Perturbations,
ECCV18(II: 716-733).
Springer DOI 1810
BibRef

Chang, C.C.[Chia-Che], Lin, C.H.[Chieh Hubert], Lee, C.R.[Che-Rung], Juan, D.C.[Da-Cheng], Wei, W.[Wei], Chen, H.T.[Hwann-Tzong],
Escaping from Collapsing Modes in a Constrained Space,
ECCV18(VII: 212-227).
Springer DOI 1810
mode collapse issue in GANs BibRef

Shmelkov, K.[Konstantin], Schmid, C.[Cordelia], Alahari, K.[Karteek],
How Good Is My GAN?,
ECCV18(II: 218-234).
Springer DOI 1810
BibRef

Liang, X.D.[Xiao-Dan], Zhang, H.[Hao], Lin, L.[Liang], Xing, E.[Eric],
Generative Semantic Manipulation with Mask-Contrasting GAN,
ECCV18(XIII: 574-590).
Springer DOI 1810
BibRef

Wu, J.Q.[Ji-Qing], Huang, Z.W.[Zhi-Wu], Thoma, J.[Janine], Acharya, D.[Dinesh], Van Gool, L.J.[Luc J.],
Wasserstein Divergence for GANs,
ECCV18(VI: 673-688).
Springer DOI 1810
BibRef

Ge, H.[Hao], Xia, Y.[Yin], Chen, X.[Xu], Berry, R.[Randall], Wu, Y.[Ying],
Fictitious GAN: Training GANs with Historical Models,
ECCV18(I: 122-137).
Springer DOI 1810
BibRef

Kang, G.L.[Guo-Liang], Zheng, L.[Liang], Yan, Y.[Yan], Yang, Y.[Yi],
Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: The Benefit of Target Expectation Maximization,
ECCV18(XI: 420-436).
Springer DOI 1810
BibRef

Xu, K.[Kai], Zhang, Z.[Zhikang], Ren, F.[Fengbo],
LAPRAN: A Scalable Laplacian Pyramid Reconstructive Adversarial Network for Flexible Compressive Sensing Reconstruction,
ECCV18(X: 491-507).
Springer DOI 1810
BibRef

Li, Y.[Ya], Tian, X.[Xinmei], Gong, M.M.[Ming-Ming], Liu, Y.J.[Ya-Jing], Liu, T.L.[Tong-Liang], Zhang, K.[Kun], Tao, D.C.[Da-Cheng],
Deep Domain Generalization via Conditional Invariant Adversarial Networks,
ECCV18(XV: 647-663).
Springer DOI 1810
BibRef

Zhang, X.[Xi], Lai, H.J.[Han-Jiang], Feng, J.S.[Jia-Shi],
Attention-Aware Deep Adversarial Hashing for Cross-Modal Retrieval,
ECCV18(XV: 614-629).
Springer DOI 1810
BibRef

Liang, J.[Jie], Yang, J.F.[Ju-Feng], Lee, H.Y.[Hsin-Ying], Wang, K.[Kai], Yang, M.H.[Ming-Hsuan],
Sub-GAN: An Unsupervised Generative Model via Subspaces,
ECCV18(XI: 726-743).
Springer DOI 1810
BibRef

Wang, G.[Guan'an], Hu, Q.[Qinghao], Cheng, J.[Jian], Hou, Z.G.[Zeng-Guang],
Semi-supervised Generative Adversarial Hashing for Image Retrieval,
ECCV18(XV: 491-507).
Springer DOI 1810
BibRef

Wu, Z.Y.[Zhen-Yu], Wang, Z.Y.[Zhang-Yang], Wang, Z.W.[Zhao-Wen], Jin, H.L.[Hai-Lin],
Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study,
ECCV18(XVI: 627-645).
Springer DOI
WWW Link. 1810
See also Privacy-Preserving Visual Recognition PA-HMDB51. BibRef

Sah, S.[Shagan], Shringi, A.[Ameya], Peri, D.[Dheeraj], Hamilton, J.[John], Savakis, A.[Andreas], Ptucha, R.[Ray],
Multimodal Reconstruction Using Vector Representation,
ICIP18(3763-3767)
IEEE DOI 1809
Image reconstruction, Training, Decoding, Visualization, Image generation, Task analysis, Correlation BibRef

Halici, E., Alatan, A.A.[A. Aydin],
Object Localization Without Bounding Box Information Using Generative Adversarial Reinforcement Learning,
ICIP18(3728-3732)
IEEE DOI 1809
Agriculture, Learning (artificial intelligence), Automobiles, Training, Image databases, Measurement, Object Localization, Generative Adversarial Reinforcement Learning BibRef

Chiaroni, F., Rahal, M., Hueber, N., Dufaux, F.,
Learning with A Generative Adversarial Network From a Positive Unlabeled Dataset for Image Classification,
ICIP18(1368-1372)
IEEE DOI 1809
Training, Generative adversarial networks, Learning systems, Computational modeling, Kernel, Neurons, Generative Models BibRef

Ravanbakhsh, M., Baydoun, M., Campo, D., Marin, P., Martin, D., Marcenaro, L., Regazzoni, C.S.,
Hierarchy of GANs for Learning Embodied Self-Awareness Model,
ICIP18(1987-1991)
IEEE DOI 1809
Data models, Optical imaging, Training, Task analysis, Generative adversarial networks, Anomaly detection BibRef

Kosmopoulos, D.I.,
A Prototype Towards Modeling Visual Data Using Decentralized Generative Adversarial Networks,
ICIP18(4163-4167)
IEEE DOI 1809
Training, Generative adversarial networks, Optimization, Generators, Data models, Games, decentralized learning, BibRef

Rukhkhattak, G., Vallecorsa, S., Carminati, F.,
Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation,
ICIP18(3913-3917)
IEEE DOI 1809
Generative adversarial networks, Detectors, Generators, Physics, Training, Monte Carlo methods, HEP, Simulation, GAN BibRef

Kancharla, P., Channappayya, S.S.,
Improving the Visual Quality of Generative Adversarial Network (GAN)-Generated Images Using the Multi-Scale Structural Similarity Index,
ICIP18(3908-3912)
IEEE DOI 1809
Generative adversarial networks, Visualization, Indexes, Standards, Image quality, Training, Natural Scene Statistics BibRef

Liu, Y., Wang, Q., Gu, Y., Kamijo, S.,
A Latent Space Understandable Generative Adversarial Network: SelfExGAN,
DICTA17(1-8)
IEEE DOI 1804
game theory, unsupervised learning, Self- ExGAN, adversarial learning, Training data BibRef

Li, X., Li, F.,
Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics,
ICCV17(5775-5783)
IEEE DOI 1802
convolution, image classification, image filtering, learning (artificial intelligence), neural nets, Training BibRef

Di, X., Yu, P.,
Max-Boost-GAN: Max Operation to Boost Generative Ability of Generative Adversarial Networks,
CEFR-LCV17(1156-1164)
IEEE DOI 1802
Convergence, Gallium nitride, Generators, Semantics, Training, Training data, Visualization BibRef

Di, X., Yu, P.,
Multiplicative Noise Channel in Generative Adversarial Networks,
CEFR-LCV17(1165-1172)
IEEE DOI 1802
Additive noise, Additives, Convergence, Gallium nitride, Gaussian noise, Uncertainty, Visualization BibRef

Giuffrida, M.V., Scharr, H., Tsaftaris, S.A.,
ARIGAN: Synthetic Arabidopsis Plants Using Generative Adversarial Network,
CVPPP17(2064-2071)
IEEE DOI 1802
Computational modeling, Data models, Gallium nitride, Generators, Neural networks, Training BibRef

Mukuta, Y., Ushiku, Y., Harada, T.,
Spatial-Temporal Weighted Pyramid Using Spatial Orthogonal Pooling,
CEFR-LCV17(1041-1049)
IEEE DOI 1802
Encoding, Feature extraction, Robustness, Spatial resolution, Standards BibRef

Harada, T., Saito, K., Mukuta, Y., Ushiku, Y.,
Deep Modality Invariant Adversarial Network for Shared Representation Learning,
TASKCV17(2623-2629)
IEEE DOI 1802
Feature extraction, Games, Gaussian distribution, Generators, Training, Videos BibRef

Metzen, J.H.[Jan Hendrik], Kumar, M.C.[Mummadi Chaithanya], Brox, T.[Thomas], Fischer, V.[Volker],
Universal Adversarial Perturbations Against Semantic Image Segmentation,
ICCV17(2774-2783)
IEEE DOI 1802
Noise specifically generated to fool the system. image denoising, image segmentation, learning (artificial intelligence), arbitrary inputs, BibRef

Moosavi-Dezfooli, S.M.[Seyed-Mohsen], Fawzi, A.[Alhussein], Fawzi, O.[Omar], Frossard, P.[Pascal],
Universal Adversarial Perturbations,
CVPR17(86-94)
IEEE DOI 1711
Computer architecture, Correlation, Neural networks, Optimization, Robustness, Training, Visualization BibRef

Narodytska, N., Kasiviswanathan, S.,
Simple Black-Box Adversarial Attacks on Deep Neural Networks,
PRIV17(1310-1318)
IEEE DOI 1709
Computer vision, Knowledge engineering, Network architecture, Neural networks, Robustness, Training BibRef

Wang, X., Shrivastava, A., Gupta, A.,
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection,
CVPR17(3039-3048)
IEEE DOI 1711
Detectors, Feature extraction, Object detection, Proposals, Strain, Training BibRef

Huang, X.[Xun], Li, Y.X.[Yi-Xuan], Poursaeed, O.[Omid], Hopcroft, J.[John], Belongie, S.J.[Serge J.],
Stacked Generative Adversarial Networks,
CVPR17(1866-1875)
IEEE DOI 1711
Data models, Entropy, Generators, Image reconstruction, Training BibRef

Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.,
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks,
CVPR17(95-104)
IEEE DOI 1711
Adaptation models, Feature extraction, Gallium nitride, Generators, Google, Training BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Networks for Image Synthesis .


Last update:Nov 23, 2020 at 10:27:11