Levenstein, A.,
Binary Codes Capable of Correcting Deletions, Insertions and Reversals,
Soviet Physics-Doklandy(10), 1966.
The initial description of edit distance.
BibRef
6600
Sanfeliu, A., and
Fu, K.S.,
A Distance Measure between
Attributed Relational Graphs for Pattern Recognition,
SMC(13), No. 3, May/June 1983, pp. 353-362.
Graph edit matching process.
BibRef
8305
Sanfeliu, A.,
Fu, K.S.,
Prewitt, J.M.S.,
An Application of a Graph Distance Measure to the
Classification of muscle Tissue Patterns,
PRAI(1), 1987, pp. 17-42.
BibRef
8700
Eshera, M.A.,
Fu, K.S.,
A Graph Distance Measure for Image Analysis,
SMC(14), No. 3, May/June 1984, pp. 398-408.
See also Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching, An.
BibRef
8405
Eshera, M.A.,
Fu, K.S.,
A Similarity Measure Between Attributed Relational Graphs for
Image Analysis,
ICPR84(75-77).
BibRef
8400
Oommen, B.J.,
Recognition of Noisy Subsequences Using Constrained Edit Distances,
PAMI(9), No. 5, September 1987, pp. 676-685.
BibRef
8709
And:
Correction:
PAMI(10), No. 6, November 1988, pp. 983.
String Matching.
BibRef
Marzal, A.,
Vidal, E.,
Computation of normalized edit distance and applications,
PAMI(15), No. 9, September 1993, pp. 926-932.
IEEE DOI
0401
BibRef
Vidal, E.,
Marzal, A.,
Aibar, P.,
Fast Computation of Normalized Edit Distances,
PAMI(17), No. 9, September 1995, pp. 899-902.
IEEE DOI
BibRef
9509
Marzal, A.,
Barrachina, S.,
Speeding up the Computation of the Edit Distance for Cyclic Strings,
ICPR00(Vol II: 891-894).
IEEE DOI
0009
BibRef
Peris, G.,
Marzal, A.,
Fast cyclic edit distance computation with weighted edit costs in
classification,
ICPR02(IV: 184-187).
IEEE DOI
0211
BibRef
Zhang, K.Z.[Kai-Zhong],
Algorithms for the constrained editing distance between ordered labeled
trees and related problems,
PR(28), No. 3, March 1995, pp. 463-474.
Elsevier DOI
0401
BibRef
Zhang, K.,
A Constrained Edit Distance between Unordered Labeled Trees,
Algorithmica(15), No. 6, 1996, pp. 205-222.
BibRef
9600
Bunke, H.,
On A Relation Between Graph Edit Distance and Maximum Common Subgraph,
PRL(18), No. 8, August 1997, pp. 689-694.
9801
BibRef
Lladós, J.[Josep],
Martí, E.[Enric],
Villanueva, J.J.[Juan José],
Symbol Recognition by Error-Tolerant Subgraph Matching between
Region Adjacency Graphs,
PAMI(23), No. 10, October 2001, pp. 1137-1143.
IEEE DOI
0110
Match two RAGs using edit operators. To match with errors in the data.
BibRef
Cross, A.D.J.[Andrew D.J.],
Myers, R.[Richard],
Hancock, E.R.[Edwin R.],
Convergence of a hill-climbing genetic algorithm for graph matching,
PR(33), No. 11, November 2000, pp. 1863-1880.
Elsevier DOI
0011
BibRef
Myers, R.[Richard],
Hancock, E.R.[Edwin R.],
Least-commitment graph matching with genetic algorithms,
PR(34), No. 2, February 2001, pp. 375-394.
Elsevier DOI
0011
BibRef
Earlier:
Least Commitment Graph Matching by Evolutionary Optimisation,
ECCV00(I: 203-219).
Springer DOI
0003
BibRef
Myers, R.[Richard],
Wilson, R.C.,
Hancock, E.R.,
Bayesian Graph Edit Distance,
PAMI(22), No. 6, June 2000, pp. 628-635.
IEEE DOI
0008
BibRef
Earlier:
CIAP99(1166-1171).
IEEE DOI
9909
BibRef
Earlier: A2, A3, A1:
Efficient Relational Matching with Local Edit Distance,
ICPR98(Vol II: 1711-1714).
IEEE DOI
9808
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
Graph Edit Distance from Spectral Seriation,
PAMI(27), No. 3, March 2005, pp. 365-378.
IEEE Abstract.
0501
Convert graphs to strings so that string matching may be used.
BibRef
Yu, H.[Hang],
Hancock, E.R.[Edwin R.],
String Kernels for Matching Seriated Graphs,
ICPR06(IV: 224-228).
IEEE DOI
0609
BibRef
Earlier:
Machine Learning with Seriated Graphs,
IbPRIA05(II:155).
Springer DOI
0509
BibRef
And:
Eigenspaces from Seriated Graphs,
CAIP05(179).
Springer DOI
0509
Graph to string (seriation), then learn structure.
BibRef
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
Computing approximate tree edit distance using relaxation labeling,
PRL(24), No. 8, May 2003, pp. 1089-1097.
Elsevier DOI
0304
BibRef
Earlier:
Efficiently Computing Weighted Tree Edit Distance Using Relaxation
Labeling,
EMMCVPR01(438-453).
Springer DOI
0205
BibRef
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
Matching and Embedding through Edit-Union of Trees,
ECCV02(III: 822 ff.).
Springer DOI
0205
tree edit distance for matching tree structures
BibRef
Xia, S.P.[Sheng-Ping],
Ren, P.[Peng],
Hancock, E.R.[Edwin R.],
Ranking the local invariant features for the robust visual saliencies,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Xia, S.P.[Sheng-Ping],
Liu, J.J.[Jian-Jun],
Hancock, E.R.[Edwin R.],
Mining Exemplars for Object Modelling Using Affinity Propagation,
ICPR10(918-921).
IEEE DOI
1008
BibRef
Xia, S.P.[Sheng-Ping],
Hancock, E.R.[Edwin R.],
Incrementally Discovering Object Classes Using Similarity Propagation
and Graph Clustering,
ACCV09(III: 373-383).
Springer DOI
0909
BibRef
And:
Graph-Based Object Class Discovery,
CAIP09(385-393).
Springer DOI
0909
BibRef
And:
Learning Class Specific Graph Prototypes,
CIAP09(269-277).
Springer DOI
0909
BibRef
Earlier:
Clustering Using Class Specific Hyper Graphs,
SSPR08(318-328).
Springer DOI
0812
BibRef
Xia, S.P.[Sheng-Ping],
Hancock, E.R.[Edwin R.],
Pairwise Similarity Propagation Based Graph Clustering for Scalable
Object Indexing and Retrieval,
GbRPR09(184-194).
Springer DOI
0905
BibRef
Earlier:
3D Object Recognition Using Hyper-Graphs and Ranked Local Invariant
Features,
SSPR08(117-126).
Springer DOI
0812
BibRef
Ren, P.[Peng],
Aleksic, T.[Tatjana],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
A polynomial characterization of hypergraphs using the Ihara zeta
function,
PR(44), No. 9, September 2011, pp. 1941-1957.
Elsevier DOI
1106
BibRef
Earlier:
Hypergraphs, Characteristic Polynomials and the Ihara Zeta Function,
CAIP09(369-376).
Springer DOI
0909
Hypergraph characterization; Ihara coefficients; Spectral analysis
BibRef
Ren, P.[Peng],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
High Order Structural Matching Using Dominant Cluster Analysis,
CIAP11(I: 1-8).
Springer DOI
1109
BibRef
Ren, P.[Peng],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Weighted graph characteristics from oriented line graph polynomials,
ICCV09(2280-2287).
IEEE DOI
0909
BibRef
And:
Characteristic Polynomial Analysis on Matrix Representations of Graphs,
GbRPR09(243-252).
Springer DOI
0905
BibRef
Ren, P.[Peng],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Spectral Embedding of Feature Hypergraphs,
SSPR08(308-317).
Springer DOI
0812
BibRef
Ren, P.[Peng],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Pattern vectors from the Ihara zeta function,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Graph Characteristics from the Ihara Zeta Function,
SSPR08(257-266).
Springer DOI
0812
BibRef
Bai, L.[Lu],
Escolano, F.[Francisco],
Hancock, E.R.[Edwin R.],
Depth-based hypergraph complexity traces from directed line graphs,
PR(54), No. 1, 2016, pp. 229-240.
Elsevier DOI
1603
Hypergraphs
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Depth-based complexity traces of graphs,
PR(47), No. 3, 2014, pp. 1172-1186.
Elsevier DOI
1312
Depth-based complexity traces
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Ren, P.[Peng],
Escolano, F.[Francisco],
Directed Depth-Based Complexity Traces of Hypergraphs from Directed
Line Graphs,
ICPR14(3874-3879)
IEEE DOI
1412
Characterize hyper graphs in terms of structural complexities.
Accuracy; Entropy; Kernel; Testing; Time complexity; Vectors
BibRef
Bai, L.[Lu],
Zhang, Z.H.[Zhi-Hong],
Ren, P.[Peng],
Hancock, E.R.[Edwin R.],
A High-Order Depth-Based Graph Matching Method,
CAIP15(I:465-476).
Springer DOI
1511
BibRef
Aziz, F.[Furqan],
Wilson, R.C.[Richard C.],
Analysis of Wave Packet Signature of a Graph,
CAIP13(128-136).
Springer DOI
1308
BibRef
Aziz, F.[Furqan],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Graph Characterization Using Wave Kernel Trace,
ICPR14(3822-3827)
IEEE DOI
1412
BibRef
Earlier:
Commute Time for a Gaussian Wave Packet on a Graph,
SSSPR14(374-383).
Springer DOI
1408
Eigenvalues and eigenfunctions
BibRef
Aziz, F.[Furqan],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Kernelising the Ihara Zeta Function,
CAIP11(I: 219-227).
Springer DOI
1109
BibRef
Escolano, F.[Francisco],
Giorgi, D.[Daniela],
Hancock, E.R.[Edwin R.],
Lozano, M.A.[Miguel A.],
Falcidieno, B.[Bianca],
Flow Complexity: Fast Polytopal Graph Complexity and 3D Object
Clustering,
GbRPR09(253-262).
Springer DOI
0905
BibRef
Escolano, F.[Francisco],
Hancock, E.R.[Edwin R.],
Lozano, M.A.[Miguel A.],
Polytopal Graph Complexity, Matrix Permanents, and Embedding,
SSPR08(237-246).
Springer DOI
0812
BibRef
Wei, J.[Jie],
Markov edit distance,
PAMI(26), No. 3, March 2004, pp. 311-321.
IEEE Abstract.
0402
BibRef
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Self-Organizing Maps for Learning the Edit Costs in Graph Matching,
SMC-B(35), No. 3, June 2005, pp. 503-514.
IEEE DOI
0508
BibRef
Earlier:
A probabilistic approach to learning costs for graph edit distance,
ICPR04(III: 389-393).
IEEE DOI
0409
BibRef
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Bridging the Gap Between Graph Edit Distance and Kernel Machines,
World ScientificSeptember 2007.
ISBN: 978-981-270-817-5
Survey, Graph Matching. Buy this book: Bridging the Gap Between Graph Edit Distance and Kernel Machines (Series in Machine Perception and Artificial Intelligence)
BibRef
0709
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Edit distance-based kernel functions for structural pattern
classification,
PR(39), No. 10, October 2006, pp. 1852-1863.
Elsevier DOI
BibRef
0610
And:
A Convolution Edit Kernel for Error-tolerant Graph Matching,
ICPR06(IV: 220-223).
IEEE DOI
0609
BibRef
And:
A Random Walk Kernel Derived from Graph Edit Distance,
SSPR06(191-199).
Springer DOI
0608
String matching; Graph matching; Kernel methods; Support vector machine
0606
BibRef
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Graph-Based Multiple Classifier Systems A Data Level Fusion Approach,
CIAP05(479-486).
Springer DOI
0509
BibRef
Neuhaus, M.[Michel],
Bunke, H.[Horst],
A Quadratic Programming Approach to the Graph Edit Distance Problem,
GbRPR07(92-102).
Springer DOI
0706
BibRef
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Approximate graph edit distance computation by means of bipartite graph
matching,
IVC(27), No. 7, 4 June 2009, pp. 950-959.
Elsevier DOI
0904
Graph based representation; Graph edit distance; Bipartite graph matching
BibRef
Riesen, K.[Kaspar],
Ferrer, M.[Miquel],
Predicting the correctness of node assignments in bipartite graph
matching,
PRL(69), No. 1, 2016, pp. 8-14.
Elsevier DOI
1601
Graph edit distance
BibRef
Fuchs, M.[Mathias],
Riesen, K.[Kaspar],
Matching of Matching-Graphs:
A Novel Approach for Graph Classification,
ICPR21(6570-6576)
IEEE DOI
2105
Data acquisition, Data structures, Encoding, Pattern matching,
Graph Matching, Matching-Graphs, Graph Edit Distance
BibRef
Riesen, K.[Kaspar],
Ferrer, M.[Miquel],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Approximation of Graph Edit Distance in Quadratic Time,
GbRPR15(3-12).
Springer DOI
1511
BibRef
Riesen, K.[Kaspar],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Improved Graph Edit Distance Approximation with Simulated Annealing,
GbRPR17(222-231).
Springer DOI
1706
BibRef
Earlier: A1, A3, A2:
Improving Graph Edit Distance Approximation by Centrality Measures,
ICPR14(3910-3914)
IEEE DOI
1412
BibRef
Earlier: A1, A2, A3:
Improving Approximate Graph Edit Distance Using Genetic Algorithms,
SSSPR14(63-72).
Springer DOI
1408
Approximation algorithms.
BibRef
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Improving Bipartite Graph Edit Distance Approximation Using Various
Search Strategies,
PR(48), No. 4, 2015, pp. 1349-1363.
Elsevier DOI
1502
BibRef
Earlier:
Improving Approximate Graph Edit Distance by Means of a Greedy Swap
Strategy,
ICISP14(314-321).
Springer DOI
1406
Bipartite graph matching
See also Improving Bipartite Graph Matching by Assessing the Assignment Confidence.
BibRef
Fischer, A.[Andreas],
Plamondon, R.[Réjean],
Savaria, Y.[Yvon],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance,
SSSPR14(83-92).
Springer DOI
1408
BibRef
Fankhauser, S.[Stefan],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Speeding Up Graph Edit Distance Computation through Fast Bipartite
Matching,
GbRPR11(102-111).
Springer DOI
1105
BibRef
Riesen, K.[Kaspar],
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Graph Embedding in Vector Spaces by Means of Prototype Selection,
GbRPR07(383-393).
Springer DOI
0706
BibRef
And:
Bipartite Graph Matching for Computing the Edit Distance of Graphs,
GbRPR07(1-12).
Springer DOI
0706
BibRef
Earlier: A2, A1, A3:
Fast Suboptimal Algorithms for the Computation of Graph Edit Distance,
SSPR06(163-172).
Springer DOI
0608
BibRef
Bunke, H.[Horst],
Riesen, K.[Kaspar],
Improving vector space embedding of graphs through feature selection
algorithms,
PR(44), No. 9, September 2011, pp. 1928-1940.
Elsevier DOI
1106
BibRef
Earlier: A2, A1:
Feature Ranking Algorithms for Improving Classification of Vector Space
Embedded Graphs,
CAIP09(377-384).
Springer DOI
0909
Graph embedding; Feature selection; Dissimilarity representation;
Graph classification
BibRef
Riesen, K.[Kaspar],
Fankhauser, S.[Stefan],
Bunke, H.[Horst],
Dickinson, P.[Peter],
Efficient Suboptimal Graph Isomorphism,
GbRPR09(124-133).
Springer DOI
0905
BibRef
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Graph Classification and Clustering Based on Vector Space Embedding,
World ScientificSingapore, 2010
ISBN: 978-981-4304-71-9.
HTML Version.
Buy this book: Graph Classification and Clustering Based on Vector Space Embedding (Series in Machine Perception and Artificial Intelligence)
Graph-based pattern recognition based on vector space embedding of graphs.
Condense the representational power of graphs into
computationally efficient and mathematically convenient feature vector.
BibRef
1000
Bunke, H.[Horst],
Riesen, K.[Kaspar],
Towards the unification of structural and statistical pattern
recognition,
PRL(33), No. 7, 1 May 2012, pp. 811-825.
Elsevier DOI
1203
Award, King Sun Fu. Plus 3 invited, related papers included in issue.
BibRef
Earlier:
Graph Classification Based on Dissimilarity Space Embedding,
SSPR08(996-1007).
Springer DOI
0812
BibRef
And:
Graph Classification on Dissimilarity Space Embedding,
SSPR08(2).
Springer DOI
0812
BibRef
Earlier:
A Family of Novel Graph Kernels for Structural Pattern Recognition,
CIARP07(20-31).
Springer DOI
0711
Statistical pattern recognition; Structural pattern recognition; Graph
classification; Graph clustering; Graph kernel; Graph embedding
BibRef
Ferrer, M.,
Valveny, E.,
Serratosa, F.,
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Generalized Median Graph Computation by Means of Graph Embedding in
Vector Spaces,
PR(43), No. 4, April 2010, pp. 1642-1655.
Elsevier DOI
1002
Graph matching; Weighted mean of graphs; Median graph; Graph
embedding; Vector spaces
See also Generalized Median String Computation by Means of String Embedding in Vector Spaces.
BibRef
Gibert, J.[Jaume],
Valveny, E.[Ernest],
Bunke, H.[Horst],
Graph embedding in vector spaces by node attribute statistics,
PR(45), No. 9, September 2012, pp. 3072-3083.
Elsevier DOI
1206
Structural pattern recognition; Graph embedding; Data clustering; Graph
classification
BibRef
Gibert, J.[Jaume],
Valveny, E.[Ernest],
Bunke, H.[Horst],
Feature selection on node statistics based embedding of graphs,
PRL(33), No. 15, 1 November 2012, pp. 1980-1990.
Elsevier DOI
1210
Structural pattern recognition; Graph embedding; Feature ranking; PCA;
Graph classification
See also generic framework for median graph computation based on a recursive embedding approach, A.
BibRef
Gibert, J.[Jaume],
Valveny, E.[Ernest],
Bunke, H.[Horst],
Graph Clustering through Attribute Statistics Based Embedding,
CAIP13(302-309).
Springer DOI
1308
BibRef
Earlier:
Vocabulary Selection for Graph of Words Embedding,
IbPRIA11(216-223).
Springer DOI
1106
BibRef
Earlier:
Dimensionality Reduction for Graph of Words Embedding,
GbRPR11(22-31).
Springer DOI
1105
BibRef
Earlier:
Graph of Words Embedding for Molecular Structure-Activity Relationship
Analysis,
CIARP10(30-37).
Springer DOI
1011
Discovering chemical activity of molecular compounds based on their structure.
See also Recursive Embedding Approach to Median Graph Computation, A.
BibRef
Gibert, J.[Jaume],
Valveny, E.[Ernest],
Bunke, H.[Horst],
Fornés, A.[Alicia],
On the Correlation of Graph Edit Distance and L1 Distance in the
Attribute Statistics Embedding Space,
SSSPR12(135-143).
Springer DOI
1211
BibRef
Spillmann, B.[Barbara],
Neuhaus, M.[Michel],
Bunke, H.[Horst],
Pekalska, E.[Elzbieta],
Duin, R.P.W.[Robert P. W.],
Transforming Strings to Vector Spaces Using Prototype Selection,
SSPR06(287-296).
Springer DOI
0608
BibRef
Richiardi, J.[Jonas],
van de Ville, D.[Dimitri],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Vector Space Embedding of Undirected Graphs with Fixed-cardinality
Vertex Sequences for Classification,
ICPR10(902-905).
IEEE DOI
1008
BibRef
Justice, D.[Derek],
Hero, A.O.[Alfred O.],
A Binary Linear Programming Formulation of the Graph Edit Distance,
PAMI(28), No. 8, August 2006, pp. 1200-1214.
IEEE DOI
0606
Use for comparing graphs.
BibRef
Li, Y.J.[Yu-Jian],
Bo, L.[Liu],
A Normalized Levenshtein Distance Metric,
PAMI(29), No. 6, June 2007, pp. 1091-1095.
IEEE DOI
0704
Normalized edit distance, especially for strings.
BibRef
Bille, P.,
A survey on tree edit distance and related problems,
TCS(337), No. 1-3, 2005, pp. 217-239.
Elsevier DOI
Survey, Tree Edit.
BibRef
0500
Bernard, M.[Marc],
Boyer, L.[Laurent],
Habrard, A.[Amaury],
Sebban, M.[Marc],
Learning probabilistic models of tree edit distance,
PR(41), No. 8, August 2008, pp. 2611-2629.
Elsevier DOI
0805
Tree edit distance; EM algorithm; Generative model; Discriminative model
BibRef
Bellet, A.[Aurelien],
Bernard, M.[Marc],
Murgue, T.[Thierry],
Sebban, M.[Marc],
Learning state machine-based string edit kernels,
PR(43), No. 6, June 2010, pp. 2330-2339.
Elsevier DOI
1003
String kernel; Marginalized kernel; Learned edit distance
See also Learning stochastic edit distance: Application in handwritten character recognition.
BibRef
Gao, X.B.[Xin-Bo],
Xiao, B.[Bing],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Image categorization: Graph edit distance+edge direction histogram,
PR(41), No. 10, October 2008, pp. 3179-3191.
Elsevier DOI
0808
Inexact graph matching; Graph edit distance (GED);
Edge direction histogram (EDH); Earth mover's distance (EMD);
Image categorization
BibRef
Akutsu, T.[Tatsuya],
Tree Edit Distance Problems:
Algorithms and Applications to Bioinformatics,
IEICE(E93-D), No. 2, February 2010, pp. 208-218.
WWW Link.
1002
BibRef
Garcia-Diez, S.[Silvia],
Fouss, F.[Francois],
Shimbo, M.[Masashi],
Saerens, M.[Marco],
A sum-over-paths extension of edit distances accounting for all
sequence alignments,
PR(44), No. 6, June 2011, pp. 1172-1182.
Elsevier DOI
1102
Edit distance; Longest common subsequence; Sequence comparison;
Approximate string matching; Dynamic programming; Viterbi algorithm;
Shortest path
BibRef
Wang, T.[Tao],
Dai, G.J.[Guo-Jun],
Ni, B.B.[Bing-Bing],
Xu, D.[De],
Siewe, F.[Francois],
A distance measure between labeled combinatorial maps,
CVIU(116), No. 12, December 2012, pp. 1168-1177.
Elsevier DOI
1210
Combinatorial map; Edit distance; Pattern recognition; Graph
BibRef
Combier, C.[Camille],
Damiand, G.[Guillaume],
Solnon, C.[Christine],
From maximum common submaps to edit distances of generalized maps,
PRL(33), No. 15, 1 November 2012, pp. 2020-2028.
Elsevier DOI
1210
Generalized map; Edit distance; Partial submap isomorphism; Metric
distance
BibRef
Gaüzère, B.[Benoit],
Brun, L.[Luc],
Villemin, D.[Didier],
Two new graphs kernels in chemoinformatics,
PRL(33), No. 15, 1 November 2012, pp. 2038-2047.
Elsevier DOI
1210
BibRef
And:
Graph Kernels: Crossing Information from Different Patterns Using Graph
Edit Distance,
SSSPR12(42-50).
Springer DOI
1211
BibRef
Earlier:
Two New Graph Kernels and Applications to Chemoinformatics,
GbRPR11(112-121).
Springer DOI
1105
Chemoinformatics; Graph kernel; Machine learning.
Edit distance.
Discovery of molecule's properties.
BibRef
Bougleux, S.[Sébastien],
Gaüzère, B.[Benoit],
Brun, L.[Luc],
A Hungarian Algorithm for Error-Correcting Graph Matching,
GbRPR17(118-127).
Springer DOI
1706
BibRef
Gaüzère, B.[Benoit],
Brun, L.[Luc],
Villemin, D.[Didier],
Graph Kernel Encoding Substituents' Relative Positioning,
ICPR14(637-642)
IEEE DOI
1412
Complexity theory
BibRef
Gaüzère, B.[Benoit],
Grenier, P.A.[Pierre-Anthony],
Brun, L.[Luc],
Villemin, D.[Didier],
Treelet kernel incorporating cyclic, stereo and inter pattern
information in chemoinformatics,
PR(48), No. 2, 2015, pp. 356-367.
Elsevier DOI
1411
Chemoinformatics
BibRef
Grenier, P.A.[Pierre-Anthony],
Brun, L.[Luc],
Villemin, D.[Didier],
Chemoinformatics and stereoisomerism:
A stereo graph kernel together with three new extensions,
PRL(87), No. 1, 2017, pp. 222-230.
Elsevier DOI
1703
BibRef
Earlier:
From Bags to Graphs of Stereo Subgraphs in Order to Predict Molecule'S
Properties,
GbRPR15(305-314).
Springer DOI
1511
Chemoinformatics
BibRef
Gauzere, B.[Benoit],
Brun, L.[Luc],
Villemin, D.[Didier],
Brun, M.[Myriam],
Graph kernels based on relevant patterns and cycle information for
chemoinformatics,
ICPR12(1775-1778).
WWW Link.
1302
BibRef
Hafiane, R.[Rachid],
Brun, L.[Luc],
Tabbone, S.A.[Salvatore A.],
Incremental Embedding Within a Dissimilarity-Based Framework,
GbRPR15(64-73).
Springer DOI
1511
BibRef
Gaüzère, B.[Benoit],
Hasegawa, M.[Makoto],
Brun, L.[Luc],
Tabbone, S.A.[Salvatore A.],
Implicit and Explicit Graph Embedding:
Comparison of Both Approaches on Chemoinformatics Applications,
SSSPR12(510-518).
Springer DOI
1211
BibRef
Abreu, J.,
Rico-Juan, J.R.,
An improved fast edit approach for two-string approximated mean
computation applied to OCR,
PRL(34), No. 5, 1 April 2013, pp. 496-504.
Elsevier DOI
1303
Dataset editing; Shape prototypes; Edit distance; Median string
BibRef
Xiao, B.[Bing],
Gao, X.B.[Xin-Bo],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Biview face recognition in the shape-texture domain,
PR(46), No. 7, July 2013, pp. 1906-1919.
Elsevier DOI
1303
Face recognition; Texture model; Shape topology; Graph edit distance;
Active appearance model
BibRef
Yahiaoui, S.[Saïd],
Haddad, M.[Mohammed],
Effantin, B.[Brice],
Kheddouci, H.[Hamamache],
Coloring based approach for matching unrooted and/or unordered trees,
PRL(34), No. 6, 15 April 2013, pp. 686-695.
Elsevier DOI
1303
Edit distance; Graph matching; Unrooted tree; Unordered tree
BibRef
Fischer, A.[Andreas],
Suen, C.Y.[Ching Y.],
Frinken, V.[Volkmar],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Approximation of graph edit distance based on Hausdorff matching,
PR(48), No. 2, 2015, pp. 331-343.
Elsevier DOI
1411
Graph edit distance
BibRef
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Improved quadratic time approximation of graph edit distance by
combining Hausdorff matching and greedy assignment,
PRL(87), No. 1, 2017, pp. 55-62.
Elsevier DOI
1703
Graph matching
BibRef
Gouda, K.[Karam],
Arafa, M.[Mona],
An improved global lower bound for graph edit similarity search,
PRL(58), No. 1, 2015, pp. 8-14.
Elsevier DOI
1505
Graph edit distance
BibRef
Palazón-González, V.[Vicente],
Marzal, A.[Andrés],
Speeding up the cyclic edit distance using LAESA with early abandon,
PRL(62), No. 1, 2015, pp. 1-7.
Elsevier DOI
1507
Cyclic strings
BibRef
Serratosa, F.[Francesc],
Fast computation of Bipartite graph matching,
PRL(45), No. 1, 2014, pp. 244-250.
Elsevier DOI
1407
BibRef
And:
Earlier:
Corrigendum:
PRL(52), No. 1, 2015, pp. 101.
Elsevier DOI
1402
Graph Edit Distance
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Interactive graph-matching using active query strategies,
PR(48), No. 4, 2015, pp. 1364-1373.
Elsevier DOI
1502
Error-tolerant graph matching
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Sole-Ribalta, A.[Albert],
Interactive graph matching by means of imposing the pairwise costs,
ICPR12(1298-1301).
WWW Link.
1302
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Graph Edit Distance: Moving from global to local structure to solve
the graph-matching problem,
PRL(65), No. 1, 2015, pp. 204-210.
Elsevier DOI
1511
Error-tolerant graph matching
BibRef
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
Riesen, K.[Kaspar],
On the Relevance of Local Neighbourhoods for Greedy Graph Edit Distance,
SSSPR16(121-131).
Springer DOI
1611
BibRef
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
Learning graph-matching edit-costs based on the optimality of the
oracle's node correspondences,
PRL(56), No. 1, 2015, pp. 22-29.
Elsevier DOI
1503
Graph matching
BibRef
Moreno-García, C.F.[Carlos Francisco],
Serratosa, F.[Francesc],
Modelling the Generalised Median Correspondence Through an Edit
Distance,
SSSPR18(271-281).
Springer DOI
1810
See also Obtaining the consensus of multiple correspondences between graphs through online learning.
BibRef
Moreno-García, C.F.[Carlos Francisco],
Serratosa, F.[Francesc],
Jiang, X.Y.[Xiao-Yi],
An Edit Distance Between Graph Correspondences,
GbRPR17(232-241).
Springer DOI
1706
BibRef
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
Moreno-García, C.F.[Carlos Francisco],
Ground Truth Correspondence Between Nodes to Learn Graph-Matching
Edit-Costs,
CAIP15(I:113-124).
Springer DOI
1511
BibRef
And:
On the Influence of Node Centralities on Graph Edit Distance for Graph
Classification,
GbRPR15(231-241).
Springer DOI
1511
BibRef
Earlier: A1, A3, A2:
Learning Graph-Matching Substitution Costs Based on the Optimality of
the Oracle's Correspondence,
CIARP14(506-514).
Springer DOI
1411
BibRef
Solé-Ribalta, A.[Albert],
Serratosa, F.[Francesc],
Models and algorithms for computing the common labelling of a set of
attributed graphs,
CVIU(115), No. 7, July 2011, pp. 929-945.
Elsevier DOI
1106
BibRef
And:
Exploration of the Labelling Space Given Graph Edit Distance Costs,
GbRPR11(164-174).
Springer DOI
1105
BibRef
Earlier:
A Structural and Semantic Probabilistic Model for Matching and
Representing a Set of Graphs,
GbRPR09(164-173).
Springer DOI
0905
BibRef
And:
On the Computation of the Common Labelling of a Set of Attributed
Graphs,
CIARP09(137-144).
Springer DOI
0911
Multiple graph matching; Common graph labelling; Inconsistent
labelling; Softassign; Consistent multiple isomorphism; Graduated
Assignment
BibRef
Rebagliati, N.[Nicola],
Solé-Ribalta, A.[Albert],
Pelillo, M.[Marcello],
Serratosa, F.[Francesc],
On the Relation between the Common Labelling and the Median Graph,
SSSPR12(107-115).
Springer DOI
1211
BibRef
Solé-Ribalta, A.[Albert],
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
A Comparison between Structural and Embedding Methods for Graph
Classification,
SSSPR12(234-242).
Springer DOI
1211
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Solé-Ribalta, A.[Albert],
Graph Database Retrieval Based on Metric-Trees,
SSSPR12(437-447).
Springer DOI
1211
BibRef
Earlier: A1, A3, A2:
K-nn Queries in Graph Databases Using M-Trees,
CAIP11(I: 202-210).
Springer DOI
1109
BibRef
Earlier: A1, A3, A2:
Automatic Learning of Edit Costs Based on Interactive and Adaptive
Graph Recognition,
GbRPR11(152-163).
Springer DOI
1105
BibRef
Serratosa, F.[Francesc],
Computation of graph edit distance: Reasoning about optimality and
speed-up,
IVC(40), No. 1, 2015, pp. 38-48.
Elsevier DOI
1506
Error-tolerant graph matching
BibRef
Serratosa, F.[Francesc],
A commentary on 'Learning error-correcting graph matching with a
multiclass neural network', Pattern Recognition Letters, 2018,
PRL(129), 2020, pp. 16-18.
Elsevier DOI
2001
Error-tolerant graph matching, Learning graph edit distance
BibRef
Moreno-García, C.F.[Carlos Francisco],
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
A Graph Repository for Learning Error-Tolerant Graph Matching,
SSSPR16(519-529).
Springer DOI
1611
BibRef
Cortés, X.[Xavier],
Conte, D.[Donatello],
Cardot, H.[Hubert],
Learning edit cost estimation models for graph edit distance,
PRL(125), 2019, pp. 256-263.
Elsevier DOI
1909
Graph Edit Distance, Machine Learning, Edit Costs, Learning Graph Matching
BibRef
Cortés, X.[Xavier],
Conte, D.[Donatello],
Cardot, H.[Hubert],
Serratosa, F.[Francesc],
A Deep Neural Network Architecture to Estimate Node Assignment Costs
for the Graph Edit Distance,
SSSPR18(326-336).
Springer DOI
1810
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Moreno, C.F.[Carlos-Francisco],
Graph Edit Distance or Graph Edit Pseudo-Distance?,
SSSPR16(530-540).
Springer DOI
1611
BibRef
Serratosa, F.[Francesc],
Cortés, X.[Xavier],
Edit Distance Computed by Fast Bipartite Graph Matching,
SSSPR14(253-262).
Springer DOI
1408
BibRef
Cortés, X.[Xavier],
Serratosa, F.[Francesc],
Solé-Ribalta, A.[Albert],
Active Graph Matching Based on Pairwise Probabilities between Nodes,
SSSPR12(98-106).
Springer DOI
1211
BibRef
Rodenas, D.[David],
Serratosa, F.[Francesc],
Solé-Ribalta, A.[Albert],
Graph Matching on a Low-Cost and Parallel Architecture,
IbPRIA11(508-515).
Springer DOI
1106
BibRef
And:
Parallel Graduated Assignment Algorithm for Multiple Graph Matching
Based on a Common Labelling,
GbRPR11(132-141).
Springer DOI
1105
BibRef
Solé-Ribalta, A.[Albert],
Serratosa, F.[Francesc],
A Probabilistic Framework to Obtain a Common Labelling between
Attributed Graphs,
IbPRIA11(516-523).
Springer DOI
1106
BibRef
Ferrer, M.[Miquel],
Serratosa, F.[Francesc],
Riesen, K.[Kaspar],
Improving Bipartite Graph Matching by Assessing the Assignment
Confidence,
PRL(65), No. 1, 2015, pp. 29-36.
Elsevier DOI
1511
BibRef
And:
A First Step Towards Exact Graph Edit Distance Using Bipartite Graph
Matching,
GbRPR15(77-86).
Springer DOI
1511
Graph matching
See also Improving Approximate Graph Edit Distance by Means of a Greedy Swap Strategy.
BibRef
Riesen, K.[Kaspar],
Frinken, V.[Volkmar],
Bunke, H.[Horst],
Improving Graph Classification by Isomap,
GbRPR09(205-214).
Springer DOI
0905
BibRef
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
An experimental study of graph classification using prototype selection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Riesen, K.[Kaspar],
Bunke, H.[Horst],
IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning,
SSPR08(287-297).
Springer DOI
0812
BibRef
McVicar, M.[Matt],
Sach, B.[Benjamin],
Mesnage, C.[Cédric],
Lijffijt, J.[Jefrey],
Spyropoulou, E.[Eirini],
Bie, T.D.[Tijl De],
SuMoTED: An intuitive edit distance between rooted unordered
uniquely-labelled trees,
PRL(79), No. 1, 2016, pp. 52-59.
Elsevier DOI
1608
Tree edit distance
BibRef
Jones, W.[William],
Chawdhary, A.[Aziem],
King, A.[Andy],
Optimising the Volgenant-Jonker algorithm for approximating graph
edit distance,
PRL(87), No. 1, 2017, pp. 47-54.
Elsevier DOI
1703
BibRef
Earlier:
Revisiting Volgenant-Jonker for Approximating Graph Edit Distance,
GbRPR15(98-107).
Springer DOI
1511
Attributed graphs
BibRef
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Carletti, V.[Vincenzo],
Foggia, P.[Pasquale],
Gaüzère, B.[Benoit],
Vento, M.[Mario],
Graph edit distance as a quadratic assignment problem,
PRL(87), No. 1, 2017, pp. 38-46.
Elsevier DOI
1703
Structural pattern recognition
BibRef
Blumenthal, D.B.,
Daller, É.,
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Gamper, J.,
Quasimetric Graph Edit Distance as a Compact Quadratic Assignment
Problem,
ICPR18(934-939)
IEEE DOI
1812
Upper bound, Search problems,
Cascading style sheets, Optimization, Transforms
BibRef
Ayad, L.A.K.[Lorraine A.K.],
Barton, C.[Carl],
Pissis, S.P.[Solon P.],
A faster and more accurate heuristic for cyclic edit distance
computation,
PRL(88), No. 1, 2017, pp. 81-87.
Elsevier DOI
1703
Cyclic edit distance
BibRef
Hecht, M.[Michael],
A generalization of the most common subgraph distance and its
application to graph editing,
PRL(87), No. 1, 2017, pp. 71-78.
Elsevier DOI
1703
Graph editing
BibRef
Lerouge, J.[Julien],
Abu-Aisheh, Z.[Zeina],
Raveaux, R.[Romain],
Héroux, P.[Pierre],
Adam, S.[Sébastien],
New binary linear programming formulation to compute the graph edit
distance,
PR(72), No. 1, 2017, pp. 254-265.
Elsevier DOI
1708
BibRef
Abu-Aisheh, Z.[Zeina],
Gaüzere, B.[Benoit],
Bougleux, S.[Sébastien],
Ramel, J.Y.[Jean-Yves],
Brun, L.[Luc],
Raveaux, R.[Romain],
Héroux, P.[Pierre],
Adam, S.[Sébastien],
Graph edit distance contest: Results and future challenges,
PRL(100), No. 1, 2017, pp. 96-103.
Elsevier DOI
1712
Graph edit distance
BibRef
Gouda, K.[Karam],
Arafa, M.[Mona],
Calders, T.[Toon],
A novel hierarchical-based framework for upper bound computation of
graph edit distance,
PR(80), 2018, pp. 210-224.
Elsevier DOI
1805
Graph similarity, Graph edit distance, Upper bound
BibRef
Algabli, S.[Shaima],
Serratosa, F.[Francesc],
Embedding the node-to-node mappings to learn the Graph edit distance
parameters,
PRL(112), 2018, pp. 353-360.
Elsevier DOI
1809
BibRef
Uhlmann, J.[Jeffrey],
Applications of single-operator edit distances for permuted sequences,
PRL(116), 2018, pp. 97-100.
Elsevier DOI
1812
Edit distance, Permutations, Data compression
BibRef
Dwivedi, S.P.[Shri Prakash],
Singh, R.S.[Ravi Shankar],
Error-tolerant graph matching using node contraction,
PRL(116), 2018, pp. 58-64.
Elsevier DOI
1812
Graph matching, Graph edit distance, Structural pattern recognition
BibRef
Dwivedi, S.P.[Shri Prakash],
Singh, R.S.[Ravi Shankar],
Error-tolerant approximate graph matching utilizing node centrality
information,
PRL(133), 2020, pp. 313-319.
Elsevier DOI
2005
Centrality measures, Graph edit distance, Graph matching,
Structural pattern recognition
BibRef
Serratosa, F.[Francesc],
Graph edit distance: Restrictions to be a metric,
PR(90), 2019, pp. 250-256.
Elsevier DOI
1903
Graph edit distance, Distance definition, Sub-optimality
BibRef
Mirabal, P.,
Abreu, J.,
Seco, D.,
Assessing the best edit in perturbation-based iterative refinement
algorithms to compute the median string,
PRL(120), 2019, pp. 104-111.
Elsevier DOI
1904
Approximate median string, Edit distance, Edit operations
BibRef
Boria, N.[Nicolas],
Blumenthal, D.B.[David B.],
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Improved local search for graph edit distance,
PRL(129), 2020, pp. 19-25.
Elsevier DOI
2001
Graph edit distance, Local search, Stochastic warm start
BibRef
Blumenthal, D.B.[David B.],
Gamper, J.[Johann],
On the exact computation of the graph edit distance,
PRL(134), 2020, pp. 46-57.
Elsevier DOI
2005
BibRef
Earlier:
Exact Computation of Graph Edit Distance for Uniform and Non-uniform
Metric Edit Costs,
GbRPR17(211-221).
Springer DOI
1706
Graph edit distance, Exact algorithms, Depth-first search,
Best-first search, Integer programming
BibRef
Darwiche, M.[Mostafa],
Conte, D.[Donatello],
Raveaux, R.[Romain],
T'Kindt, V.[Vincent],
Graph edit distance: Accuracy of local branching from an application
point of view,
PRL(134), 2020, pp. 20-28.
Elsevier DOI
2005
BibRef
Earlier: A1, A3, A2, A4:
Graph Edit Distance in the Exact Context,
SSSPR18(304-314).
Springer DOI
1810
BibRef
Earlier: A1, A3, A2, A4:
A Local Branching Heuristic for the Graph Edit Distance Problem,
CIARP17(194-202).
Springer DOI
1802
Graph matching, Graph edit distance, Local Branching Heuristic,
Application of graph edit distance
BibRef
Moreno-García, C.F.[Carlos Francisco],
Serratosa, F.[Francesc],
Jiang, X.Y.[Xiao-Yi],
Correspondence edit distance to obtain a set of weighted means of
graph correspondences,
PRL(134), 2020, pp. 29-36.
Elsevier DOI
2005
Graph correspondence, Hamming distance, Edit distance,
Weighted mean, Generalised median
BibRef
Serratosa, F.[Francesc],
A general model to define the substitution, insertion and deletion
graph edit costs based on an embedded space,
PRL(138), 2020, pp. 115-122.
Elsevier DOI
1806
Graph edit distance, Learning edit costs,
Multivariate Gaussiandistribution, Neural network
BibRef
Rica, E.[Elena],
Álvarez, S.[Susana],
Serratosa, F.[Francesc],
On-line learning the graph edit distance costs,
PRL(146), 2021, pp. 55-62.
Elsevier DOI
2105
Graph edit distance costs, Graph matching
BibRef
Santacruz, P.[Pep],
Serratosa, F.[Francesc],
Learning the Sub-optimal Graph Edit Distance Edit Costs Based on an
Embedded Model,
SSSPR18(282-292).
Springer DOI
1810
BibRef
Kiouche, A.E.[Abd Errahmane],
Lagraa, S.[Sofiane],
Amrouche, K.[Karima],
Seba, H.[Hamida],
A simple graph embedding for anomaly detection in a stream of
heterogeneous labeled graphs,
PR(112), 2021, pp. 107746.
Elsevier DOI
2102
Graph anomaly detection, Graph stream, Graph embedding, Graph edit distance
BibRef
Raveaux, R.[Romain],
On the unification of the graph edit distance and graph matching
problems,
PRL(145), 2021, pp. 240-246.
Elsevier DOI
2104
Graph edit distance, Graph matching, Discrete optimization
BibRef
Dabah, A.[Adel],
Chegrane, I.[Ibrahim],
Yahiaoui, S.[Saïd],
Efficient approximate approach for graph edit distance problem,
PRL(151), 2021, pp. 310-316.
Elsevier DOI
2110
Graph matching, Graph edit distance, Approximate approach,
BibRef
Kim, J.[Jongik],
Efficient graph edit distance computation using isomorphic vertices,
PRL(168), 2023, pp. 71-78.
Elsevier DOI
2304
Graph similarity, Graph edit distance, Vertex isomorphism,
Search space reduction
BibRef
Moscatelli, A.[Aldo],
Piquenot, J.[Jason],
Bérar, M.[Maxime],
Héroux, P.[Pierre],
Adam, S.[Sébastien],
Graph node matching for edit distance,
PRL(184), 2024, pp. 14-20.
Elsevier DOI
2408
Graph Neural Network, Graph Edit Distance, Metric learning,
Linear Sum Assignment, Node embedding, Siamese architectures
BibRef
Dwivedi, S.P.[Shri Prakash],
Srivastava, V.[Vishal],
Gupta, U.[Umesh],
Graph Similarity Using Tree Edit Distance,
SSSPR22(233-241).
Springer DOI
2301
BibRef
Wang, R.Z.[Run-Zhong],
Zhang, T.Q.[Tian-Qi],
Yu, T.S.[Tian-Shu],
Yan, J.C.[Jun-Chi],
Yang, X.K.[Xiao-Kang],
Combinatorial Learning of Graph Edit Distance via Dynamic Embedding,
CVPR21(5237-5246)
IEEE DOI
2111
Adaptation models, Costs, Scalability,
Heuristic algorithms, Computational modeling, Search problems
BibRef
Avrachenkov, K.[Konstantin],
Mironov, M.[Maksim],
Cluster-size constrained network partitioning,
ICPR21(10058-10065)
IEEE DOI
2105
Databases, Heuristic algorithms, Stochastic processes,
Synchronization, Servers, Resource management
BibRef
Chen, L.C.[Li-Chang],
Lin, G.S.[Guo-Sheng],
Wang, S.J.[Shi-Jie],
Wu, Q.Y.[Qing-Yao],
Graph Edit Distance Reward: Learning to Edit Scene Graph,
ECCV20(XIX:539-554).
Springer DOI
2011
BibRef
Algabli, S.[Shaima],
Santacruz, P.[Pep],
Serratosa, F.[Francesc],
Learning the Graph Edit Distance Parameters for Point-Set Image
Registration,
CAIP19(I:447-456).
Springer DOI
1909
BibRef
Santacruz, P.,
Serratosa, F.,
Graph Edit Distance Testing through Synthetic Graphs Generation,
ICPR18(572-577)
IEEE DOI
1812
computational complexity, graph theory,
upper bound graph edit distance, error-tolerant graph matching,
synthetic graph generation
BibRef
Pucher, D.,
Kropatsch, W.G.,
Segmentation Edit Distance,
ICPR18(1175-1180)
IEEE DOI
1812
Image segmentation, Measurement, Transforms, Shape, Task analysis,
Computed tomography
BibRef
Boria, N.[Nicolas],
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Approximating GED Using a Stochastic Generator and Multistart IPFP,
SSSPR18(460-469).
Springer DOI
1810
BibRef
Blumenthal, D.B.[David B.],
Bougleux, S.[Sébastien],
Gamper, J.[Johann],
Brun, L.[Luc],
Ring Based Approximation of Graph Edit Distance,
SSSPR18(293-303).
Springer DOI
1810
BibRef
Stauffer, M.[Michael],
Tschachtli, T.[Thomas],
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
A Survey on Applications of Bipartite Graph Edit Distance,
GbRPR17(242-252).
Springer DOI
1706
BibRef
Bougleux, S.,
Gaüzère, B.,
Brun, L.,
Graph edit distance as a quadratic program,
ICPR16(1701-1706)
IEEE DOI
1705
Approximation algorithms, Context, Distortion,
Distortion measurement, Time complexity, Transforms
BibRef
Litman, R.[Roee],
Bronstein, A.M.[Alex M.],
SpectroMeter:
Amortized Sublinear Spectral Approximation of Distance on Graphs,
3DV16(499-508)
IEEE DOI
1701
approximation theory
BibRef
Lerouge, J.[Julien],
Abu-Aisheh, Z.[Zeina],
Raveaux, R.[Romain],
Héroux, P.[Pierre],
Adam, S.[Sébastien],
Exact Graph Edit Distance Computation Using a Binary Linear Program,
SSSPR16(485-495).
Springer DOI
1611
BibRef
Fischer, A.[Andreas],
Uchida, S.[Seiichi],
Frinken, V.[Volkmar],
Riesen, K.[Kaspar],
Bunke, H.[Horst],
Improving Hausdorff Edit Distance Using Structural Node Context,
GbRPR15(148-157).
Springer DOI
1511
BibRef
Gaüzère, B.[Benoît],
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Approximating Graph Edit Distance Using GNCCP,
SSSPR16(496-506).
Springer DOI
1611
BibRef
Carletti, V.[Vincenzo],
Gaüzère, B.[Benoit],
Brun, L.[Luc],
Vento, M.[Mario],
Approximate Graph Edit Distance Computation Combining Bipartite
Matching and Exact Neighborhood Substructure Distance,
GbRPR15(188-197).
Springer DOI
1511
BibRef
Gaüzère, B.[Benoit],
Bougleux, S.[Sébastien],
Riesen, K.[Kaspar],
Brun, L.[Luc],
Approximate Graph Edit Distance Guided by Bipartite Matching of Bags of
Walks,
SSSPR14(73-82).
Springer DOI
1408
BibRef
Rebagliati, N.[Nicola],
Sole-Ribalta, A.[Albert],
Pelillo, M.[Marcello],
Serratosa, F.[Francesc],
Computing the graph edit distance using dominant sets,
ICPR12(1080-1083).
WWW Link.
1302
BibRef
Diez, S.G.[Silvia Garcia],
Fouss, F.[Francois],
Shimbo, M.[Masashi],
Saerens, M.[Marco],
Normalized Sum-over-Paths Edit Distances,
ICPR10(1044-1047).
IEEE DOI
1008
BibRef
Bardaji, I.[Itziar],
Ferrer, M.[Miquel],
Sanfeliu, A.[Alberto],
Computing the Barycenter Graph by Means of the Graph Edit Distance,
ICPR10(962-965).
IEEE DOI
1008
BibRef
Lee, J.M.[Jung-Min],
Cho, M.S.[Min-Su],
Lee, K.M.[Kyoung Mu],
A Graph Matching Algorithm Using Data-Driven Markov Chain Monte Carlo
Sampling,
ICPR10(2816-2819).
IEEE DOI
1008
BibRef
Freire, A.S.,
Cesar, Jr., R.M.,
Ferreira, C.E.,
A Column Generation Approach for the Graph Matching Problem,
ICPR10(1088-1091).
IEEE DOI
1008
BibRef
Lin, L.[Liang],
Zhu, S.C.[Song-Chun],
Wang, Y.T.[Yong-Tian],
Layered Graph Match with Graph Editing,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Chairunnanda, P.[Prima],
Gopalkrishnan, V.[Vivekanand],
Chen, L.[Lei],
Enhancing Edit Distance on Real Sequences Filters using Histogram
Distance on Fixed Reference Ordering,
ICPR06(III: 582-585).
IEEE DOI
0609
BibRef
Olsen, O.F.[Ole Fogh],
Tree Edit Distances from Singularity Theory,
ScaleSpace05(316-326).
Springer DOI
0505
BibRef
Weigel, A.,
Jäger, T.,
Pies, A.,
Estimation of Probabilities for Edit Operations,
ICPR00(Vol II: 777-780).
IEEE DOI
0009
BibRef
Weigel, A.[Achim], and
Agne, S.[Stefan],
Learning the Cost of Edit Operations for Edit Distances,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Bunke, H.[Horst],
Edit Distance of Regular Languages,
SDAIR96(XX)
University of Bern.
BibRef
9600
Weigel, A.,
Fein, F.,
Normalizing the weighted edit distance,
ICPR94(B:399-402).
IEEE DOI
9410
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Graph Clustering, Cilque Generation .