Barnard, S.T., and
Thompson, W.B.,
Disparity Analysis of Images,
PAMI(2), No. 4, July 1980, pp. 333-340.
BibRef
8007
Earlier:
TR-79-1, CSD,
Univ. of MinnesotaJanuary 1979.
Relaxation, Results.
Matching, Points. Matching for motion. This program finds corresponding pairs of points
in a motion analysis system using the similarity of motion with
neighboring points. Feature points (such as corners) in both views
are used rather than the single view used in Moravec, and a
relaxation procedure finds the final global match between the two sets
of feature points. The initial assignments of possible matches for
the set of feature points is simply all the features with a similar
(nearby) position in the second image. Thus, small motions are
assumed. An iterative (relaxation based) procedure uses the
disparities of the nearby points to eliminate the unlikely assignments
from the set of possible assignments. These include points with
disparities different from the others in the neighborhood. The
formulation of the algorithm is very simple and thus it works for any
kind of disparity (such as from observer motion, multiple object
motions, or stereo) and it does not require any detailed camera
models. This provides a basic matching method to find disparity for a
moderate number of points (the feature points) that are generally
consistent with the other nearby points (i.e. smooth surfaces), but
allowing for edges or changes in the disparity field.
See also Lower-level Estimates and Interpretation of Visual Motion.
BibRef
Barnard, S.T.,
The Image Correspondence Problem,
Ph.D.Thesis (CS), U Minn, 1979.
The thesis version of his work.
BibRef
7900
Kitchen, L.,
Relaxation Applied to Matching Quantitative Relational Structures,
SMC(10), February 1980, pp. 96-101.
Fuzzy Logic. Introduction of a new operator defined in terms of fuzzy logic with
some examples on synthetic structures. Experiments with the
operator on more general problems indicate that there may be
problems which are not indicated by the synthetic problems.
BibRef
8002
Yamamoto, H.,
Some Experiments on LANDSAT Pixel Classification
Using Relaxation Operators,
CGIP(13), No. 1, May 1980, pp. 31-45.
Elsevier DOI
BibRef
8005
Kirby, R.L.,
A Product Rule Relaxation Method,
CGIP(13), No. 2, June 1980, pp. 158-189.
Elsevier DOI
BibRef
8006
Hwang, J.J., and
Hall, E.L.,
Matching of Featured Objects Using
Relational Tables from Stereo Images,
CGIP(20), No. 1, September 1982, pp. 22-42.
Elsevier DOI
Matching, Regions. Features include regions, lines and vertices. The example is a
complex block-like UT. The structure is simply adjacencies. The
arrays are used to simplify the search for the matching subset.
They use precise knowledge of the camera locations to get search
lines in the second image.
BibRef
8209
Hwang, J.J., and
Hall, E.L.,
Scene Representation Using the Adjacency Matrix and
Sampled Shapes of Regions,
PRIP78(250-261).
BibRef
7800
Faugeras, O.D., and
Price, K.E.,
Semantic Description of Aerial Images Using Stochastic Labeling,
PAMI(3), No. 6, November 1981, pp. 633-642.
BibRef
8111
USC Computer Vision
BibRef
And:
ICPR80(352-357).
BibRef
And:
DARPA80(89-94).
Matching, Regions.
Relaxation, Results.
The use of an optimization based relaxation method with structural
descriptions. This work uses a relaxation approach very similar to
that of (
See also Improving Consistency and Reducing Ambiguity in Stochastic Labeling: An Optimization Approach. ) for finding corresponding regions in two
images of the same scene and finding regions in the image
corresponding to elements in a model of the scene.
The relaxation matching procedure has two major steps: finding initial
potential matches and computing the updated match rating based on the
matches for the neighboring regions. These steps are combined by:
(1) Compute the match rating for each region in the model with all regions
in the image. Order these and keep only the best (15) matches.
(2)Compute the compatibility for each of these possible matches with the
current most likely match for all the neighboring (related in the
network) regions. (3) Update the match ratings so that compatible matches
improve and incompatible ones decrease. (4) If some match is very likely,
make the assignment permanent, and continue with the initialization
step. Otherwise continue with the compatibility computation step.
This procedure works by finding the most obvious match (e.g. largest
regions, and all other features match) and building around this one by
making assignments to regions related to the obvious match. This
matching system makes few assumptions about the types of scenes,
though assumptions can be used to improve the efficiency of the match,
and is applicable to a variety of tasks.
See also Symbolic Image Registration and Change Detection.
BibRef
Price, K.E.,
Hierarchial Matching Using Relaxation,
CVGIP(34), No. 1, April 1986, pp. 66-75.
Elsevier DOI
BibRef
8604
USC Computer VisionDiscussion of the use of group level descriptions to aid relaxation.
BibRef
Price, K.E.,
Relaxation Matching Techniques: A Comparison,
PAMI(7), No. 5, September 1985, pp. 617-623.
BibRef
8509
USC Computer Vision
BibRef
And:
ICPR84(987-989).
Relaxation, Evaluation.
Comparison of several relaxation methods, for accuracy and time.
BibRef
Price, K.E.,
Symbolic Matching of Images and Scene Models,
DARPA82(299-308).
BibRef
8200
USC Computer Vision
BibRef
And:
CVWS82(105-112).
Several discussions on relaxation techniques in one paper. The
See also Relaxation Matching Techniques: A Comparison. and
See also Hierarchial Matching Using Relaxation. supersede this one.
BibRef
Price, K.E.,
Relaxation Matching Applied to Aerial Images,
DARPA81(22-25).
BibRef
8100
USC Computer VisionDiscussion of more recent results. Not much else.
BibRef
Price, K.E.,
Symbolic Matching and Analysis with Substantial Changes in Orientation,
DARPA78(93-99).
BibRef
7800
USC Computer Vision
BibRef
And:
PRAI-78(19-21).
BibRef
Hummel, R.A.[Robert A.],
A Design Method for Relaxation Labeling Applications,
AAAI-83(168-171).
BibRef
8300
Earlier:
NYUCS Dept., TR 68, March 1983.
A discussion of how to set up a relaxation labeling system.
BibRef
Ogawa, H.,
A Fuzzy Relaxation Technique For Partial Shape-Matching,
PRL(15), No. 4, April 1994, pp. 349-355.
BibRef
9404
Qin, C.,
Luh, J.Y.S.,
Ambiguity Reduction by Relaxation Labeling,
PR(27), No. 1, January 1994, pp. 165-180.
Elsevier DOI
BibRef
9401
Ranganath, H.S.[Heggere S.],
Chipman, L.J.[Laure J.],
Fuzzy Relaxation Approach for Inexact Scene Matching,
IVC(10), No. 9, November 1992, pp. 631-640.
Elsevier DOI
Matching, Regions.
BibRef
9211
Cooper, P.R.[Paul R.],
Swain, M.J.[Michael J.],
Arc Consistency: Parallelism and Domain Dependence,
AI(58), No. 1-3, 1992, pp. 207-23.5
Elsevier DOI
BibRef
9200
Cooper, P.R.[Paul R.],
Swain, M.J.[Michael J.],
Domain Dependence in Parallel Constraint Satisfaction,
IJCAI89(54-59).
BibRef
8900
Swain, M.J.[Michael J.],
Cooper, P.R.[Paul R.],
Parallel Hardware for Constraint Satisfaction,
AAAI-88(682-686).
BibRef
8800
Gold, S.[Steven],
Rangarajan, A.[Anand],
A Graduated Assignment Algorithm for Graph Matching,
PAMI(18), No. 4, April 1996, pp. 377-388.
IEEE DOI
BibRef
9604
YaleDCS/RR-1062, January 1995.
BibRef
And:
Graph Matching by Graduated Assignment,
CVPR96(239-244).
IEEE DOI Matching O(lm).
Similar to relaxation (annealing) approach. (But not quite).
Uses hand labeled features in the image for matching (multiple features
on an object). They note that relaxation labeling does poorly on
pure subgraph isomorphism (no attributed nodes), and does poorly
when noise is high for attributed graph matching. (Though the comparison
is with the most basic relaxation methodology.)
9605
BibRef
Gold, S.[Steven],
Matching and Learning Structural and Spatial Representation
with Neural Networks,
Ph.D.Thesis, Yale, 1995.
BibRef
9500
Gold, S.[Steven],
Rangarajan, A.[Anand], and
Mjolsness, E.,
Learning with Preknowledge:
Clustering with Point and Graph Matching Distance Measures,
NeurComp(8), 1966, pp. 787-804.
BibRef
6600
Sitaraman, R.[Ramesh],
Rosenfeld, A.[Azriel],
Probabilistic Analysis of Two Stage Matching,
PR(22), No. 3, 1989, pp. 331-343.
Elsevier DOI
BibRef
8900
Finch, A.M.[Andrew M.],
Wilson, R.C.,
Hancock, E.R.[Edwin R.],
Matching Delaunay Graphs,
PR(30), No. 1, January 1997, pp. 123-140.
Elsevier DOI
9702
BibRef
Earlier: A1, A3 only:
CIAP95(56-61).
Springer DOI
9509
BibRef
Finch, A.M.[Andrew M.],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Matching delaunay triangulations by probabilistic relaxation,
CAIP95(350-358).
Springer DOI
9509
BibRef
Finch, A.M.,
Hancock, E.R.,
Matching Deformed Delaunay Triangulations,
SCV95(31-36).
IEEE DOI Univ. of York.
Relaxation applied to matching graphs composed of triangles.
BibRef
9500
Bhattacharya, P.,
Some Remarks on Fuzzy Graphs,
PRL(6), 1987, pp. 297-302.
BibRef
8700
Pelillo, M.,
Fanelli, A.M.,
Autoassociative Learning in Relaxation Labeling Networks,
PRL(18), No. 1, January 1997, pp. 3-12.
9704
BibRef
Earlier:
ICPR96(IV: 105-110).
IEEE DOI
9608
(Univ. Ca Foscari Venezia, I)
BibRef
Doa, K.H.[Kyeong-Hoon],
Kima, Y.S.[Yong-Suk],
Uama, T.U.[Tae-Uk],
Ha, Y.H.[Yeong-Ho],
Iterative Relaxational Stereo Matching Based on
Adaptive Support Between Disparities,
PR(31), No. 8, August 1998, pp. 1049-1059.
Elsevier DOI
9807
Stereo, Matching.
BibRef
Skomorowski, M.[Marek],
Use of random graph parsing for scene labelling by probabilistic
relaxation,
PRL(20), No. 8, August 1999, pp. 949-956.
BibRef
9908
Torsello, A.[Andrea],
Pelillo, M.[Marcello],
Continuous-time relaxation labeling processes,
PR(33), No. 11, November 2000, pp. 1897-1908.
Elsevier DOI
0011
BibRef
Medasani, S.,
Krishnapuram, R.,
Choi, Y.S.,
Graph Matching by Relaxation of Fuzzy Assignments,
Fuzzy(9), No. 1, 2001, pp. 173-182.
BibRef
0100
Bengoetxea, E.[Endika],
Larrañaga, P.[Pedro],
Bloch, I.[Isabelle],
Perchant, A.[Aymeric],
Boeres, C.[Claudia],
Inexact graph matching by means of estimation of distribution
algorithms,
PR(35), No. 12, December 2002, pp. 2867-2880.
Elsevier DOI
0209
BibRef
Earlier: A1, A2, A3, A4, Only:
Estimation of Distribution Algorithms: A New Evolutionary Computation
Approach for Graph Matching Problems,
EMMCVPR01(454-469).
Springer DOI
0205
BibRef
Perchant, A.,
Bloch, I.,
Graph Fuzzy Homomorphism Interpreted as Fuzzy Association Graphs,
ICPR00(Vol II: 1042-1045).
IEEE DOI
0009
BibRef
Aldea, E.[Emanuel],
Fouquier, G.[Geoffroy],
Atif, J.[Jamal],
Bloch, I.[Isabelle],
Kernel Fusion for Image Classification Using Fuzzy Structural
Information,
ISVC07(II: 307-317).
Springer DOI
0711
BibRef
Aldea, E.[Emanuel],
Atif, J.[Jamal],
Bloch, I.[Isabelle],
Image Classification Using Marginalized Kernels for Graphs,
GbRPR07(103-113).
Springer DOI
0706
BibRef
Fouquier, G.[Geoffroy],
Atif, J.[Jamal],
Bloch, I.[Isabelle],
Local Reasoning in Fuzzy Attribute Graphs for Optimizing Sequential
Segmentation,
GbRPR07(138-147).
Springer DOI
0706
BibRef
Atif, J.[Jamal],
Hudelot, C.,
Bloch, I.[Isabelle],
Explanatory Reasoning for Image Understanding Using Formal Concept
Analysis and Description Logics,
SMCS(44), No. 5, May 2014, pp. 552-570.
IEEE DOI
1405
algebra
Algebraic erosion over the concept lattice of a background theory.
See also Mathematical morphology on hypergraphs, application to similarity and positive kernel.
BibRef
Hudelot, C.[Céline],
Atif, J.[Jamal],
Bloch, I.[Isabelle],
ALC(F): A New Description Logic for Spatial Reasoning in Images,
CVONT14(370-384).
Springer DOI
1504
BibRef
Cesar, Jr., R.M.[Roberto M.],
Bengoetxea, E.[Endika],
Bloch, I.[Isabelle],
Larrañaga, P.[Pedro],
Inexact graph matching for model-based recognition:
Evaluation and comparison of optimization algorithms,
PR(38), No. 11, November 2005, pp. 2099-2113.
Elsevier DOI
0509
BibRef
Earlier: A1, A2, A3, Only:
Inexact graph matching using stochastic optimization techniques for
facial feature recognition,
ICPR02(II: 465-468).
IEEE DOI
0211
BibRef
Sminchisescu, C.[Cristian],
Triggs, B.[Bill],
Building Roadmaps of Minima and Transitions in Visual Models,
IJCV(61), No. 1, January 2005, pp. 81-101.
DOI Link
0410
BibRef
Earlier:
Building Roadmaps of Local Minima of Visual Models,
ECCV02(I: 566 ff.).
Springer DOI
0205
Avoiding local minima in searching techniques.
BibRef
Richards, J.A.[John A.],
Jia, X.P.[Xiu-Ping],
A Dempster-Shafer Relaxation Approach to Context Classification,
GeoRS(45), No. 5, May 2007, pp. 1422-1431.
IEEE DOI
0704
BibRef
Schellewald, C.[Christian],
Roth, S.[Stefan],
Schnorr, C.[Christoph],
Evaluation of a convex relaxation to a quadratic assignment matching
approach for relational object views,
IVC(25), No. 8, 1 August 2007, pp. 1301-1314.
Elsevier DOI
0706
Quadratic assignment; Weighted graph matching; Combinatorial optimization;
Convex programming; Object recognition
BibRef
Schellewald, C.[Christian],
Conves Mathematical Programs for Relational Matching of Object Views,
Ph.D.Thesis, Univ. of Mannhein, 2004.
0905
BibRef
Werner, T.[Tomas],
A Linear Programming Approach to Max-Sum Problem: A Review,
PAMI(29), No. 7, July 2007, pp. 1165-1179.
IEEE DOI
0706
Constraint Satisfaction. Maximization of a sum of binary functions.
Explore a formulation from early Russian paper.
BibRef
Werner, T.[Tomas],
Revisiting the Linear Programming Relaxation Approach to Gibbs Energy
Minimization and Weighted Constraint Satisfaction,
PAMI(32), No. 8, August 2010, pp. 1474-1488.
IEEE DOI
1007
E.g. Gibbs energy minimization, link to constraint programming.
BibRef
Werner, T.[Tomas],
High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF),
CVPR08(1-8).
IEEE DOI
0806
BibRef
Werner, T.[Tomas],
Combinatorial constraints on multiple projections of a set of points,
ICCV03(1011-1016).
IEEE DOI
0311
BibRef
Potetz, B.[Brian],
Lee, T.S.[Tai Sing],
Efficient belief propagation for higher-order cliques using linear
constraint nodes,
CVIU(112), No. 1, October 2008, pp. 39-54.
Elsevier DOI
0810
BibRef
Earlier: A1, Only:
Efficient Belief Propagation for Vision Using Linear Constraint Nodes,
CVPR07(1-8).
IEEE DOI
0706
Belief propagation; Higher-order cliques; Non-pairwise cliques; Factor
graphs; Continuous Markov random fields
BibRef
Choi, Y.H.[Young-Hun],
Jun, C.H.[Chi-Hyuck],
A causal discovery algorithm using multiple regressions,
PRL(31), No. 13, 1 October 2010, pp. 1924-1934.
Elsevier DOI
1003
Causal discovery; Conditional independence test; Markov blanket;
Multiple regression
BibRef
Bui, A.T.[Anh Tuan],
Jun, C.H.[Chi-Hyuck],
Learning Bayesian network structure using Markov blanket decomposition,
PRL(33), No. 16, 1 December 2012, pp. 2134-2140.
Elsevier DOI
1210
Causal structure learning; Conditional independence test; Directed
acyclic graph; Directed global Markov property; Moral graph; V
structure
BibRef
Pock, T.[Thomas],
Cremers, D.[Daniel],
Bischof, H.[Horst],
Chambolle, A.[Antonin],
Global Solutions Of Variational Models With Convex Regularization,
SIIMS(3), No. 4, 2010, pp. 1122-1145.
WWW Link.
DOI Link
BibRef
1000
Earlier: A1, A4, A2, A3:
A convex relaxation approach for computing minimal partitions,
CVPR09(810-817).
IEEE DOI
0906
variational methods; calibrations; total variation; convex optimization
BibRef
Chambolle, A.[Antonin],
Cremers, D.[Daniel],
Pock, T.[Thomas],
A Convex Approach to Minimal Partitions,
SIIMS(5), No. 4, 2012, pp. 1113-1158.
DOI Link
1211
BibRef
Pock, T.[Thomas],
Chambolle, A.[Antonin],
Diagonal preconditioning for first order primal-dual algorithms in
convex optimization,
ICCV11(1762-1769).
IEEE DOI
1201
BibRef
Goldluecke, B.[Bastian],
Cremers, D.[Daniel],
Introducing total curvature for image processing,
ICCV11(1267-1274).
IEEE DOI
1201
Menger-Melnikov curvature of the Radon measure. For regularizer.
BibRef
Goldluecke, B.[Bastian],
Cremers, D.[Daniel],
Convex Relaxation for Multilabel Problems with Product Label Spaces,
ECCV10(V: 225-238).
Springer DOI
1009
BibRef
Yang, Y.[Yang],
Huang, Z.[Zi],
Yang, Y.[Yi],
Liu, J.J.[Jia-Jun],
Shen, H.T.[Heng Tao],
Luo, J.B.[Jie-Bo],
Local image tagging via graph regularized joint group sparsity,
PR(46), No. 5, May 2013, pp. 1358-1368.
Elsevier DOI
1302
Local image tagging; Group sparse coding; Graph regularization; Tag
propagation
BibRef
Ortiz-Bayliss, J.C.[José Carlos],
Terashima-Marín, H.[Hugo],
Conant-Pablos, S.E.[Santiago Enrique],
Learning vector quantization for variable ordering in constraint
satisfaction problems,
PRL(34), No. 4, 1 March 2013, pp. 423-432.
Elsevier DOI
1302
Constraint satisfaction; Hyper-heuristics; Learning vector
quantization; Variable and value ordering
BibRef
Zach, C.[Christopher],
Hane, C.[Christian],
Pollefeys, M.[Marc],
What Is Optimized in Convex Relaxations for Multilabel Problems:
Connecting Discrete and Continuously Inspired MAP Inference,
PAMI(36), No. 1, 2014, pp. 157-170.
IEEE DOI
1312
BibRef
Earlier:
What is optimized in tight convex relaxations for multi-label problems?,
CVPR12(1664-1671).
IEEE DOI
1208
Markov random fields
BibRef
Liu, Z.Y.[Zhi-Yong],
Qiao, H.[Hong],
Yang, X.[Xu],
Hoi, S.C.H.[Steven C. H.],
Graph Matching by Simplified Convex-Concave Relaxation Procedure,
IJCV(109), No. 3, September 2014, pp. 169-186.
Springer DOI
1408
BibRef
Yang, X.[Xu],
Qiao, H.[Hong],
Liu, Z.Y.[Zhi-Yong],
Feature correspondence based on directed structural model matching,
IVC(33), No. 1, 2015, pp. 57-67.
Elsevier DOI
1412
Feature correspondence
BibRef
Yang, X.[Xu],
Qiao, H.[Hong],
Liu, Z.Y.[Zhi-Yong],
Outlier robust point correspondence based on GNCCP,
PRL(55), No. 1, 2015, pp. 8-14.
Elsevier DOI
1503
Feature correspondence
BibRef
Yang, X.[Xu],
Liu, Z.Y.[Zhi-Yong],
Qiao, H.[Hong],
A Continuation Method for Graph Matching Based Feature Correspondence,
PAMI(42), No. 8, August 2020, pp. 1809-1822.
IEEE DOI
2007
Optimization, Task analysis, Linear programming,
Image processing, Pattern matching, Smoothing methods,
combinatorial optimization
BibRef
Yang, X.[Xu],
Liu, Z.Y.[Zhi-Yong],
Adaptive Graph Matching,
Cyber(48), No. 5, May 2018, pp. 1432-1445.
IEEE DOI
1804
Adaptation models, Control systems, Cybernetics,
Linear programming, Manganese, Optimization,
regularization method
BibRef
Yan, J.,
Wang, J.,
Zha, H.,
Yang, X.,
Chu, S.,
Consistency-Driven Alternating Optimization for Multigraph Matching:
A Unified Approach,
IP(24), No. 3, March 2015, pp. 994-1009.
IEEE DOI
1502
BibRef
Åström, F.[Freddie],
Petra, S.[Stefania],
Schmitzer, B.[Bernhard],
Schnörr, C.[Christoph],
Image Labeling by Assignment,
JMIV(58), No. 2, June 2017, pp. 211-238.
Springer DOI
1704
BibRef
Earlier:
A Geometric Approach to Image Labeling,
ECCV16(V: 139-154).
Springer DOI
1611
BibRef
And:
The Assignment Manifold: A Smooth Model for Image Labeling,
DIFF-CV16(963-971)
IEEE DOI
1612
BibRef
Zern, A.[Artjom],
Zisler, M.[Matthias],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Unsupervised Assignment Flow: Label Learning on Feature Manifolds by
Spatially Regularized Geometric Assignment,
JMIV(62), No. 6-7, July 2020, pp. 982-1006.
Springer DOI
2007
BibRef
Earlier: A2, A1, A3, A4:
Unsupervised Labeling by Geometric and Spatially Regularized
Self-assignment,
SSVM19(432-444).
Springer DOI
1909
BibRef
Zisler, M.[Matthias],
Zern, A.[Artjom],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Self-Assignment Flows for Unsupervised Data Labeling on Graphs,
SIIMS(13), No. 3, 2020, pp. 1113-1156.
DOI Link
2010
BibRef
Zern, A.[Artjom],
Zisler, M.[Matthias],
Åström, F.[Freddie],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Unsupervised Label Learning on Manifolds by Spatially Regularized
Geometric Assignment,
GCPR18(698-713).
Springer DOI
1905
BibRef
Hühnerbein, R.[Ruben],
Savarino, F.[Fabrizio],
Åström, F.[Freddie],
Schnörr, C.[Christoph],
Image Labeling Based on Graphical Models Using Wasserstein Messages
and Geometric Assignment,
SIIMS(11), No. 2, 2018, pp. 1317-1362.
DOI Link
1807
BibRef
Hühnerbein, R.[Ruben],
Savarino, F.[Fabrizio],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Learning Adaptive Regularization for Image Labeling Using Geometric
Assignment,
SSVM19(393-405).
Springer DOI
1909
BibRef
Åström, F.[Freddie],
Hühnerbein, R.[Ruben],
Savarino, F.[Fabrizio],
Recknagel, J.[Judit],
Schnörr, C.[Christoph],
MAP Image Labeling Using Wasserstein Messages and Geometric Assignment,
SSVM17(373-385).
Springer DOI
1706
BibRef
Savarino, F.[Fabrizio],
Schnörr, C.[Christoph],
A Variational Perspective on the Assignment Flow,
SSVM19(547-558).
Springer DOI
1909
BibRef
Savarino, F.[Fabrizio],
Hühnerbein, R.[Ruben],
Åström, F.[Freddie],
Recknagel, J.[Judit],
Schnörr, C.[Christoph],
Numerical Integration of Riemannian Gradient Flows for Image Labeling,
SSVM17(361-372).
Springer DOI
1706
BibRef
Sitenko, D.[Dmitrij],
Boll, B.[Bastian],
Schnorr, C.[Christoph],
A Nonlocal Graph-PDE and Higher-Order Geometric Integration for Image
Labeling,
SIIMS(16), No. 1, 2023, pp. 501-567.
DOI Link
2305
See also Image Labeling by Assignment.
BibRef
Boll, B.[Bastian],
Schwarz, J.[Jonathan],
Gonzalez-Alvarado, D.[Daniel],
Sitenko, D.[Dmitrij],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Modeling Large-scale Joint Distributions and Inference by Randomized
Assignment,
SSVM23(730-742).
Springer DOI
2307
BibRef
Schwarz, J.[Jonathan],
Boll, B.[Bastian],
Gonzalez-Alvarado, D.[Daniel],
Sitenko, D.[Dmitrij],
Gärttner, M.[Martin],
Albers, P.[Peter],
Schnörr, C.[Christoph],
Quantum State Assignment Flows,
SSVM23(743-756).
Springer DOI
2307
BibRef
Lin, G.F.[Guang-Feng],
Liao, K.Y.[Kai-Yang],
Sun, B.Y.[Bang-Yong],
Chen, Y.J.[Ya-Jun],
Zhao, F.[Fan],
Dynamic graph fusion label propagation for semi-supervised
multi-modality classification,
PR(68), No. 1, 2017, pp. 14-23.
Elsevier DOI
1704
Dynamic graph fusion
BibRef
Pruša, D.[Daniel],
Werner, T.[Tomáš],
LP Relaxation of the Potts Labeling Problem Is as Hard as Any Linear
Program,
PAMI(39), No. 7, July 2017, pp. 1469-1475.
IEEE DOI
1706
BibRef
Earlier:
How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem?,
EMMCVPR15(57-70).
Springer DOI
1504
Approximation algorithms, Computational modeling, Cost function,
Graphical models, Labeling, Measurement, Minimization, MAP inference,
Markov random field, Potts model, discrete energy minimization,
graphical model, linear programming relaxation,
uniform metric labeling problem, valued constraint satisfaction.
BibRef
Bergmann, R.[Ronny],
Fitschen, J.H.[Jan Henrik],
Persch, J.[Johannes],
Steidl, G.[Gabriele],
Iterative Multiplicative Filters for Data Labeling,
IJCV(123), No. 3, July 2017, pp. 435-453.
Springer DOI
1706
for the supervised partitioning of data
Derived from:
See also Image Labeling by Assignment.
BibRef
Magri, L.[Luca],
Fusiello, A.[Andrea],
Multiple structure recovery via robust preference analysis,
IVC(67), No. 1, 2017, pp. 1-15.
Elsevier DOI
1710
BibRef
Earlier:
Multiple Models Fitting as a Set Coverage Problem,
CVPR16(3318-3326)
IEEE DOI
1612
BibRef
Earlier:
Robust Multiple Model Fitting with Preference Analysis and Low-rank
Approximation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
And:
Fitting Multiple Models via Density Analysis in Tanimoto Space,
CIAP15(I:73-84).
Springer DOI
1511
BibRef
And:
Scale Estimation in Multiple Models Fitting via Consensus Clustering,
CAIP15(II:13-25).
Springer DOI
1511
BibRef
And:
T-Linkage:
A Continuous Relaxation of J-Linkage for Multi-model Fitting,
CVPR14(3954-3961)
IEEE DOI
1409
Multi-model fitting
BibRef
Magri, L.[Luca],
Fusiello, A.[Andrea],
Multiple structure recovery with maximum coverage,
MVA(29), No. 1, January 2018, pp. 159-173.
WWW Link.
1801
BibRef
Zoidi, O.[Olga],
Tefas, A.,
Nikolaidis, N.[Nikos],
Pitas, I.[Ioannis],
Positive and Negative Label Propagations,
CirSysVideo(28), No. 2, February 2018, pp. 342-355.
IEEE DOI
1802
BibRef
Earlier: A1, A3, A4, Only:
Label propagation on data with multiple representations through
multi-graph locality preserving projections,
ICIP14(1505-1509)
IEEE DOI
1502
Cost function, Face recognition, Laplace equations, Manifolds,
Semisupervised learning, Training, Action recognition,
label propagation (LP).
Accuracy
BibRef
Uzun, A.O.[Arif Orhun],
Usta, T.[Tugba],
Dündar, E.B.[Enes Burak],
Korkmaz, E.E.[Emin Erkan],
A solution to the classification problem with cellular automata,
PRL(116), 2018, pp. 114-120.
Elsevier DOI
1812
Classification, Cellular automata, Heat Transfer, Big Data
BibRef
Nassif, R.,
Vlaski, S.,
Richard, C.,
Sayed, A.H.,
A Regularization Framework for Learning Over Multitask Graphs,
SPLetters(26), No. 2, February 2019, pp. 297-301.
IEEE DOI
1902
approximation theory, gradient methods, graph theory,
inference mechanisms, learning (artificial intelligence),
distributed implementation
BibRef
Ji, W.[Wei],
Li, X.[Xi],
Wei, L.[Lina],
Wu, F.[Fei],
Zhuang, Y.T.[Yue-Ting],
Context-Aware Graph Label Propagation Network for Saliency Detection,
IP(29), 2020, pp. 8177-8186.
IEEE DOI
2008
saliency detection, superpixel pooling, graph neural network
BibRef
Hoang, T.,
Do, T.,
Nguyen, T.V.,
Cheung, N.,
Unsupervised Deep Cross-modality Spectral Hashing,
IP(29), 2020, pp. 8391-8406.
IEEE DOI
2008
Binary codes, Semantics, Optimization, Correlation, Sparse matrices,
Task analysis, Training data, Cross-modal retrieval,
constraint optimization
BibRef
Lim, K.L.[Kart-Leong],
Jiang, X.D.[Xu-Dong],
Variational posterior approximation using stochastic gradient ascent
with adaptive stepsize,
PR(112), 2021, pp. 107783.
Elsevier DOI
2102
Dirichlet process mixture, Stochastic gradient ascent,
Fisher information, Scalable algorithm
BibRef
Strecke, M.[Michael],
Goldluecke, B.[Bastian],
Sublabel-Accurate Convex Relaxation with Total Generalized Variation
Regularization,
GCPR18(263-277).
Springer DOI
1905
BibRef
Lê-Huu, D.K.,
Paragios, N.,
Continuous Relaxation of MAP Inference: A Nonconvex Perspective,
CVPR18(5533-5541)
IEEE DOI
1812
Convex functions, Markov processes, Optimization, Indexes.
BibRef
Dong, J.X.[Jiang-Xin],
Liu, R.S.[Ri-Sheng],
Tang, K.W.[Ke-Wei],
Wang, Y.Y.[Yi-Yang],
Zhang, X.D.[Xin-Dong],
Su, Z.X.[Zhi-Xun],
Sparse Gradient Pursuit for Robust Visual Analysis,
ACCV16(I: 369-384).
Springer DOI
1704
BibRef
Li, D.[Dong],
Hung, W.C.[Wei-Chih],
Huang, J.B.[Jia-Bin],
Wang, S.J.[Sheng-Jin],
Ahuja, N.[Narendra],
Yang, M.H.[Ming-Hsuan],
Unsupervised Visual Representation Learning by Graph-Based Consistent
Constraints,
ECCV16(IV: 678-694).
Springer DOI
1611
BibRef
Kim, K.I.[Kwang In],
Tompkin, J.[James],
Pfister, H.[Hanspeter],
Theobalt, C.[Christian],
Context-Guided Diffusion for Label Propagation on Graphs,
ICCV15(2776-2784)
IEEE DOI
1602
Anisotropic magnetoresistance
BibRef
Souiai, M.[Mohamed],
Oswald, M.R.[Martin R.],
Keef, Y.[Youngwook],
Kim, J.[Junmo],
Pollefeys, M.[Marc],
Cremers, D.[Daniel],
Entropy Minimization for Convex Relaxation Approaches,
ICCV15(1778-1786)
IEEE DOI
1602
Computer vision
BibRef
Zhang, Z.[Zhao],
Li, F.Z.[Fan-Zhang],
Zhao, M.B.[Ming-Bo],
Transformed Neighborhood Propagation,
ICPR14(3792-3797)
IEEE DOI
1412
Control charts
BibRef
Oswald, M.R.[Martin R.],
Cremers, D.[Daniel],
Surface Normal Integration for Convex Space-time Multi-view
Reconstruction,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Earlier:
A Convex Relaxation Approach to Space Time Multi-view 3D
Reconstruction,
4DMOD13(291-298)
IEEE DOI
1403
image reconstruction
BibRef
Stuhmer, J.[Jan],
Schroder, P.[Peter],
Cremers, D.[Daniel],
Tree Shape Priors with Connectivity Constraints Using Convex
Relaxation on General Graphs,
ICCV13(2336-2343)
IEEE DOI
1403
Medical Imaging; Optimization; Segmentation
BibRef
Wang, B.[Bo],
Tsotsos, J.K.[John K.],
Dynamic Label Propagation for Semi-supervised Multi-class Multi-label
Classification,
PR(52), No. 1, 2016, pp. 75-84.
Elsevier DOI
1601
Dynamic label propagation
BibRef
Earlier:
Add A2:
Tu, Z.W.[Zhuo-Wen],
ICCV13(425-432)
IEEE DOI
1403
Dynamic Label Propagation; Multi-class; Multi-label
BibRef
Ebert, S.[Sandra],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Pick Your Neighborhood:
Improving Labels and Neighborhood Structure for Label Propagation,
DAGM11(152-162).
Springer DOI
1109
propogate labels on graph in learning.
BibRef
Kasprzak, W.[Wlodzimierz],
Czajka, L.[Lukasz],
Wilkowski, A.[Artur],
A Constraint Satisfaction Framework with Bayesian Inference for
Model-Based Object Recognition,
ICCVG10(II: 1-8).
Springer DOI
1009
BibRef
Pawan Kumar, M.,
Torr, P.H.S.,
Fast Memory-Efficient Generalized Belief Propagation,
ECCV06(IV: 451-463).
Springer DOI
0608
BibRef
Coito, F.J.[Fernando J.],
Lemos, J.M.[João M.],
Adaptive Optimization with Constraints:
Convergence and Oscillatory Behaviour,
IbPRIA05(II:19).
Springer DOI
0509
BibRef
Yuille, A.L.[Alan L.],
A Double-Loop Algorithm to Minimize the Bethe Free Energy,
EMMCVPR01(3-18).
Springer DOI
0205
BibRef
Earlier:
A Double-Loop Algorithm to Minimize the Bethe and Kikuchi Free Energies,
SCTV01(xx-yy).
0106
BibRef
Yedidia, J.,
Freeman, W.T.,
Weiss, Y.,
Bethe free energy, Kikuchi approximations, and belief propagation
algorithms,
SCTV01(xx-yy).
0106
Stable points of belief propagation algorithms for graphs
with loops correspond to extrema of the Bethe free energy.
BibRef
Haddon, J.,
Boyce, J.,
Spatio-Temporal Relaxation Labelling Applied to Segmented
Infrared Image Sequences,
ICPR96(II: 171-175).
IEEE DOI
9608
(Defence Res. Agency, UK)
BibRef
Horiuchi, T.,
Yamamoto, K.,
Yamada, H.,
Robust Relaxation Method for Structural Matching Under Uncertainty,
ICPR96(II: 176-180).
IEEE DOI
9608
(Univ. of Tsukuba, J)
BibRef
Shao, Z.,
Kittler, J.V.,
Fuzzy Non-Iterative ARG Labeling with Multiple Interpretations,
ICPR96(II: 181-185).
IEEE DOI
9608
(Univ. of Surrey, UK)
BibRef
Hatef, M.,
Kittler, J.V.,
Combining symbolic with numeric attributes in multi-class object
recognition problems,
ICIP95(III: 364-367).
IEEE DOI
9510
BibRef
Choate, J.A.,
Gennert, M.A.,
Multiscale relaxation labeling of fractal images,
CVPR93(674-675).
IEEE DOI
0403
BibRef
McLean, C.R.,
Dyer, C.R.,
An Analog Relaxation Processor,
ICPR80(58-60).
BibRef
8000
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Continuous Relaxation Theory, Constraint Satisfaction .