5.3.10.3 No-Reference Image Quality Evaluation

Chapter Contents (Back)
Image Quality. No-Reference Quality.
See also Blind Image Quality Evaluation.
See also Screen Content Image Quality Evaluation.

Alparone, L.[Luciano], Aiazzi, B.[Bruno], Baronti, S.[Stefano], Garzelli, A.[Andrea], Nencini, F.[Filippo], Selva, M.[Massimo],
Multispectral and Panchromatic Data Fusion Assessment Without Reference,
PhEngRS(74), No. 2, February 2008, pp. 193-200.
WWW Link. 0803
A global index capable of measuring the quality of pansharpened multispectral images and working at the full scale withiut oreforming any preliminary degradation of the data.
See also Sensitivity of Pansharpening Methods to Temporal and Instrumental Changes Between Multispectral and Panchromatic Data Sets. BibRef

Gao, X.B.[Xin-Bo], Lu, W.[Wen], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long],
Image Quality Assessment Based on Multiscale Geometric Analysis,
IP(18), No. 7, July 2009, pp. 1409-1423.
IEEE DOI 0906
BibRef
Earlier: A2, A1, A4, A3:
An image quality assessment metric based contourlet,
ICIP08(1172-1175).
IEEE DOI 0810
BibRef

Wang, Z.Y.[Zhao-Yang], Hu, B.[Bo], Zhang, M.Y.[Ming-Yang], Li, J.[Jie], Li, L.[Leida], Gong, M.G.[Mao-Guo], Gao, X.B.[Xin-Bo],
Diffusion Model-Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment,
IP(34), 2025, pp. 263-278.
IEEE DOI Code:
WWW Link. 2501
Visualization, Distortion, Image restoration, Diffusion models, Image quality, Feature extraction, Adaptation models, dual visual branch BibRef

Li, J.[Jie], Yan, J.[Jia], Deng, D.X.[De-Xiang], Shi, W.X.[Wen-Xuan], Deng, S.F.[Song-Feng],
No-reference image quality assessment based on hybrid model,
SIViP(11), No. 6, September 2017, pp. 985-992.
Springer DOI 1708
BibRef

Ma, L.[Lin], Xu, L.[Long], Zhang, Y.[Yichi], Yan, Y.H.[Yi-Hua], Ngan, K.N.[King Ngi],
No-Reference Retargeted Image Quality Assessment Based on Pairwise Rank Learning,
MultMed(18), No. 11, November 2016, pp. 2228-2237.
IEEE DOI 1609
distortion BibRef

Ma, L.[Lin], Li, S.N.[Song-Nan], Ngan, K.N.[King Ngi],
Reduced-reference image quality assessment in reorganized DCT domain,
SP:IC(28), No. 8, 2013, pp. 884-902.
Elsevier DOI 1309
Image quality assessment (IQA) BibRef

Ma, L.[Lin], Ngan, K.N.[King Ngi], Zhang, F.[Fan], Li, S.N.[Song-Nan],
Adaptive Block-size Transform based Just-Noticeable Difference model for images/videos,
SP:IC(26), No. 3, March 2011, pp. 162-174.
Elsevier DOI 1104
BibRef
Earlier: A1, A3, A4, A2:
Video Quality Assessment based on Adaptive Block-size Transform Just-Noticeable Difference model,
ICIP10(2501-2504).
IEEE DOI 1009
Just-Noticeable Difference (JND); Adaptive Block-size Transform (ABT); Human Visual System (HVS); Spatial Content Similarity (SCS); Motion Characteristic Similarity (MCS) BibRef

Ma, L.[Lin], Li, S.N.[Song-Nan], Ngan, K.N.[King N.],
Motion trajectory based visual saliency for video quality assessment,
ICIP11(233-236).
IEEE DOI 1201
BibRef

Ma, L.[Lin], Li, S.N.[Song-Nan], Zhang, F.[Fan], Ngan, K.N.[King Ngi],
Reduced-Reference Image Quality Assessment Using Reorganized DCT-Based Image Representation,
MultMed(13), No. 4, 2011, pp. 824-829.
IEEE DOI 1108

See also Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments. BibRef

Wu, Q.B.[Qing-Bo], Li, H.L.[Hong-Liang], Meng, F.M.[Fan-Man], Ngan, K.N.[King Ngi], Zhu, S.Y.[Shu-Yuan],
No reference image quality assessment metric via multi-domain structural information and piecewise regression,
JVCIR(32), No. 1, 2015, pp. 205-216.
Elsevier DOI 1511
No reference image quality assessment BibRef

Ye, P.[Peng], Doermann, D.[David],
No-Reference Image Quality Assessment Using Visual Codebooks,
IP(21), No. 7, July 2012, pp. 3129-3138.
IEEE DOI 1206
BibRef
Earlier:
No-reference image quality assessment based on visual codebook,
ICIP11(3089-3092).
IEEE DOI 1201
BibRef

Ye, P.[Peng], Kumar, J.[Jayant], Doermann, D.[David],
Beyond Human Opinion Scores: Blind Image Quality Assessment Based on Synthetic Scores,
CVPR14(4241-4248)
IEEE DOI 1409
image quality;unsupervised learning BibRef

Xu, J.T.[Jing-Tao], Ye, P.[Peng], Li, Q.H.[Qiao-Hong], Du, H.Q.[Hai-Qing], Liu, Y.[Yong], Doermann, D.[David],
Blind Image Quality Assessment Based on High Order Statistics Aggregation,
IP(25), No. 9, September 2016, pp. 4444-4457.
IEEE DOI 1609
feature extraction BibRef
Earlier: A1, A2, A3, A5, A6, Only:
No-Reference Document Image Quality Assessment Based on High Order Image Statistics,
ICIP16(3289-3293)
IEEE DOI 1610
BibRef
Earlier: A1, A3, A2, A4, A5, Only:
Local feature aggregation for blind image quality assessment,
VCIP15(1-4)
IEEE DOI 1605
BibRef
Earlier: A1, A3, A2, A4, A5, Only:
Statistical metric fusion for image quality assessment,
VCIP14(133-136)
IEEE DOI 1504
Correlation. image fusion
See also Visual Structural Degradation Based Reduced-Reference Image Quality Assessment. BibRef

Xu, J.T.[Jing-Tao], Ye, P.[Peng], Liu, Y.[Yong], Doermann, D.[David],
No-reference video quality assessment via feature learning,
ICIP14(491-495)
IEEE DOI 1502
Feature extraction BibRef

Ye, P.[Peng], Doermann, D.[David],
Active Sampling for Subjective Image Quality Assessment,
CVPR14(4249-4256)
IEEE DOI 1409
active learning;quality of experience;subjective image quality BibRef

Ye, P.[Peng], Kumar, J.[Jayant], Kang, L.[Le], Doermann, D.[David],
Real-Time No-Reference Image Quality Assessment Based on Filter Learning,
CVPR13(987-994)
IEEE DOI 1309
BibRef
Earlier:
Unsupervised feature learning framework for no-reference image quality assessment,
CVPR12(1098-1105).
IEEE DOI 1208
image quality assessment BibRef

Peng, P.[Peng], Li, Z.N.[Ze-Nian],
A Mixture of Experts Approach to Multi-strategy Image Quality Assessment,
ICIAR12(I: 123-130).
Springer DOI 1206
BibRef

Kang, L.[Le], Ye, P.[Peng], Li, Y.[Yi], Doermann, D.[David],
Convolutional Neural Networks for No-Reference Image Quality Assessment,
CVPR14(1733-1740)
IEEE DOI 1409
Convolutional Neural Network;image quality assessment BibRef

Kumar, J.[Jayant], Ye, P.[Peng], Doermann, D.[David],
A Dataset for Quality Assessment of Camera Captured Document Images,
CBDAR13(113-125).
Springer DOI 1404
BibRef

Kang, L.[Le], Ye, P.[Peng], Li, Y.[Yi], Doermann, D.[David],
A deep learning approach to document image quality assessment,
ICIP14(2570-2574)
IEEE DOI 1502
Accuracy BibRef

Alaei, A.[Alireza], Bui, V.[Vinh], Doermann, D.[David], Pal, U.[Umapada],
Document Image Quality Assessment: A Survey,
Surveys(56), No. 2, September 2023, pp. 29.
DOI Link 2310
Survey, Document Quality. image quality assessment, Document image quality, document image readability BibRef

Ye, P.[Peng], Doermann, D.,
Document Image Quality Assessment: A Brief Survey,
ICDAR13(723-727)
IEEE DOI 1312
document image processing BibRef

Serir, A.[Amina], Beghdadi, A.[Azeddine], Kerouh, F.,
No-reference blur image quality measure based on multiplicative multiresolution decomposition,
JVCIR(24), No. 7, 2013, pp. 911-925.
Elsevier DOI 1309
Blur BibRef

De, K.[Kanjar], Masilamani, V.,
A Spatial Domain Object Separability Based No-Reference Image Quality Measure Using Mean and Variance,
IJIG(13), No. 2, April 2013, pp. 1340005.
DOI Link 1308
BibRef

Fang, Y.M.[Yu-Ming], Ma, K.[Kede], Wang, Z.[Zhou], Lin, W.S.[Wei-Si], Fang, Z.J.[Zhi-Jun], Zhai, G.T.[Guang-Tao],
No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics,
SPLetters(22), No. 7, July 2015, pp. 838-842.
IEEE DOI 1412
distortion BibRef

Virtanen, T., Nuutinen, M., Vaahteranoksa, M., Oittinen, P., Hakkinen, J.,
CID2013: A Database for Evaluating No-Reference Image Quality Assessment Algorithms,
IP(24), No. 1, January 2015, pp. 390-402.
IEEE DOI 1502
Dataset, Image Quality. cameras BibRef

Nuutinen, M., Virtanen, T., Vaahteranoksa, M., Vuori, T., Oittinen, P., Häkkinen, J.,
CVD2014: A Database for Evaluating No-Reference Video Quality Assessment Algorithms,
IP(25), No. 7, July 2016, pp. 3073-3086.
IEEE DOI 1606
image sequences BibRef

Guan, J.W.[Jing-Wei], Zhang, W.[Wei], Gu, J.[Jason], Ren, H.L.[Hong-Liang],
No-reference blur assessment based on edge modeling,
JVCIR(29), No. 1, 2015, pp. 1-7.
Elsevier DOI 1504
Image quality assessment BibRef

Zhang, M.[Min], Muramatsu, C., Zhou, X.R., Hara, T., Fujita, H.,
Blind Image Quality Assessment Using the Joint Statistics of Generalized Local Binary Pattern,
SPLetters(22), No. 2, February 2015, pp. 207-210.
IEEE DOI 1410
Gaussian processes BibRef

Zhang, M.[Min], Xie, J.[Jin], Zhou, X.R.[Xiang-Rong], Fujita, H.,
No reference image quality assessment based on local binary pattern statistics,
VCIP13(1-6)
IEEE DOI 1402
feature extraction BibRef

Søgaard, J.[Jacob], Forchhammer, S.[Søren], Korhonen, J.,
No-Reference Video Quality Assessment Using Codec Analysis,
CirSysVideo(25), No. 10, October 2015, pp. 1637-1650.
IEEE DOI 1511
discrete cosine transforms BibRef

Huang, X.[Xin], Søgaard, J.[Jacob], Forchhammer, S.[Søren],
No-reference pixel based video quality assessment for HEVC decoded video,
JVCIR(43), No. 1, 2017, pp. 173-184.
Elsevier DOI 1702
BibRef
Earlier:
No-reference video quality assessment by HEVC codec analysis,
VCIP15(1-4)
IEEE DOI 1605
HEVC analysis. Elastic Net BibRef

Li, J.[Jie], Zou, L.[Lian], Yan, J.[Jia], Deng, D.X.[De-Xiang], Qu, T.[Tao], Xie, G.H.[Gui-Hui],
No-Reference Image Quality Assessment Using Prewitt Magnitude Based on Convolutional Neural Networks,
SIViP(10), No. 4, April 2016, pp. 609-616.
Springer DOI 1604
BibRef

Hadizadeh, H.[Hadi], Bajic, I.V.[Ivan V.],
No-reference image quality assessment using statistical wavelet-packet features,
PRL(80), No. 1, 2016, pp. 144-149.
Elsevier DOI 1609
Image quality assessment BibRef

Hadizadeh, H.[Hadi], Bajic, I.V.[Ivan V.],
Color Gaussian Jet Features For No-Reference Quality Assessment of Multiply-Distorted Images,
SPLetters(23), No. 12, December 2016, pp. 1717-1721.
IEEE DOI 1612
feature extraction BibRef

Hadizadeh, H.[Hadi], Bajic, I.V.[Ivan V.],
Full-Reference Objective Quality Assessment of Tone-Mapped Images,
MultMed(20), No. 2, February 2018, pp. 392-404.
IEEE DOI 1801
Distortion, Dynamic range, Feature extraction, Image color analysis, Indexes, Quality assessment, Visualization, tone mapping BibRef

Javaran, T.A.[Taiebeh Askari], Hassanpour, H.[Hamid], Abolghasemi, V.[Vahid],
A noise-immune no-reference metric for estimating blurriness value of an image,
SP:IC(47), No. 1, 2016, pp. 218-228.
Elsevier DOI 1610
No-reference metric BibRef

Javaran, T.A.[Taiebeh Askari], Hassanpour, H.[Hamid], Abolghasemi, V.[Vahid],
Non-blind image deconvolution using a regularization based on re-blurring process,
CVIU(154), No. 1, 2017, pp. 16-34.
Elsevier DOI 1612
Non-blind image deconvolution BibRef

Nafchi, H.Z., Shahkolaei, A., Hedjam, R., Cheriet, M.,
MUG: A Parameterless No-Reference JPEG Quality Evaluator Robust to Block Size and Misalignment,
SPLetters(23), No. 11, November 2016, pp. 1577-1581.
IEEE DOI 1609
Discrete cosine transforms BibRef

Goodall, T.R.[Todd R.], Katsavounidis, I.[Ioannis], Li, Z.[Zhi], Aaron, A.[Anne], Bovik, A.C.[Alan C.],
Blind Picture Upscaling Ratio Prediction,
SPLetters(23), No. 12, December 2016, pp. 1801-1805.
IEEE DOI 1612
image processing BibRef

Vega, M.T.[Maria Torres], Mocanu, D.C.[Decebal Constantin], Stavrou, S.[Stavros], Liotta, A.[Antonio],
Predictive no-reference assessment of video quality,
SP:IC(52), No. 1, 2017, pp. 20-32.
Elsevier DOI 1701
Quality of experience BibRef

Ma, C.[Chao], Yang, C.Y.[Chih-Yuan], Yang, X.K.[Xiao-Kang], Yang, M.H.[Ming-Hsuan],
Learning a no-reference quality metric for single-image super-resolution,
CVIU(158), No. 1, 2017, pp. 1-16.
Elsevier DOI 1704
Image quality assessment BibRef

Zhang, Y.[Yi], Phan, T.D.[Thien D.], Chandler, D.M.[Damon M.],
Reduced-reference image quality assessment based on distortion families of local perceived sharpness,
SP:IC(55), No. 1, 2017, pp. 130-145.
Elsevier DOI 1705
Reduced-reference, quality, assessment BibRef

Zhang, Y.[Yi], Yang, Q.[Qixue], Chandler, D.M.[Damon M.], Mou, X.Q.[Xuan-Qin],
Reference-Based Multi-Stage Progressive Restoration for Multi-Degraded Images,
IP(33), 2024, pp. 4982-4997.
IEEE DOI Code:
WWW Link. 2409
Image restoration, Distortion, Transformers, Image edge detection, Degradation, Accuracy, Superresolution, Image restoration, texture transfer BibRef

Zhang, Y.[Yi], Chandler, D.M.[Damon M.],
Learning natural statistics of binocular contrast for no reference quality assessment of stereoscopic images,
ICIP17(186-190)
IEEE DOI 1803
Distortion, Feature extraction, Image quality, Solid modeling, Stereo image processing, no-reference quality assessment BibRef

Kundu, D., Ghadiyaram, D., Bovik, A.C., Evans, B.L.,
No-Reference Quality Assessment of Tone-Mapped HDR Pictures,
IP(26), No. 6, June 2017, pp. 2957-2971.
IEEE DOI 1705
Distortion, Feature extraction, Image color analysis, Image quality, Predictive models, Standards, Visualization, Image quality assessment, high dynamic range, natural scene statistics, no-reference BibRef

Kundu, D., Ghadiyaram, D., Bovik, A.C., Evans, B.L.,
Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures,
IP(26), No. 10, October 2017, pp. 4725-4740.
IEEE DOI 1708
crowdsourcing, visual databases, ESPL-LIVE HDR image database, MEF databases, SDR, bypass HDR creation, high-dynamic range images, human opinion, multiexposure fusion, standard dynamic range images, Algorithm design and analysis, Databases, Dynamic range, Image coding, Observers, Standards, Image quality assessment, high dynamic range, subjective study BibRef

Li, S.[Shuang], Yang, Z.W.[Ze-Wei], Li, H.S.[Hong-Sheng],
Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote Sensing Images,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Qin, M.[Min], Lv, X.X.[Xiao-Xin], Chen, X.H.[Xiao-Hui], Wang, W.D.[Wei-Dong],
access icon openaccess Hybrid NSS features for no-reference image quality assessment,
IET-IPR(11), No. 6, June 2017, pp. 443-449.
DOI Link 1706
BibRef

Zhang, L.[Lin], Gu, Z.Y.[Zhong-Yi], Liu, X.X.[Xiao-Xu], Li, H.Y.[Hong-Yu], Lu, J.W.[Jian-Wei],
Training Quality-Aware Filters for No-Reference Image Quality Assessment,
MultMedMag(21), No. 4, October 2014, pp. 67-75.
IEEE DOI 1502
filtering theory BibRef

Zhang, L.[Lin], Zhang, L.[Lei], Mou, X.Q.[Xuan-Qin], Zhang, D.[David],
A comprehensive evaluation of full reference image quality assessment algorithms,
ICIP12(1477-1480).
IEEE DOI 1302
BibRef

Fang, R., Al-Bayaty, R., Wu, D.,
BNB Method for No-Reference Image Quality Assessment,
CirSysVideo(27), No. 7, July 2017, pp. 1381-1391.
IEEE DOI 1707
Feature extraction, Image quality, Measurement, Media, Nonlinear distortion, Support vector machines, Artifact metric, Laplace distribution, image quality assessment (IQA), no-reference, (NR) BibRef

Hu, B.[Bo], Li, L.[Leida], Wu, J.J.[Jin-Jian], Wang, S.Q.[Shi-Qi], Tang, L.[Lu], Qian, J.S.[Jian-Sheng],
No-reference quality assessment of compressive sensing image recovery,
SP:IC(58), No. 1, 2017, pp. 165-174.
Elsevier DOI 1710
Image, quality, assessment BibRef

Gu, K., Jakhetiya, V., Qiao, J.F., Li, X., Lin, W., Thalmann, D.,
Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description,
IP(27), No. 1, January 2018, pp. 394-405.
IEEE DOI 1712
augmented reality, autoregressive processes, image texture, rendering (computer graphics), video signal processing, saliency BibRef

Kerouh, F.[Fatma], Ziou, D.[Djemel], Serir, A.[Amina],
Histogram modelling-based no reference blur quality measure,
SP:IC(60), No. 1, 2018, pp. 22-28.
Elsevier DOI 1712
BibRef
And:
A multiresolution DCT-based blind blur quality measure,
IPTA17(1-6)
IEEE DOI 1804
blind source separation, discrete cosine transforms, exponential distribution, image coding, image enhancement, probability density function. Blind image quality BibRef

Liu, T.J., Liu, K.H.,
No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method,
IP(27), No. 3, March 2018, pp. 1138-1151.
IEEE DOI 1801
feature extraction, image enhancement, image fusion, learning (artificial intelligence), wide-perceptual-domain scorer (WPDS) BibRef

Tian, S., Zhang, L., Morin, L., Déforges, O.,
NIQSV: A No-Reference Synthesized View Quality Assessment Metric,
IP(27), No. 4, April 2018, pp. 1652-1664.
IEEE DOI 1802
data compression, image texture, rendering (computer graphics), video coding, No, view synthesis BibRef

Tian, S., Zhang, L., Morin, L., Déforges, O.,
A Benchmark of DIBR Synthesized View Quality Assessment Metrics on a New Database for Immersive Media Applications,
MultMed(21), No. 5, May 2019, pp. 1235-1247.
IEEE DOI 1905
rendering (computer graphics), video coding, visual databases, DIBR-synthesized views, video coding, quality assessment BibRef

Joshi, P.[Piyush], Prakash, S.[Surya], Rawat, S.[Sonika],
Continuous wavelet transform-based no-reference quality assessment of deblocked images,
VC(34), No. 12, December 2018, pp. 1739-1748.
WWW Link. 1811
BibRef

Oszust, M.[Mariusz],
No-reference image quality assessment with local features and high-order derivatives,
JVCIR(56), 2018, pp. 15-26.
Elsevier DOI 1811
Image quality assessment, No-reference, Local features, Support vector regression BibRef

Miao, X.K.[Xi-Kui], Lee, D.J.[Dah-Jye], Cheng, X.Z.[Xiang-Zheng], Yang, X.Y.[Xiao-Yu],
Reduced-Reference Image Quality Assessment Based on Improved Local Binary Pattern,
ISVC18(382-394).
Springer DOI 1811
BibRef

Freitas, P.G., Akamine, W.Y.L., Farias, M.C.Q.,
No-Reference Image Quality Assessment Using Orthogonal Color Planes Patterns,
MultMed(20), No. 12, December 2018, pp. 3353-3360.
IEEE DOI 1812
feature extraction, image colour analysis, image representation, image texture, regression analysis, vectors, input vector, orthogonal color plane binary patterns BibRef

Mahmoudpour, S.[Saeed], Schelkens, P.[Peter],
Reduced-reference quality assessment of multiply-distorted images based on structural and uncertainty information degradation,
JVCIR(57), 2018, pp. 125-137.
Elsevier DOI 1812
Image quality, Multiply-distortion types, Shearlet transform, Entropy analysis, Support vector regression, Privileged information BibRef

Dendi, S.V.R., Dev, C., Kothari, N., Channappayya, S.S.,
Generating Image Distortion Maps Using Convolutional Autoencoders With Application to No Reference Image Quality Assessment,
SPLetters(26), No. 1, January 2019, pp. 89-93.
IEEE DOI 1901
data compression, distortion, feedforward neural nets, image coding, image restoration, convolutional autoencoder, human visual system (HVS) BibRef

Wang, T.H.[Tong-Han], Zhang, L.[Lu], Jia, H.Z.[Hui-Zhen],
An effective general-purpose NR-IQA model using natural scene statistics (NSS) of the luminance relative order,
SP:IC(71), 2019, pp. 100-109.
Elsevier DOI 1901
Image quality assessment, Relative order, Natural scene statistics, No reference, Random forest BibRef

Hu, W.J.[Wen-Jin], Ye, Y.Q.[Yu-Qi], Meng, J.H.[Jia-Hao], Zeng, F.L.[Fu-Liang],
No reference quality assessment for Thangka color image based on superpixel,
JVCIR(59), 2019, pp. 407-414.
Elsevier DOI 1903
Image quality, No reference assessment, Superpixel, Information entropy, Thangka image BibRef

Fang, Y.M.[Yu-Ming], Liu, J.Y.[Jia-Ying], Zhang, Y.[Yabin], Lin, W.S.[Wei-Si], Guo, Z.M.[Zong-Ming],
Reduced-Reference Quality Assessment of Image Super-Resolution by Energy Change and Texture Variation,
JVCIR(60), 2019, pp. 140-148.
Elsevier DOI 1903
Image quality assessment (IQA), Image super-resolution, Reduced-reference (RR) quality assessment, Energy change, Texture variation BibRef

Po, L., Liu, M., Yuen, W.Y.F., Li, Y., Xu, X., Zhou, C., Wong, P.H.W., Lau, K.W., Luk, H.,
A Novel Patch Variance Biased Convolutional Neural Network for No-Reference Image Quality Assessment,
CirSysVideo(29), No. 4, April 2019, pp. 1223-1229.
IEEE DOI 1904
Training, Image quality, Estimation, Image color analysis, Convolution, Convolutional neural networks, Deep learning, no-reference image quality assessment BibRef

Alaql, O.[Omar], Lu, C.C.[Cheng-Chang],
No-reference image quality metric based on multiple deep belief networks,
IET-IPR(13), No. 8, 20 June 2019, pp. 1321-1327.
DOI Link 1906
BibRef

Zhou, Y., Li, L., Wang, S., Wu, J., Fang, Y., Gao, X.,
No-Reference Quality Assessment for View Synthesis Using DoG-Based Edge Statistics and Texture Naturalness,
IP(28), No. 9, Sep. 2019, pp. 4566-4579.
IEEE DOI 1908
edge detection, feature extraction, Gaussian processes, image representation, image texture, random forests, gray level gradient co-occurrence matrix BibRef

Zhu, W., Zhai, G., Min, X., Hu, M., Liu, J., Guo, G., Yang, X.,
Multi-Channel Decomposition in Tandem With Free-Energy Principle for Reduced-Reference Image Quality Assessment,
MultMed(21), No. 9, September 2019, pp. 2334-2346.
IEEE DOI 1909
Visualization, Wavelet transforms, Image quality, Feature extraction, Measurement, Brain modeling, human visual system BibRef

Liu, L., Wang, T., Huang, H.,
Pre-Attention and Spatial Dependency Driven No-Reference Image Quality Assessment,
MultMed(21), No. 9, September 2019, pp. 2305-2318.
IEEE DOI 1909
Image color analysis, Measurement, Visualization, Distortion, Feature extraction, Image quality, Visual perception, chromatic data BibRef

Yue, G., Hou, C., Gu, K., Zhou, T., Liu, H.,
No-Reference Quality Evaluator of Transparently Encrypted Images,
MultMed(21), No. 9, September 2019, pp. 2184-2194.
IEEE DOI 1909
Measurement, Feature extraction, Visualization, Encryption, Distortion, Quality evaluation, visual security, encrypted image, no-reference BibRef

Chen, W., Gu, K., Lin, W., Xia, Z., Le Callet, P., Cheng, E.,
Reference-Free Quality Assessment of Sonar Images via Contour Degradation Measurement,
IP(28), No. 11, November 2019, pp. 5336-5351.
IEEE DOI 1909
Sonar measurements, Degradation, Image quality, Acoustic distortion, Image quality assessment (IQA), bagging BibRef

Yang, J.C.[Jia-Chen], Huang, Z.H.[Zhi-Hui], Sim, K.[Kyohoon], Lu, W.[Wen], Liu, K.[Kai], Liu, H.[Hehan],
No-reference image quality assessment focusing on human facial region,
SP:IC(78), 2019, pp. 51-61.
Elsevier DOI 1909
Image quality assessment, No-reference, Facial region, Face detection BibRef

Yang, J.C.[Jia-Chen], Zhao, Y.[Yang], Liu, J.C.[Jia-Cheng], Jiang, B.[Bin], Meng, Q.G.[Qing-Gang], Lu, W.[Wen], Gao, X.B.[Xin-Bo],
No Reference Quality Assessment for Screen Content Images Using Stacked Autoencoders in Pictorial and Textual Regions,
Cyber(52), No. 5, May 2022, pp. 2798-2810.
IEEE DOI 2206
Measurement, Feature extraction, Visualization, Databases, Distortion, Image quality, unsupervised approach BibRef

Miao, X.[Xikui], Chu, H.R.[Hai-Rong], Liu, H.[Hui], Yang, Y.[Yao], Li, X.L.[Xiao-Long],
Quality assessment of images with multiple distortions based on phase congruency and gradient magnitude,
SP:IC(79), 2019, pp. 54-62.
Elsevier DOI 1911
No-reference, Image quality assessment, Phase congruency, Local binary pattern, Image gradient BibRef

Zhou, Z.H.[Zi-Heng], Lu, W.[Wen], Yang, J.C.[Jia-Chen], He, W.Q.[Wei-Quan],
No-reference image quality assessment based on neighborhood co-occurrence matrix,
SP:IC(81), 2020, pp. 115680.
Elsevier DOI 1912
No-reference image quality assessment, Neighborhood co-occurrence matrix, Natural scene statistics BibRef

Yang, X.C.[Xi-Chen], Wang, T.S.[Tian-Shu], Ji, G.L.[Gen-Lin],
No-reference image quality assessment via structural information fluctuation,
IET-IPR(14), No. 2, February 2020, pp. 384-396.
DOI Link 2001
BibRef

Zhang, Y., Mou, X., Chandler, D.M.,
Learning No-Reference Quality Assessment of Multiply and Singly Distorted Images With Big Data,
IP(29), 2020, pp. 2676-2691.
IEEE DOI 2001
Distortion, Feature extraction, Image coding, Transform coding, Image quality, Prediction algorithms, Databases, contrast change BibRef

Zhou, W., Shi, L., Chen, Z., Zhang, J.,
Tensor Oriented No-Reference Light Field Image Quality Assessment,
IP(29), 2020, pp. 4070-4084.
IEEE DOI 2002
Light field, image quality assessment, objective model, tensor theory, angular consistency BibRef

Shi, L., Zhou, W., Chen, Z., Zhang, J.,
No-Reference Light Field Image Quality Assessment Based on Spatial-Angular Measurement,
CirSysVideo(30), No. 11, November 2020, pp. 4114-4128.
IEEE DOI 2011
Feature extraction, Image quality, Visualization, angular consistency BibRef

Shi, L., Zhao, S., Chen, Z.,
Belif: Blind Quality Evaluator Of Light Field Image With Tensor Structure Variation Index,
ICIP19(3781-3785)
IEEE DOI 1910
Light field, Image quality assessment, Objective model, Tensor, Angular consistency BibRef

Li, Y.H.[Yun-Hong], Zhang, H.H.[Huan-Huan], Chen, J.N.[Jin-Ni], Song, P.[Peng], Ren, J.[Jie], Zhang, Q.M.[Qiu-Ming], Jia, K.L.[Kai-Li],
Non-Reference Image Quality Assessment Based on Deep Clustering,
SP:IC(83), 2020, pp. 115781.
Elsevier DOI 2003
Deep clustering, Quality evaluation, Feature extraction, Contracted autoencoder BibRef

Hou, R.[Rui], Zhao, Y.H.[Yun-Hao], Hu, Y.[Yang], Liu, H.[Huan],
No-reference video quality evaluation by a deep transfer CNN architecture,
SP:IC(83), 2020, pp. 115782.
Elsevier DOI 2003
Video quality, Feature extraction, VGG-net, VQA, Average pooling, Human perception BibRef

Huang, Y.[Yipo], Li, L.[Leida], Zhou, Y.[Yu], Hu, B.[Bo],
No-reference quality assessment for live broadcasting videos in temporal and spatial domains,
IET-IPR(14), No. 4, 27 March 2020, pp. 774-781.
DOI Link 2003
BibRef

Li, A.[Aobo], Wu, J.J.[Jin-Jian], Liu, Y.X.[Yong-Xu], Li, L.[Leida],
Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment,
CVPR24(28422-28431)
IEEE DOI 2410
Image quality, Training, Adaptation models, Analytical models, Upper bound, Annotations, Training data, Unsupervised domain adaptation BibRef

Chen, P.F.[Peng-Fei], Li, L.[Leida], Wu, J.J.[Jin-Jian], Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming],
Unsupervised Curriculum Domain Adaptation for No-Reference Video Quality Assessment,
ICCV21(5158-5167)
IEEE DOI 2203
Adaptation models, Correlation, Measurement uncertainty, Predictive models, Distortion, Data models, Quality assessment, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Deng, J.C.[Jun-Chen], Wang, C.[Ci], Liu, S.Q.[Shi-Qi],
No Reference Image Quality Assessment by Information Decomposition,
MMMod20(I:826-838).
Springer DOI 2003
BibRef

Liu, H.[Hao], Li, C.[Ce], Zhang, D.[Dong], Zhou, Y.N.[Yan-Nan], Du, S.Y.[Shao-Yi],
Enhanced image no-reference quality assessment based on colour space distribution,
IET-IPR(14), No. 5, 17 April 2020, pp. 807-817.
DOI Link 2004
BibRef

Reddy Dendi, S.V., Channappayya, S.S.,
No-Reference Video Quality Assessment Using Natural Spatiotemporal Scene Statistics,
IP(29), 2020, pp. 5612-5624.
IEEE DOI 2005
Spatiotemporal phenomena, Quality assessment, Optical distortion, Feature extraction, Video recording, Distortion, Streaming media, SVR and 3D-MSCN
See also Full-Reference 3-D Video Quality Assessment Using Scene Component Statistical Dependencies. BibRef

Lyu, W.J.[Wen-Jing], Lu, W.[Wei], Ma, M.[Ming],
No-reference quality metric for contrast-distorted image based on gradient domain and HSV space,
JVCIR(69), 2020, pp. 102797.
Elsevier DOI 2006
Digital image forensics, No-reference image quality assessment, Contrast distortion, HSV color space BibRef

Chen, D., Wang, Y., Gao, W.,
No-Reference Image Quality Assessment: An Attention Driven Approach,
IP(29), 2020, pp. 6496-6506.
IEEE DOI 2007
BibRef
Earlier: Add A3: Ren, H., WACV19(376-385)
IEEE DOI 1904
Task analysis, Distortion, Image restoration, Computational modeling, Feature extraction, Image quality, attention model. image restoration, learning (artificial intelligence), recurrent neural nets, human beings, distorted image, BibRef

Bao, L.[Long], Panetta, K.A.[Karen A.], Agaian, S.[Sos],
Neural network-based image quality comparator without collecting the human score for training,
IET-IPR(14), No. 9, 20 July 2020, pp. 1787-1793.
DOI Link 2007
BibRef

Yan, J.B.[Jie-Bin], Fang, Y.M.[Yu-Ming], Du, R.G.[Ren-Gang], Zeng, Y.[Yan], Zuo, Y.F.[Yi-Fan],
No Reference Quality Assessment for 3D Synthesized Views by Local Structure Variation and Global Naturalness Change,
IP(29), 2020, pp. 7443-7453.
IEEE DOI 2007
Depth image based rendering (DIBR), View synthesis, no reference (NR), image quality assessment BibRef

Sui, X.J.[Xiang-Jie], Ding, M.N.[Meng-Na], Yan, J.B.[Jie-Bin], Fang, Y.M.[Yu-Ming], Zuo, Y.F.[Yi-Fan], Tan, Z.W.[Zuo-Wen],
Objective quality assessment of synthesized images by local variation measurement,
SP:IC(92), 2021, pp. 116096.
Elsevier DOI 2101
Depth-image-based rending (DIBR), Neutrosophic domain, Image quality assessment BibRef

Mahmoudpour, S.[Saeed], Schelkens, P.[Peter],
On the performance of objective quality metrics for lightfields,
SP:IC(93), 2021, pp. 116179.
Elsevier DOI 2103
Lightfield imaging, Quality of experience, Compression, Mean opinion score, Objective quality metrics BibRef

Mahmoudpour, S., Schelkens, P.,
Synthesized View Quality Assessment Using Feature Matching and Superpixel Difference,
SPLetters(27), 2020, pp. 1650-1654.
IEEE DOI 2010
Feature extraction, Distortion, Image segmentation, Measurement, Quality assessment, view synthesis BibRef

Mahmoudpour, S., Schelkens, P.,
Omnidirectional Video Quality Index Accounting for Judder,
CirSysVideo(31), No. 1, January 2021, pp. 61-75.
IEEE DOI 2101
Visualization, Streaming media, Quality of experience, Target tracking, Video sequences, Quality assessment, visual masking BibRef

Krasula, L., Fliegel, K., Le Callet, P.,
FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation,
MultMed(22), No. 8, August 2020, pp. 2038-2047.
IEEE DOI 2007
Feature extraction, Indexes, Image quality, Dynamic range, Quality assessment, Reliability, High dynamic range imaging, feature selection BibRef

Xia, W., Yang, Y., Xue, J.H., Xiao, J.,
Domain Fingerprints for No-Reference Image Quality Assessment,
CirSysVideo(31), No. 4, April 2021, pp. 1332-1341.
IEEE DOI 2104
Distortion, Image quality, Image restoration, Degradation, Feature extraction, Task analysis, Visualization, generative adversarial network BibRef

Li, J.H.[Jun-Hui], Qiao, S.[Shuang], Zhao, C.Y.[Chen-Yi], Zhang, T.[Tian],
No-reference image quality assessment based on multiscale feature representation,
IET-IPR(15), No. 13, 2021, pp. 3318-3331.
DOI Link 2110
BibRef

Yang, X.H.[Xiao-Han], Li, F.[Fan], Liu, H.T.[Han-Tao],
TTL-IQA: Transitive Transfer Learning Based No-Reference Image Quality Assessment,
MultMed(23), 2021, pp. 4326-4340.
IEEE DOI 2112
Task analysis, Distortion, Image quality, Databases, Image recognition, Feature extraction, Deep learning, generative adversarial network BibRef

Li, N.[Ning], Teurnier, B.L.[Benjamin Le], Boffety, M.[Matthieu], Goudail, F.[François], Zhao, Y.Q.[Yong-Qiang], Pan, Q.[Quan],
No-Reference Physics-Based Quality Assessment of Polarization Images and Its Application to Demosaicking,
IP(30), 2021, pp. 8983-8998.
IEEE DOI 2112
Redundancy, Imaging, Noise measurement, Quality assessment, Measurement uncertainty, Polarization, Measurement errors, image demosaicking BibRef

You, J.Y.[Jun-Yong], Korhonen, J.[Jari],
Attention Integrated Hierarchical Networks for No-Reference Image Quality Assessment,
JVCIR(82), 2022, pp. 103399.
Elsevier DOI 2201
Attention, Hierarchical networks, Image quality assessment (IQA), Perceptual mechanisms, Quality perception BibRef

Ma, X.S.[Xiao-Shuang], Hu, H.M.[Hong-Ming], Wu, P.H.[Peng-Hai],
A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhou, W.[Wei], Xu, J.H.[Jia-Hua], Jiang, Q.P.[Qiu-Ping], Chen, Z.B.[Zhi-Bo],
No-Reference Quality Assessment for 360-Degree Images by Analysis of Multifrequency Information and Local-Global Naturalness,
CirSysVideo(32), No. 4, April 2022, pp. 1778-1791.
IEEE DOI 2204
Visualization, Image quality, Quality assessment, Feature extraction, Image coding, Distortion measurement, human visual systems BibRef

Zhang, J.Q.[Jia-Qi], Fang, Z.G.[Zhi-Gao], Yu, L.[Lu],
A no-reference perceptual image quality assessment database for learned image codecs,
JVCIR(88), 2022, pp. 103617.
Elsevier DOI 2210
Image quality assessment, Learning-based image compression, Generated image compression BibRef

Chen, B.L.[Bao-Liang], Zhu, L.Y.[Ling-Yu], Kong, C.Q.[Chen-Qi], Zhu, H.W.[Han-Wei], Wang, S.Q.[Shi-Qi], Li, Z.[Zhu],
No-Reference Image Quality Assessment by Hallucinating Pristine Features,
IP(31), 2022, pp. 6139-6151.
IEEE DOI 2210
Feature extraction, Distortion, Training, Task analysis, Distortion measurement, Predictive models, Image quality, pseudo-reference feature BibRef

Lamichhane, K.[Kamal], Carli, M.[Marco], Battisti, F.[Federica],
A CNN-based no reference image quality metric exploiting content saliency,
SP:IC(111), 2023, pp. 116899.
Elsevier DOI 2301
Artificial intelligence, Convolutional neural network, Deep learning, Image quality assessment, Saliency BibRef

Wang, H.S.[Hua-Sheng], Tu, Y.L.[Yu-Lin], Liu, X.C.[Xiao-Chang], Tan, H.C.[Hong-Chen], Liu, H.T.[Han-Tao],
Deep Ordinal Regression Framework for No-Reference Image Quality Assessment,
SPLetters(30), 2023, pp. 428-432.
IEEE DOI 2305
Image quality, Transformers, Predictive models, Feature extraction, Convolutional neural networks, Transforms, Semantics, ordinal regression BibRef

Yu, L.[Li], Li, J.Y.[Jun-Yang], Pakdaman, F.[Farhad], Ling, M.G.[Miao-Gen], Gabbouj, M.[Moncef],
MAMIQA: No-Reference Image Quality Assessment Based on Multiscale Attention Mechanism With Natural Scene Statistics,
SPLetters(30), 2023, pp. 588-592.
IEEE DOI 2306
Feature extraction, Transformers, Kernel, Convolution, Image quality, Finite element analysis, Visual systems, NR-IQA BibRef

Zhou, F.[Fei], Sheng, W.[Wei], Lu, Z.T.[Zi-Tao], Kang, B.[Bo], Chen, M.Y.[Mian-Yi], Qiu, G.P.[Guo-Ping],
Super-resolution image visual quality assessment based on structure-texture features,
SP:IC(117), 2023, pp. 117025.
Elsevier DOI 2308
Visual quality assessment, Reduced reference, Structure-texture features, Super-resolution BibRef

Liu, Y.[Yun], Yin, X.H.[Xiao-Hua], Tang, C.[Chang], Yue, G.H.[Guang-Hui], Wang, Y.[Yan],
A no-reference panoramic image quality assessment with hierarchical perception and color features,
JVCIR(95), 2023, pp. 103885.
Elsevier DOI 2309
Omnidirectional images, No-reference quality assessment, Hierarchical perception, Color information BibRef

Li, L.T.[Li-Tao], Cao, J.Y.[Jia-Yang], Wei, S.D.[Shao-Dong], Jiang, Y.H.[Yong-Hua], Shen, X.[Xin],
Improved On-Orbit MTF Measurement Method Based on Point Source Arrays,
RS(15), No. 16, 2023, pp. 4028.
DOI Link 2309
modulation transfer function. Performance of sensor. BibRef

Wang, J.[Juan], Chen, Z.W.[Ze-Wen], Yuan, C.F.[Chun-Feng], Li, B.[Bing], Ma, W.T.[Wen-Tao], Hu, W.M.[Wei-Ming],
Hierarchical Curriculum Learning for No-Reference Image Quality Assessment,
IJCV(131), No. 1, January 2023, pp. 3074-3093.
Springer DOI 2310
BibRef

Li, H.Y.[Huan-Yang], Zhang, X.F.[Xin-Feng],
MFAN: A Multi-Projection Fusion Attention Network for No-Reference and Full-Reference Panoramic Image Quality Assessment,
SPLetters(30), 2023, pp. 1207-1211.
IEEE DOI 2310
BibRef

Xu, F.C.[Feng-Chuan], Li, Q.Y.[Qiao-Yue], Zhang, G.L.[Gui-Lu], Chang, Y.S.[Ya-Sheng], Zheng, Z.X.[Zi-Xuan],
No Reference Quality Assessment of Contrast-Distorted SEM Images Based on Global Features,
IEICE(E106-D), No. 11, November 2023, pp. 1935-1938.
WWW Link. 2311
BibRef

Wu, W.[Wei], Huang, D.Q.[Dao-Quan], Yao, Y.[Yang], Shen, Z.[Zhuonan], Zhang, H.[Hua], Yan, C.G.[Cheng-Gang], Zheng, B.[Bolun],
Feature rectification and enhancement for no-reference image quality assessment,
JVCIR(98), 2024, pp. 104030.
Elsevier DOI 2402
No-reference, Image quality assessment, Feature rectification, Neural network BibRef

Tang, L.[Long], Yuan, L.[Liang], Zheng, G.Q.[Guo-Quan], Wang, Z.[Zesheng], Zhai, G.T.[Guang-Tao],
DTSN: No-Reference Image Quality Assessment via Deformable Transformer and Semantic Network,
ICIP24(1207-1211)
IEEE DOI 2411
Image quality, Image resolution, Image color analysis, Semantics, Transformers, Feature extraction, Distortion, no-reference image quality assessment BibRef

Wang, Z.S.[Ze-Sheng], Wu, W.[Wei], Yuan, L.[Liang], Sun, W.[Wei], Chen, Y.[Ying], Li, K.[Kai], Zhai, G.T.[Guang-Tao],
Hierarchical Feature Fusion Transformer for No-Reference Image Quality Assessment,
ICIP23(2205-2209)
IEEE DOI 2312
BibRef

Rajevenceltha, J., Gaidhane, V.H.[Vilas H.],
A no-reference image quality assessment model based on neighborhood component analysis and Gaussian process,
JVCIR(98), 2024, pp. 104041.
Elsevier DOI 2402
No-reference, Perceptual features, Structural information, Neighborhood component analysis, Gaussian process, Regression BibRef

Wang, Z.[Zesheng], Yuan, L.[Liang], Zhai, G.T.[Guang-Tao],
Channel Attention for No-Reference Image Quality Assessment in DCT Domain,
SPLetters(31), 2024, pp. 1274-1278.
IEEE DOI 2405
Transformers, Image quality, Discrete cosine transforms, Feature extraction, Task analysis, Distortion, Training, transformer BibRef

Ji, P.[Peng], Liu, C.[Chang], Chen, H.[Hao],
No-reference image quality assessment via a dual-branch residual network,
IET-IPR(18), No. 7, 2024, pp. 1719-1732.
DOI Link 2405
convolutional neural nets, feature extraction, image processing BibRef

Jia, H.Z.[Hui-Zhen], Zhou, H.B.[Huai-Bo], Qin, H.Z.[Hong-Zheng], Wang, T.H.[Tong-Han],
Dual-stream mutually adaptive quality assessment for authentic distortion image,
JVCIR(102), 2024, pp. 104216.
Elsevier DOI 2407
BibRef
And: Corrigendum: JVCIR(103), 2024, pp. 104236.
Elsevier DOI 2409
Image quality assessment, No reference, Authentic distortions, Unsupervised learning BibRef

Zhang, H.[Hua], Shen, Z.N.[Zhuo-Nan], Zheng, B.[Bolun], Chen, Q.[Quan], Yu, D.G.[Ding-Guo], Chen, Y.[Yiru], Yan, C.G.[Cheng-Gang],
Learning degradation priors for reliable no-reference image quality assessment,
JVCIR(102), 2024, pp. 104189.
Elsevier DOI 2407
Image quality assessment, Image priors, Band-pass filters, Multi-task learning BibRef

Fan, D.D.[Dan-Dan], Zhang, K.B.[Kai-Bing], Li, H.[Hui], Ren, L.G.[Long-Gang], Shi, G.[Guang],
MFCT: Multi-Frequency Cascade Transformers for no-reference SR-IQA,
CVIU(248), 2024, pp. 104104.
Elsevier DOI Code:
WWW Link. 2409
Super-resolution image quality assessment, Cascade transformers, Multi-frequency bands BibRef

Yang, C.X.[Chen-Xi], Liu, Y.J.[Yu-Jia], Li, D.Q.[Ding-Quan], Jiang, T.T.[Ting-Ting],
Exploring Vulnerabilities of No-Reference Image Quality Assessment Models: A Query-Based Black-Box Method,
CirSysVideo(34), No. 12, December 2024, pp. 12715-12729.
IEEE DOI 2501
Closed box, Perturbation methods, Task analysis, Image quality, Robustness, Computational modeling, Glass box, robustness BibRef

Khan, M.U.[Muhammad Usman], Luo, M.R.[Ming Ronnier], Tian, D.[Dalin],
No-reference image quality metrics for color domain modified images,
JOSA-A(39), No. 6, June 2022, pp. B65-B77.
DOI Link 2503
Fourier transforms, Image analysis, Image metrics, Physiology, Point spread function, Wavelet transforms BibRef


Wang, Z.[Zirui], Bian, W.J.[Wen-Jing], Prisacariu, V.A.[Victor Adrian],
Crossscore: Towards Multi-view Image Evaluation and Scoring,
ECCV24(IX: 492-510).
Springer DOI 2412
BibRef

Kwon, D.[Daekyu], Kim, D.[Dongyoung], Ki, S.[Sehwan], Jo, Y.[Younghyun], Lee, H.E.[Hyong-Euk], Kim, S.J.[Seon Joo],
ATTIQA: Generalizable Image Quality Feature Extractor Using Attribute-aware Pretraining,
ACCV24(IV: 284-300).
Springer DOI 2412
BibRef

Chen, Z.[Zewen], Qin, H.[Haina], Wang, J.[Juan], Yuan, C.F.[Chun-Feng], Li, B.[Bing], Hu, W.M.[Wei-Ming], Wang, L.[Liang],
Promptiqa: Boosting the Performance and Generalization for No-reference Image Quality Assessment via Prompts,
ECCV24(I: 247-264).
Springer DOI 2412
BibRef

Shi, J.S.[Jin-Song], Gao, P.[Pan], Peng, X.J.[Xiao-Jiang], Qin, J.[Jie],
DSMIX: Distortion-induced Sensitivity Map Based Pre-training for No-reference Image Quality Assessment,
ECCV24(LXX: 1-17).
Springer DOI 2412
BibRef

Yue, G.H.[Guang-Hui], Zhang, L.X.[Li-Xin], Zhang, J.X.[Jin-Xia], Xu, Z.F.[Zhao-Fei], Wang, S.[Shuigen], Zhou, T.W.[Tian-Wei], Gong, Y.H.[Yuan-Hao], Zhou, W.[Wei],
Subjective Quality Assessment of Thermal Infrared Images,
ICIP24(1212-1217)
IEEE DOI 2411
Image quality, Databases, Noise, Dynamic range, Thermal conductivity, Distortion, Thermal infrared images, image quality assessment, no reference BibRef

Srinath, S.[Suhas], Mitra, S.[Shankhanil], Rao, S.[Shika], Soundararajan, R.[Rajiv],
Learning Generalizable Perceptual Representations for Data-Efficient No-Reference Image Quality Assessment,
WACV24(22-31)
IEEE DOI 2404
Image quality, Training, Visualization, Annotations, Distortion, Feature extraction, Algorithms, Machine learning architectures, Vision + language and/or other modalities BibRef

Liu, Y.X.[Ya-Xuan], Jin, J.[Jian], Xue, Y.[Yuan], Lin, W.S.[Wei-Si],
The First Comprehensive Dataset with Multiple Distortion Types for Visual Just-Noticeable Differences,
ICIP23(2820-2824)
IEEE DOI 2312
BibRef

Zhou, Y.J.[Ying-Jie], Zhang, Z.C.[Zi-Cheng], Sun, W.[Wei], Min, X.K.[Xiong-Kuo], Ma, X.H.[Xiang-He], Zhai, G.T.[Guang-Tao],
A No-Reference Quality Assessment Method for Digital Human Head,
ICIP23(36-40)
IEEE DOI 2312
BibRef

Chen, Y.H.[Yi-Hua], Chen, Z.Y.[Zhi-Yuan], Yu, M.Z.[Meng-Zhu], Tang, Z.J.[Zhen-Jun],
Dual-Feature Aggregation Network for No-Reference Image Quality Assessment,
MMMod23(I: 149-161).
Springer DOI 2304
BibRef

Babu, N.C.[Nithin C], Kannan, V.[Vignesh], Soundararajan, R.[Rajiv],
No Reference Opinion Unaware Quality Assessment of Authentically Distorted Images,
WACV23(2458-2467)
IEEE DOI 2302
Representation learning, Training, Image quality, Self-supervised learning, Prediction algorithms, Distortion BibRef

Lian, Q.[Qiye], Xie, X.H.[Xiao-Hua], Zheng, H.C.[Hui-Cheng], Zhang, Y.D.[Yong-Dong],
Variance of Local Contribution: An Unsupervised Image Quality Assessment for Face Recognition,
ICPR22(4665-4670)
IEEE DOI 2212
Image quality, Face recognition, Task analysis BibRef

Legrand, A.[Antoine], Macq, B.[Benoît], de Vleeschouwer, C.[Christophe],
Forward Error Correction Applied to JPEG-XS Codestreams,
ICIP22(3723-3727)
IEEE DOI 2211
Image quality, Reed-Solomon codes, Image coding, Redundancy, Rate-distortion, Forward error correction, Propagation losses, Unequal Error Protection BibRef

van Damme, S.[Sam], Vega, M.T.[Maria Torres], van der Hooft, J.[Jeroen], de Turck, F.[Filip],
Clustering-Based Psychometric No-Reference Quality Model for Point Cloud Video,
ICIP22(1866-1870)
IEEE DOI 2211
Point cloud compression, Measurement, Adaptation models, Machine learning, Streaming media, Predictive models, quality modelling BibRef

Yang, S.[Sidi], Wu, T.[Tianhe], Shi, S.W.[Shu-Wei], Lao, S.S.[Shan-Shan], Gong, Y.[Yuan], Cao, M.D.[Ming-Deng], Wang, J.H.[Jia-Hao], Yang, Y.J.[Yu-Jiu],
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment,
NTIRE22(1190-1199)
IEEE DOI 2210
Image quality, Databases, Distortion, Feature extraction, Transformers, Quality assessment BibRef

Conde, M.V.[Marcos V.], Burchi, M.[Maxime], Timofte, R.[Radu],
Conformer and Blind Noisy Students for Improved Image Quality Assessment,
NTIRE22(939-949)
IEEE DOI 2210
Image quality, Training, Predictive models, Transformers, Distortion, Prediction algorithms, Data models BibRef

Wang, J.[Jing], Fan, H.T.[Hao-Tian], Hou, X.X.[Xiao-Xia], Xu, Y.T.[Yi-Tian], Li, T.[Tao], Lu, X.[Xuechao], Fu, L.[Lean],
MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer with Multi-Stage Fusion,
NTIRE22(1268-1277)
IEEE DOI 2210
Image quality, Training, Predictive models, Transformers, Prediction algorithms, Distortion BibRef

Fu, B.[Biying], Chen, C.[Cong], Henniger, O.[Olaf], Damer, N.[Naser],
A Deep Insight into Measuring Face Image Utility with General and Face-specific Image Quality Metrics,
WACV22(1121-1130)
IEEE DOI 2202
Measurement, Image quality, Training, Visualization, Correlation, Face recognition, Stability analysis, Biometrics Biometrics -> Face Processing BibRef

Golestaneh, S.A.[S. Alireza], Dadsetan, S.[Saba], Kitani, K.M.[Kris M.],
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency,
WACV22(3989-3999)
IEEE DOI 2202
Image quality, Uncertainty, Correlation, Feature extraction, Transformers, Robustness, Quality assessment, Evaluation and Comparison of Vision Algorithms BibRef

Zhu, M.M.[Meng-Meng], Hou, G.Q.[Guan-Qun], Chen, X.J.[Xin-Jia], Xie, J.X.[Jia-Xing], Lu, H.X.[Hai-Xian], Che, J.[Jun],
Saliency-Guided Transformer Network combined with Local Embedding for No-Reference Image Quality Assessment,
AIM21(1953-1962)
IEEE DOI 2112
Image quality, Adaptation models, Visualization, Image resolution, Machine vision, Predictive models, Transformers BibRef

Khrulkov, V.[Valentin], Babenko, A.[Artem],
Neural Side-By-Side: Predicting Human Preferences for No-Reference Super-Resolution Evaluation,
CVPR21(4986-4995)
IEEE DOI 2111
Industries, Image quality, Computational modeling, Superresolution, Tools, Predictive models BibRef

Tworski, M.[Marcelin], Lathuilière, S.[Stéphane], Belkarfa, S.[Salim], Fiandrotti, A.[Attilio], Cagnazzo, M.[Marco],
DR2S: Deep Regression with Region Selection for Camera Quality Evaluation,
ICPR21(6173-6180)
IEEE DOI 2105
Training, Lighting, Estimation, Cameras, Time measurement BibRef

Liu, Z.Y.J.[Zong-Yi Joe], Ferry, B.[Bruce], Lacasse, S.[Simon],
A Scalable Deep Neural Network to Detect Low Quality Images Without a Reference,
ICPR21(324-330)
IEEE DOI 2105
Measurement, Neural networks, Superresolution, Transform coding, Streaming media, Motion pictures, User experience BibRef

Zhang, H., Li, D., Wu, L., Xia, Z.,
No-Reference Objective Quality Assessment Method of Display Products,
VCIP20(322-325)
IEEE DOI 2102
Image color analysis, Observers, Feature extraction, Brightness, Databases, Visualization, Complexity theory, display product, objective quality assessment BibRef

You, J.Y.[Jun-Yong], Korhonen, J.[Jari],
Transformer for Image Quality Assessment,
ICIP21(1389-1393)
IEEE DOI 2201
Image quality, Adaptation models, Image resolution, Databases, Computational modeling, Attention, Transformer BibRef

Yang, D., Peltoketo, V., Kämäräinen, J.,
CNN-Based Cross-Dataset No-Reference Image Quality Assessment,
CLI19(3913-3921)
IEEE DOI 2004
convolutional neural nets, feature extraction, image classification, cross-dataset deep NR-IQA, aesthetics BibRef

Zhussip, M.[Magauiya], Soltanayev, S.[Shakarim], Chun, S.Y.[Se Young],
Training Deep Learning Based Image Denoisers From Undersampled Measurements Without Ground Truth and Without Image Prior,
CVPR19(10247-10256).
IEEE DOI 2002
BibRef

Deng, B.[Bin], Zhang, X.F.[Xin-Feng], Wang, S.S.[Shan-She], Pan, X.F.[Xiao-Fei], Ma, S.W.[Si-Wei], Xiong, R.Q.[Rui-Qin],
Referenceless Quality Assessment for Contrast Distorted Image Using Hybrid Features,
ICIP19(2354-2358)
IEEE DOI 1910
Image quality assessment, contrast distortion, unpredictability, information entropy, colorfulness BibRef

Yan, B., Bare, B., Tan, W.,
Naturalness-Aware Deep No-Reference Image Quality Assessment,
MultMed(21), No. 10, October 2019, pp. 2603-2615.
IEEE DOI 1910
distortion, feature extraction, image representation, learning (artificial intelligence), natural scenes, neural nets, naturalness-aware deep image quality assessment BibRef

Zhang, K., Zhu, D., Jing, J., Gao, X.,
Learning a Cascade Regression for No-Reference Super-Resolution Image Quality Assessment,
ICIP19(450-453)
IEEE DOI 1910
AdaBoost Decision Tree Regression, image quality assessment (IQA), no-reference (NR), super-resolution (SR) BibRef

Zhao, M., Shen, L., Jiang, M., Zheng, L., An, P.,
A Novel No-Reference Quality Assessment Model of Tone-Mapped HDR Image,
ICIP19(3202-3206)
IEEE DOI 1910
image quality assessment, high dynamic range, tone mapping, no reference BibRef

Zhang, Y.B.[Ya-Bin], Wang, H.Q.[Hai-Qiang], Tan, F.F.[Feng-Feng], Chen, W.J.[Wen-Jun], Wu, Z.R.[Zu-Rong],
No-Reference Image Sharpness Assessment Based on Rank Learning,
ICIP19(2359-2363)
IEEE DOI 1910
Image sharpness, Rank learning, Image quality assessment BibRef

Su, L.[Li], Cosman, P.[Pamela], Peng, Q.H.[Qi-Hang],
No-Reference Video Quality Assessment Based on Ensemble of Knowledge and Data-Driven Models,
MMMod19(II:231-242).
Springer DOI 1901
BibRef

Lin, K., Wang, G.,
Hallucinated-IQA: No-Reference Image Quality Assessment via Adversarial Learning,
CVPR18(732-741)
IEEE DOI 1812
Task analysis, Distortion, Image quality, Feature extraction, Semantics, Predictive models BibRef

Hosseini, M.S., Plataniotis, K.N.,
Image Sharpness Metric Based on Maxpol Convolution Kernels,
ICIP18(296-300)
IEEE DOI 1809
Sensitivity, Visualization, Kernel, Cutoff frequency, Image edge detection, Databases, Correlation, Visual sensitivity, No-reference image sharpness assessment BibRef

Liu, Y., Song, L., Xie, R., Zhang, W.,
A generic method to improve no-reference image blur metric accuracy in video contents,
VCIP17(1-4)
IEEE DOI 1804
image restoration, neural nets, video signal processing, blur assessment techniques, content clustering, no reference (NR) BibRef

Wang, S., Wang, S., Gu, K., Guo, X., Ma, S., Gao, W.,
Internal generative mechanism inspired reduced reference image quality assessment with entropy of primitive,
VCIP17(1-4)
IEEE DOI 1804
entropy, image representation, visual perception, HVS, RR-IQA framework, best sparse description, entropy-of-primitive, sparse representation BibRef

Nath, P.S.[P. Shabari], Gandhi, H.K.[Harsh K.], Chouhan, R.[Rajlaxmi],
Quantifying image naturalness using differential curvelet features,
IVCNZ21(1-6)
IEEE DOI 2201
Training, Measurement, Image quality, Image recognition, Social networking (online), Image synthesis, Estimation BibRef

Kumar, V., Chouhan, R.,
No-reference image quality assessment using Gabor-based smoothness and latent noise estimation,
IPTA17(1-6)
IEEE DOI 1804
AWGN, Gabor filters, image processing, natural scenes, singular value decomposition, smoothing methods, Gabor response, Visual systems BibRef

Liu, X., Pedersen, M., Charrier, C., Bours, P.,
Can no-reference image quality metrics assess visible wavelength iris sample quality?,
ICIP17(3530-3534)
IEEE DOI 1803
Cameras, Image quality, Iris, Iris recognition, Measurement, Quality assessment, Quality assessment, image quality metric, visible wavelength BibRef

Liu, X., van de Weijer, J.[Joost], Bagdanov, A.D.,
RankIQA: Learning from Rankings for No-Reference Image Quality Assessment,
ICCV17(1040-1049)
IEEE DOI 1802
backpropagation, feature extraction, image classification, image colour analysis, image representation, image texture, Tuning BibRef

Charrier, C.[Christophe], Saadane, A.[Abdelhakim], Fernandez-Maloigne, C.[Christine],
No-Reference Learning-Based and Human Visual-Based Image Quality Assessment Metric,
CIAP17(II:245-257).
Springer DOI 1711
BibRef

Huang, R.X.[Ri-Xing],
No reference image quality assessments based on edge-blur measure and its applications in printed sheet blurs classification,
ICIVC17(793-797)
IEEE DOI 1708
Image edge detection, blur classification, edge-blur measure (EBM), no reference image quality assessments, printed, sheet, image BibRef

Becker, S.[Sören], Wiegand, T.[Thomas], Bosse, S.[Sebastian],
Curiously Effective Features for Image Quality Prediction,
ICIP21(1399-1403)
IEEE DOI 2201
Image quality, Visualization, Analytical models, Correlation, Computational modeling, Neural networks, Linear regression, feature extraction BibRef

Bosse, S., Maniry, D., Wiegand, T., Samek, W.,
A deep neural network for image quality assessment,
ICIP16(3773-3777)
IEEE DOI 1610
Correlation BibRef

Outtas, M., Zhang, L., Deforges, O., Hammidouche, W., Serir, A., Cavaro-Menard, C.,
A study on the usability of opinion-unaware no-reference natural image quality metrics in the context of medical images,
ISIVC16(308-313)
IEEE DOI 1704
Biomedical imaging BibRef

Wu, J., Xia, Z., Ren, Y., Li, H.,
No-reference quality assessment for contrast-distorted image,
IPTA16(1-5)
IEEE DOI 1703
feature extraction BibRef

Headlee, J.M., Balster, E.J.[Eric J.], Turri, W.F.[William F.],
A no-reference image enhancement quality metric and fusion technique,
ICVNZ15(1-6)
IEEE DOI 1701
image enhancement BibRef

Li, Y.J., Di, X.G.,
A no-reference infrared image sharpness assessment based on singular value decomposition,
VCIP16(1-4)
IEEE DOI 1701
Databases BibRef

Pan, C., Xu, Y., Yan, Y., Gu, K., Yang, X.,
Exploiting neural models for no-reference image quality assessment,
VCIP16(1-4)
IEEE DOI 1701
Databases BibRef

Qian, X.C.[Xin-Chun], Zhou, W.G.[Wen-Gang], Li, H.Q.[Hou-Qiang],
No-Reference Image Quality Assessment Based on Internal Generative Mechanism,
MMMod17(I: 264-276).
Springer DOI 1701
BibRef

Scott, E.T.[Edward T.], Hemami, S.S.[Sheila. S.],
Image utility estimation using difference-of-Gaussian scale space,
ICIP16(101-105)
IEEE DOI 1610
Databases BibRef

Sankisa, A., Pandremmenou, K., Kondi, L.P., Katsaggelos, A.K.,
A novel cumulative distortion metric and a no-reference sparse prediction model for packet prioritization in encoded video transmission,
ICIP16(2097-2101)
IEEE DOI 1610
Distortion BibRef

Zhang, Y., Cui, W.H., Yang, F., Wu, Z.C.,
No-reference Image Quality Assessment For Zy3 Imagery In Urban Areas Using Statistical Model,
ISPRS16(B3: 949-954).
DOI Link 1610
BibRef

Kim, W., Kim, H., Oh, H., Kim, J., Lee, S.,
No-reference perceptual sharpness assessment for ultra-high-definition images,
ICIP16(86-90)
IEEE DOI 1610
Adaptation models BibRef

Gaata, M., Puech, W., Sadkhn, S., Hasson, S.,
No-reference quality metric for watermarked images based on combining of objective metrics using neural network,
IPTA12(229-234)
IEEE DOI 1503
filtering theory BibRef

Soares, J.R.S.[Joao R.S.], da Silva Cruz, L.A.[Luis A.], Assuncao, P.[Pedro], Marinheiro, R.[Rui],
No-reference lightweight estimation of 3D video objective quality,
ICIP14(763-767)
IEEE DOI 1502
Accuracy BibRef

Zhao, H.J.[Heng-Jun],
No-inference image sharpness assessment based on wavelet transform and image saliency map,
ICWAPR16(43-48)
IEEE DOI 1611
Image edge detection BibRef

Zhao, H.J.[Heng-Jun], Fang, B.[Bin], Tang, Y.Y.[Yuan Yan],
A no-reference image sharpness estimation based on expectation of wavelet transform coefficients,
ICIP13(374-378)
IEEE DOI 1402
Discrete wavelet transforms BibRef

Ramírez-Rozo, T.J.[Thomas J.],
Non-referenced Quality Assessment of Image Processing Methods in Infrared Non-destructive Testing,
CIAP13(II:121-130).
Springer DOI 1309
BibRef

De, K.[Kanjar], Masilamani, V,
A new no-reference image quality measure to determine the quality of a given image using object separability,
IMVIP12(92-95).
IEEE DOI 1302
BibRef

Chu, Y.[Ying], Mou, X.Q.[Xuan-Qin], Hong, W.[Wei], Ji, Z.[Zhen],
A novel no-reference image quality assessment metric based on statistical independence,
VCIP12(1-6).
IEEE DOI 1302
BibRef

Zhang, Y.[Yan], An, P.[Ping], Zhang, Q.W.[Qiu-Wen], Shen, L.Q.[Li-Quan], Zhang, Z.Y.[Zhao-Yang],
A No-Reference Image Quality Evaluation Based on Power Spectrum,
3DTV11(1-4).
IEEE DOI 1105
BibRef

Serir, A.[Amina],
No-reference blurred image quality assessment,
EUVIP11(168-173).
IEEE DOI 1110
BibRef

Luo, H.T.[Hui-Tao],
A training-based no-reference image quality assessment algorithm,
ICIP04(V: 2973-2976).
IEEE DOI 0505
BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Blind Image Quality Evaluation .


Last update:Mar 12, 2025 at 14:27:03