14.1.14.2.1 Federated Learning

Chapter Contents (Back)
Federated Learning. Federated learning builds upon the server-worker infrastructure, where the workers calculate local gradients and upload them to the server.

Sun, J.[Jun], Chen, T.Y.[Tian-Yi], Giannakis, G.B.[Georgios B.], Yang, Q.M.[Qin-Min], Yang, Z.Y.[Zai-Yue],
Lazily Aggregated Quantized Gradient Innovation for Communication-Efficient Federated Learning,
PAMI(44), No. 4, April 2022, pp. 2031-2044.
IEEE DOI 2203
Quantization (signal), Servers, Technological innovation, Convergence, Frequency modulation, Distributed databases, quantization BibRef

Abdel-Basset, M.[Mohamed], Moustafa, N.[Nour], Hawash, H.[Hossam], Razzak, I.[Imran], Sallam, K.M.[Karam M.], Elkomy, O.M.[Osama M.],
Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems,
ITS(23), No. 3, March 2022, pp. 2523-2537.
IEEE DOI 2203
Security, Blockchains, Intrusion detection, Training, Servers, Feature extraction, Deep learning, Federated learning, blockchain BibRef

Ng, J.S., Lim, W.Y.B., Dai, H.N., Xiong, Z., Huang, J., Niyato, D., Hua, X.S., Leung, C., Miao, C.,
Joint Auction-Coalition Formation Framework for Communication-Efficient Federated Learning in UAV-Enabled Internet of Vehicles,
ITS(22), No. 4, April 2021, pp. 2326-2344.
IEEE DOI 2104
Training, Computational modeling, Servers, Data models, Unmanned aerial vehicles, Collaborative work, Predictive models, Internet of vehicles BibRef

Yu, Z.X.[Zheng-Xin], Hu, J.[Jia], Min, G.[Geyong], Zhao, Z.W.[Zhi-Wei], Miao, W.[Wang], Hossain, M.S.[M. Shamim],
Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated Learning,
ITS(22), No. 8, August 2021, pp. 5341-5351.
IEEE DOI 2108
Servers, Peer-to-peer computing, Predictive models, Privacy, Machine learning, Security, Probabilistic logic, Content caching, vehicular networks BibRef

Lim, W.Y.B.[Wei Yang Bryan], Huang, J.Q.[Jian-Qiang], Xiong, Z.[Zehui], Kang, J.[Jiawen], Niyato, D.[Dusit], Hua, X.S.[Xian-Sheng], Leung, C.[Cyril], Miao, C.Y.[Chun-Yan],
Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach,
ITS(22), No. 8, August 2021, pp. 5140-5154.
IEEE DOI 2108
Sensors, Computational modeling, Data models, Unmanned aerial vehicles, Contracts, Collaborative work, Training, matching BibRef

Chai, H.Y.[Hao-Ye], Leng, S.[Supeng], Chen, Y.J.[Yi-Jin], Zhang, K.[Ke],
A Hierarchical Blockchain-Enabled Federated Learning Algorithm for Knowledge Sharing in Internet of Vehicles,
ITS(22), No. 7, July 2021, pp. 3975-3986.
IEEE DOI 2107
Blockchain, Collaborative work, Security, Training, Computational modeling, Data models, Servers, knowledge sharing BibRef

Uddin, M.P.[Md Palash], Xiang, Y.[Yong], Yearwood, J.[John], Gao, L.X.[Long-Xiang],
Robust Federated Averaging via Outlier Pruning,
SPLetters(29), 2022, pp. 409-413.
IEEE DOI 2202
Training, Servers, Data models, Arithmetic, Costs, Convergence, Computational modeling, Distributed deep learning, outlier pruning BibRef

Yan, N.[Na], Wang, K.Z.[Ke-Zhi], Pan, C.[Cunhua], Chai, K.K.[Kok Keong],
Performance Analysis for Channel-Weighted Federated Learning in OMA Wireless Networks,
SPLetters(29), 2022, pp. 772-776.
IEEE DOI 2204
Radio frequency, Performance evaluation, Training, Convergence, Distortion, Collaborative work, Wireless sensor networks, orthogonal multiple access BibRef

Ribero, M.[Mónica], Henderson, J.[Jette], Williamson, S.[Sinead], Vikalo, H.[Haris],
Federating recommendations using differentially private prototypes,
PR(129), 2022, pp. 108746.
Elsevier DOI 2206
Recommender systems, Differential Privacy, Federated Learning, Cross-Silo Federated Learning, Matrix Factorization BibRef

Hong, S.[Songnam], Chae, J.[Jeongmin],
Communication-Efficient Randomized Algorithm for Multi-Kernel Online Federated Learning,
PAMI(44), No. 12, December 2022, pp. 9872-9886.
IEEE DOI 2212
Kernel, Servers, Uplink, Collaborative work, Downlink, Data models, Predictive models, Federated learning, online learning, RKHS BibRef

Taïk, A.[Afaf], Mlika, Z.[Zoubeir], Cherkaoui, S.[Soumaya],
Clustered Vehicular Federated Learning: Process and Optimization,
ITS(23), No. 12, December 2022, pp. 25371-25383.
IEEE DOI 2212
Data models, Training, Servers, Adaptation models, Computational modeling, Task analysis, Collaborative work, vehicular communication BibRef

Wei, X.X.[Xiao-Xiang], Huang, H.[Hua],
Edge Devices Clustering for Federated Visual Classification: A Feature Norm Based Framework,
IP(32), 2023, pp. 995-1010.
IEEE DOI 2302
Data models, Feature extraction, Computational modeling, Visualization, Training, Federated learning, Adaptation models, clients clustering BibRef

Garin, M.[Marie], Quintana, G.I.[Gonzalo Iñaki],
Incidence of the Sample Size Distribution on One-Shot Federated Learning,
IPOL(13), 2023, pp. 57-64.
DOI Link 2302
BibRef

Sun, T.[Tao], Li, D.S.[Dong-Sheng], Wang, B.[Bao],
Decentralized Federated Averaging,
PAMI(45), No. 4, April 2023, pp. 4289-4301.
IEEE DOI 2303
Servers, Convergence, Costs, Training, Collaborative work, Peer-to-peer computing, Privacy, Decentralized optimization, stochastic gradient descent BibRef

Zhou, H.L.[Hong-Liang], Zheng, Y.F.[Yi-Feng], Huang, H.J.[He-Jiao], Shu, J.G.[Jian-Gang], Jia, X.H.[Xiao-Hua],
Toward Robust Hierarchical Federated Learning in Internet of Vehicles,
ITS(24), No. 5, May 2023, pp. 5600-5614.
IEEE DOI 2305
Federated learning, Training, Servers, Robustness, Internet of Vehicles, Convergence, Computational modeling, robustness BibRef

Ahmad, A.[Adnan], Luo, W.[Wei], Robles-Kelly, A.[Antonio],
Robust federated learning under statistical heterogeneity via Hessian spectral decomposition,
PR(141), 2023, pp. 109635.
Elsevier DOI 2306
Federated learning, Hessian, Non-IID data BibRef

Hatamizadeh, A.[Ali], Yin, H.X.[Hong-Xu], Molchanov, P.[Pavlo], Myronenko, A.[Andriy], Li, W.Q.[Wen-Qi], Dogra, P.[Prerna], Feng, A.[Andrew], Flores, M.G.[Mona G], Kautz, J.[Jan], Xu, D.[Daguang], Roth, H.R.[Holger R.],
Do Gradient Inversion Attacks Make Federated Learning Unsafe?,
MedImg(42), No. 7, July 2023, pp. 2044-2056.
IEEE DOI 2307
Training, Servers, Data models, Computational modeling, Medical services, Image reconstruction, Artificial intelligence, security BibRef

Zhou, S.L.[Sheng-Long], Li, G.Y.[Geoffrey Ye],
Federated Learning Via Inexact ADMM,
PAMI(45), No. 8, August 2023, pp. 9699-9708.
IEEE DOI 2307
Servers, Convergence, Optimization, Approximation algorithms, Training, Federated learning, Convex functions, partial device participation BibRef

Dong, N.Q.[Nan-Qing], Kampffmeyer, M.[Michael], Voiculescu, I.[Irina], Xing, E.[Eric],
Federated Partially Supervised Learning With Limited Decentralized Medical Images,
MedImg(42), No. 7, July 2023, pp. 1944-1954.
IEEE DOI 2307
Task analysis, Feature extraction, Supervised learning, Biomedical imaging, Data models, Servers, Training, multi-label classification BibRef

Shi, Y.[Yong], Zhang, Y.Y.[Yuan-Ying], Zhang, P.[Peng], Xiao, Y.[Yang], Niu, L.F.[Ling-Feng],
Federated learning with l1 regularization,
PRL(172), 2023, pp. 15-21.
Elsevier DOI 2309
Federated learning, Regularization, Stochastic subgradient descent BibRef

Jin, X.[Xiating], Bu, J.J.[Jia-Jun], Yu, Z.[Zhi], Zhang, H.[Hui], Wang, Y.[Yaonan],
FedCrack: Federated Transfer Learning With Unsupervised Representation for Crack Detection,
ITS(24), No. 10, October 2023, pp. 11171-11184.
IEEE DOI 2310
BibRef

Shinde, S.S.[Swapnil Sadashiv], Tarchi, D.[Daniele],
Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems,
ITS(24), No. 9, September 2023, pp. 9996-10011.
IEEE DOI 2310
BibRef

Novoa-Paradela, D.[David], Fontenla-Romero, O.[Oscar], Guijarro-Berdiñas, B.[Bertha],
Fast deep autoencoder for federated learning,
PR(143), 2023, pp. 109805.
Elsevier DOI 2310
Deep autoencoder, Anomaly detection, Federated learning, Edge computing, Machine learning BibRef

Liu, Z.B.[Zhen-Bing], Wu, F.F.[Feng-Feng], Wang, Y.M.[Yu-Meng], Yang, M.Y.[Meng-Yu], Pan, X.P.[Xi-Peng],
FedCL: Federated contrastive learning for multi-center medical image classification,
PR(143), 2023, pp. 109739.
Elsevier DOI 2310
Federated learning, Contrastive learning, Image classification BibRef

Sheng, T.[Tao], Shen, C.C.[Cheng-Chao], Liu, Y.[Yuan], Ou, Y.[Yeyu], Qu, Z.[Zhe], Liang, Y.X.[Yi-Xiong], Wang, J.X.[Jian-Xin],
Modeling global distribution for federated learning with label distribution skew,
PR(143), 2023, pp. 109724.
Elsevier DOI 2310
Federated learning, Label distribution skew, Generative adversarial network, Non-Independent and identically distributed BibRef

Ma, B.T.[Ben-Teng], Feng, Y.[Yu], Chen, G.[Geng], Li, C.Y.[Chang-Yang], Xia, Y.[Yong],
Federated adaptive reweighting for medical image classification,
PR(144), 2023, pp. 109880.
Elsevier DOI 2310
Medical image classification, Federated learning, Deep learning BibRef

Zhang, Z.[Zheng], Ma, X.[Xindi], Ma, J.F.[Jian-Feng],
Local Differential Privacy Based Membership-Privacy-Preserving Federated Learning for Deep-Learning-Driven Remote Sensing,
RS(15), No. 20, 2023, pp. 5050.
DOI Link 2310
BibRef

Kumar, R.[Ramakant], Mishra, R.[Rahul], Gupta, H.P.[Hari Prabhat],
A Federated Learning Approach With Imperfect Labels in LoRa-Based Transportation Systems,
ITS(24), No. 11, November 2023, pp. 13099-13107.
IEEE DOI 2311
BibRef

Kwon, D.[Dohyeok], Park, J.[Jonghwan], Hong, S.[Songnam],
Tighter Regret Analysis and Optimization of Online Federated Learning,
PAMI(45), No. 12, December 2023, pp. 15772-15789.
IEEE DOI 2311
BibRef

Sun, Y.[Yan], Shen, L.[Li], Sun, H.[Hao], Ding, L.[Liang], Tao, D.C.[Da-Cheng],
Efficient Federated Learning Via Local Adaptive Amended Optimizer With Linear Speedup,
PAMI(45), No. 12, December 2023, pp. 14453-14464.
IEEE DOI 2311
BibRef

Phong, L.T.[Le Trieu], Phuong, T.T.[Tran Thi], Wang, L.H.[Li-Hua], Ozawa, S.[Seiichi],
Frameworks for Privacy-Preserving Federated Learning,
IEICE(E107-D), No. 1, January 2024, pp. 2-12.
WWW Link. 2401
BibRef

Shaik, T.[Thanveer], Tao, X.H.[Xiao-Hui], Li, L.[Lin], Higgins, N.[Niall], Gururajan, R.[Raj], Zhou, X.[Xujuan], Yong, J.M.[Jian-Ming],
Clustered FedStack: Intermediate Global Models with Bayesian Information Criterion,
PRL(177), 2024, pp. 121-127.
Elsevier DOI 2401
Federated learning, FedStack, Clustering, Bayesian, Cyclical learning rates BibRef

Li, Y.[Yanan], Yang, S.[Shusen], Ren, X.B.[Xue-Bin], Shi, L.[Liang], Zhao, C.[Cong],
Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy,
PAMI(46), No. 2, February 2024, pp. 1243-1256.
IEEE DOI 2401
BibRef

Huang, W.K.[Wen-Ke], Ye, M.[Mang], Shi, Z.K.[Ze-Kun], Du, B.[Bo],
Generalizable Heterogeneous Federated Cross-Correlation and Instance Similarity Learning,
PAMI(46), No. 2, February 2024, pp. 712-728.
IEEE DOI Code:
WWW Link. 2401
Heterogeneous federated learning, catastrophic forgetting, self-supervised learning, knowledge distillation BibRef

Zhao, Z.N.[Zhong-Nan], Liang, X.L.[Xiao-Liang], Huang, H.[Hai], Wang, K.[Kun],
Deep federated learning hybrid optimization model based on encrypted aligned data,
PR(148), 2024, pp. 110193.
Elsevier DOI 2402
Federated learning, Gaussian Mixture Model, Variational AutoEncoder, Encrypted aligned data, Privacy protection BibRef

Ribero, M.[Mónica], Vikalo, H.[Haris],
Reducing communication in federated learning via efficient client sampling,
PR(148), 2024, pp. 110122.
Elsevier DOI 2402
Federated learning, Machine learning, Distributed optimization BibRef

Wang, W.D.[Wei-Dong], Li, S.Q.[Si-Qi], Zhang, J.[Jihao], Shan, D.[Dan], Zhang, G.[Guangwei], Gao, X.[Xiang],
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method,
RS(16), No. 4, 2024, pp. 651.
DOI Link 2402
BibRef

Wang, S.F.[Shan-Feng], Tao, H.[Hao], Li, J.Z.[Jian-Zhao], Ji, X.Y.[Xin-Yuan], Gao, Y.[Yuan], Gong, M.[Maoguo],
Towards fair and personalized federated recommendation,
PR(149), 2024, pp. 110234.
Elsevier DOI 2403
Federated learning, Fairness, Graph neural network, Personalized recommendation BibRef

Kang, M.[Myeongkyun], Kim, S.[Soopil], Jin, K.H.[Kyong Hwan], Adeli, E.[Ehsan], Pohl, K.M.[Kilian M.], Park, S.H.[Sang Hyun],
FedNN: Federated learning on concept drift data using weight and adaptive group normalizations,
PR(149), 2024, pp. 110230.
Elsevier DOI 2403
Federated learning, Concept drift, Weight normalization, Adaptive group normalization BibRef

Dong, J.H.[Jia-Hua], Li, H.L.[Hong-Liu], Cong, Y.[Yang], Sun, G.[Gan], Zhang, Y.[Yulun], Van Gool, L.J.[Luc J.],
No One Left Behind: Real-World Federated Class-Incremental Learning,
PAMI(46), No. 4, April 2024, pp. 2054-2070.
IEEE DOI 2403
Task analysis, Training, Prototypes, COVID-19, Servers, Semantics, Privacy, Catastrophic forgetting, class imbalance, privacy preservation BibRef

Wu, Z.[Zheshun], Xu, Z.L.[Zeng-Lin], Yu, H.F.[Hong-Fang], Liu, J.[Jie],
Information-Theoretic Generalization Analysis for Topology-Aware Heterogeneous Federated Edge Learning Over Noisy Channels,
SPLetters(31), 2024, pp. 691-695.
IEEE DOI 2403
Computational modeling, Topology, Analytical models, Data models, Noise measurement, Federated learning, noisy channels BibRef

Kumar, K.N.[Kummari Naveen], Mohan, C.K.[Chalavadi Krishna], Cenkeramaddi, L.R.[Linga Reddy],
The Impact of Adversarial Attacks on Federated Learning: A Survey,
PAMI(46), No. 5, May 2024, pp. 2672-2691.
IEEE DOI 2404
Survey, Federated Learning. Surveys, Data models, Security, Data privacy, Servers, Transfer learning, Training, Adversarial attacks, visibility BibRef

Shi, Y.J.[Yu-Jun], Liang, J.[Jian], Zhang, W.Q.[Wen-Qing], Xue, C.H.[Chu-Hui], Tan, V.Y.F.[Vincent Y. F.], Bai, S.[Song],
Understanding and Mitigating Dimensional Collapse in Federated Learning,
PAMI(46), No. 5, May 2024, pp. 2936-2949.
IEEE DOI 2404
Data models, Federated learning, Training, Computational modeling, Analytical models, Decorrelation, Self-supervised learning, dimensional collapse BibRef

Guan, H.[Hao], Yap, P.T.[Pew-Thian], Bozoki, A.[Andrea], Liu, M.X.[Ming-Xia],
Federated learning for medical image analysis: A survey,
PR(151), 2024, pp. 110424.
Elsevier DOI 2404
Survey, Federated Learning. Federated learning, Machine learning, Medical image analysis, Data privacy BibRef

Miao, Y.F.[Yi-Fan], Ni, W.L.[Wan-Li], Tian, H.[Hui],
One-Bit Aggregation for Over-the-Air Federated Learning Against Byzantine Attacks,
SPLetters(31), 2024, pp. 1024-1028.
IEEE DOI 2405
Vectors, Quantization (signal), Atmospheric modeling, Symbols, OFDM, Wireless networks, Numerical models, Federated learning, majority vote BibRef

Zhao, H.[Hao], Ji, F.[Fei], Wang, Y.[Yan], Yao, K.X.[Ke-Xing], Chen, F.J.[Fang-Jiong],
Space-Air-Ground-Sea Integrated Network with Federated Learning,
RS(16), No. 9, 2024, pp. 1640.
DOI Link 2405
BibRef

Piotrowski, T.[Tomasz], Ismayilov, R.[Rafail], Frey, M.[Matthias], Cavalcante, R.L.G.[Renato L.G.],
Inverse Feasibility in Over-the-Air Federated Learning,
SPLetters(31), 2024, pp. 1434-1438.
IEEE DOI 2405
Servers, Security, Computational modeling, Privacy, Inverse problems, Communication system security, Wireless networks, inverse problems BibRef

Guo, S.[Shunxin], Wang, H.[Hongsong], Geng, X.[Xin],
Dynamic heterogeneous federated learning with multi-level prototypes,
PR(153), 2024, pp. 110542.
Elsevier DOI 2405
Heterogeneous federated learning, Multi-level prototypes BibRef

Ben Youssef, B.[Belgacem], Alhmidi, L.[Lamyaa], Bazi, Y.[Yakoub], Zuair, M.[Mansour],
Federated Learning Approach for Remote Sensing Scene Classification,
RS(16), No. 12, 2024, pp. 2194.
DOI Link 2406
BibRef

Wang, S.Y.[Si-Yang], Zhao, H.T.[Hai-Tao], Wen, W.L.[Wan-Li], Xia, W.C.[Wen-Chao], Wang, B.[Bin], Zhu, H.B.[Hong-Bo],
Contract Theory Based Incentive Mechanism for Clustered Vehicular Federated Learning,
ITS(25), No. 7, July 2024, pp. 8134-8147.
IEEE DOI 2407
Servers, Training, Contracts, Task analysis, Data models, Computational modeling, Clustering algorithms, contract theory BibRef

Gu, H.L.[Han-Lin], Fan, L.X.[Li-Xin], Tang, X.X.[Xing-Xing], Yang, Q.[Qiang],
FedCut: A Spectral Analysis Framework for Reliable Detection of Byzantine Colluders,
PAMI(46), No. 9, September 2024, pp. 5905-5920.
IEEE DOI 2408
To get security if Federated learning. Servers, Spectral analysis, Analytical models, Federated learning, Training, Data models, Fans, Byzantine colluders, spectral heuristics BibRef

Ye, Q.L.[Qiao-Ling], Amini, A.A.[Arash A.], Zhou, Q.[Qing],
Federated Learning of Generalized Linear Causal Networks,
PAMI(46), No. 10, October 2024, pp. 6623-6636.
IEEE DOI 2409
Distributed databases, Optimization, Federated learning, Data privacy, Data models, Servers, Simulated annealing, topological sorts BibRef

Zhang, X.Y.[Xin-Yu], Sun, W.Y.[Wei-Yu], Chen, Y.[Ying],
Tackling the Non-IID Issue in Heterogeneous Federated Learning by Gradient Harmonization,
SPLetters(31), 2024, pp. 2595-2599.
IEEE DOI 2410
Training, Servers, Vectors, Optimization, Image classification, Social networking (online), Data models, Federated learning, robust server aggregation BibRef

Liu, X.[Xuan], Cai, S.Q.[Si-Qi], He, R.J.[Ren-Jie], Yuan, J.L.[Jing-Ling],
Mutual Gradient Inversion: Unveiling Privacy Risks of Federated Learning on Multi-Modal Signals,
SPLetters(31), 2024, pp. 2745-2749.
IEEE DOI 2410
Training, Data models, Federated learning, Servers, Threat modeling, Image reconstruction, Differential privacy, Federated learning, privacy leakage BibRef

Huang, W.K.[Wen-Ke], Ye, M.[Mang], Shi, Z.K.[Ze-Kun], Wan, G.C.[Guan-Cheng], Li, H.[He], Du, B.[Bo], Yang, Q.[Qiang],
Federated Learning for Generalization, Robustness, Fairness: A Survey and Benchmark,
PAMI(46), No. 12, December 2024, pp. 9387-9406.
IEEE DOI 2411
Federated learning, Surveys, Robustness, Data models, Benchmark testing, Collaboration, Distributed databases, Fairness, robustness BibRef

Zhou, T.F.[Tian-Fei], Yuan, Y.[Ye], Wang, B.[Binglu], Konukoglu, E.[Ender],
Federated Feature Augmentation and Alignment,
PAMI(46), No. 12, December 2024, pp. 11119-11135.
IEEE DOI 2411
Training, Data models, Transformers, Prototypes, Federated learning, Degradation, Data privacy, Feature alignment, feature augmentation, federated learning BibRef

Li, D.[Daixun], Xie, W.Y.[Wei-Ying], Wang, Z.X.[Zi-Xuan], Lu, Y.B.[Yi-Bing], Li, Y.S.[Yun-Song], Fang, L.Y.[Le-Yuan],
FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients,
CirSysVideo(34), No. 10, October 2024, pp. 10353-10367.
IEEE DOI 2411
Remote sensing, Federated learning, Feature extraction, Transformers, Satellites, Data models, Laser radar, Deep learning, federated learning BibRef

You, X.Y.[Xian-Yao], Liu, C.Y.[Cai-Yun], Li, J.[Jun], Sun, Y.[Yan], Liu, X.M.[Xi-Meng],
FedMDO: Privacy-Preserving Federated Learning via Mixup Differential Objective,
CirSysVideo(34), No. 10, October 2024, pp. 10449-10463.
IEEE DOI 2411
Federated learning, Differential privacy, Protection, Training, Servers, Privacy, Task analysis, Federated learning, data privacy, data augmentation BibRef


Kanhere, A.[Adway], Kulkarni, P.[Pranav], Yi, P.H.[Paul H.], Parekh, V.S.[Vishwa S.],
Privacy-Preserving Collaboration for Multi-Organ Segmentation via Federated Learning from Sites with Partial Labels,
EnhanceMedIm24(2380-2387)
IEEE DOI Code:
WWW Link. 2410
Spleen, Image segmentation, Annotations, Federated learning, Collaboration, Liver, Data models, federated learning, computed tomography BibRef

Tabassum, N.[Nawrin], Chow, K.H.[Ka-Ho], Wang, X.[Xuyu], Zhang, W.B.[Wen-Bin], Wu, Y.Z.[Yan-Zhao],
On the Efficiency of Privacy Attacks in Federated Learning,
FedVision244(4226-4235)
IEEE DOI Code:
WWW Link. 2410
Privacy, Data privacy, Costs, Federated learning, Training data, Benchmark testing BibRef

Nakka, K.K.[Krishna Kanth], Frikha, A.[Ahmed], Mendis, R.[Ricardo], Jiang, X.[Xue], Zhou, X.[Xuebing],
Federated Hyperparameter Optimization through Reward-Based Strategies: Challenges and Insights,
FedVision244(4236-4244)
IEEE DOI 2410
Training, Systematics, Sensitivity, Federated learning, Face recognition, Hyperparameter tuning, Federated Learning BibRef

Soni, S.[Sunny], Saeed, A.[Aaqib], Asano, Y.M.[Yuki M.],
Federated Learning with a Single Shared Image,
ZeroShot24(7782-7790)
IEEE DOI 2410
Training, Schedules, Data privacy, Machine learning algorithms, Federated learning, Training data, Performance gain BibRef

Kim, G.[Geeho], Kim, J.[Jinkyu], Han, B.H.[Bo-Hyung],
Communication-Efficient Federated Learning with Accelerated Client Gradient,
CVPR24(12385-12394)
IEEE DOI Code:
WWW Link. 2410
Costs, Federated learning, Source coding, Performance gain, Stability analysis, Robustness, Data models, Federated learning, Data heterogeneity BibRef

Lee, G.[Gihun], Jeong, M.[Minchan], Kim, S.[Sangmook], Oh, J.[Jaehoon], Yun, S.Y.[Se-Young],
FedSOL: Stabilized Orthogonal Learning with Proximal Restrictions in Federated Learning,
CVPR24(12512-12522)
IEEE DOI 2410
Degradation, Data privacy, Federated learning, Perturbation methods, Aggregates, Data models, Federated Learning, Continual Learning BibRef

Wang, G.Q.[Guan-Qun], Liu, J.[JiaMing], Li, C.X.[Chen-Xuan], Zhang, Y.[Yuan], Ma, J.P.[Jun-Peng], Wei, X.Y.[Xin-Yu], Zhang, K.[Kevin], Chong, M.[Maurice], Zhang, R.R.[Ren-Rui], Liu, Y.J.[Yi-Jiang], Zhang, S.H.[Shang-Hang],
Cloud-Device Collaborative Learning for Multimodal Large Language Models,
CVPR24(12646-12655)
IEEE DOI 2410
Performance evaluation, Training, Adaptation models, Visualization, Federated learning, Large language models, Collaboration, knowledge distillation BibRef

Wang, Q.[Qiang], Liu, B.[Bingyan], Li, Y.W.[Ya-Wen],
Traceable Federated Continual Learning,
CVPR24(12872-12881)
IEEE DOI Code:
WWW Link. 2410
Training, Codes, Accuracy, Collaboration, Benchmark testing, Federated Learning, Continual Learning, Task Repeatability BibRef

Poggi, M.[Matteo], Tosi, F.[Fabio],
Federated Online Adaptation for Deep Stereo,
CVPR24(20165-20175)
IEEE DOI 2410
Performance evaluation, Adaptation models, Accuracy, Costs, Federated learning, Computational modeling, BibRef

Liao, X.T.[Xin-Ting], Liu, W.M.[Wei-Ming], Chen, C.C.[Chao-Chao], Zhou, P.[Pengyang], Yu, F.Y.[Feng-Yuan], Zhu, H.[Huabin], Yao, B.[Binhui], Wang, T.[Tao], Zheng, X.L.[Xiao-Lin], Tan, Y.C.[Yan-Chao],
Rethinking the Representation in Federated Unsupervised Learning with Non-IID Data,
CVPR24(22841-22850)
IEEE DOI 2410
Federated learning, Computational modeling, Benchmark testing, Data models, Iron, Federated learning BibRef

Liu, Y.Q.[Ying-Qi], Shi, Y.F.[Yi-Fan], Wu, B.Y.[Bao-Yuan], Li, Q.[Qinglun], Wang, X.Q.[Xue-Qian], Shen, L.[Li],
Decentralized Directed Collaboration for Personalized Federated Learning,
CVPR24(23168-23178)
IEEE DOI 2410
Training, Federated learning, Computational modeling, Collaboration, Stochastic processes, Lead, Topology, partial gradient push BibRef

Xie, C.[Chulin], Huang, D.A.[De-An], Chu, W.[Wenda], Xu, D.[Daguang], Xiao, C.W.[Chao-Wei], Li, B.[Bo], Anandkumar, A.[Anima],
Perada: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees,
CVPR24(23838-23848)
IEEE DOI Code:
WWW Link. 2410
Adaptation models, Costs, Codes, Federated learning, Computational modeling, Aggregates, Privacy BibRef

Tran, M.T.[Minh-Tuan], Le, T.[Trung], Le, X.M.[Xuan-May], Harandi, M.[Mehrtash], Phung, D.[Dinh],
Text-Enhanced Data-Free Approach for Federated Class-Incremental Learning,
CVPR24(23870-23880)
IEEE DOI Code:
WWW Link. 2410
Training, Data privacy, Codes, Federated learning, Computational modeling, Data models, federated learning, text embedding BibRef

Tamirisa, R.[Rishub], Xie, C.[Chulin], Bao, W.X.[Wen-Xuan], Zhou, A.[Andy], Arel, R.[Ron], Shamsian, A.[Aviv],
FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning,
CVPR24(23985-23994)
IEEE DOI Code:
WWW Link. 2410
Training, Knowledge engineering, Adaptation models, Costs, Federated learning, Robustness, Iterative algorithms, Transfer Learning BibRef

Kumar, K.N.[K Naveen], Mitra, R.[Reshmi], Mohan, C.K.[C Krishna],
Revamping Federated Learning Security from a Defender's Perspective: A Unified Defense with Homomorphic Encrypted Data Space,
CVPR24(24387-24397)
IEEE DOI 2410
Training, Data privacy, Privacy, Federated learning, Computational modeling, Predictive models, Data models, Defenders perspective BibRef

Sun, P.[Peng], Liu, X.Y.[Xin-Yang], Wang, Z.B.[Zhi-Bo], Liu, B.[Bo],
Byzantine-robust Decentralized Federated Learning via Dual-domain Clustering and Trust Bootstrapping,
CVPR24(24756-24765)
IEEE DOI 2410
Measurement, Training, Federated learning, Buildings, Collaboration, Euclidean distance BibRef

Wang, Y.[Yuan], Fu, H.Z.[Hua-Zhu], Kanagavelu, R.[Renuga], Wei, Q.S.[Qing-Song], Liu, Y.[Yong], Goh, R.S.M.[Rick Siow Mong],
An Aggregation-Free Federated Learning for Tackling Data Heterogeneity,
CVPR24(26223-26232)
IEEE DOI 2410
Training, Accuracy, Federated learning, Computational modeling, Distributed databases, Data models, Numerical models, Aggregation free BibRef

Deng, W.L.[Wen-Long], Thrampoulidis, C.[Christos], Li, X.X.[Xiao-Xiao],
Unlocking the Potential of Prompt-Tuning in Bridging Generalized and Personalized Federated Learning,
CVPR24(6087-6097)
IEEE DOI 2410
Training, Adaptation models, Visualization, Federated learning, Computational modeling, Transformers BibRef

Chen, H.C.[Huan-Cheng], Vikalo, H.[Haris],
Mixed-Precision Quantization for Federated Learning on Resource-Constrained Heterogeneous Devices,
CVPR24(6138-6148)
IEEE DOI 2410
Training, Degradation, Deep learning, Quantization (signal), Federated learning, Computational modeling, Benchmark testing BibRef

Chen, J.Y.[Jia-Yi], Ma, B.[Benteng], Cui, H.[Hengfei], Xia, Y.[Yong],
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts,
CVPR24(11439-11449)
IEEE DOI Code:
WWW Link. 2410
Learning systems, Uncertainty, Image analysis, Federated learning, Annotations, Distributed databases, Predictive models, Uncertainty estimation BibRef

Yang, X.[Xiyuan], Huang, W.K.[Wen-Ke], Ye, M.[Mang],
FedAS: Bridging Inconsistency in Personalized Federated Learning,
CVPR24(11986-11995)
IEEE DOI 2410
Training, Location awareness, Federated learning, Distributed databases, Collaboration, Robustness, Personalization BibRef

Li, W.Q.[Wen-Qian], Fu, S.[Shuran], Zhang, F.[Fengrui], Pang, Y.[Yan],
Data Valuation and Detections in Federated Learning,
CVPR24(12027-12036)
IEEE DOI Code:
WWW Link. 2410
Training, Measurement, Data privacy, Federated learning, Computational modeling, Data models, Data Valuation, Trustworthy ML BibRef

Chen, Y.H.[Yu-Hang], Huang, W.K.[Wen-Ke], Ye, M.[Mang],
Fair Federated Learning Under Domain Skew with Local Consistency and Domain Diversity,
CVPR24(12077-12086)
IEEE DOI 2410
Training, Federated learning, Computational modeling, Collaboration, Resource management, Trustworthy Artificial Intelligence BibRef

Zhang, J.[Junyuan], Zeng, S.[Shuang], Zhang, M.[Miao], Wang, R.X.[Run-Xi], Wang, F.F.[Fei-Fei], Zhou, Y.[Yuyin], Liang, P.P.[Paul Pu], Qu, L.Q.[Liang-Qiong],
FLHetBench: Benchmarking Device and State Heterogeneity in Federated Learning,
CVPR24(12098-12108)
IEEE DOI 2410
Performance evaluation, Training, Degradation, Federated learning, Benchmark testing, Sampling methods, Particle measurements, Heterogeneity BibRef

Zhang, J.Q.[Jian-Qing], Liu, Y.[Yang], Hua, Y.[Yang], Cao, J.[Jian],
An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning,
CVPR24(12109-12119)
IEEE DOI Code:
WWW Link. 2410
Training, Privacy, Federated learning, Image edge detection, Generators, Data models, large pre-trained generator, model heterogeneity BibRef

Zhao, J.C.[Joshua C.], Dabholkar, A.[Ahaan], Sharma, A.[Atul], Bagchi, S.[Saurabh],
Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning,
CVPR24(12247-12256)
IEEE DOI 2410
Training, Data privacy, Federated learning, Training data, Semisupervised learning, Data models, Servers, Federated learning, privacy BibRef

Seo, S.[Seonguk], Kim, J.[Jinkyu], Kim, G.[Geeho], Han, B.H.[Bo-Hyung],
Relaxed Contrastive Learning for Federated Learning,
CVPR24(12279-12288)
IEEE DOI Code:
WWW Link. 2410
Training, Federated learning, Source coding, Contrastive learning, Performance gain, Robustness, federated learning, transferability BibRef

Fan, Q., Shuai, L.,
Adaptive Hyper-graph Aggregation for Modality-Agnostic Federated Learning,
CVPR24(12312-12321)
IEEE DOI 2410
Knowledge engineering, Adaptation models, Federated learning, Prototypes, Computer architecture, Benchmark testing BibRef

Lu, Y.X.[Yu-Xiang], Huang, S.[Suizhi], Yang, Y.[Yuwen], Sirejiding, S.[Shalayiding], Ding, Y.[Yue], Lu, H.T.[Hong-Tao],
Fedhca2: Towards Hetero-Client Federated Multi-Task Learning,
CVPR24(5599-5609)
IEEE DOI Code:
WWW Link. 2410
Training, Federated learning, Computational modeling, Distributed databases, Multitasking, Data models, Multi-Task Learning BibRef

Son, H.M.[Ha Min], Kim, M.H.[Moon-Hyun], Chung, T.M.[Tai-Myoung], Huang, C.[Chao], Liu, X.[Xin],
FedUV: Uniformity and Variance for Heterogeneous Federated Learning,
CVPR24(5863-5872)
IEEE DOI 2410
Training, Federated learning, Neural networks, Distributed databases, Probability distribution, Data models BibRef

Tu, N.A.[Nguyen Anh], Abu, A.[Assanali], Aikyn, N.[Nartay], Makhanov, N.[Nursultan], Lee, M.H.[Min-Ho], Le-Huy, K.[Khiem], Wong, K.S.[Kok-Seng],
FedFSLAR: A Federated Learning Framework for Few-shot Action Recognition,
RWSurvil24(270-279)
IEEE DOI 2404
Metalearning, Adaptation models, Data privacy, Correlation, Federated learning, Computational modeling BibRef

Eloul, S.[Shaltiel], Silavong, F.[Fran], Kamthe, S.[Sanket], Georgiadis, A.[Antonios], Moran, S.J.[Sean J.],
Mixing Gradients in Neural Networks as a Strategy to Enhance Privacy in Federated Learning,
WACV24(3944-3953)
IEEE DOI 2404
Measurement, Training, Resistance, Privacy, Federated learning, Noise, Neural networks, Algorithms, Adversarial learning, Datasets and evaluations BibRef

Wang, F.[Feng], Velipasalar, S.[Senem], Gursoy, M.C.[M. Cenk],
Maximum Knowledge Orthogonality Reconstruction with Gradients in Federated Learning,
WACV24(3872-3881)
IEEE DOI Code:
WWW Link. 2404
Data privacy, Privacy, Federated learning, Computational modeling, Neural networks, Pressing, Reconstruction algorithms, Algorithms, ethical computer vision BibRef

Sivasubramanian, D.[Durga], Nagalapatti, L.[Lokesh], Iyer, R.[Rishabh], Ramakrishnan, G.[Ganesh],
Gradient Coreset for Federated Learning,
WACV24(2636-2645)
IEEE DOI 2404
Training, Privacy, Federated learning, Computational modeling, Noise, Fitting, Training data, Algorithms, Machine learning architectures, ethical computer vision BibRef

Lim, J.H.[Jin Hyuk], Ha, S.[SeungBum], Yoon, S.W.[Sung Whan],
MetaVers: Meta-Learned Versatile Representations for Personalized Federated Learning,
WACV24(2575-2584)
IEEE DOI Code:
WWW Link. 2404
Metalearning, Visualization, Codes, Federated learning, Aggregates, Benchmark testing, Algorithms, Machine learning architectures, and algorithms BibRef

Yashwanth, M., Nayak, G.K.[Gaurav Kumar], Rangwani, H.[Harsh], Singh, A.[Arya], Babu, R.V.[R. Venkatesh], Chakraborty, A.[Anirban],
Minimizing Layerwise Activation Norm Improves Generalization in Federated Learning,
WACV24(2276-2285)
IEEE DOI 2404
Training, Federated learning, Computational modeling, Training data, Lead, Eigenvalues and eigenfunctions, Data models, ethical computer vision BibRef

Amosy, O.[Ohad], Eyal, G.[Gal], Chechik, G.[Gal],
Late to the party? On-demand unlabeled personalized federated learning,
WACV24(2173-2182)
IEEE DOI 2404
Training, Differential privacy, Privacy, Federated learning, Perturbation methods, Computational modeling, Algorithms BibRef

Ashraf, T.[Tajamul], Mir, F.B.A.[Fuzayil Bin Afzal], Gillani, I.A.[Iqra Altaf],
TransFed: A way to epitomize Focal Modulation using Transformer-based Federated Learning,
WACV24(543-552)
IEEE DOI 2404
Data privacy, Pneumonia, Federated learning, Scalability, Modulation, Collaboration, Algorithms, Image recognition and understanding, Biomedical / healthcare / medicine BibRef

Fang, H.[Hao], Chen, B.[Bin], Wang, X.[Xuan], Wang, Z.[Zhi], Xia, S.T.[Shu-Tao],
GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization,
ICCV23(4944-4953)
IEEE DOI 2401
BibRef

Wan, G.[Guangnian], Du, H.T.[Hai-Tao], Yuan, X.J.[Xue-Jing], Yang, J.[Jun], Chen, M.L.[Mei-Ling], Xu, J.[Jie],
Enhancing Privacy Preservation in Federated Learning via Learning Rate Perturbation,
ICCV23(4749-4758)
IEEE DOI 2401
BibRef

Zeng, Y.[Yaopei], Liu, L.[Lei], Liu, L.[Li], Shen, L.[Li], Liu, S.[Shaoguo], Wu, B.Y.[Bao-Yuan],
Global Balanced Experts for Federated Long-Tailed Learning,
ICCV23(4792-4802)
IEEE DOI 2401
BibRef

Chen, H.[Haokun], Frikha, A.[Ahmed], Krompass, D.[Denis], Gu, J.D.[Jin-Dong], Tresp, V.[Volker],
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation,
ICCV23(4826-4836)
IEEE DOI 2401
BibRef

Ghodsi, Z.[Zahra], Javaheripi, M.[Mojan], Sheybani, N.[Nojan], Zhang, X.[Xinqiao], Huang, K.[Ke], Koushanfar, F.[Farinaz],
zPROBE: Zero Peek Robustness Checks for Federated Learning,
ICCV23(4837-4847)
IEEE DOI 2401
BibRef

Yang, C.[Chen], Zhu, M.[Meilu], Liu, Y.F.[Yi-Fan], Yuan, Y.X.[Yi-Xuan],
FedPD: Federated Open Set Recognition with Parameter Disentanglement,
ICCV23(4859-4868)
IEEE DOI 2401
BibRef

Sun, G.Y.[Guang-Yu], Mendieta, M.[Matias], Luo, J.[Jun], Wu, S.D.[Shan-Dong], Chen, C.[Chen],
FedPerfix: Towards Partial Model Personalization of Vision Transformers in Federated Learning,
ICCV23(4965-4975)
IEEE DOI Code:
WWW Link. 2401
BibRef

Han, S.[Sungwon], Park, S.[Sungwon], Wu, F.Z.[Fang-Zhao], Kim, S.[Sundong], Zhu, B.[Bin], Xie, X.[Xing], Cha, M.[Meeyoung],
Towards Attack-tolerant Federated Learning via Critical Parameter Analysis,
ICCV23(4976-4985)
IEEE DOI 2401
BibRef

Fang, X.W.[Xiu-Wen], Ye, M.[Mang], Yang, X.[Xiyuan],
Robust Heterogeneous Federated Learning under Data Corruption,
ICCV23(4997-5007)
IEEE DOI 2401
BibRef

Zhou, Y.H.[Yu-Hao], Shi, M.J.[Ming-Jia], Li, Y.Y.X.[Yuan-Yan-Xi], Sun, Y.[Yanan], Ye, Q.[Qing], Lv, J.C.[Jian-Cheng],
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence,
ICCV23(5008-5017)
IEEE DOI 2401
BibRef

Zhang, J.Q.[Jian-Qing], Hua, Y.[Yang], Wang, H.[Hao], Song, T.[Tao], Xue, Z.[Zhengui], Ma, R.[Ruhui], Cao, J.[Jian], Guan, H.B.[Hai-Bing],
GPFL: Simultaneously Learning Global and Personalized Feature Information for Personalized Federated Learning,
ICCV23(5018-5028)
IEEE DOI 2401
BibRef

Vahidian, S.[Saeed], Kadaveru, S.[Sreevatsank], Baek, W.[Woonjoon], Wang, W.J.[Wei-Jia], Kungurtsev, V.[Vyacheslav], Chen, C.[Chen], Shah, M.[Mubarak], Lin, B.[Bill],
When Do Curricula Work in Federated Learning?,
ICCV23(5061-5071)
IEEE DOI 2401
BibRef

Zhang, C.[Chi], Zhang, X.M.[Xiao-Man], Sotthiwat, E.[Ekanut], Xu, Y.[Yanyu], Liu, P.[Ping], Zhen, L.[Liangli], Liu, Y.[Yong],
Generative Gradient Inversion via Over-Parameterized Networks in Federated Learning,
ICCV23(5103-5112)
IEEE DOI Code:
WWW Link. 2401
BibRef

Sun, J.W.[Jing-Wei], Xu, Z.Y.[Zi-Yue], Yang, D.[Dong], Nath, V.[Vishwesh], Li, W.Q.[Wen-Qi], Zhao, C.[Can], Xu, D.[Daguang], Chen, Y.[Yiran], Roth, H.R.[Holger R.],
Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples,
ICCV23(5180-5189)
IEEE DOI Code:
WWW Link. 2401
BibRef

Kim, H.[Hansol], Kwak, Y.[Youngjun], Jung, M.Y.[Min-Young], Shin, J.H.[Jin-Ho], Kim, Y.S.[Young-Sung], Kim, C.[Changick],
ProtoFL: Unsupervised Federated Learning via Prototypical Distillation,
ICCV23(6447-6456)
IEEE DOI 2401
BibRef

Ur Rehman, Y.A.[Yasar Abbas], Gao, Y.[Yan], de Gusmão, P.P.B.[Pedro Porto Buarque], Alibeigi, M.[Mina], Shen, J.J.[Jia-Jun], Lane, N.D.[Nicholas D.],
L-DAWA: Layer-wise Divergence Aware Weight Aggregation in Federated Self-Supervised Visual Representation Learning,
ICCV23(16418-16427)
IEEE DOI 2401
BibRef

Chen, R.[Rui], Wan, Q.Y.[Qi-Yu], Prakash, P.[Pavana], Zhang, L.[Lan], Yuan, X.[Xu], Gong, Y.M.[Yan-Min], Fu, X.[Xin], Pan, M.[Miao],
Workie-Talkie: Accelerating Federated Learning by Overlapping Computing and Communications via Contrastive Regularization,
ICCV23(16953-16963)
IEEE DOI 2401
BibRef

Cho, Y.J.[Yae Jee], Joshi, G.[Gauri], Dimitriadis, D.[Dimitrios],
Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels,
ICCV23(17041-17050)
IEEE DOI 2401
BibRef

Yang, F.E.[Fu-En], Wang, C.Y.[Chien-Yi], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Efficient Model Personalization in Federated Learning via Client-Specific Prompt Generation,
ICCV23(19102-19111)
IEEE DOI 2401
BibRef

Xia, H.F.[Hai-Feng], Li, K.[Kai], Ding, Z.M.[Zheng-Ming],
Personalized Semantics Excitation for Federated Image Classification,
ICCV23(19244-19253)
IEEE DOI 2401
BibRef

Wu, X.H.[Xing-Hao], Liu, X.F.[Xue-Feng], Niu, J.W.[Jian-Wei], Zhu, G.G.[Guo-Gang], Tang, S.J.[Shao-Jie],
Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration,
ICCV23(19318-19327)
IEEE DOI Code:
WWW Link. 2401
BibRef

Hu, E.[Erdong], Tang, Y.X.[Yu-Xin], Kyrillidis, A.[Anastasios], Jermaine, C.[Chris],
Federated Learning Over Images: Vertical Decompositions and Pre-Trained Backbones Are Difficult to Beat,
ICCV23(19328-19339)
IEEE DOI 2401
BibRef

Do, T.[Tuong], Nguyen, B.X.[Binh X.], Pham, V.[Vuong], Tran, T.[Toan], Tjiputra, E.[Erman], Tran, Q.D.[Quang D.], Nguyen, A.[Anh],
Reducing Training Time in Cross-Silo Federated Learning using Multigraph Topology,
ICCV23(19352-19362)
IEEE DOI Code:
WWW Link. 2401
BibRef

Feng, C.M.[Chun-Mei], Yu, K.[Kai], Liu, N.[Nian], Xu, X.X.[Xin-Xing], Khan, S.[Salman], Zuo, W.M.[Wang-Meng],
Towards Instance-adaptive Inference for Federated Learning,
ICCV23(23230-23239)
IEEE DOI 2401
BibRef

Zhuang, W.M.[Wei-Ming], Wen, Y.G.[Yong-Gang], Lyu, L.J.[Ling-Juan], Zhang, S.[Shuai],
MAS: Towards Resource-Efficient Federated Multiple-Task Learning,
ICCV23(23357-23367)
IEEE DOI 2401
BibRef

Psaltis, A.[Athanasios], Kastellos, A.[Anestis], Patrikakis, C.Z.[Charalampos Z.], Daras, P.[Petros],
FedLID: Self-Supervised Federated Learning for Leveraging Limited Image Data,
LIMIT23(1031-1040)
IEEE DOI 2401
BibRef

Caldarola, D.[Debora], Caputo, B.[Barbara], Ciccone, M.[Marco],
Window-based Model Averaging Improves Generalization in Heterogeneous Federated Learning,
WiCV-ICCV23(2255-2263)
IEEE DOI 2401
BibRef

Pennisi, M.[Matteo], Salanitri, F.P.[Federica Proietto], Bellitto, G.[Giovanni], Spampinato, C.[Concetto], Palazzo, S.[Simone], Casella, B.[Bruno], Aldinucci, M.[Marco],
Experience Replay as an Effective Strategy for Optimizing Decentralized Federated Learning,
VCL23(3368-3375)
IEEE DOI 2401
BibRef

Luo, J.[Jun], Mendieta, M.[Matias], Chen, C.[Chen], Wu, S.D.[Shan-Dong],
PGFed: Personalize Each Client's Global Objective for Federated Learning,
ICCV23(3923-3933)
IEEE DOI Code:
WWW Link. 2401
BibRef

Liu, L.X.[Liang-Xi], Jiang, X.[Xi], Zheng, F.[Feng], Chen, H.[Hong], Qi, G.J.[Guo-Jun], Huang, H.[Heng], Shao, L.[Ling],
A Bayesian Federated Learning Framework With Online Laplace Approximation,
PAMI(46), No. 1, January 2024, pp. 1-16.
IEEE DOI 2312
BibRef

Pennisi, M.[Matteo], Salanitri, F.P.[Federica Proietto], Bellitto, G.[Giovanni], Casella, B.[Bruno], Aldinucci, M.[Marco], Palazzo, S.[Simone], Spampinato, C.[Concetto],
FedER: Federated Learning through Experience Replay and privacy-preserving data synthesis,
CVIU(238), 2024, pp. 103882.
Elsevier DOI Code:
WWW Link. 2312
Decentralized learning, Federated learning, Privacy in machine learning and classification BibRef

Su, R.Z.[Rui-Zheng], Pang, X.W.[Xiong-Wen], Wang, H.[Hui],
A novel parameter decoupling approach of personalised federated learning for image analysis,
IET-CV(17), No. 8, 2023, pp. 913-924.
DOI Link 2312
image classification BibRef

Wang, W.[Wei], Zhang, M.W.[Ming-Wei], Wu, Z.[Ziwen], Chen, Q.X.[Qian-Xi], Li, Y.[Yue],
MDFD: Study of Distributed Non-IID Scenarios and Frechet Distance-Based Evaluation,
ICIP23(2300-2304)
IEEE DOI 2312
BibRef

Qian, P.X.[Pin-Xin], Lu, Y.[Yang], Wang, H.Z.[Han-Zi],
Long-Tailed Federated Learning Via Aggregated Meta Mapping,
ICIP23(2010-2014)
IEEE DOI 2312
BibRef

Lee, Y.J.[Young-Joon], Park, S.[Sangwoo], Kang, J.[Joonhyuk],
Fast-Convergent Federated Learning via Cyclic Aggregation,
ICIP23(2175-2179)
IEEE DOI 2312
BibRef

Gao, T.R.[Tian-Run], Liu, X.H.[Xiao-Hong], Yang, Y.N.[Yu-Ning], Wang, G.Y.[Guang-Yu],
FEDMBP: Multi-Branch Prototype Federated Learning on Heterogeneous Data,
ICIP23(2180-2184)
IEEE DOI 2312
BibRef

Pi, R.J.[Ren-Jie], Zhang, W.Z.[Wei-Zhong], Xie, Y.Q.[Yue-Qi], Gao, J.H.[Jia-Hui], Wang, X.Y.[Xiao-Yu], Kim, S.[Sunghun], Chen, Q.F.[Qi-Feng],
DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics,
CVPR23(12177-12186)
IEEE DOI 2309
BibRef

Zhang, T.[Tuo], Gao, L.[Lei], Lee, S.[Sunwoo], Zhang, M.[Mi], Avestimehr, S.[Salman],
TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with Adaptive Partial Training,
FedVision23(5064-5073)
IEEE DOI 2309
BibRef

Ovi, P.R.[Pretom Roy], Dey, E.[Emon], Roy, N.[Nirmalya], Gangopadhyay, A.[Aryya],
Mixed Quantization Enabled Federated Learning to Tackle Gradient Inversion Attacks,
FedVision23(5046-5054)
IEEE DOI 2309
BibRef

Cai, R.[Ruisi], Chen, X.H.[Xiao-Han], Liu, S.W.[Shi-Wei], Srinivasa, J.[Jayanth], Lee, M.[Myungjin], Kompella, R.[Ramana], Wang, Z.Y.[Zhang-Yang],
Many-Task Federated Learning: A New Problem Setting and A Simple Baseline,
FedVision23(5037-5045)
IEEE DOI 2309
BibRef

Chen, D.S.[Deng-Sheng], Tan, V.J.[Vince Junkai], Lu, Z.L.[Zhi-Lin], Wu, E.[Enhua], Hu, J.[Jie],
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework,
FedVision23(5018-5026)
IEEE DOI 2309
BibRef

Chen, H.[Huancheng], Vikalo, H.[Haris],
Federated Learning in Non-IID Settings Aided by Differentially Private Synthetic Data,
FedVision23(5027-5036)
IEEE DOI 2309
BibRef

Shi, Y.F.[Yi-Fan], Liu, Y.Q.[Ying-Qi], Wei, K.[Kang], Shen, L.[Li], Wang, X.Q.[Xue-Qian], Tao, D.C.[Da-Cheng],
Make Landscape Flatter in Differentially Private Federated Learning,
CVPR23(24552-24562)
IEEE DOI 2309
BibRef

Zhu, J.[Junyi], Ma, X.C.[Xing-Chen], Blaschko, M.B.[Matthew B.],
Confidence-Aware Personalized Federated Learning via Variational Expectation Maximization,
CVPR23(24542-24551)
IEEE DOI 2309
BibRef

Ilhan, F.[Fatih], Su, G.[Gong], Liu, L.[Ling],
ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients,
CVPR23(24532-24541)
IEEE DOI 2309
BibRef

Liao, D.P.[Dong-Ping], Gao, X.T.[Xi-Tong], Zhao, Y.[Yiren], Xu, C.Z.[Cheng-Zhong],
Adaptive Channel Sparsity for Federated Learning under System Heterogeneity,
CVPR23(20432-20441)
IEEE DOI 2309
BibRef

Xu, Y.Y.[Yuan-Yi], Lin, C.S.[Ci-Siang], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Bias-Eliminating Augmentation Learning for Debiased Federated Learning,
CVPR23(20442-20452)
IEEE DOI 2309
BibRef

Wang, H.Z.[Hao-Zhao], Li, Y.C.[Yi-Chen], Xu, W.C.[Wen-Chao], Li, R.X.[Rui-Xuan], Zhan, Y.F.[Yu-Feng], Zeng, Z.G.[Zhi-Gang],
DaFKD: Domain-aware Federated Knowledge Distillation,
CVPR23(20412-20421)
IEEE DOI 2309
BibRef

Qin, Z.X.[Zi-Xuan], Yang, L.[Liu], Wang, Q.L.[Qi-Long], Han, Y.[Yahong], Hu, Q.H.[Qing-Hua],
Reliable and Interpretable Personalized Federated Learning,
CVPR23(20422-20431)
IEEE DOI 2309
BibRef

Chow, K.H.[Ka-Ho], Liu, L.[Ling], Wei, W.Q.[Wen-Qi], Ilhan, F.[Fatih], Wu, Y.Z.[Yan-Zhao],
STDLens: Model Hijacking-Resilient Federated Learning for Object Detection,
CVPR23(16343-16351)
IEEE DOI 2309
BibRef

Xiong, Y.H.[Yuan-Hao], Wang, R.[Ruochen], Cheng, M.[Minhao], Yu, F.[Felix], Hsieh, C.J.[Cho-Jui],
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning,
CVPR23(16323-16332)
IEEE DOI 2309
BibRef

Huang, W.K.[Wen-Ke], Ye, M.[Mang], Shi, Z.K.[Ze-Kun], Li, H.[He], Du, B.[Bo],
Rethinking Federated Learning with Domain Shift: A Prototype View,
CVPR23(16312-16322)
IEEE DOI 2309
BibRef

Li, M.[Ming], Li, Q.L.[Qing-Li], Wang, Y.[Yan],
Class Balanced Adaptive Pseudo Labeling for Federated Semi-Supervised Learning,
CVPR23(16292-16301)
IEEE DOI 2309
BibRef

Chen, D.S.[Deng-Sheng], Hu, J.[Jie], Tan, V.J.[Vince Junkai], Wei, X.M.[Xiao-Ming], Wu, E.[Enhua],
Elastic Aggregation for Federated Optimization,
CVPR23(12187-12197)
IEEE DOI 2309
BibRef

Qu, Z.[Zhe], Li, X.Y.[Xing-Yu], Han, X.[Xiao], Duan, R.[Rui], Shen, C.C.[Cheng-Chao], Chen, L.X.[Li-Xing],
How to Prevent the Poor Performance Clients for Personalized Federated Learning?,
CVPR23(12167-12176)
IEEE DOI 2309
BibRef

Feng, C.M.[Chun-Mei], Li, B.[Bangjun], Xu, X.X.[Xin-Xing], Liu, Y.[Yong], Fu, H.Z.[Hua-Zhu], Zuo, W.M.[Wang-Meng],
Learning Federated Visual Prompt in Null Space for MRI Reconstruction,
CVPR23(8064-8073)
IEEE DOI 2309
BibRef

Duan, J.H.[Jian-Hui], Li, W.Z.[Wen-Zhong], Zou, D.[Derun], Li, R.[Ruichen], Lu, S.[Sanglu],
Federated Learning with Data-Agnostic Distribution Fusion,
CVPR23(8074-8083)
IEEE DOI 2309
BibRef

Miao, J.X.[Jia-Xu], Yang, Z.X.[Zong-Xin], Fan, L.L.[Lei-Lei], Yang, Y.[Yi],
FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation,
CVPR23(8042-8052)
IEEE DOI 2309
BibRef

Zhao, J.C.[Joshua C.], Elkordy, A.R.[Ahmed Roushdy], Sharma, A.[Atul], Ezzeldin, Y.H.[Yahya H.], Avestimehr, S.[Salman], Bagchi, S.[Saurabh],
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning,
CVPR23(3974-3983)
IEEE DOI 2309
BibRef

Li, B.[Bo], Schmidt, M.N.[Mikkel N.], Alstrøm, T.S.[Tommy S.], Stich, S.U.[Sebastian U.],
On the Effectiveness of Partial Variance Reduction in Federated Learning with Heterogeneous Data,
CVPR23(3964-3973)
IEEE DOI 2309
BibRef

Zhang, R.P.[Rui-Peng], Xu, Q.[Qinwei], Yao, J.C.[Jiang-Chao], Zhang, Y.[Ya], Tian, Q.[Qi], Wang, Y.F.[Yan-Feng],
Federated Domain Generalization with Generalization Adjustment,
CVPR23(3954-3963)
IEEE DOI 2309
BibRef

Luo, K.Y.[Kang-Yang], Li, X.[Xiang], Lan, Y.S.[Yun-Shi], Gao, M.[Ming],
GradMA: A Gradient-Memory-based Accelerated Federated Learning with Alleviated Catastrophic Forgetting,
CVPR23(3708-3717)
IEEE DOI 2309
BibRef

Li, Y.L.[Yan-Li], Sani, A.S.[Abubakar Sadiq], Yuan, D.[Dong], Bao, W.[Wei],
Enhancing Federated Learning Robustness Through Clustering Non-iid Features,
ACCVWS22(45-59).
Springer DOI 2307
BibRef

Jain, S.[Shreyansh], Jerripothula, K.R.[Koteswar Rao],
Federated Learning for Commercial Image Sources,
WACV23(6523-6532)
IEEE DOI 2302
Training, Federated learning, Collaboration, Data models, Classification algorithms, Topology, Social good BibRef

Shenaj, D.[Donald], Fanì, E.[Eros], Toldo, M.[Marco], Caldarola, D.[Debora], Tavera, A.[Antonio], Michieli, U.[Umberto], Ciccone, M.[Marco], Zanuttigh, P.[Pietro], Caputo, B.[Barbara],
Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning,
WACV23(444-454)
IEEE DOI 2302
Training, Adaptation models, Codes, Federated learning, Semantic segmentation, Clustering algorithms BibRef

Quan, P.[Pengrui], Lee, W.H.[Wei-Han], Srivatsa, M.[Mudhakar], Srivastava, M.[Mani],
Enhancing Robustness in Federated Learning by Supervised Anomaly Detection,
ICPR22(996-1003)
IEEE DOI 2212
Federated learning, Distance learning, Computational modeling, Data security, Detectors, Predictive models, Robustness BibRef

Kundalwal, M.K.[Mayank Kumar], Saraswat, A.[Anurag], Mishra, I.[Ishan], Mishra, D.[Deepak],
BAFL: Federated Learning with Base Ablation for Cost Effective Communication,
ICPR22(1922-1928)
IEEE DOI 2212
Costs, Federated learning, Semantics, Neural networks, Distributed databases, Focusing, Feature extraction BibRef

Zaccone, R.[Riccardo], Rizzardi, A.[Andrea], Caldarola, D.[Debora], Ciccone, M.[Marco], Caputo, B.[Barbara],
Speeding up Heterogeneous Federated Learning with Sequentially Trained Superclients,
ICPR22(3376-3382)
IEEE DOI 2212
Training, Performance evaluation, Federated learning, Computational modeling, Neural networks, Data models BibRef

Yuan, H.L.[Hao-Lin], Hui, B.[Bo], Yang, Y.C.[Yu-Chen], Burlina, P.[Philippe], Gong, N.Z.Q.[Neil Zhen-Qiang], Cao, Y.[Yinzhi],
Addressing Heterogeneity in Federated Learning via Distributional Transformation,
ECCV22(XXXVIII:179-195).
Springer DOI 2211
BibRef

Varno, F.[Farshid], Saghayi, M.[Marzie], Sevyeri, L.R.[Laya Rafiee], Gupta, S.[Sharut], Matwin, S.[Stan], Havaei, M.[Mohammad],
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation,
ECCV22(XXIII:710-726).
Springer DOI 2211
BibRef

Mugunthan, V.[Vaikkunth], Lin, E.[Eric], Gokul, V.[Vignesh], Lau, C.[Christian], Kagal, L.[Lalana], Pieper, S.[Steve],
FedLTN: Federated Learning for Sparse and Personalized Lottery Ticket Networks,
ECCV22(XII:69-85).
Springer DOI 2211
BibRef

Dong, X.[Xin], Zhang, S.Q.[Sai Qian], Li, A.[Ang], Kung, H.T.,
SphereFed: Hyperspherical Federated Learning,
ECCV22(XXVI:165-184).
Springer DOI 2211
BibRef

Han, S.[Sungwon], Park, S.[Sungwon], Wu, F.Z.[Fang-Zhao], Kim, S.[Sundong], Wu, C.H.[Chu-Han], Xie, X.[Xing], Cha, M.[Meeyoung],
FedX: Unsupervised Federated Learning with Cross Knowledge Distillation,
ECCV22(XXX:691-707).
Springer DOI 2211
BibRef

Caldarola, D.[Debora], Caputo, B.[Barbara], Ciccone, M.[Marco],
Improving Generalization in Federated Learning by Seeking Flat Minima,
ECCV22(XXIII:654-672).
Springer DOI 2211
BibRef

Mendieta, M.[Matias], Yang, T.[Taojiannan], Wang, P.[Pu], Lee, M.W.[Min-Woo], Ding, Z.M.[Zheng-Ming], Chen, C.[Chen],
Local Learning Matters: Rethinking Data Heterogeneity in Federated Learning,
CVPR22(8387-8396)
IEEE DOI 2210
Performance evaluation, Computer aided instruction, Systematics, Federated learning, Distance learning, Data models, Efficient learning and inferences BibRef

Fang, X.W.[Xiu-Wen], Ye, M.[Mang],
Robust Federated Learning with Noisy and Heterogeneous Clients,
CVPR22(10062-10071)
IEEE DOI 2210
Adaptation models, Privacy, Computational modeling, Collaboration, Collaborative work, Data models, Privacy and federated learning BibRef

Li, X.C.[Xin-Chun], Xu, Y.C.[Yi-Chu], Song, S.M.[Shao-Ming], Li, B.S.[Bing-Shuai], Li, Y.C.[Yin-Chuan], Shao, Y.F.[Yun-Feng], Zhan, D.C.[De-Chuan],
Federated Learning with Position-Aware Neurons,
CVPR22(10072-10081)
IEEE DOI 2210
Training, Fuses, Neurons, Optimization methods, Collaborative work, Encoding, Privacy and federated learning, Representation learning BibRef

Ma, X.S.[Xiao-Song], Zhang, J.[Jie], Guo, S.[Song], Xu, W.C.[Wen-Chao],
Layer-wised Model Aggregation for Personalized Federated Learning,
CVPR22(10082-10091)
IEEE DOI 2210
Training, Distributed databases, Collaboration, Collaborative work, Data models, Privacy and federated learning, Others BibRef

Tang, M.[Minxue], Ning, X.F.[Xue-Fei], Wang, Y.[Yitu], Sun, J.W.[Jing-Wei], Wang, Y.[Yu], Li, H.[Hai], Chen, Y.[Yiran],
FedCor: Correlation-Based Active Client Selection Strategy for Heterogeneous Federated Learning,
CVPR22(10092-10101)
IEEE DOI 2210
Training, Correlation, Federated learning, Gaussian processes, Convergence, Privacy and federated learning, Machine learning BibRef

Gao, L.[Liang], Fu, H.Z.[Hua-Zhu], Li, L.[Li], Chen, Y.[Yingwen], Xu, M.[Ming], Xu, C.Z.[Cheng-Zhong],
FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction,
CVPR22(10102-10111)
IEEE DOI 2210
Training, Federated learning, Heuristic algorithms, Computational modeling, Data models, Privacy and federated learning BibRef

Cheng, A.[Anda], Wang, P.S.[Pei-Song], Zhang, X.S.[Xi Sheryl], Cheng, J.[Jian],
Differentially Private Federated Learning with Local Regularization and Sparsification,
CVPR22(10112-10121)
IEEE DOI 2210
Degradation, Privacy, Differential privacy, Costs, Federated learning, Computational modeling, privacy and ethics in vision BibRef

Li, Z.[Zhuohang], Zhang, J.X.[Jia-Xin], Liu, L.Y.[Lu-Yang], Liu, J.[Jian],
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage,
CVPR22(10122-10132)
IEEE DOI 2210
Degradation, Privacy, Data privacy, Perturbation methods, Training data, Generative adversarial networks, Image and video synthesis and generation BibRef

Huang, W.K.[Wen-Ke], Ye, M.[Mang], Du, B.[Bo],
Learn from Others and Be Yourself in Heterogeneous Federated Learning,
CVPR22(10133-10143)
IEEE DOI 2210
Degradation, Privacy, Distance learning, Distributed databases, Collaboration, Collaborative work, Data models, Privacy and federated learning BibRef

Liang, X.X.[Xiao-Xiao], Lin, Y.Q.[Yi-Qun], Fu, H.Z.[Hua-Zhu], Zhu, L.[Lei], Li, X.M.[Xiao-Meng],
RSCFed: Random Sampling Consensus Federated Semi-supervised Learning,
CVPR22(10144-10153)
IEEE DOI 2210
Training, Computational modeling, Distributed databases, Semisupervised learning, Benchmark testing, Collaborative work, Self- semi- meta- unsupervised learning BibRef

Xu, J.Y.[Jing-Yi], Chen, Z.H.[Zi-Han], Quek, T.Q.S.[Tony Q.S.], Chong, K.F.E.[Kai Fong Ernest],
FedCorr: Multi-Stage Federated Learning for Label Noise Correction,
CVPR22(10174-10183)
IEEE DOI 2210
Training, Data privacy, Adaptation models, Collaborative work, Loss measurement, Data models, Stability analysis, Machine learning BibRef

Zhang, J.Y.[Jing-Yang], Chen, Y.R.[Yi-Ran], Li, H.[Hai],
Privacy Leakage of Adversarial Training Models in Federated Learning Systems,
ArtOfRobust22(107-113)
IEEE DOI 2210
Training, Deep learning, Privacy, Neural networks, Collaborative work BibRef

Becking, D.[Daniel], Kirchhoffer, H.[Heiner], Tech, G.[Gerhard], Haase, P.[Paul], Müller, K.[Karsten], Schwarz, H.[Heiko], Samek, W.[Wojciech],
Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning,
FedVision22(3366-3375)
IEEE DOI 2210
Adaptation models, Computational modeling, Pipelines, Neural networks, Collaborative work, Data models BibRef

Cheng, G.[Gary], Charles, Z.[Zachary], Garrett, Z.[Zachary], Rush, K.[Keith],
Does Federated Dropout actually work?,
FedVision22(3386-3394)
IEEE DOI 2210
Training, Measurement, Machine learning algorithms, Computational modeling, Memory management BibRef

Qu, L.Q.[Liang-Qiong], Zhou, Y.Y.[Yu-Yin], Liang, P.P.[Paul Pu], Xia, Y.D.[Ying-Da], Wang, F.F.[Fei-Fei], Adeli, E.[Ehsan], Fei-Fei, L.[Li], Rubin, D.[Daniel],
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning,
CVPR22(10051-10061)
IEEE DOI 2210
Training, Federated learning, Organizations, Transformers, Data models, Robustness, Privacy and federated learning BibRef

Yan, R.[Rui], Qu, L.Q.[Liang-Qiong], Wei, Q.Y.[Qing-Yue], Huang, S.C.[Shih-Cheng], Shen, L.[Liyue], Rubin, D.L.[Daniel L.], Xing, L.[Lei], Zhou, Y.[Yuyin],
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging,
MedImg(42), No. 7, July 2023, pp. 1932-1943.
IEEE DOI 2307
Data models, Biomedical imaging, Task analysis, Training, Transformers, Distributed databases, Self-supervised learning, data efficiency BibRef

Tuor, T.[Tiffany], Wang, S.Q.[Shi-Qiang], Ko, B.J.[Bong Jun], Liu, C.C.[Chang-Chang], Leung, K.K.[Kin K.],
Overcoming Noisy and Irrelevant Data in Federated Learning,
ICPR21(5020-5027)
IEEE DOI 2105
Training, Data privacy, Distributed databases, Machine learning, Benchmark testing, Collaborative work, Data models, Data filtering, open set noise BibRef

Zhang, L.[Lin], Luo, Y.[Yong], Bai, Y.[Yan], Du, B.[Bo], Duan, L.Y.[Ling-Yu],
Federated Learning for Non-IID Data via Unified Feature Learning and Optimization Objective Alignment,
ICCV21(4400-4408)
IEEE DOI 2203
Representation learning, Analytical models, Computational modeling, Aggregates, Collaborative work, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Yao, C.H.[Chun-Han], Gong, B.Q.[Bo-Qing], Qi, H.[Hang], Cui, Y.[Yin], Zhu, Y.K.[Yu-Kun], Yang, M.H.[Ming-Hsuan],
Federated Multi-Target Domain Adaptation,
WACV22(1081-1090)
IEEE DOI 2202
Performance evaluation, Training, Image segmentation, Costs, Semantics, Distributed databases, Collaborative work, Transfer, Semi- and Un- supervised Learning BibRef

Li, Q.B.[Qin-Bin], He, B.S.[Bing-Sheng], Song, D.[Dawn],
Model-Contrastive Federated Learning,
CVPR21(10708-10717)
IEEE DOI 2111
Multiple parties to collaboratively train a machine learning model without communicating their local data. Deep learning, Training, Pain, Moon, Object detection, Collaborative work, Data models BibRef

Caldarola, D.[Debora], Mancini, M.[Massimiliano], Galasso, F.[Fabio], Ciccone, M.[Marco], Rodolà, E.[Emanuele], Caputo, B.[Barbara],
Cluster-driven Graph Federated Learning over Multiple Domains,
LLID21(2743-2752)
IEEE DOI 2109
Training, Knowledge engineering, Computational modeling, Benchmark testing, Collaborative work, Data models, Iterative algorithms BibRef

Hao, W.[Weituo], El-Khamy, M.[Mostafa], Lee, J.[Jungwon], Zhang, J.Y.[Jian-Yi], Liang, K.J.[Kevin J], Chen, C.Y.[Chang-You], Carin, L.[Lawrence],
Towards Fair Federated Learning with Zero-Shot Data Augmentation,
TCV21(3305-3314)
IEEE DOI 2109
Computer aided instruction, Distance learning, Distributed databases, Collaborative work, Data models BibRef

Zhu, Z.R.[Zi-Rui], Sun, L.F.[Li-Feng],
Federated Trace: A Node Selection Method for More Efficient Federated Learning,
ICIP21(1234-1238)
IEEE DOI 2201
Training, Measurement, Data privacy, Image processing, Time series analysis, Clustering algorithms, Federated Learning, Communication rounds BibRef

Michieli, U.[Umberto], Ozay, M.[Mete],
Are All Users Treated Fairly in Federated Learning Systems?,
RCV21(2318-2322)
IEEE DOI 2109
Training, Analytical models, Fluctuations, Aggregates, Computational modeling, Training data, Collaborative work BibRef

Lim, J.Q.[Jia Qi], Chan, C.S.[Chee Seng],
From Gradient Leakage To Adversarial Attacks In Federated Learning,
ICIP21(3602-3606)
IEEE DOI 2201
Data privacy, Solid modeling, Computational modeling, Collaborative work, Solids, Data models, Classification algorithms, Adversarial Learning BibRef

Zhu, Z.[Zirui], Sun, L.F.[Li-Feng],
Initialize with Mask: For More Efficient Federated Learning,
MMMod21(II:111-120).
Springer DOI 2106
BibRef

Yao, X., Sun, L.,
Continual Local Training For Better Initialization Of Federated Models,
ICIP20(1736-1740)
IEEE DOI 2011
Training, Data models, Servers, Task analysis, Computational modeling, Distributed databases, Optimization, Generalization BibRef

Moon, J., Kum, S., Kim, Y., Stankovski, V., Pašcinski, U., Kochovski, P.,
A Decentralized AI Data Management System In Federated Learning,
ISCV20(1-4)
IEEE DOI 2011
Big Data, data privacy, learning (artificial intelligence), model training, private locally produced data, Big Data, Machine learning model BibRef

Kathariya, B.[Birendra], Li, L.[Li], Li, Z.[Zhu], Duan, L.Y.[Ling-Yu], Liu, S.[Shan],
Network Update Compression for Federated Learning,
VCIP20(38-41)
IEEE DOI 2102
Servers, Data models, Collaborative work, Uplink, Urban areas, Training, Matrix decomposition, federated learning, Karhunen-Loève Transform (KLT) BibRef

Yao, X., Huang, T., Wu, C., Zhang, R., Sun, L.,
Towards Faster and Better Federated Learning: A Feature Fusion Approach,
ICIP19(175-179)
IEEE DOI 1910
Federated Learning, Feature Fusion, Communication Cost, Generalization BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Fusion for Multiple Classifiers .


Last update:Nov 26, 2024 at 16:40:19