Horritt, M.S.,
Mason, D.C.,
Cobby, D.M.,
Davenport, I.J.,
Bates, P.D.,
Waterline mapping in flooded vegetation from airborne SAR imagery,
RSE(85), No. 3, 30 May 2003, pp. 271-281.
Elsevier DOI
0309
BibRef
Mason, D.C.,
Horritt, M.S.,
Dall'Amico, J.T.,
Scott, T.R.,
Bates, P.D.,
Improving River Flood Extent Delineation From Synthetic Aperture Radar
Using Airborne Laser Altimetry,
GeoRS(45), No. 12, December 2007, pp. 3932-3943.
IEEE DOI
0711
BibRef
Schumann, G.,
di Baldassarre, G.,
Bates, P.D.,
The Utility of Spaceborne Radar to Render Flood Inundation Maps Based
on Multialgorithm Ensembles,
GeoRS(47), No. 8, August 2009, pp. 2801-2807.
IEEE DOI
0907
BibRef
Mason, D.C.,
Davenport, I.J.,
Neal, J.C.,
Schumann, G.J.P.,
Bates, P.D.,
Near Real-Time Flood Detection in Urban and Rural Areas Using
High-Resolution Synthetic Aperture Radar Images,
GeoRS(50), No. 8, August 2012, pp. 3041-3052.
IEEE DOI
1208
BibRef
Cruz, V.H.[Virginia Herrera],
Müller, M.[Marc],
Weise, C.[Christian],
Flood Extent Mapping Based on TerraSAR-X Data,
PFG(2010), No. 6, 2010, pp. 475-488.
WWW Link.
1211
BibRef
Giustarini, L.,
Hostache, R.,
Matgen, P.,
Schumann, G.J.P.,
Bates, P.D.,
Mason, D.C.,
A Change Detection Approach to Flood Mapping in Urban Areas Using
TerraSAR-X,
GeoRS(51), No. 4, April 2013, pp. 2417-2430.
IEEE DOI
1304
BibRef
Kuenzer, C.,
Guo, H.,
Huth, J.,
Leinenkugel, P.,
Li, X.,
Dech, S.,
Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM
Based Time Series Analyses,
RS(5), No. 2, February 2013, pp. 687-715.
DOI Link
1303
BibRef
Martinis, S.[Sandro],
Twele, A.[André],
Strobl, C.[Christian],
Kersten, J.[Jens],
Stein, E.[Enrico],
A Multi-Scale Flood Monitoring System Based on Fully Automatic MODIS
and TerraSAR-X Processing Chains,
RS(5), No. 11, 2013, pp. 5598-5619.
DOI Link
1312
BibRef
Kuenzer, C.[Claudia],
Guo, H.D.[Hua-Dong],
Schlegel, I.[Inga],
Tuan, V.Q.[Vo Quoc],
Li, X.[Xinwu],
Dech, S.[Stefan],
Varying Scale and Capability of Envisat ASAR-WSM, TerraSAR-X Scansar
and TerraSAR-X Stripmap Data to Assess Urban Flood Situations: A Case
Study of the Mekong Delta in Can Tho Province,
RS(5), No. 10, 2013, pp. 5122-5142.
DOI Link
1311
BibRef
Iervolino, P.,
Guida, R.,
Iodice, A.,
Riccio, D.,
Flooding Water Depth Estimation With High-Resolution SAR,
GeoRS(53), No. 5, May 2015, pp. 2295-2307.
IEEE DOI
1502
floods
BibRef
Martinis, S.[Sandro],
Kersten, J.[Jens],
Twele, A.[André],
A fully automated TerraSAR-X based flood service,
PandRS(104), No. 1, 2015, pp. 203-212.
Elsevier DOI
1505
SAR
BibRef
Chapman, B.[Bruce],
McDonald, K.[Kyle],
Shimada, M.[Masanobu],
Rosenqvist, A.[Ake],
Schroeder, R.[Ronny],
Hess, L.[Laura],
Mapping Regional Inundation with Spaceborne L-Band SAR,
RS(7), No. 5, 2015, pp. 5440-5470.
DOI Link
1506
BibRef
Martinis, S.[Sandro],
Rieke, C.[Christoph],
Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR
Data in the Context of Flood Mapping at River Saale, Germany,
RS(7), No. 6, 2015, pp. 7732.
DOI Link
1507
BibRef
Chung, H.W.[Hsiao-Wei],
Liu, C.C.[Cheng-Chien],
Cheng, I.F.[I-Fan],
Lee, Y.R.[Yun-Ruei],
Shieh, M.C.[Ming-Chang],
Rapid Response to a Typhoon-Induced Flood with an SAR-Derived Map of
Inundated Areas: Case Study and Validation,
RS(7), No. 9, 2015, pp. 11954.
DOI Link
1511
BibRef
Pulvirenti, L.,
Chini, M.,
Pierdicca, N.,
Boni, G.,
Use of SAR Data for Detecting Floodwater in Urban and Agricultural
Areas: The Role of the Interferometric Coherence,
GeoRS(54), No. 3, March 2016, pp. 1532-1544.
IEEE DOI
1603
Backscatter
BibRef
d'Addabbo, A.,
Refice, A.,
Pasquariello, G.,
Lovergine, F.P.,
Capolongo, D.,
Manfreda, S.,
A Bayesian Network for Flood Detection Combining SAR Imagery and
Ancillary Data,
GeoRS(54), No. 6, June 2016, pp. 3612-3625.
IEEE DOI
1606
belief networks
BibRef
Pradhan, B.,
Tehrany, M.S.,
Jebur, M.N.,
A New Semiautomated Detection Mapping of Flood Extent From TerraSAR-X
Satellite Image Using Rule-Based Classification and Taguchi
Optimization Techniques,
GeoRS(54), No. 7, July 2016, pp. 4331-4342.
IEEE DOI
1606
Earth
BibRef
Giustarini, L.,
Hostache, R.,
Kavetski, D.,
Chini, M.,
Corato, G.,
Schlaffer, S.,
Matgen, P.,
Probabilistic Flood Mapping Using Synthetic Aperture Radar Data,
GeoRS(54), No. 12, December 2016, pp. 6958-6969.
IEEE DOI
1612
floods
BibRef
Zingaro, M.[Marina],
Hostache, R.[Renaud],
Chini, M.[Marco],
Capolongo, D.[Domenico],
Matgen, P.[Patrick],
A Localized Particle Filtering Approach to Advance Flood Frequency
Estimation at Large Scale Using Satellite Synthetic Aperture Radar
Image Collection and Hydrodynamic Modelling,
RS(16), No. 12, 2024, pp. 2179.
DOI Link
2406
BibRef
Landuyt, L.[Lisa],
van Wesemael, A.[Alexandra],
Schumann, G.J.P.[Guy J.P.],
Hostache, R.[Renaud],
Verhoest, N.E.C.[Niko E. C.],
van Coillie, F.M.B.[Frieke M. B.],
Flood Mapping Based on Synthetic Aperture Radar: An Assessment of
Established Approaches,
GeoRS(57), No. 2, February 2019, pp. 722-739.
IEEE DOI
1901
Synthetic aperture radar, Histograms, Standards, Floods,
Active contours, Entropy, Urban areas, Active contours,
thresholding
BibRef
Vanderhoof, M.K.[Melanie K.],
Distler, H.E.[Hayley E.],
Mendiola, D.T.G.[Di_Ana Teresa G.],
Lang, M.[Megan],
Integrating Radarsat-2, Lidar, and Worldview-3 Imagery to Maximize
Detection of Forested Inundation Extent in the Delmarva Peninsula,
USA,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Nakmuenwai, P.[Pisut],
Yamazaki, F.[Fumio],
Liu, W.[Wen],
Automated Extraction of Inundated Areas from Multi-Temporal
Dual-Polarization RADARSAT-2 Images of the 2011 Central Thailand
Flood,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Earlier: A2, A3, Only:
Extraction Of Flooded Areas Due The 2015 Kanto-tohoku Heavy Rainfall In
Japan Using Palsar-2 Images,
ISPRS16(B8: 179-183).
DOI Link
1610
BibRef
Chini, M.,
Hostache, R.,
Giustarini, L.,
Matgen, P.,
A Hierarchical Split-Based Approach for Parametric Thresholding of
SAR Images: Flood Inundation as a Test Case,
GeoRS(55), No. 12, December 2017, pp. 6975-6988.
IEEE DOI
1712
Backscatter, Distribution functions, Estimation, Histograms,
Spatial resolution, Speckle, Synthetic aperture radar,
synthetic aperture radar (SAR)
BibRef
Tong, X.H.[Xiao-Hua],
Luo, X.[Xin],
Liu, S.G.[Shu-Guang],
Xie, H.[Huan],
Chao, W.[Wei],
Liu, S.[Shuang],
Liu, S.J.[Shi-Jie],
Makhinov, A.N.,
Makhinova, A.F.,
Jiang, Y.Y.[Yu-Ying],
An approach for flood monitoring by the combined use of Landsat 8
optical imagery and COSMO-SkyMed radar imagery,
PandRS(136), 2018, pp. 144-153.
Elsevier DOI
1802
SAR, Water extraction, Support vector machine, Active contour,
Inundation analysis
BibRef
Boergens, E.[Eva],
Nielsen, K.[Karina],
Andersen, O.B.[Ole Baltazar],
Dettmering, D.[Denise],
Seitz, F.[Florian],
River Levels Derived with CryoSat-2 SAR Data Classification:
A Case Study in the Mekong River Basin,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Sghaier, M.O.[Moslem Ouled],
Hammami, I.[Imen],
Foucher, S.[Samuel],
Lepage, R.[Richard],
Flood Extent Mapping from Time-Series SAR Images Based on Texture
Analysis and Data Fusion,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Amitrano, D.,
di Martino, G.,
Iodice, A.,
Riccio, D.,
Ruello, G.,
Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images,
GeoRS(56), No. 6, June 2018, pp. 3290-3299.
IEEE DOI
1806
Feeds, Floods, Fuzzy systems, Indexes, Spatial resolution,
Synthetic aperture radar, Classification, co-occurrence texture,
synthetic aperture radar (SAR)
BibRef
Amitrano, D.,
di Martino, G.,
Iodice, A.,
Mitidieri, F.,
Papa, M.N.,
Riccio, D.,
Ruello, G.,
Mapping small reservoirs in semi-arid regions using multitemporal
SAR: Methods and applications,
MultiTemp17(1-4)
IEEE DOI
1712
hydrological techniques, remote sensing, reservoirs,
synthetic aperture radar, area measurements, innovative method,
BibRef
Chaabani, C.[Chayma],
Chini, M.[Marco],
Abdelfattah, R.[Riadh],
Hostache, R.[Renaud],
Chokmani, K.[Karem],
Flood Mapping in a Complex Environment Using Bistatic
TanDEM-X/TerraSAR-X InSAR Coherence,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Chini, M.[Marco],
Pelich, R.[Ramona],
Pulvirenti, L.[Luca],
Pierdicca, N.[Nazzareno],
Hostache, R.[Renaud],
Matgen, P.[Patrick],
Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas:
Houston and Hurricane Harvey as A Test Case,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Benoudjit, A.[Abdelhakim],
Guida, R.[Raffaella],
A Novel Fully Automated Mapping of the Flood Extent on SAR Images
Using a Supervised Classifier,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Li, Y.[Yu],
Martinis, S.[Sandro],
Wieland, M.[Marc],
Urban flood mapping with an active self-learning convolutional neural
network based on TerraSAR-X intensity and interferometric coherence,
PandRS(152), 2019, pp. 178-191.
Elsevier DOI
1905
Urban flooding, Multi-temporal SAR, Interferometric coherence,
Active learning, Self-learning, Convolution neural network
BibRef
Uddin, K.[Kabir],
Matin, M.A.[Mir A.],
Meyer, F.J.[Franz J.],
Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images:
A Case Study from Bangladesh,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Lin, Y.N.[Yunung Nina],
Yun, S.H.[Sang-Ho],
Bhardwaj, A.[Alok],
Hill, E.M.[Emma M.],
Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic
Aperture Radar (SAR) Observations in a Bayesian Framework: A Case
Study for Hurricane Matthew,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Mahdavi, S.[Sahel],
Salehi, B.[Bahram],
Huang, W.M.[Wei-Min],
Amani, M.[Meisam],
Brisco, B.[Brian],
A PolSAR Change Detection Index Based on Neighborhood Information for
Flood Mapping,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Li, Y.[Yu],
Martinis, S.[Sandro],
Wieland, M.[Marc],
Schlaffer, S.[Stefan],
Natsuaki, R.[Ryo],
Urban Flood Mapping Using SAR Intensity and Interferometric Coherence
via Bayesian Network Fusion,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Shen, X.Y.[Xin-Yi],
Wang, D.C.[Da-Cheng],
Mao, K.B.[Ke-Biao],
Anagnostou, E.[Emmanouil],
Hong, Y.[Yang],
Inundation Extent Mapping by Synthetic Aperture Radar: A Review,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Aristizabal, F.[Fernando],
Judge, J.[Jasmeet],
Monsivais-Huertero, A.[Alejandro],
High-Resolution Inundation Mapping for Heterogeneous Land Covers with
Synthetic Aperture Radar and Terrain Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Nemni, E.[Edoardo],
Bullock, J.[Joseph],
Belabbes, S.[Samir],
Bromley, L.[Lars],
Fully Convolutional Neural Network for Rapid Flood Segmentation in
Synthetic Aperture Radar Imagery,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Ma, Y.[Yu],
Chen, H.[Haonan],
Ni, G.[Guangheng],
Chandrasekar, V.,
Gou, Y.[Yabin],
Zhang, W.J.[Wen-Juan],
Microphysical and Polarimetric Radar Signatures of an Epic Flood
Event in Southern China,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Liang, J.Y.[Jia-Yong],
Liu, D.S.[De-Sheng],
A local thresholding approach to flood water delineation using
Sentinel-1 SAR imagery,
PandRS(159), 2020, pp. 53-62.
Elsevier DOI
1912
Flood mapping, Water delineation, Sentinel-1, SAR,
Backscatter distribution, Thresholding
BibRef
Rosenqvist, J.[Jessica],
Rosenqvist, A.[Ake],
Jensen, K.[Katherine],
McDonald, K.[Kyle],
Mapping of Maximum and Minimum Inundation Extents in the Amazon Basin
2014-2017 with ALOS-2 PALSAR-2 ScanSAR Time-Series Data,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Huang, M.M.[Min-Min],
Jin, S.G.[Shuang-Gen],
Rapid Flood Mapping and Evaluation with a Supervised Classifier and
Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2
Optical Data,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Singha, M.[Mrinal],
Dong, J.W.[Jin-Wei],
Sarmah, S.[Sangeeta],
You, N.S.[Nan-Shan],
Zhou, Y.[Yan],
Zhang, G.[Geli],
Doughty, R.[Russell],
Xiao, X.M.[Xiang-Ming],
Identifying floods and flood-affected paddy rice fields in Bangladesh
based on Sentinel-1 imagery and Google Earth Engine,
PandRS(166), 2020, pp. 278-293.
Elsevier DOI
2007
Flood, Sentinel-1 SAR, Google Earth Engine, Bangladesh, Sentinel-2
BibRef
Pulvirenti, L.[Luca],
Chini, M.[Marco],
Pierdicca, N.[Nazzareno],
InSAR Multitemporal Data over Persistent Scatterers to Detect
Floodwater in Urban Areas: A Case Study in Beletweyne, Somalia,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Qiu, J.L.[Jun-Liang],
Cao, B.[Bowen],
Park, E.[Edward],
Yang, X.K.[Xian-Kun],
Zhang, W.X.[Wen-Xin],
Tarolli, P.[Paolo],
Flood Monitoring in Rural Areas of the Pearl River Basin (China)
Using Sentinel-1 SAR,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Pulvirenti, L.[Luca],
Squicciarino, G.[Giuseppe],
Fiori, E.[Elisabetta],
Ferraris, L.[Luca],
Puca, S.[Silvia],
A Tool for Pre-Operational Daily Mapping of Floods and Permanent
Water Using Sentinel-1 Data,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kitajima, N.[Natsumi],
Seto, R.[Rie],
Yamazaki, D.[Dai],
Zhou, X.D.[Xu-Dong],
Ma, W.C.[Wen-Chao],
Kanae, S.[Shinjiro],
Potential of a SAR Small-Satellite Constellation for Rapid Monitoring
of Flood Extent,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yang, Z.K.[Zhong-Kang],
Wei, J.[Jinbing],
Deng, J.H.[Jian-Hui],
Gao, Y.J.[Yun-Jian],
Zhao, S.Y.[Si-Yuan],
He, Z.L.[Zhi-Liang],
Mapping Outburst Floods Using a Collaborative Learning Method Based
on Temporally Dense Optical and SAR Data: A Case Study with the Baige
Landslide Dam on the Jinsha River, Tibet,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Katiyar, V.[Vaibhav],
Tamkuan, N.[Nopphawan],
Nagai, M.[Masahiko],
Near-Real-Time Flood Mapping Using Off-the-Shelf Models with SAR
Imagery and Deep Learning,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Nagai, H.[Hiroto],
Abe, T.[Takahiro],
Ohki, M.[Masato],
SAR-Based Flood Monitoring for Flatland with Frequently Fluctuating
Water Surfaces: Proposal for the Normalized Backscatter Amplitude
Difference Index (NoBADI),
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Pertiwi, A.P.[Avi Putri],
Roth, A.[Achim],
Schaffhauser, T.[Timo],
Bhola, P.K.[Punit Kumar],
Reuß, F.[Felix],
Stettner, S.[Samuel],
Kuenzer, C.[Claudia],
Disse, M.[Markus],
Monitoring the Spring Flood in Lena Delta with Hydrodynamic Modeling
Based on SAR Satellite Products,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, S.[Shujie],
Huang, W.L.[Wen-Li],
Chen, Y.M.[Yu-Min],
Feng, M.[Mei],
An Adaptive Thresholding Approach toward Rapid Flood Coverage
Extraction from Sentinel-1 SAR Imagery,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sipelgas, L.[Liis],
Aavaste, A.[Age],
Uiboupin, R.[Rivo],
Mapping Flood Extent and Frequency from Sentinel-1 Imagery during the
Extremely Warm Winter of 2020 in Boreal Floodplains and Forests,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kim, J.[Junwoo],
Kim, H.[Hwisong],
Jeon, H.Y.[Hyung-Yun],
Jeong, S.H.[Seung-Hwan],
Song, J.[Juyoung],
Vadivel, S.K.P.[Suresh Krishnan Palanisamy],
Kim, D.J.[Duk-Jin],
Synergistic Use of Geospatial Data for Water Body Extraction from
Sentinel-1 Images for Operational Flood Monitoring across Southeast
Asia Using Deep Neural Networks,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Jiang, X.[Xin],
Liang, S.J.[Shi-Jing],
He, X.Y.[Xin-Yue],
Ziegler, A.D.[Alan D.],
Lin, P.R.[Pei-Rong],
Pan, M.[Ming],
Wang, D.S.[Da-Shan],
Zou, J.Y.[Jun-Yu],
Hao, D.L.[Da-Lei],
Mao, G.Q.[Gan-Quan],
Zeng, Y.L.[Ye-Lu],
Yin, J.[Jie],
Feng, L.[Lian],
Miao, C.Y.[Chi-Yuan],
Wood, E.F.[Eric F.],
Zeng, Z.Z.[Zhen-Zhong],
Rapid and large-scale mapping of flood inundation via integrating
spaceborne synthetic aperture radar imagery with unsupervised deep
learning,
PandRS(178), 2021, pp. 36-50.
Elsevier DOI
2108
Flood inundation, Sentinel-1, Unsupervised machine learning,
Google Earth Engine, Disaster assessment
BibRef
Yoon, S.S.[Seong-Sim],
Lim, S.H.[Sang-Hun],
Analyzing the Application of X-Band Radar for Improving Rainfall
Observation and Flood Forecasting in Yeongdong, South Korea,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Tiampo, K.F.[Kristy F.],
Huang, L.[Lingcao],
Simmons, C.[Conor],
Woods, C.[Clay],
Glasscoe, M.T.[Margaret T.],
Detection of Flood Extent Using Sentinel-1A/B Synthetic Aperture
Radar: An Application for Hurricane Harvey, Houston, TX,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Elkhrachy, I.[Ismail],
Flash Flood Water Depth Estimation Using SAR Images, Digital
Elevation Models, and Machine Learning Algorithms,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, Z.R.[Zi-Rui],
Xie, F.[Fei],
Ling, F.[Feng],
Du, Y.[Yun],
Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake
in China Using Sentinel-1 SAR Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Foroughnia, F.[Fatemeh],
Alfieri, S.M.[Silvia Maria],
Menenti, M.[Massimo],
Lindenbergh, R.[Roderik],
Evaluation of SAR and Optical Data for Flood Delineation Using
Supervised and Unsupervised Classification,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Bauer-Marschallinger, B.[Bernhard],
Cao, S.[Senmao],
Tupas, M.E.[Mark Edwin],
Roth, F.[Florian],
Navacchi, C.[Claudio],
Melzer, T.[Thomas],
Freeman, V.[Vahid],
Wagner, W.[Wolfgang],
Satellite-Based Flood Mapping through Bayesian Inference from a
Sentinel-1 SAR Datacube,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Navacchi, C.[Claudio],
Cao, S.[Senmao],
Bauer-Marschallinger, B.[Bernhard],
Snoeij, P.[Paul],
Small, D.[David],
Wagner, W.[Wolfgang],
Utilising Sentinel-1's orbital stability for efficient pre-processing
of sigma nought backscatter,
PandRS(192), 2022, pp. 130-141.
Elsevier DOI
2209
Sentinel-1, Synthetic Aperture Radar (SAR),
Ground Range Detected (GRD), Georeferencing, Orbital tube
BibRef
Wu, H.[Han],
Song, H.[Huina],
Huang, J.H.[Jian-Hua],
Zhong, H.[Hua],
Zhan, R.H.[Rong-Hui],
Teng, X.Y.[Xu-Yang],
Qiu, Z.Y.[Zhao-Yang],
He, M.[Meilin],
Cao, J.Y.[Jia-Yi],
Flood Detection in Dual-Polarization SAR Images Based on Multi-Scale
Deeplab Model,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Tran, K.H.[Khuong H.],
Menenti, M.[Massimo],
Jia, L.[Li],
Surface Water Mapping and Flood Monitoring in the Mekong Delta Using
Sentinel-1 SAR Time Series and Otsu Threshold,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lv, S.[Suna],
Meng, L.S.[Ling-Sheng],
Edwing, D.[Deanna],
Xue, S.[Sihan],
Geng, X.[Xupu],
Yan, X.H.[Xiao-Hai],
High-Performance Segmentation for Flood Mapping of HISEA-1 SAR Remote
Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Baghermanesh, S.S.[Shadi Sadat],
Jabari, S.[Shabnam],
McGrath, H.[Heather],
Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity
Maps,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Salem, A.[Abdella],
Hashemi-Beni, L.[Leila],
Inundated Vegetation Mapping Using SAR Data: A Comparison of
Polarization Configurations of UAVSAR L-Band and Sentinel C-Band,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Gokon, H.[Hideomi],
Endo, F.[Fuyuki],
Koshimura, S.[Shunichi],
Detecting Urban Floods with Small and Large Scale Analysis of
ALOS-2/PALSAR-2 Data,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wu, X.[Xuan],
Zhang, Z.J.[Zhi-Jie],
Xiong, S.Q.[Sheng-Qing],
Zhang, W.C.[Wan-Chang],
Tang, J.[Jiakui],
Li, Z.H.[Zheng-Hao],
An, B.S.[Bang-Sheng],
Li, R.[Rui],
A Near-Real-Time Flood Detection Method Based on Deep Learning and
SAR Images,
RS(15), No. 8, 2023, pp. 2046.
DOI Link
2305
BibRef
Andrew, O.[Ogbaje],
Apan, A.[Armando],
Paudyal, D.R.[Dev Raj],
Perera, K.[Kithsiri],
Convolutional Neural Network-Based Deep Learning Approach for
Automatic Flood Mapping Using NovaSAR-1 and Sentinel-1 Data,
IJGI(12), No. 5, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Li, H.[Hengkai],
Xu, Z.[Zikun],
Zhou, Y.B.[Yan-Bing],
He, X.X.[Xiao-Xing],
He, M.H.[Ming-Hua],
Flood Monitoring Using Sentinel-1 SAR for Agricultural Disaster
Assessment in Poyang Lake Region,
RS(15), No. 21, 2023, pp. 5247.
DOI Link
2311
BibRef
Colacicco, R.[Rosa],
Refice, A.[Alberto],
Nutricato, R.[Raffaele],
Bovenga, F.[Fabio],
Caporusso, G.[Giacomo],
d'Addabbo, A.[Annarita],
Salandra, M.L.[Marco La],
Lovergine, F.P.[Francesco Paolo],
Nitti, D.O.[Davide Oscar],
Capolongo, D.[Domenico],
High-Resolution Flood Monitoring Based on Advanced Statistical
Modeling of Sentinel-1 Multi-Temporal Stacks,
RS(16), No. 2, 2024, pp. 294.
DOI Link
2402
BibRef
Saleh, T.[Tamer],
Weng, X.X.[Xing-Xing],
Holail, S.[Shimaa],
Hao, C.[Chen],
Xia, G.S.[Gui-Song],
DAM-Net: Flood detection from SAR imagery using differential
attention metric-based vision transformers,
PandRS(212), 2024, pp. 440-453.
Elsevier DOI Code:
WWW Link.
2406
Flood detection, SAR imagery, S1GFloods dataset, Vision transformers
BibRef
Lahsaini, M.[Meriam],
Albano, F.[Felice],
Albano, R.[Raffaele],
Mazzariello, A.[Arianna],
Lacava, T.[Teodosio],
A Synthetic Aperture Radar-Based Robust Satellite Technique (RST) for
Timely Mapping of Floods,
RS(16), No. 12, 2024, pp. 2193.
DOI Link
2406
BibRef
Lang, F.K.[Feng-Kai],
Zhu, Y.Y.[Yan-Yin],
Zhao, J.Q.[Jin-Qi],
Hu, X.[Xinru],
Shi, H.T.[Hong-Tao],
Zheng, N.S.[Nan-Shan],
Zha, J.F.[Jian-Feng],
Flood Mapping of Synthetic Aperture Radar (SAR) Imagery Based on
Semi-Automatic Thresholding and Change Detection,
RS(16), No. 15, 2024, pp. 2763.
DOI Link
2408
BibRef
Papila, I.,
Alganci, U.,
Sertel, E.,
Sentinel-1 Based Flood Mapping Using Interferometric Coherence And
Intensity Change Detection Approach,
ISPRS20(B3:1697-1703).
DOI Link
2012
BibRef
Rambour, C.,
Audebert, N.,
Koeniguer, E.,
Le Saux, B.,
Crucianu, M.,
Datcu, M.,
Flood Detection In Time Series of Optical and Sar Images,
ISPRS20(B2:1343-1346).
DOI Link
2012
Ts - Cipa
BibRef
Gasica, T.A.,
Bioresita, F.,
Murtiyoso, A.,
Identification of Temporary Surface Water Using Sentinel-1 Sar Data,
Case Study: Sentani Flash Flooding, Indonesia,
ISPRS20(B3:55-59).
DOI Link
2012
BibRef
Reksten, J.H.,
Salberg, A.B.,
Solberg, R.,
Flood Detection in Norway Based On Sentinel-1 Sar Imagery,
Gi4DM19(349-355).
DOI Link
1912
BibRef
Jamali, A.,
Abdul Rahman, A.,
Flood Mapping Using Synthetic Aperture Radar: a Case Study of Ramsar
Flash Flood,
GGT19(291-295).
DOI Link
1912
BibRef
Ramsewak, D.,
Maharaj, B.,
Extent Mapping of a Major Flooding Event On The Island of Trinidad
Using Space-borne Synthetic Aperture Radar,
GGT19(527-530).
DOI Link
1912
BibRef
Ganji, K.,
Gharachelou, S.,
Ahmadi, A.,
Urban's River Flood Analysing Using Sentinel-1 Data Case Study:
(gorganrood, Aq'qala),
SMPR19(415-419).
DOI Link
1912
BibRef
Hosseiny, B.,
Ghasemian, N.,
Amini, J.,
A Convolutional Neural Network for Flood Mapping Using Sentinel-1 And
Srtm Dem Data: Case Study in Poldokhtar-iran,
SMPR19(527-533).
DOI Link
1912
BibRef
Kianfar, N.,
The Applicability of Dual Polarized Sentinel-1 SAR Data for Detection
Of Flooded Areas in Pol-e Dokhtar, Lorestan, Iran,
SMPR19(655-657).
DOI Link
1912
BibRef
Nasirzadehdizaji, R.,
Akyuz, D.E.,
Cakir, Z.,
Flood Mapping and Permanent Water Bodies Change Detection Using
Sentinel Sar Data,
SMPR19(797-801).
DOI Link
1912
BibRef
Bayik, C.,
Abdikan, S.,
Ozbulak, G.,
Alasag, T.,
Aydemir, S.,
Balik Sanli, F.,
Exploiting Multi-temporal Sentinel-1 Sar Data for Flood Extend Mapping,
Gi4DM18(109-113).
DOI Link
1805
BibRef
Arkhipkin, O.P.,
Sagatdinova, G.N.,
Possibilities of the Joint Use of Optical And Radar Data in Flood Space
Monitoring,
Gi4DM18(67-73).
DOI Link
1805
BibRef
Chaabani, C.[Chayma],
Abdelfattah, R.[Riadh],
InSAR Coherence-Dependent Fuzzy C-Means Flood Mapping Using Particle
Swarm Optimization,
ACIVS17(337-348).
Springer DOI
1712
BibRef
Tsyganskaya, V.,
Martinis, S.,
Twele, A.,
Cao, W.,
Schmitt, A.,
Marzahn, P.,
Ludwig, R.,
A Fuzzy Logic-based Approach For The Detection Of Flooded Vegetation By
Means Of Synthetic Aperture Radar Data,
ISPRS16(B7: 371-378).
DOI Link
1610
BibRef
Martinis, S.,
Fissmer, B.,
Rieke, C.,
Time series analysis of multi-frequency SAR backscatter and bistatic
coherence in the context of flood mapping,
MultiTemp15(1-4)
IEEE DOI
1511
floods
BibRef
Selmi, S.,
Abdallah, W.B.[W. Ben],
Abdelfatteh, R.,
Flood Mapping Using InSAR Coherence Map,
Thematic14(161-164).
DOI Link
1404
BibRef
Herrera-Cruz, V.,
Koudogbo, F.,
TerraSAR-X Rapid mapping for Flood events,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Flood Damage Analysis, Impacts, Economic .