PeyeMMV.,
2023
WWW Link.
Code, Eye Fixation.
Elsevier DOI Python module called PeyeMMV. PeyeMMV implements the two-step spatial
dispersion fixation detection algorithm imported in both EyeMMV and
LandRate MATLAB toolboxes.
Srinivasan, M.V.,
Thathachar, M.A.L.,
Deekshatulu, B.L.,
A Probabilistic Hypothesis for the Prediction of Visual Fixations,
SMC(5), 1975, pp. 431-437.
BibRef
7500
Belardinelli, A.[Anna],
Pirri, F.[Fiora],
Carbone, A.[Andrea],
Bottom-Up Gaze Shifts and Fixations Learning by Imitation,
SMC-B(37), No. 2, April 2007, pp. 256-271.
IEEE DOI
0704
BibRef
Marra, S.[Stefano],
Pirri, F.[Fiora],
Eyes and Cameras Calibration for 3D World Gaze Detection,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Pirri, F.[Fiora],
Pizzoli, M.[Matia],
Mancas, M.[Matei],
Human-Motion Saliency in Complex Scenes,
GW11(81-92).
Springer DOI
1211
BibRef
Pirri, F.[Fiora],
Pizzoli, M.[Matia],
Rigato, D.[Daniele],
Shabani, R.[Redjan],
3D Saliency maps,
WBCV11(9-14).
IEEE DOI
1106
BibRef
Pirri, F.[Fiora],
Pizzoli, M.[Matia],
Rudi, A.[Alessandro],
A general method for the point of regard estimation in 3D space,
CVPR11(921-928).
IEEE DOI
1106
BibRef
Hennessey, C.,
Noureddin, B.,
Lawrence, P.D.,
Fixation Precision in High-Speed Noncontact Eye-Gaze Tracking,
SMC-B(37), No. 2, April 2007, pp. 289-298.
IEEE DOI
0803
BibRef
Veneri, G.[Giacomo],
Piu, P.[Pietro],
Rosini, F.[Francesca],
Federighi, P.[Pamela],
Federico, A.[Antonio],
Rufa, A.[Alessandra],
Automatic eye fixations identification based on analysis of variance
and covariance,
PRL(32), No. 13, 1 October 2011, pp. 1588-1593.
Elsevier DOI
1109
Eye tracking; Fixation identification; Analysis of variance; Motor
control disorder
BibRef
Xu, L.F.[Lin-Feng],
Zeng, L.Y.[Liao-Yuan],
Wang, Z.N.[Zheng-Ning],
Learning a Saliency Map for Fixation Prediction,
IEICE(E96-D), No. 10, October 2013, pp. 2294-2297.
WWW Link.
1310
BibRef
Sun, X.S.[Xiao-Shuai],
Yao, H.X.[Hong-Xun],
Ji, R.R.[Rong-Rong],
Visual attention modeling based on short-term environmental adaption,
JVCIR(24), No. 2, February 2013, pp. 171-180.
Elsevier DOI
1302
Visual attention modeling; Saliency detection; Short-term environmental
adaption; Adaptive sparse representation; Independent component
analysis; Adaptive saliency measurement; Conditional self information;
Eye fixation prediction
BibRef
Engelke, U.,
Liu, H.,
Wang, J.,
Le Callet, P.,
Heynderickx, I.,
Zepernick, H.J.,
Maeder, A.,
Comparative Study of Fixation Density Maps,
IP(22), No. 3, March 2013, pp. 1121-1133.
IEEE DOI
1302
BibRef
Rezazadegan Tavakoli, H.[Hamed],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Stochastic bottom-up fixation prediction and saccade generation,
IVC(31), No. 9, 2013, pp. 686-693.
Elsevier DOI
1308
Saccadic eye movement
BibRef
Liang, M.[Ming],
Hu, X.L.[Xiao-Lin],
Predicting Eye Fixations With Higher-Level Visual Features,
IP(24), No. 3, March 2015, pp. 1178-1189.
IEEE DOI
1502
Computational modeling
BibRef
Shi, T.L.[Tian-Lin],
Liang, M.[Ming],
Hu, X.L.[Xiao-Lin],
A Reverse Hierarchy Model for Predicting Eye Fixations,
CVPR14(2822-2829)
IEEE DOI
1409
BibRef
Zhang, L.,
Li, X.,
Nie, L.,
Yang, Y.,
Xia, Y.,
Weakly Supervised Human Fixations Prediction,
Cyber(46), No. 1, January 2016, pp. 258-269.
IEEE DOI
1601
Computational modeling
BibRef
Wang, J.,
Borji, A.,
Kuo, C.C.J.[C. C. Jay],
Itti, L.,
Learning a Combined Model of Visual Saliency for Fixation Prediction,
IP(25), No. 4, April 2016, pp. 1566-1579.
IEEE DOI
1604
image fusion
BibRef
Feng, M.,
Borji, A.,
Lu, H.,
Fixation prediction with a combined model of bottom-up saliency and
vanishing point,
WACV16(1-7)
IEEE DOI
1511
Computational modeling
BibRef
Gide, M.S.[Milind S.],
Karam, L.J.[Lina J.],
A Locally Weighted Fixation Density-Based Metric for Assessing the
Quality of Visual Saliency Predictions,
IP(25), No. 8, August 2016, pp. 3852-3861.
IEEE DOI
1608
image processing
BibRef
Fang, Y.,
Zhang, C.,
Li, J.,
Lei, J.,
Perreira da Silva, M.,
Le Callet, P.[Patrick],
Visual Attention Modeling for Stereoscopic Video:
A Benchmark and Computational Model,
IP(26), No. 10, October 2017, pp. 4684-4696.
IEEE DOI
1708
discrete cosine transforms, feature extraction, image sequences,
motion estimation, stereo image processing,
computational model, depth motion features,
eye fixation data, eye tracking database,
planar motion features, spatial saliency computation,
stereoscopic video saliency detection models,
Computational modeling, Visualization, Visual attention.
BibRef
Anantrasirichai, N.,
Daniels, K.A.J.,
Burn, J.F.,
Gilchrist, I.D.,
Bull, D.R.,
Fixation Prediction and Visual Priority Maps for Biped Locomotion,
Cyber(48), No. 8, August 2018, pp. 2294-2306.
IEEE DOI
1808
Visualization, Legged locomotion, Gaze tracking, Concrete, Rocks,
Support vector machines, Tracking, Bioinspired, eye tracking,
salience
BibRef
Mahdi, A.[Ali],
Qin, J.[Jun],
An extensive evaluation of deep features of convolutional neural
networks for saliency prediction of human visual attention,
JVCIR(65), 2019, pp. 102662.
Elsevier DOI
1912
Convolutional neural networks, Feature maps,
Human fixation prediction, Saliency map, Transfer learning
BibRef
Lin, C.[Chuan],
Zhang, Q.[Qing],
Cao, Y.J.[Yi-Jun],
Multi-scale contour detection model based on fixational eye movement
mechanism,
SIViP(14), No. 1, February 2020, pp. 57-65.
WWW Link.
2001
BibRef
Li, A.[Aoqi],
Chen, Z.Z.[Zhen-Zhong],
Semantic meaning modulates object importance in human fixation
prediction,
JVCIR(79), 2021, pp. 103206.
Elsevier DOI
2109
Visual attention, Image saliency, Semantic attributes, Object importance
BibRef
Cheng, D.Q.[De-Qiang],
Liu, R.H.[Rui-Hang],
Li, J.H.[Jia-Han],
Liang, S.[Song],
Kou, Q.Q.[Qi-Qi],
Zhao, K.[Kai],
Activity guided multi-scales collaboration based on scaled-CNN for
saliency prediction,
IVC(114), 2021, pp. 104267.
Elsevier DOI
2109
Saliency prediction, Convolutional neural networks,
Human eye fixations, Deep learning
BibRef
Ding, G.Q.[Guan-Qun],
Imamoglu, N.[Nevrez],
Caglayan, A.[Ali],
Murakawa, M.[Masahiro],
Nakamura, R.[Ryosuke],
SalFBNet: Learning pseudo-saliency distribution via feedback
convolutional networks,
IVC(120), 2022, pp. 104395.
Elsevier DOI
2204
Better learn distinguishable eye-fixation-based features.
Feedback networks, Human gaze, Pseudo-saliency,
Selective fixation and non-fixation error
BibRef
Xu, B.W.[Bin-Wei],
Liang, H.R.[Hao-Ran],
Liang, R.H.[Rong-Hua],
Chen, P.[Peng],
CFN: A coarse-to-fine network for eye fixation prediction,
IET-IPR(16), No. 9, 2022, pp. 2373-2383.
DOI Link
2206
BibRef
Tang, X.[Xing],
Yu, J.[Jie],
Su, Y.[Yan],
Modeling Driver's Visual Fixation Behavior Using White-Box
Representations,
ITS(23), No. 9, September 2022, pp. 15434-15449.
IEEE DOI
2209
Visualization, Task analysis, Vehicles, Training, Roads,
Computational modeling, Adaptation models, Human-like, BDDA
BibRef
Lobão-Neto, R.[Ruivaldo],
Brilhault, A.[Adrien],
Neuenschwander, S.[Sergio],
Rios, R.[Ricardo],
Real-time identification of eye fixations and saccades using radial
basis function networks and Markov chains,
PRL(162), 2022, pp. 63-70.
Elsevier DOI
2210
Eye-tracking, Fixations and saccades identification,
Radial basis function networks, Markov chains, Concept drift
BibRef
Liang, S.[Song],
Liu, R.H.[Rui-Hang],
Qian, J.S.[Jian-Sheng],
Fast saliency prediction based on multi-channels activation
optimization,
JVCIR(94), 2023, pp. 103831.
Elsevier DOI
2306
Saliency prediction, Convolutional neural networks,
Human eye fixations, Deep learning
BibRef
Wen, S.J.[Shi-Jie],
Yang, L.[Li],
Xu, M.[Mai],
Qiao, M.L.[Ming-Lang],
Xu, T.[Tao],
Bai, L.[Lin],
Saliency Prediction on Mobile Videos: A Fixation Mapping-Based
Dataset and A Transformer Approach,
CirSysVideo(34), No. 7, July 2024, pp. 5935-5950.
IEEE DOI Code:
WWW Link.
2407
Videos, Mobile video, Task analysis, Gaze tracking, Visualization,
Transformers, Social networking (online), Mobile video,
wearable eye-tracker
BibRef
Paula, B.[Beatriz],
Moreno, P.[Plinio],
Learning to Search for and Detect Objects in Foveal Images Using Deep
Learning,
IbPRIA23(223-237).
Springer DOI
2307
Evaluate fixation points.
BibRef
Kadner, F.[Florian],
Thomas, T.[Tobias],
Hoppe, D.[David],
Rothkopf, C.A.[Constantin A.],
Improving saliency models' predictions of the next fixation with
humans' intrinsic cost of gaze shifts,
WACV23(2103-2113)
IEEE DOI
2302
Costs, Heuristic algorithms, Computational modeling,
Decision making, Predictive models, Benchmark testing,
Applications: Psychology and cognitive science
BibRef
Velusamy, S.[Sudha],
Radarapu, R.[Rakesh],
Hegde, A.[Anandavardhan],
Kothari, N.[Narayan],
A Light-Weight Human Eye Fixation Solution for Smartphone
Applications,
WiCV23(5675-5680)
IEEE DOI
2309
BibRef
Wloka, C.,
Kotseruba, I.,
Tsotsos, J.K.,
Active Fixation Control to Predict Saccade Sequences,
CVPR18(3184-3193)
IEEE DOI
1812
Visualization, Computational modeling, Retina, Predictive models,
Streaming media
BibRef
Li, B.,
Liu, Q.,
Shi, X.,
Yang, Y.,
Graph-Based Saliency Fusion with Superpixel-Level Belief Propagation
for 3D Fixation Prediction,
ICIP18(2321-2325)
IEEE DOI
1809
Databases, Solid modeling, Predictive models, Stereo image processing,
global optimization
BibRef
Tavakoli, H.R.,
Ahmed, F.,
Borji, A.,
Laaksonen, J.,
Saliency Revisited: Analysis of Mouse Movements Versus Fixations,
CVPR17(6354-6362)
IEEE DOI
1711
Analytical models, Context modeling, Databases, Gaze tracking,
Measurement, Mice, Visualization
BibRef
Liu, Q.,
Yang, Y.,
Li, P.,
Li, B.,
A robust 3D visual saliency computation model for human fixation
prediction of stereoscopic videos,
VCIP17(1-4)
IEEE DOI
1804
feature extraction, image colour analysis, image fusion,
image motion analysis, image resolution, image texture,
Saliency Computational Model
BibRef
Kümmerer, M.,
Wallis, T.S.A.,
Gatys, L.A.,
Bethge, M.,
Understanding Low- and High-Level Contributions to Fixation
Prediction,
ICCV17(4799-4808)
IEEE DOI
1802
feature extraction, image classification,
neural nets, object detection, object recognition,
Predictive models
BibRef
Wang, J.,
Tavakoli, H.R.[Hamed R.],
Laaksonen, J.[Jorma],
Fixation Prediction in Videos Using Unsupervised Hierarchical
Features,
DeepLearn-T17(2225-2232)
IEEE DOI
1709
BibRef
Earlier: A2, A3, Only:
Bottom-Up Fixation Prediction Using Unsupervised Hierarchical Models,
Assist16(I: 287-302).
Springer DOI
1704
Computational modeling, Estimation, Feature extraction,
Predictive models, Training, Videos, Visualization
BibRef
Rahman, I.M.H.,
Hollitt, C.,
Zhang, M.,
A dynamic feature map integration approach for predicting human
fixation,
ICVNZ16(1-6)
IEEE DOI
1701
Computational modeling
BibRef
Anantrasirichai, N.,
Gilchrist, I.D.,
Bull, D.R.,
Fixation identification for low-sample-rate mobile eye trackers,
ICIP16(3126-3130)
IEEE DOI
1610
Feature extraction
BibRef
Min, X.,
Zhai, G.,
Hu, C.,
Gu, K.,
Fixation prediction through multimodal analysis,
VCIP15(1-4)
IEEE DOI
1605
Computational modeling
BibRef
Liu, N.[Nian],
Han, J.W.[Jun-Wei],
Zhang, D.W.[Ding-Wen],
Wen, S.F.[Shi-Feng],
Liu, T.M.[Tian-Ming],
Predicting eye fixations using convolutional neural networks,
CVPR15(362-370)
IEEE DOI
1510
BibRef
Sattar, H.[Hosnieh],
Muller, S.[Sabine],
Fritz, M.[Mario],
Bulling, A.[Andreas],
Prediction of search targets from fixations in open-world settings,
CVPR15(981-990)
IEEE DOI
1510
BibRef
Zhao, J.P.[Jia-Ping],
Siagian, C.[Christian],
Itti, L.[Laurent],
Fixation bank: Learning to reweight fixation candidates,
CVPR15(3174-3182)
IEEE DOI
1510
BibRef
Ma, B.,
Zhou, J.,
Gu, X.,
Wang, M.,
Zhang, Y.,
Guo, X.,
A new approach to create 3D fixation density maps for stereoscopic
images,
3DTV-CON15(1-4)
IEEE DOI
1508
Accuracy
BibRef
Dubey, R.[Rachit],
Dave, A.[Akshat],
Ghanem, B.[Bernard],
Improving Saliency Models by Predicting Human Fixation Patches,
ACCV14(III: 330-345).
Springer DOI
1504
BibRef
Sharma, P.[Puneet],
Cheikh, F.A.[Faouzi A.],
Hardeberg, J.Y.[Jon Y.],
Spatio-temporal analysis of eye fixations data in images,
ICIP14(1150-1154)
IEEE DOI
1502
Computational modeling
BibRef
Schauerte, B.[Boris],
Stiefelhagen, R.[Rainer],
Quaternion-Based Spectral Saliency Detection for Eye Fixation
Prediction,
ECCV12(II: 116-129).
Springer DOI
1210
BibRef
Judd, T.[Tilke],
Durand, F.[Frédo],
Torralba, A.B.[Antonio B.],
A Benchmark of Computational Models of Saliency to Predict
Human Fixations,
CSAIL(TR-2012-001). 2012-01-13.
WWW Link.
1202
BibRef
Sun, X.S.[Xiao-Shuai],
Yao, H.X.[Hong-Xun],
Ji, R.R.[Rong-Rong],
Xu, P.F.[Peng-Fei],
Liu, X.M.[Xian-Ming],
Liu, S.H.[Shao-Hui],
Visual saliency as sequential eye fixation probability,
ICIP10(1093-1096).
IEEE DOI
1009
BibRef
Tagawa, N.[Norio],
Depth Perception Model Based on Fixational Eye Movements Using Bayesian
Statistical Inference,
ICPR10(1662-1665).
IEEE DOI
1008
BibRef
Larson, E.C.[Eric C.],
Vu, C.[Cuong],
Chandler, D.M.[Damon M.],
Can visual fixation patterns improve image fidelity assessment?,
ICIP08(2572-2575).
IEEE DOI
0810
BibRef
Raj, R.G.[Raghu G.],
Bovik, A.C.[Alan C.],
Cormack, L.K.[Lawrence K.],
Fixation selection by maximization of texure and contrast information,
ICIP08(697-700).
IEEE DOI
0810
BibRef
Vu, C.T.,
Larson, E.C.,
Chandler, D.M.,
Visual Fixation Patterns when Judging Image Quality:
Effects of Distortion Type, Amount, and Subject Experience,
Southwest08(73-76).
IEEE DOI
0803
BibRef
Raj, R.G.,
Geisler, W.S.,
Frazor, R.A.,
Bovik, A.C.,
Natural Contrast Statistics and the Selection of Visual Fixations,
ICIP05(III: 1152-1155).
IEEE DOI
0512
BibRef
Abbott, A.L.,
Zheng, B.,
Active Fixation Using Attentional Shifts, Affine Resampling,
and Multiresolution Search,
ICCV95(1002-1008).
IEEE DOI
BibRef
9500
Ratan, A.L.[Aparna Lakshmi],
The Role of Fixation and Visual Attention in Object Recognition,
MIT AI-TR-1529, July 1995.
WWW Link.
BibRef
9507
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Human Attention, Gaze, Eye Tracking .