Stewart, L.[Liam],
He, X.M.[Xu-Ming],
Zemel, R.S.[Richard S.],
Learning Flexible Features for Conditional Random Fields,
PAMI(30), No. 8, August 2008, pp. 1415-1426.
IEEE DOI
0806
hierarchical models.
BibRef
He, X.M.[Xu-Ming],
Zemel, R.S.[Richard S.],
Ray, D.[Debajyoti],
Learning and Incorporating Top-Down Cues in Image Segmentation,
ECCV06(I: 338-351).
Springer DOI
0608
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
Image Segmentation with a Unified Graphical Model,
PAMI(32), No. 8, August 2010, pp. 1406-1425.
IEEE DOI
1007
Both causal and noncausal relationships among random variables.
Conditional Random Field model, multilayer Bayesian Network.
BibRef
Zhang, L.[Lei],
Wang, X.[Xun],
Penwarden, N.[Nicholas],
Ji, Q.A.[Qi-Ang],
An Image Segmentation Framework Based on Patch Segmentation Fusion,
ICPR06(II: 187-190).
IEEE DOI
0609
BibRef
Gai, J.D.[Jia-Ding],
Stevenson, R.L.[Robert L.],
Robust contour tracking based on a coupling between geodesic active
contours and conditional random fields,
JVCIR(22), No. 1, January 2011, pp. 33-47.
Elsevier DOI
1101
BibRef
Earlier:
Contour tracking based on a synergistic approach of geodesic active
contours and conditional random fields,
ICIP10(2801-2804).
IEEE DOI
1009
Contour tracking; 3D conditional random field; Geodesic active
contours; Level set methods; Variational inference; Belief
propagation; Motion detection; Markov random field
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
A Bayesian Network Model for Automatic and Interactive Image
Segmentation,
IP(20), No. 9, September 2011, pp. 2582-2593.
IEEE DOI
1109
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
A multiscale hybrid model exploiting heterogeneous contextual
relationships for image segmentation,
CVPR09(2828-2835).
IEEE DOI
0906
BibRef
Earlier:
Integration of multiple contextual information for image segmentation
using a Bayesian Network,
SLAM08(1-6).
IEEE DOI
0806
BibRef
Liu, M.Y.[Ming-Yu],
Tuzel, O.[Oncel],
Ramalingam, S.[Srikumar],
Chellappa, R.[Rama],
Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular
Function Subject to a Matroid Constraint,
PAMI(36), No. 1, 2014, pp. 99-112.
IEEE DOI
1312
BibRef
Earlier:
Entropy rate superpixel segmentation,
CVPR11(2097-2104).
IEEE DOI
1106
Clustering.
BibRef
Vemulapalli, R.,
Tuzel, O.[Oncel],
Liu, M.Y.[Ming-Yu],
Deep Gaussian Conditional Random Field Network:
A Model-Based Deep Network for Discriminative Denoising,
CVPR16(4801-4809)
IEEE DOI
1612
BibRef
Vemulapalli, R.,
Tuzel, O.[Oncel],
Liu, M.Y.[Ming-Yu],
Chellappa, R.,
Gaussian Conditional Random Field Network for Semantic Segmentation,
CVPR16(3224-3233)
IEEE DOI
1612
BibRef
Wang, L.L.[Li-Li],
Yung, N.H.C.[Nelson H. C.],
Improved hierarchical conditional random field model for object
segmentation,
MVA(26), No. 7-8, November 2015, pp. 1027-1043.
WWW Link.
1511
BibRef
Liu, F.[Fayao],
Lin, G.S.[Guo-Sheng],
Shen, C.H.[Chun-Hua],
CRF learning with CNN features for image segmentation,
PR(48), No. 10, 2015, pp. 2983-2992.
Elsevier DOI
1507
Conditional random field (CRF)
BibRef
Zand, M.,
Doraisamy, S.,
Halin, A.A.[A. Abdul],
Mustaffa, M.R.,
Ontology-Based Semantic Image Segmentation Using Mixture Models and
Multiple CRFs,
IP(25), No. 7, July 2016, pp. 3233-3248.
IEEE DOI
1606
image segmentation
BibRef
Zhu, H.Y.[Hong-Yuan],
Lu, J.B.[Jiang-Bo],
Cai, J.F.[Jian-Fei],
Zheng, J.M.[Jian-Min],
Lu, S.,
Magnenat-Thalmann, N.[Nadia],
Multiple Human Identification and Cosegmentation: A Human-Oriented
CRF Approach With Poselets,
MultMed(18), No. 8, August 2016, pp. 1516-1530.
IEEE DOI
1608
BibRef
Earlier: A1, A2, A3, A4, A6, Only:
Poselet-based multiple human identification and cosegmentation,
ICIP14(1076-1080)
IEEE DOI
1502
BibRef
Earlier: A1, A2, A3, A4, A6, Only:
Multiple foreground recognition and cosegmentation:
An object-oriented CRF model with robust higher-order potentials,
WACV14(485-492)
IEEE DOI
1406
image capture.
Accuracy
Image segmentation; Robustness
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yuille, A.L.,
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding,
PAMI(38), No. 1, January 2016, pp. 74-87.
IEEE DOI
1601
Analytical models
BibRef
Liu, F.Y.[Fa-Yao],
Lin, G.S.[Guo-Sheng],
Shen, C.H.[Chun-Hua],
Discriminative Training of Deep Fully Connected Continuous CRFs With
Task-Specific Loss,
IP(26), No. 5, May 2017, pp. 2127-2136.
IEEE DOI
1704
Labeling
Conditional Random Fields.
BibRef
Lin, C.[Chuan],
Xu, G.L.[Gui-Li],
Cao, Y.J.[Yi-Jun],
Contour detection model using linear and non-linear modulation based on
non-CRF suppression,
IET-IPR(12), No. 6, June 2018, pp. 993-1003.
DOI Link
1805
BibRef
Arnab, A.[Anurag],
Zheng, S.[Shuai],
Jayasumana, S.[Sadeep],
Romera-Paredes, B.[Bernardino],
Larsson, M.,
Kirillov, A.,
Savchynskyy, B.,
Rother, C.,
Kahl, F.,
Torr, P.H.S.[Philip H. S.],
Conditional Random Fields Meet Deep Neural Networks for Semantic
Segmentation: Combining Probabilistic Graphical Models with Deep
Learning for Structured Prediction,
SPMag(35), No. 1, January 2018, pp. 37-52.
IEEE DOI
1801
Computational modeling, Feature extraction,
Image segmentation, Semantics, Visualization
BibRef
Brynte, L.[Lucas],
Iglesias, J.P.[José Pedro],
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Learning Structure-From-Motion with Graph Attention Networks,
CVPR24(4808-4817)
IEEE DOI Code:
WWW Link.
2410
Learning systems, Bundle adjustment, Training, Solid modeling,
Runtime, Perturbation methods, Structure-from-motion,
Equivariance
BibRef
Arnab, A.[Anurag],
Jayasumana, S.[Sadeep],
Zheng, S.[Shuai],
Torr, P.H.S.[Philip H. S.],
Higher Order Conditional Random Fields in Deep Neural Networks,
ECCV16(II: 524-540).
Springer DOI
1611
BibRef
Arnab, A.[Anurag],
Torr, P.H.S.[Philip H. S.],
Pixelwise Instance Segmentation with a Dynamically Instantiated
Network,
CVPR17(879-888)
IEEE DOI
1711
BibRef
Earlier:
Bottom-up Instance Segmentation using Deep Higher-Order CRFs,
BMVC16(xx-yy).
HTML Version.
1805
Detectors, Image segmentation, Object detection, Pipelines,
Proposals, Semantics. First, semantic segmentation, then object instance
detection.
BibRef
Zheng, S.[Shuai],
Jayasumana, S.[Sadeep],
Romera-Paredes, B.[Bernardino],
Vineet, V.[Vibhav],
Su, Z.Z.[Zhi-Zhong],
Du, D.L.[Da-Long],
Huang, C.[Chang],
Torr, P.H.S.[Philip H. S.],
Conditional Random Fields as Recurrent Neural Networks,
ICCV15(1529-1537)
IEEE DOI
1602
Combine CNN with CRF.
BibRef
Larsson, M.[Måns],
Alvén, J.[Jennifer],
Kahl, F.[Fredrik],
Max-Margin Learning of Deep Structured Models for Semantic Segmentation,
SCIA17(II: 28-40).
Springer DOI
1706
BibRef
Sultani, W.,
Mokhtari, S.,
Yun, H.B.,
Automatic Pavement Object Detection Using Superpixel Segmentation
Combined With Conditional Random Field,
ITS(19), No. 7, July 2018, pp. 2076-2085.
IEEE DOI
1807
Feature extraction, Histograms, Image segmentation,
Object detection, Shape, Support vector machines, superpixel segmentation
BibRef
Chen, L.C.[Liang-Chieh],
Papandreou, G.[George],
Kokkinos, I.[Iasonas],
Murphy, K.P.[Kevin P.],
Yuille, A.L.[Alan L.],
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs,
PAMI(40), No. 4, April 2018, pp. 834-848.
IEEE DOI
1804
BibRef
Earlier: A2, A1, A4, A5, Only:
Weakly-and Semi-Supervised Learning of a Deep Convolutional Network
for Semantic Image Segmentation,
ICCV15(1742-1750)
IEEE DOI
1602
convolution, feature extraction, feedforward neural nets,
image segmentation, learning (artificial intelligence), semantic segmentation.
Benchmark testing
BibRef
Chen, L.C.[Liang-Chieh],
Zhu, Y.K.[Yu-Kun],
Papandreou, G.[George],
Schroff, F.[Florian],
Adam, H.[Hartwig],
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation,
ECCV18(VII: 833-851).
Springer DOI
1810
BibRef
Chen, L.C.,
Barron, J.T.,
Papandreou, G.,
Murphy, K.P.,
Yuille, A.L.,
Semantic Image Segmentation with Task-Specific Edge Detection Using
CNNs and a Discriminatively Trained Domain Transform,
CVPR16(4545-4554)
IEEE DOI
1612
BibRef
Konishi, S.[Scott],
Yuille, A.L.,
Statistical Cues for Domain Specific Image Segmentation with
Performance Analysis,
CVPR00(I: 125-132).
IEEE DOI
0005
BibRef
He, C.[Chu],
Fang, P.Z.[Pei-Zhang],
Zhang, Z.[Zhi],
Xiong, D.[Dehui],
Liao, M.S.[Ming-Sheng],
An End-to-End Conditional Random Fields and Skip-Connected Generative
Adversarial Segmentation Network for Remote Sensing Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Li, Y.,
Guo, Y.,
Guo, J.,
Ma, Z.,
Kong, X.,
Liu, Q.,
Joint CRF and Locality-Consistent Dictionary Learning for Semantic
Segmentation,
MultMed(21), No. 4, April 2019, pp. 875-886.
IEEE DOI
1903
Dictionaries, Machine learning, Image segmentation, Semantics,
Task analysis, Inference algorithms, Shape,
locality consistency
BibRef
Ma, F.[Fei],
Gao, F.[Fei],
Sun, J.P.[Jin-Ping],
Zhou, H.Y.[Hui-Yu],
Hussain, A.[Amir],
Weakly Supervised Segmentation of SAR Imagery Using Superpixel and
Hierarchically Adversarial CRF,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Joy, T.[Thomas],
Desmaison, A.[Alban],
Ajanthan, T.[Thalaiyasingam],
Bunel, R.[Rudy],
Salzmann, M.[Mathieu],
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Kumar, M.P.[M. Pawan],
Efficient Relaxations for Dense CRFs with Sparse Higher-Order
Potentials,
SIIMS(12), No. 1, 2019, pp. 287-318.
DOI Link
1904
Segmentation and stereo matching.
BibRef
Peng, Z.L.[Zi-Li],
Li, Q.L.[Qiao-Liang],
Adaptive appearance separation for interactive image segmentation based
on Dense CRF,
IET-IPR(13), No. 1, January 2019, pp. 142-151.
DOI Link
1812
BibRef
Zhou, L.[Lei],
Kong, X.Y.[Xiang-Yong],
Gong, C.[Chen],
Zhang, F.[Fan],
Zhang, X.G.[Xiao-Guo],
FC-RCCN: Fully convolutional residual continuous CRF network for
semantic segmentation,
PRL(130), 2020, pp. 54-63.
Elsevier DOI
2002
Continuous conditional random field (C-CRF),
Semantic segmentation, Unary network, Pairwise network
BibRef
Berman, M.[Maxim],
Blaschko, M.B.[Matthew B.],
Discriminative Training of Conditional Random Fields with Probably
Submodular Constraints,
IJCV(128), No. 6, June 2020, pp. 1722-1735.
Springer DOI
2006
BibRef
Zaremba, W.[Wojciech],
Blaschko, M.B.[Matthew B.],
Discriminative training of CRF models with probably submodular
constraints,
WACV16(1-7)
IEEE DOI
1606
Complexity theory
BibRef
Ji, J.[Jian],
Shi, R.[Rui],
Li, S.T.[Si-Tong],
Chen, P.[Peng],
Miao, Q.G.[Qi-Guang],
Encoder-Decoder With Cascaded CRFs for Semantic Segmentation,
CirSysVideo(31), No. 5, 2021, pp. 1926-1938.
IEEE DOI
2105
BibRef
Li, Y.J.[Yu-Jie],
Sun, J.X.[Jia-Xing],
Li, Y.[Yun],
Weakly-Supervised Semantic Segmentation Network With Iterative dCRF,
ITS(23), No. 12, December 2022, pp. 25419-25426.
IEEE DOI
2212
Semantics, Cams, Image segmentation, Convolution, Annotations,
Feature extraction, Training, Weakly-supervised, image-level annotations
BibRef
Kong, Y.Y.[Ying-Ying],
Li, Q.[Qiupeng],
Semantic Segmentation of Polarimetric SAR Image Based on Dual-Channel
Multi-Size Fully Connected Convolutional Conditional Random Field,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Ma, X.Y.[Xiang-Yue],
Xu, J.D.[Jin-Dong],
Chong, Q.P.[Qiang-Peng],
Ou, S.F.[Shi-Feng],
Xing, H.H.[Hai-Hua],
Ni, M.Y.[Meng-Ying],
FCUnet: Refined remote sensing image segmentation method based on a
fuzzy deep learning conditional random field network,
IET-IPR(17), No. 12, 2023, pp. 3616-3629.
DOI Link
2310
fuzzy logic, image classification, image segmentation, neural nets
BibRef
Wan, J.[Jin],
Yin, H.[Hui],
Wu, Z.Y.[Zhen-Yao],
Wu, X.[Xinyi],
Liu, Z.H.[Zhi-Hao],
Wang, S.[Song],
CRFormer: A cross-region transformer for shadow removal,
IVC(151), 2024, pp. 105273.
Elsevier DOI
2411
Shadow removal, Cross-region transformer,
Region-aware cross-attention, One-way interaction
BibRef
Carannante, G.[Giuseppina],
Bouaynaya, N.C.[Nidhal C.],
Dera, D.[Dimah],
Fathallah-Shaykh, H.M.[Hassan M.],
Rasool, G.[Ghulam],
SUPER-Net: Trustworthy image segmentation via uncertainty propagation
in encoder-decoder networks,
PR(172), 2026, pp. 112503.
Elsevier DOI
2512
Bayesian deep learning, Encoder-decoder networks, Reliability,
Segmentation, Trustworthiness, Uncertainty estimation
BibRef
Zbinden, L.[Lukas],
Doorenbos, L.[Lars],
Pissas, T.[Theodoros],
Huber, A.T.[Adrian Thomas],
Sznitman, R.[Raphael],
Márquez-Neila, P.[Pablo],
Stochastic Segmentation with Conditional Categorical Diffusion Models,
ICCV23(1119-1129)
IEEE DOI
2401
BibRef
Li, W.H.[Wei-Hao],
Yang, M.Y.[Michael Ying],
Efficient Semantic Segmentation Of Man-made Scenes Using
Fully-connected Conditional Random Field,
ISPRS16(B3: 633-640).
DOI Link
1610
BibRef
Sulimowicz, L.,
Ahmad, I.,
Aved, A.,
Superpixel-Enhanced Pairwise Conditional Random Field for Semantic
Segmentation,
ICIP18(271-275)
IEEE DOI
1809
Image segmentation, Semantics, Kernel, Labeling, Robustness,
Visualization, Image color analysis, and Higher-order CRFs
BibRef
Shen, F.,
Gan, R.,
Yan, S.,
Zeng, G.,
Semantic Segmentation via Structured Patch Prediction, Context CRF
and Guidance CRF,
CVPR17(5178-5186)
IEEE DOI
1711
Complexity theory, Image segmentation, Message passing,
Predictive models, Semantics, Training
BibRef
Zhou, H.,
Zhang, J.[Jun],
Lei, J.[Jun],
Li, S.[Shuohao],
Tu, D.[Dan],
Image semantic segmentation based on FCN-CRF model,
ICIVC16(9-14)
IEEE DOI
1610
feature extraction
BibRef
Hayder, Z.[Zeeshan],
He, X.M.[Xu-Ming],
Salzmann, M.[Mathieu],
Structural Kernel Learning for Large Scale Multiclass Object
Co-detection,
ICCV15(2632-2640)
IEEE DOI
1602
BibRef
Earlier: A1, A3, A2:
Object Co-detection via Efficient Inference in a Fully-Connected CRF,
ECCV14(III: 330-345).
Springer DOI
1408
BibRef
Kolesnikov, A.[Alexander],
Guillaumin, M.[Matthieu],
Ferrari, V.[Vittorio],
Lampert, C.H.[Christoph H.],
Closed-Form Approximate CRF Training for Scalable Image Segmentation,
ECCV14(III: 550-565).
Springer DOI
1408
BibRef
Kae, A.[Andrew],
Marlin, B.M.[Benjamin M>],
Learned-Miller, E.G.[Erik G.],
The Shape-Time Random Field for Semantic Video Labeling,
CVPR14(272-279)
IEEE DOI
1409
CRF; RBM; deep learning; deep model; faces; image labeling
BibRef
Kae, A.[Andrew],
Sohn, K.[Kihyuk],
Lee, H.L.[Hong-Lak],
Learned-Miller, E.G.[Erik G.],
Augmenting CRFs with Boltzmann Machine Shape Priors for Image
Labeling,
CVPR13(2019-2026)
IEEE DOI
1309
attributes; deep learning; face processing; segmentation
BibRef
Roig, G.[Gemma],
Boix, X.[Xavier],
de Nijs, R.[Roderick],
Ramos, S.[Sebastian],
Kuhnlenz, K.[Koljia],
Van Gool, L.J.[Luc J.],
Active MAP Inference in CRFs for Efficient Semantic Segmentation,
ICCV13(2312-2319)
IEEE DOI
1403
using expensive features.
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yao, J.[Jian],
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs,
CVPR13(3143-3150)
IEEE DOI
1309
Explore effects by using humans in loop for parts of the problem.
BibRef
Zhang, H.H.[Hong-Hui],
Wang, J.D.[Jing-Dong],
Tan, P.[Ping],
Wang, J.L.[Jing-Lu],
Quan, L.[Long],
Learning CRFs for Image Parsing with Adaptive Subgradient Descent,
ICCV13(3080-3087)
IEEE DOI
1403
Adaptive Subgradient Descent; Conditional Random Field; Image Parsing
BibRef
Zhou, L.[Lei],
Qiao, Y.[Yu],
Yang, J.[Jie], p
He, X.J.[Xiang-Jian],
Learning geodesic CRF model for image segmentation,
ICIP12(1565-1568).
IEEE DOI
1302
BibRef
Moayedi, F.,
Azimifar, Z.,
Fieguth, P.W.,
Kazemi, A.,
Adaptive multi-resolution CRF-based contour tracking,
ICIP11(497-500).
IEEE DOI
1201
BibRef
Xue, F.[Fei],
Zhang, Y.J.[Yu-Jin],
Image Class Segmentation via Conditional Random Field over Weighted
Histogram Classifier,
ICIG11(477-481).
IEEE DOI
1109
BibRef
Besbes, O.[Olfa],
Boujemaa, N.[Nozha],
Belhadj, Z.[Ziad],
Embedding Gestalt Laws on Conditional Random Field for Image
Segmentation,
ISVC11(I: 236-245).
Springer DOI
1109
BibRef
Earlier:
Stochastic image segmentation by combining region and edge cues,
ICIP08(2288-2291).
IEEE DOI
0810
BibRef
Earlier: A1, A3, A2:
A Variational Framework for Adaptive Satellite Images Segmentation,
SSVM07(675-686).
Springer DOI
0705
BibRef
And: A1, A3, A2:
Adaptive Satellite Images Segmentation by Level Set
Multiregion Competition,
INRIARR-5855, 2006.
HTML Version.
BibRef
Yang, W.[Wen],
Dai, D.X.[Deng-Xin],
Triggs, B.[Bill],
Xia, G.S.[Gui-Song],
He, C.[Chu],
Fast semantic scene segmentation with conditional random field,
ICIP10(229-232).
IEEE DOI
1009
BibRef
Cobzas, D.[Dana],
Schmidt, M.[Mark],
Increased discrimination in level set methods with embedded conditional
random fields,
CVPR09(328-335).
IEEE DOI
0906
Improve level set segmentation by embedding trained conditional random
field into energy function.
BibRef
Wu, X.Q.[Xu-Qing],
Shah, S.K.[Shishir K.],
Level Set with Embedded Conditional Random Fields and Shape Priors for
Segmentation of Overlapping Objects,
ACCV10(II: 230-241).
Springer DOI
1011
BibRef
Warrell, J.[Jonathan],
Moore, A.P.[Alastair P.],
Prince, S.J.D.[Simon J.D.],
Vistas: Hierarchial boundary priors using multiscale conditional random
fields,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Neural Networks for Segmentation .