Miller, R.E., and
Thather, J.W., (Eds.),
Complexity of Computer Computation,
Indexed as
CCComp1972.
BibRef
7200
Boult, T.E.,
Optimal Algorithms: Tools for Mathematical Modeling,
Complexity(3), 1987, pp. 183-200.
BibRef
8700
And:
Using Optimal Algorithms to Test Model Assumptions in Computer Vision,
DARPA87(921-926).
BibRef
Boult, T.E.,
What is Regular in Regularization?,
ICCV87(457-462).
A look at regularization and some alternatives.
BibRef
8700
Perlovsky, L.I.,
Conundrum of Combinatorial Complexity,
PAMI(20), No. 6, June 1998, pp. 666-670.
IEEE DOI
9807
BibRef
Falelakis, M.,
Diou, C.,
Delopoulos, A.,
Semantic Identification: Balancing between Complexity and Validity,
JASP(2006), No. 1, January 2006, pp. 1-12.
WWW Link.
0603
BibRef
Prusa, D.[Daniel],
Werner, T.[Toma],
Universality of the Local Marginal Polytope,
PAMI(37), No. 4, April 2015, pp. 898-904.
IEEE DOI
1503
BibRef
Earlier:
CVPR13(1738-1743)
IEEE DOI
1309
Complexity theory.
min-sum problem, energy minimization.
BibRef
Marangoni-Simonsen, D.,
Xie, Y.[Yao],
Sequential Changepoint Approach for Online Community Detection,
SPLetters(22), No. 8, August 2015, pp. 1035-1039.
IEEE DOI
1502
computational complexity
BibRef
Liang, S.,
Luo, J.,
Liu, W.,
Wei, Y.,
Sketch Matching on Topology Product Graph,
PAMI(37), No. 8, August 2015, pp. 1723-1729.
IEEE DOI
1507
Complexity theory
BibRef
Yin, H.B.,
Yang, E.,
Yu, X.,
Xia, Z.,
Fast Soft Decision Quantization With Adaptive Preselection and
Dynamic Trellis Graph,
CirSysVideo(25), No. 8, August 2015, pp. 1362-1375.
IEEE DOI
1508
Complexity theory
BibRef
Humeau-Heurtier, A.[Anne],
Wu, C.W.[Chiu-Wen],
Wu, S.D.[Shuen-De],
Refined Composite Multiscale Permutation Entropy to Overcome
Multiscale Permutation Entropy Length Dependence,
SPLetters(22), No. 12, December 2015, pp. 2364-2367.
IEEE DOI
1512
computational complexity
BibRef
Azami, H.[Hamed],
Escudero, J.,
Humeau-Heurtier, A.[Anne],
Bidimensional Distribution Entropy to Analyze the Irregularity of
Small-Sized Textures,
SPLetters(24), No. 9, September 2017, pp. 1338-1342.
IEEE DOI
1708
Algorithm design and analysis, Databases, Entropy,
Surface texture,
Surface treatment, Bidimensional dispersion entropy,
irregularity, texture analysis, two-dimensional,
BibRef
Azami, H.[Hamed],
Virgilio da Silva, L.E.[Luiz Eduardo],
Omoto, A.C.M.[Ana Carolina Mieko],
Humeau-Heurtier, A.[Anne],
Two-dimensional dispersion entropy:
An information-theoretic method for irregularity analysis of images,
SP:IC(75), 2019, pp. 178-187.
Elsevier DOI
1906
Biomedical image processing, Texture analysis, Irregularity,
Two-dimensional dispersion entropy, Two-dimensional sample entropy
BibRef
McEwen, J.D.,
Buttner, M.,
Leistedt, B.,
Peiris, H.V.,
Wiaux, Y.,
A Novel Sampling Theorem on the Rotation Group,
SPLetters(22), No. 12, December 2015, pp. 2425-2429.
IEEE DOI
1512
computational complexity
BibRef
Ewert, W.,
Dembski, W.A.,
Marks, R.J.,
Measuring Meaningful Information in Images:
Algorithmic Specified Complexity,
IET-CV(9), No. 6, 2015, pp. 884-894.
DOI Link
1512
computational complexity
BibRef
Zhang, D.,
Matthé, M.,
Mendes, L.L.,
Fettweis, G.,
Message Passing Algorithms for Upper and Lower Bounding the Coded
Modulation Capacity in a Large-Scale Linear System,
SPLetters(23), No. 4, April 2016, pp. 537-540.
IEEE DOI
1604
Complexity theory
BibRef
Schoenecker, S.,
Luginbuhl, T.,
Characteristic Functions of the Product of Two Gaussian Random
Variables and the Product of a Gaussian and a Gamma Random Variable,
SPLetters(23), No. 5, May 2016, pp. 644-647.
IEEE DOI
1604
Convolution
BibRef
Ocegueda, O.[Omar],
Dalmau, O.[Oscar],
Garyfallidis, E.[Eleftherios],
Descoteaux, M.[Maxime],
Rivera, M.[Mariano],
On the computation of integrals over fixed-size rectangles of
arbitrary dimension,
PRL(79), No. 1, 2016, pp. 68-72.
Elsevier DOI
1608
Integral Image
BibRef
Aspelmeier, T.[Timo],
Charitha, C.,
Luke, D.R.[D. Russell],
Local Linear Convergence of the ADMM/Douglas-Rachford Algorithms
without Strong Convexity and Application to Statistical Imaging,
SIIMS(9), No. 2, 2016, pp. 842-868.
DOI Link
1608
BibRef
Weickert, J.[Joachim],
Grewenig, S.[Sven],
Schroers, C.[Christopher],
Bruhn, A.[Andrés],
Cyclic Schemes for PDE-Based Image Analysis,
IJCV(118), No. 3, July 2016, pp. 275-299.
Springer DOI
1608
Efficient algorithms for PDEs in computer vision.
Diffusion, optimization.
BibRef
Chi, Y.,
Lu, Y.M.,
Kaczmarz Method for Solving Quadratic Equations,
SPLetters(23), No. 9, September 2016, pp. 1183-1187.
IEEE DOI
1609
Gaussian processes
BibRef
Maya, J.A.,
Vega, L.R.,
Galarza, C.G.,
A Closed-Form Approximation for the CDF of the Sum of Independent
Random Variables,
SPLetters(24), No. 1, January 2017, pp. 121-125.
IEEE DOI
1702
approximation theory
BibRef
El Moataz, A.[Abderrahim],
Lozes, F.[François],
Toutain, M.[Matthieu],
Nonlocal PDEs on Graphs: From Tug-of-War Games to Unified Interpolation
on Images and Point Clouds,
JMIV(57), No. 3, March 2017, pp. 381-401.
Springer DOI
1702
BibRef
Masiero, B.[Bruno],
Nascimento, V.H.[Vítor H.],
Revisiting the Kronecker Array Transform,
SPLetters(24), No. 5, May 2017, pp. 525-529.
IEEE DOI
1704
array signal processing.
Calculation of a matrix-vector product.
BibRef
Jiao, Y.L.[Yu-Ling],
Jin, B.[Bangti],
Lu, X.L.[Xi-Liang],
Iterative Soft/Hard Thresholding With Homotopy Continuation for
Sparse Recovery,
SPLetters(24), No. 6, June 2017, pp. 784-788.
IEEE DOI
1705
Continuation, convergence,
iterative soft/hard thresholding (IST/IHT), solution, path
BibRef
Cui, G.,
Fu, Y.,
Yu, X.,
Li, J.,
Local Ambiguity Function Shaping via Unimodular Sequence Design,
SPLetters(24), No. 7, July 2017, pp. 977-981.
IEEE DOI
1706
computational complexity, gradient methods, optimisation,
radar detection, AISO algorithm, WISL,
accelerated iterative sequential optimization algorithm,
computational complexity, gradient method,
high-speed target detection, local ambiguity function shaping,
radar system, range bins, specific Doppler bins,
unimodular sequence design, weighted integrated sidelobe level,
Accelerated iterative sequential optimization (AISO),
local ambiguity function, unimodular, sequence
BibRef
Pyatkin, A.[Artem],
Aloise, D.[Daniel],
Mladenovic, N.[Nenad],
NP-Hardness of balanced minimum sum-of-squares clustering,
PRL(97), No. 1, 2017, pp. 44-45.
Elsevier DOI
1709
Balanced clustering
BibRef
Pustelnik, N.[Nelly],
Condat, L.[Laurent],
Proximity Operator of a Sum of Functions;
Application to Depth Map Estimation,
SPLetters(24), No. 12, December 2017, pp. 1827-1831.
IEEE DOI
1712
convex programming, graph theory, image processing, optimisation,
convex optimization, depth map estimation, image processing,
support function
BibRef
Yadav, D.K.[Devendra Kumar],
Kuldeep, G.[Gajraj],
Joshi, S.D.,
Ramanujan Sums as Derivatives and Applications,
SPLetters(25), No. 3, March 2018, pp. 413-416.
IEEE DOI
1802
Estimation, Image edge detection, Kernel, Noise level, Presses,
Signal processing, Discrete fourier transform,
BibRef
Radhika, S.,
Sivabalan, A.,
ZA-APA with zero attractor controller selection criterion for sparse
system identification,
SIViP(12), No. 2, February 2018, pp. 371-377.
Springer DOI
1802
BibRef
Bergmann, R.[Ronny],
Tenbrinck, D.[Daniel],
A Graph Framework for Manifold-Valued Data,
SIIMS(11), No. 1, 2018, pp. 325-360.
DOI Link
1804
BibRef
Sun, C.[Chao],
Su, Y.[Yao],
Yu, X.G.[Xin-Guo],
Machine Solving on Hypergeometric Distribution Problems,
PSIVTWS17(102-115).
Springer DOI
1806
BibRef
Heravi, A.R.,
Hodtani, G.A.,
A New Information Theoretic Relation Between Minimum Error Entropy
and Maximum Correntropy,
SPLetters(25), No. 7, July 2018, pp. 921-925.
IEEE DOI
1807
entropy, information theory, minimum entropy methods,
statistical analysis, MCC, MEE, information theoretic learning,
minimum error entropy
BibRef
Wang, Z.,
Lin, J.,
Wang, Z.,
Hardware-Oriented Compression of Long Short-Term Memory for Efficient
Inference,
SPLetters(25), No. 7, July 2018, pp. 984-988.
IEEE DOI
1807
computational complexity, data compression, embedded systems,
matrix multiplication, recurrent neural nets, sparse matrices,
recurrent neural networks (RNNs)
BibRef
Khanna, S.[Saurabh],
Murthy, C.R.[Chandra Ramabhadra],
Sparse Recovery From Multiple Measurement Vectors Using Exponentiated
Gradient Updates,
SPLetters(25), No. 10, October 2018, pp. 1485-1489.
IEEE DOI
1810
convex programming, iterative methods, sparse matrices, vectors,
multiple measurement vector support recovery algorithms,
Von Neumann divergence
BibRef
Wang, H.,
Yuan, J.,
Representative Selection on a Hypersphere,
SPLetters(25), No. 11, November 2018, pp. 1660-1664.
IEEE DOI
1811
computational complexity, computational geometry, data analysis,
gradient methods, representative examples, pattern discovery,
representative selection
BibRef
Wang, Y.,
Tian, Z.,
IVDST: A Fast Algorithm for Atomic Norm Minimization in Line Spectral
Estimation,
SPLetters(25), No. 11, November 2018, pp. 1715-1719.
IEEE DOI
1811
compressed sensing, computational complexity,
concave programming, convex programming, gradient methods,
shrinkage thresholding
BibRef
Chen, J.[Jian],
He, M.[Minfan],
Zeng, T.[Taishan],
A multiscale Galerkin method for second-order boundary value problems
of Fredholm integro-differential equation II: Efficient algorithm for
the discrete linear system,
JVCIR(58), 2019, pp. 112-118.
Elsevier DOI
1901
Multiscale Galerkin method (MGM),
Multilevel augmentation method (MAM),
Fredholm integro-differential equation
BibRef
Mello, L.H.S.[Lucas Henrique Sousa],
Varejão, F.M.[Flávio M.],
Rodrigues, A.L.[Alexandre L.],
Rauber, T.W.[Thomas W.],
NP-Hardness of minimum expected coverage,
PRL(117), 2019, pp. 45-51.
Elsevier DOI
1901
Complexity, Multi-label learning, Loss minimization, Coverage
BibRef
Mazo, L.[Loïc],
Multi-scale Arithmetization of Linear Transformations,
JMIV(61), No. 4, May 2019, pp. 432-442.
Springer DOI
1904
BibRef
Farzmahdi, M.[Mojtaba],
Luo, R.[Rong],
Exact window memoization: an optimization method for high-performance
image processing,
RealTimeIP(16), No. 2, April 2019, pp. 491-503.
Springer DOI
1904
Efficent computation, using data redundancy to minimize redundant computations.
BibRef
Yang, J.,
Lin, J.,
Shi, Q.,
Li, Q.,
An ADMM-Based Approach to Robust Array Pattern Synthesis,
SPLetters(26), No. 6, June 2019, pp. 898-902.
IEEE DOI
1906
array signal processing, convex programming, minimax techniques,
ADMM-based approach, bounded-sphere model,
alternating direction method of multipliers (ADMM)
BibRef
Kushinsky, Y.,
Maron, H.,
Dym, N.,
Lipman, Y.,
Sinkhorn Algorithm for Lifted Assignment Problems,
SIIMS(12), No. 2, 2019, pp. 716-735.
DOI Link
1907
solving linear programs emerging from optimal transport
BibRef
Lebrat, L.[Léo],
de Gournay, F.[Frédéric],
Kahn, J.[Jonas],
Weiss, P.[Pierre],
Optimal Transport Approximation of 2-Dimensional Measures,
SIIMS(12), No. 2, 2019, pp. 762-787.
DOI Link
1907
Applications in advanced sampling theory, nonphotorealistic rendering,
and path planning.
BibRef
Hernandez, M.,
A Comparative Study of Different Variants of Newton-Krylov
PDE-Constrained Stokes-LDDMM Parameterized in the Space of
Band-Limited Vector Fields,
SIIMS(12), No. 2, 2019, pp. 1038-1070.
DOI Link
1907
BibRef
Debarnot, V.[Valentin],
Kahn, J.[Jonas],
Weiss, P.[Pierre],
Multiview Attenuation Estimation and Correction,
JMIV(61), No. 6, July 2019, pp. 780-797.
Springer DOI
1907
Used in X-ray or optical tomography and lidar.
BibRef
Zhang, H.,
Wei, X.,
Wang, R.,
Meng, F.,
An Efficient Base Conversion Using Variable Length Segmentation and
Remainder Transfer,
SPLetters(26), No. 8, August 2019, pp. 1227-1231.
IEEE DOI
1908
digital arithmetic, optimisation, transfer functions,
variable length segmentation, conversion overflows,
remainder transfer function
BibRef
Dytso, A.[Alex],
Cardone, M.[Martina],
Poor, H.V.[H. Vincent],
On Estimating the Norm of a Gaussian Vector Under Additive White
Gaussian Noise,
SPLetters(26), No. 9, September 2019, pp. 1325-1329.
IEEE DOI
1909
AWGN, estimation theory, least mean squares methods,
signal processing, vectors, Gaussian vector norm estimation,
Gaussian noise
BibRef
Abeida, H.,
Delmas, J.,
Slepian-Bangs Formula and Cramér-Rao Bound for Circular and
Non-Circular Complex Elliptical Symmetric Distributions,
SPLetters(26), No. 10, October 2019, pp. 1561-1565.
IEEE DOI
1909
Gaussian distribution, Stochastic processes, Noise measurement,
Electronic countermeasures, Closed-form solutions,
non-circular complex elliptical symmetric distributions
BibRef
Rabanser, S.[Simon],
Neumann, L.[Lukas],
Haltmeier, M.[Markus],
Analysis of the Block Coordinate Descent Method for Linear Ill-Posed
Problems,
SIIMS(12), No. 4, 2019, pp. 1808-1832.
DOI Link
1912
BibRef
Reinhard, E.,
Garces, E.,
Stauder, J.,
Repeated Look-Up Tables,
IP(29), 2020, pp. 2370-2379.
IEEE DOI
2001
Table lookup, Optimization, Interpolation, Dynamic range, Hardware,
Decoding, Standards, Look-up tables
BibRef
Shen, B.,
Yang, Y.,
Zhou, Z.,
Fan, P.,
Guan, Y.,
New Optimal Binary Z-Complementary Pairs of Odd Length 2^m+3,
SPLetters(26), No. 12, December 2019, pp. 1931-1934.
IEEE DOI
2001
Iterative methods, Correlation, Zero correlation zone,
Interference, Boolean functions, Aperiodic correlation,
Z-complementary pair (ZCP)
BibRef
Adhikary, A.R.,
Sarkar, P.,
Majhi, S.,
A Direct Construction of Q-Ary Even Length Z-Complementary Pairs
Using Generalized Boolean Functions,
SPLetters(27), 2020, pp. 146-150.
IEEE DOI
2001
Even-length binary Z-complementary pairs (EB-ZCPs),
Generalized Boolean functions (GBFs),
Z-complementary pair (ZCP)
BibRef
Ghosh, G.[Gobinda],
Majhi, S.[Sudhan],
Sarkar, P.[Palash],
Upadhaya, A.K.[Ashish Kumar],
Direct Construction of Optimal Z-Complementary Code Sets with Even
Lengths by Using Generalized Boolean Functions,
SPLetters(29), No. 2022, pp. 872-876.
IEEE DOI
2204
Multicarrier code division multiple access, Boolean functions,
OFDM, Zero correlation zone, Interference, Telecommunications, ZCZ
BibRef
Sarkar, P.[Palash],
Majhi, S.[Sudhan],
Liu, Z.L.[Zi-Long],
Pseudo-Boolean Functions for Optimal Z-Complementary Code Sets With
Flexible Lengths,
SPLetters(28), 2021, pp. 1350-1354.
IEEE DOI
2107
Multicarrier code division multiple access, Boolean functions,
Upper bound, Correlation, Transforms, zero correlation zone (ZCZ)
BibRef
Xue, D.,
DeBrunner, L.S.,
DeBrunner, V.,
Linear Convolution Filter to Reduce Computational Complexity Based on
Discrete Hirschman Transform,
SPLetters(26), No. 12, December 2019, pp. 1935-1939.
IEEE DOI
2001
Convolution, Computational complexity,
Discrete Fourier transforms, Frequency-domain analysis, FIR filter
BibRef
Li, S.,
Zhang, W.,
Cui, Y.,
Cheng, H.V.,
Yu, W.,
Joint Design of Measurement Matrix and Sparse Support Recovery Method
via Deep Auto-Encoder,
SPLetters(26), No. 12, December 2019, pp. 1778-1782.
IEEE DOI
2001
compressed sensing, computational complexity,
learning (artificial intelligence), signal reconstruction,
grant-free massive access
BibRef
Zhu, H.,
Liu, F.,
Li, J.,
Computationally Efficient Sinusoidal Parameter Estimation From Signed
Measurements: ADMM Approaches,
SPLetters(26), No. 12, December 2019, pp. 1798-1802.
IEEE DOI
2001
compressed sensing, computational complexity, convex programming,
parameter estimation, signal reconstruction, update steps design,
log-norm
BibRef
Li, Y.,
He, Q.,
Blum, R.S.,
On the Product of Two Correlated Complex Gaussian Random Variables,
SPLetters(27), 2020, pp. 16-20.
IEEE DOI
2001
Product of correlated complex Gaussian random variables,
joint probability density function, non-zero means and arbitrary variances
BibRef
El-Laham, Y.,
Bugallo, M.F.,
Stochastic Gradient Population Monte Carlo,
SPLetters(27), 2020, pp. 46-50.
IEEE DOI
2001
BibRef
Chavali, V.,
Wage, K.E.,
Cross Term Decay in Multiplicative Processors,
SPLetters(27), 2020, pp. 56-60.
IEEE DOI
2001
Program processors, Gratings, Probability density function,
Random variables, Sensor arrays, Geometry,
distribution of sum of products of independent complex Gaussian random variables
BibRef
Gavaskar, R.G.,
Chaudhury, K.N.,
On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM,
SPLetters(26), No. 12, December 2019, pp. 1817-1821.
IEEE DOI
2001
convergence of numerical methods, image denoising,
image restoration, iterative methods, theorem proving,
conver-gence analysis
BibRef
Wang, G.,
Adhikary, A.R.,
Zhou, Z.,
Yang, Y.,
Generalized Constructions of Complementary Sets of Sequences of
Lengths Non-Power-of-Two,
SPLetters(27), 2020, pp. 136-140.
IEEE DOI
2001
Complementary sets (CSs), Golay complemen-tary pair (GCP)
BibRef
Benyamin, M.[Minas],
Calder, J.[Jeff],
Sundaramoorthi, G.[Ganesh],
Yezzi, A.J.[Anthony J.],
Accelerated Variational PDEs for Efficient Solution of Regularized
Inversion Problems,
JMIV(62), No. 1, January 2020, pp. 10-36.
Springer DOI
2001
BibRef
Sundaramoorthi, G.[Ganesh],
Yezzi, A.J.[Anthony J.],
Benyamin, M.[Minas],
Accelerated Optimization in the PDE Framework:
Formulations for the Manifold of Diffeomorphisms,
SIIMS(15), No. 1, 2022, pp. 324-366.
DOI Link
2204
BibRef
Ma, K.[Kede],
Duanmu, Z.F.[Zheng-Fang],
Wang, Z.[Zhou],
Wu, Q.B.[Qing-Bo],
Liu, W.T.[Wen-Tao],
Yong, H.W.[Hong-Wei],
Li, H.L.[Hong-Liang],
Zhang, L.[Lei],
Group Maximum Differentiation Competition:
Model Comparison with Few Samples,
PAMI(42), No. 4, April 2020, pp. 851-864.
IEEE DOI
2003
Computational modeling, Predictive models, Analytical models,
Streaming media, Complexity theory, Image quality, Resistance,
streaming video quality-of-experience
BibRef
Hong, T.,
Yavneh, I.,
Zibulevsky, M.,
Solving RED With Weighted Proximal Methods,
SPLetters(27), 2020, pp. 501-505.
IEEE DOI
2005
RED: REgularization by Denoising.
Signal processing algorithms, Noise reduction, Inverse problems,
Acceleration, Approximation algorithms, Minimization,
weighting
BibRef
Zhang, Z.[Zhen],
Wang, S.[Shengzheng],
Bian, W.[Wei],
Sign consistency for the linear programming discriminant rule,
PR(100), 2020, pp. 107083.
Elsevier DOI
2005
High-dimensional linear discriminant analysis,
Sign consistency, Irrepresentability condition, Linear programming
BibRef
Li, J.Y.[Jia-Yuan],
Hu, Q.W.[Qing-Wu],
Ai, M.Y.[Ming-Yao],
Robust Geometric Model Estimation Based on Scaled Welsch q-Norm,
GeoRS(58), No. 8, August 2020, pp. 5908-5921.
IEEE DOI
2007
Robustness, Estimation, Remote sensing, Optimization, Standards,
Convex functions, Sensitivity, Image orientation, model fitting,
robust feature matching (RFM)
BibRef
Adamiak, K.[Krzysztof],
Kim, H.[Hyongsuk],
Slot, K.[Krzysztof],
Accelerating projections to kernel-induced spaces by feature
approximation,
PRL(136), 2020, pp. 31-39.
Elsevier DOI
2008
Feature extraction, Kernel methods, Computational complexity
BibRef
Zhang, S.[Sheng],
Han, H.Y.[Hong-Yu],
Jin, X.L.[Xing-Lian],
Xia, Y.L.[Yi-Li],
Complementary Mean-Square Analysis of CNLMS Algorithm Using
Pseudo-Energy-Conservation Method,
SPLetters(27), 2020, pp. 1345-1349.
IEEE DOI
2008
Steady-state, Signal processing algorithms,
Mean square error methods, Transient analysis,
steady-state analysis
BibRef
Wang, K.[Kuan],
Liu, Z.J.[Zhi-Jian],
Lin, Y.J.[Yu-Jun],
Lin, J.[Ji],
Han, S.[Song],
Hardware-Centric AutoML for Mixed-Precision Quantization,
IJCV(128), No. 8-9, September 2020, pp. 2035-2048.
Springer DOI
2008
BibRef
Hacini, M.[Meriem],
Hachouf, F.[Fella],
Charef, A.[Abdelfatah],
A bi-directional fractional-order derivative mask for image processing
applications,
IET-IPR(14), No. 11, September 2020, pp. 2512-2524.
DOI Link
2009
for two-dimensional fractional differentiation.
BibRef
Li, B.,
Wu, N.,
Convergence Analysis of Gaussian SPAWN Under High-Order Graphical
Models,
SPLetters(27), 2020, pp. 1725-1729.
IEEE DOI
2010
Convergence, Graphical models, Computational complexity,
Mathematical model, Peer-to-peer computing, Belief propagation,
Gaussian SPAWN
BibRef
Bartolucci, F.[Francesco],
Pandolfi, S.[Silvia],
An exact algorithm for time-dependent variational inference for the
dynamic stochastic block model,
PRL(138), 2020, pp. 362-369.
Elsevier DOI
2010
Adjusted rand index, Expectation-maximization algorithm, Longitudinal data
BibRef
Lauriola, I.[Ivano],
Polato, M.[Mirko],
Aiolli, F.[Fabio],
Learning deep kernels in the space of monotone conjunctive
polynomials,
PRL(140), 2020, pp. 200-206.
Elsevier DOI
2012
Multiple kernel learning, Boolean kernels, Dot-product kernels,
Representation learning
BibRef
Hofmeyr, D.P.[David P.],
Fast Exact Evaluation of Univariate Kernel Sums,
PAMI(43), No. 2, February 2021, pp. 447-458.
IEEE DOI
2101
Kernel, Estimation, Probability distribution,
Independent component analysis, Deconvolution, image reconstruction
BibRef
Katakol, S.[Sudeep],
Elbarashy, B.[Basem],
Herranz, L.[Luis],
van de Weijer, J.[Joost],
López, A.M.[Antonio M.],
Distributed Learning and Inference With Compressed Images,
IP(30), 2021, pp. 3069-3083.
IEEE DOI
2103
Training, Degradation, Image coding, Semantics, Data models,
Image restoration, Task analysis, Image compression, autonomous driving
BibRef
Ali, A.[Anum],
Moinuddin, M.[Muhammad],
Al-Naffouri, T.Y.[Tareq Y.],
The NLMS Is Steady-State Schur-Convex,
SPLetters(28), 2021, pp. 389-393.
IEEE DOI
2103
Normalized Least Mean Squares.
Steady-state, Correlation, Eigenvalues and eigenfunctions,
Signal processing algorithms, Signal to noise ratio, Standards,
Schur-convexity
BibRef
Qiao, H.[Heng],
On the Performance of the SPICE Method,
SPLetters(28), 2021, pp. 543-547.
IEEE DOI
2103
spectrum estimation.
SPICE, Robustness, Tuning, Spectral analysis,
Signal processing algorithms, Monte Carlo methods,
quotient property
BibRef
Panagakis, Y.[Yannis],
Kossaifi, J.[Jean],
Chrysos, G.G.[Grigorios G.],
Oldfield, J.[James],
Nicolaou, M.A.[Mihalis A.],
Anandkumar, A.[Anima],
Zafeiriou, S.P.[Stefanos P.],
Tensor Methods in Computer Vision and Deep Learning,
PIEEE(109), No. 5, May 2021, pp. 863-890.
IEEE DOI
2105
Deep learning, Visualization, Tensors,
Data analysis, Semantics, Memory management,
tensor methods
BibRef
Kalaivani, A.,
Swetha, K.,
An Enhanced Bidirectional Insertion Sort Over Classical Insertion Sort,
IJIG(21), No. 2 2021, pp. 2150024.
DOI Link
2105
BibRef
Lourakis, M.[Manolis],
Terzakis, G.[George],
A Globally Optimal Method for the PnP Problem with MRP Rotation
Parameterization,
ICPR21(3058-3063)
IEEE DOI
2105
Robustness, Computational efficiency, Mathematical model,
Least mean squares methods
BibRef
Gu, B.[Bin],
Xiong, Z.[Ziran],
Yu, S.Y.[Shu-Yang],
Zheng, G.S.[Guan-Sheng],
A kernel path algorithm for general parametric quadratic programming
problem,
PR(116), 2021, pp. 107941.
Elsevier DOI
2106
Kernel path, QR decomposition,
Parametric quadratic programming, Cross validation
BibRef
Wadayama, T.[Tadashi],
Takabe, S.[Satoshi],
Chebyshev Periodical Successive Over-Relaxation for Accelerating
Fixed-Point Iterations,
SPLetters(28), 2021, pp. 907-911.
IEEE DOI
2106
Chebyshev approximation, Convergence, Jacobian matrices,
Acceleration, Eigenvalues and eigenfunctions, Gradient methods,
proximal methods
BibRef
Angle, R.B.[R. Blair],
Streit, R.L.[Roy L.],
Efe, M.[Murat],
A Low Computational Complexity JPDA Filter With Superposition,
SPLetters(28), 2021, pp. 1031-1035.
IEEE DOI
2106
Bayes methods, Computational complexity, Clutter, Target tracking,
Probability distribution, Probability density function,
intensity functions
BibRef
Marrelec, G.[Guillaume],
Giron, A.[Alain],
Automated Extraction of Mutual Independence Patterns Using Bayesian
Comparison of Partition Models,
PAMI(43), No. 7, July 2021, pp. 2299-2313.
IEEE DOI
2106
Bayes methods, Gaussian distribution, Numerical models,
Markov processes, Monte Carlo methods, Covariance matrices, parallel tempering
BibRef
Berglund, E.[Erik],
Magnússon, S.[Sindri],
Johansson, M.[Mikael],
Distributed Newton Method Over Graphs: Can Sharing of Second-Order
Information Eliminate the Condition Number Dependence?,
SPLetters(28), 2021, pp. 1180-1184.
IEEE DOI
2106
Signal processing algorithms, Complexity theory, Optimization,
Peer-to-peer computing, Convergence, Gradient methods,
optimization
BibRef
Dong, G.Z.[Guo-Zhi],
Hintermueller, M.[Michael],
Zhang, Y.[Ye],
A Class of Second-Order Geometric Quasilinear Hyperbolic PDEs and
Their Application in Imaging,
SIIMS(14), No. 2, 2021, pp. 645-688.
DOI Link
2107
BibRef
Bungert, L.[Leon],
Hait-Fraenkel, E.[Ester],
Papadakis, N.[Nicolas],
Gilboa, G.[Guy],
Nonlinear Power Method for Computing Eigenvectors of Proximal
Operators and Neural Networks,
SIIMS(14), No. 3, 2021, pp. 1114-1148.
DOI Link
2108
BibRef
Colonnese, S.[Stefania],
Conti, F.[Francesco],
Biagi, M.[Mauro],
Scarano, G.[Gaetano],
Cross-Burg Algorithm for Single-Input Two-Outputs Autoregressive
Modeling,
SPLetters(28), 2021, pp. 1640-1644.
IEEE DOI
2109
Signal processing algorithms, Lattices, Mathematical model,
Numerical models, Estimation, Data models, Signal to noise ratio,
Cross-Burg Method
BibRef
Oymak, S.[Samet],
Provable Super-Convergence With a Large Cyclical Learning Rate,
SPLetters(28), 2021, pp. 1645-1649.
IEEE DOI
2109
Eigenvalues and eigenfunctions, Convergence, Jacobian matrices,
Standards, Deep learning, Signal processing algorithms, Schedules,
Gradient methods
BibRef
Sun, Y.[Ya],
Mai, S.J.[Si-Jie],
Hu, H.F.[Hai-Feng],
Learning to Balance the Learning Rates Between Various Modalities via
Adaptive Tracking Factor,
SPLetters(28), 2021, pp. 1650-1654.
IEEE DOI
2109
Optimization, Signal processing algorithms, Convergence, Training,
Task analysis, Adaptive equalizers, Prediction algorithms,
bilevel directional optimization
BibRef
Zhao, X.L.[Xiang-Ling],
Yuan, Y.[Yuan],
Dong, Y.[Yun],
Zhao, R.[Ren],
Optimization approach to the aircraft weight and balance problem with
the centre of gravity envelope constraints,
IET-ITS(15), No. 10, 2021, pp. 1269-1286.
DOI Link
2109
BibRef
Cancela, B.[Brais],
Alonso-Betanzos, A.[Amparo],
Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and
Static Hamilton-Jacobi Equations,
PAMI(43), No. 11, November 2021, pp. 4177-4188.
IEEE DOI
2110
Mathematical model, Complexity theory,
Computational efficiency, anisotropic
BibRef
Hadifar, A.[Amir],
Deleu, J.[Johannes],
Develder, C.[Chris],
Demeester, T.[Thomas],
Exploration of block-wise dynamic sparseness,
PRL(151), 2021, pp. 187-192.
Elsevier DOI
2110
Neural network, Dynamic sparseness, Block-wise matrix multiplication
BibRef
Karimi, P.[Parisa],
Zhao, Z.Z.[Zhi-Zhen],
Butala, M.D.[Mark D.],
Kamalabadi, F.[Farzad],
Quantification of Mismatch Error in Randomly Switching Linear
State-Space Models,
SPLetters(28), 2021, pp. 2008-2012.
IEEE DOI
2110
Superluminescent diodes, Kalman filters, Switches, Trajectory,
Mathematical models, Dynamical systems, State-space methods,
model mismatch
BibRef
Yang, R.H.[Rong-Hua],
Deng, C.[Chang],
Yu, K.[Kegen],
Li, Z.[Zhao],
Pan, L.X.[Lei-Xilan],
A New Way for Cartesian Coordinate Transformation and Its Precision
Evaluation,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Paleologu, C.[Constantin],
Benesty, J.[Jacob],
Ciochina, S.[Silviu],
Data-Reuse Recursive Least-Squares Algorithms,
SPLetters(29), 2022, pp. 752-756.
IEEE DOI
2204
Signal processing algorithms, Convergence, Covariance matrices,
Computational complexity, Indexes, Kalman filters,
tracking
BibRef
Ji, F.F.[Fan-Fan],
Shuai, H.[Hui],
Yuan, X.T.[Xiao-Tong],
A globally convergent approximate Newton method for non-convex sparse
learning,
PR(126), 2022, pp. 108560.
Elsevier DOI
2204
Sparse learning, Newton-type method, Linear models,
Quadratic approximation, Iterative hard thresholding
BibRef
Xu, Y.Y.[Yang-Yang],
Xu, Y.[Yibo],
Yan, Y.G.[Yong-Gui],
Chen, J.[Jie],
Distributed Stochastic Inertial-Accelerated Methods with Delayed
Derivatives for Nonconvex Problems,
SIIMS(15), No. 2, 2022, pp. 550-590.
DOI Link
2205
BibRef
Huang, C.J.[Chu-Jun],
Shao, M.J.[Ming-Jie],
Ma, W.K.[Wing-Kin],
So, A.M.C.[Anthony Man-Cho],
SISAL Revisited,
SIIMS(15), No. 2, 2022, pp. 591-624.
DOI Link
2205
Simplex identification via split augmented Lagrangian.
BibRef
Guo, K.[Kai],
Zheng, D.D.[Dong-Dong],
Li, J.[Jianyong],
Optimal Bounded Ellipsoid Identification With Deterministic and
Bounded Learning Gains: Design and Application to Euler-Lagrange
Systems,
Cyber(52), No. 10, October 2022, pp. 10800-10813.
IEEE DOI
2209
Artificial neural networks, Heuristic algorithms, Uncertainty,
Ellipsoids, Upper bound, Convergence, Adaptive control,
optimal bounded ellipsoid (OBE)
BibRef
Routtenberg, T.[Tirza],
Tabrikian, J.[Joseph],
Bayesian Periodic Cramér-Rao Bound,
SPLetters(29), 2022, pp. 1878-1882.
IEEE DOI
2209
Bayes methods, Parameter estimation, Optimization, Minimization,
Estimation, Phase estimation, System analysis and design,
periodic parameter estimation
BibRef
Han, A.[Andi],
Gao, J.B.[Jun-Bin],
Improved Variance Reduction Methods for Riemannian Non-Convex
Optimization,
PAMI(44), No. 11, November 2022, pp. 7610-7623.
IEEE DOI
2210
Complexity theory, Optimization, Manifolds, Convergence,
Convex functions, Training, Principal component analysis, batch size adaptation
BibRef
Liu, F.H.[Fang-Hui],
Huang, X.L.[Xiao-Lin],
Chen, Y.D.[Yu-Dong],
Suykens, J.A.K.[Johan A. K.],
Towards a Unified Quadrature Framework for Large-Scale Kernel
Machines,
PAMI(44), No. 11, November 2022, pp. 7975-7988.
IEEE DOI
2210
Kernel, Monte Carlo methods, Convergence, Costs, Weight measurement,
Transforms, Standards, Random features, quadrature methods,
kernel approximation
BibRef
Maalouf, A.[Alaa],
Jubran, I.[Ibrahim],
Feldman, D.[Dan],
Fast and Accurate Least-Mean-Squares Solvers for High Dimensional
Data,
PAMI(44), No. 12, December 2022, pp. 9977-9994.
IEEE DOI
2212
Approximation algorithms, Matrix decomposition, Big Data,
Linear regression, Codes, Voltage control, Tuning, Regression, Big Data
BibRef
Tian, X.[Xiang],
Chen, H.[Hui],
He, M.M.[Meng-Meng],
Wang, W.Q.[Wen-Qin],
Fast Beampattern Synthesis Algorithm for Flexible Conformal Array,
SPLetters(29), 2022, pp. 2417-2421.
IEEE DOI
2212
Change wing shapes.
Optimization, Convex functions, Signal processing algorithms,
Transforms, Strain, Simulation, Shape, Flexible conformal array,
alternating direction method of multipliers (ADMM)
BibRef
Wang, J.[Jinfu],
Yang, F.[Feiran],
Yang, J.[Jun],
Insights Into the MMSE-Based Frequency-Invariant Beamformers for
Uniform Circular Arrays,
SPLetters(29), 2022, pp. 2432-2436.
IEEE DOI
2212
Jacobian matrices, Weight measurement, Array signal processing,
Mean square error methods, Apertures, White noise, minimum mean square error
BibRef
Zhang, H.R.[Heng-Ru],
Qiu, Y.[Ying],
Zhu, K.L.[Ke-Lin],
Min, F.[Fan],
Lower bound estimation of recommendation error through user
uncertainty modeling,
PR(136), 2023, pp. 109171.
Elsevier DOI
2301
Magic barrier estimation, Mixture of exponential power,
Recommender system, Uncertainty modeling
BibRef
Chouzenoux, E.[Emilie],
Contreras, A.[Andres],
Pesquet, J.C.[Jean-Christophe],
Savanier, M.[Marion],
Convergence Results for Primal-Dual Algorithms in the Presence of
Adjoint Mismatch,
SIIMS(16), No. 1, 2023, pp. 1-34.
DOI Link
2301
BibRef
Strossner, C.[Christoph],
Kressner, D.[Daniel],
Low-Rank Tensor Approximations for Solving Multimarginal Optimal
Transport Problems,
SIIMS(16), No. 1, 2023, pp. 169-191.
DOI Link
2302
BibRef
Mengüç, E.C.[Engin Cemal],
Acir, N.[Nurettin],
Mandic, D.P.[Danilo P.],
A Class of Online Censoring Based Quaternion-Valued Least Mean Square
Algorithms,
SPLetters(30), 2023, pp. 244-248.
IEEE DOI
2303
Signal processing algorithms, Quaternions, Calculus, Cost function,
Convergence, Filtering, Technological innovation, big data streams
BibRef
Bretin, E.[Elie],
Millien, P.[Pierre],
Seppecher, L.[Laurent],
Stability for Finite Element Discretization of Some Inverse Parameter
Problems from Internal Data: Application to Elastography,
SIIMS(16), No. 1, 2023, pp. 340-367.
DOI Link
2303
BibRef
Song, Y.[Yue],
Sebe, N.[Nicu],
Wang, W.[Wei],
Fast Differentiable Matrix Square Root and Inverse Square Root,
PAMI(45), No. 6, June 2023, pp. 7367-7380.
IEEE DOI
2305
Covariance matrices, Matrix decomposition, Decorrelation,
Transforms, Deep learning, Task analysis,
neural style transfer
BibRef
Liang, J.[Jing],
Li, K.[Ke],
Yu, K.J.[Kun-Jie],
Yue, C.T.[Cai-Tong],
Li, Y.X.[Ya-Xin],
Song, H.[Hui],
A Novel Differential Evolution Algorithm Based on Local Fitness
Landscape Information for Optimization Problems,
IEICE(E106-D), No. 5, May 2023, pp. 601-616.
WWW Link.
2305
BibRef
Gao, G.Y.[Guang-Yu],
Han, B.[Bo],
Fu, Z.[Zhenwu],
Tong, S.S.[Shan-Shan],
A Fast Data-Driven Iteratively Regularized Method with Convex Penalty
for Solving Ill-Posed Problems,
SIIMS(16), No. 2, 2023, pp. 640-670.
DOI Link
2306
BibRef
Fontana, F.[Federico],
Bozzo, E.[Enrico],
Bernardini, A.[Alberto],
Extended Fixed-Point Methods for the Computation of Virtual Analog
Models,
SPLetters(30), 2023, pp. 848-852.
IEEE DOI
2307
Jacobian matrices, Convergence, Mathematical models,
Digital filters, Computational modeling, virtual analog (VA)
BibRef
Zhai, Z.[Zheng],
Chen, H.C.[Heng-Chao],
Sun, Q.[Qiang],
Bounded Projection Matrix Approximation With Applications to
Community Detection,
SPLetters(30), 2023, pp. 957-961.
IEEE DOI
2308
Sparse matrices, Signal processing algorithms, Convergence,
Approximation algorithms, Limiting, Convex functions,
projection matrix approximation
BibRef
Xie, Y.[Yujia],
Su, X.H.[Xin-Hua],
Ge, H.[Huanmin],
RIP Analysis for L1/Lp (p>1) Minimization Method,
SPLetters(30), 2023, pp. 997-1001.
IEEE DOI
2309
BibRef
Greige, M.[Marc],
Karfoul, A.[Ahmad],
Merlet, I.[Isabelle],
Jeannès, R.L.B.[Régine Le Bouquin],
An Optimized Dictionary-Based Model Identification Method in the
Scope of Brain Effective Connectivity,
SPLetters(30), 2023, pp. 1002-1006.
IEEE DOI
2309
BibRef
Wang, J.[Jie],
Lu, L.[Lu],
Shi, L.[Long],
Zhu, G.[Guangya],
Yang, X.M.[Xiao-Min],
Euclidean Direction Search Algorithm Based on Maximum Correntropy
Criterion,
SPLetters(30), 2023, pp. 1032-1036.
IEEE DOI
2309
BibRef
Han, H.Y.[Hong-Yu],
Zhang, S.[Sheng],
Huang, F.[Fuyi],
Interval-Extraction Affine Projection Algorithm,
SPLetters(30), 2023, pp. 1632-1636.
IEEE DOI
2311
BibRef
Arjas, A.[Arttu],
Sillanpaa, M.J.[Mikko J.],
Hauptmann, A.S.[Andreas S.],
Sequential Model Correction for Nonlinear Inverse Problems,
SIIMS(16), No. 4, 2023, pp. 2015-2039.
DOI Link
2312
BibRef
Li, P.J.[Pei-Jun],
Liang, Y.[Ying],
Wang, Y.L.[Yu-Liang],
A Data-Assisted Two-Stage Method for the Inverse Random Source
Problem,
SIIMS(16), No. 4, 2023, pp. 1929-1952.
DOI Link
2312
BibRef
Kullberg, A.[Anton],
Skoglund, M.A.[Martin A.],
Skog, I.[Isaac],
Hendeby, G.[Gustaf],
On the Relationship Between Iterated Statistical Linearization and
Quasi-Newton Methods,
SPLetters(30), 2023, pp. 1777-1781.
IEEE DOI
2312
BibRef
Chu, H.Y.[Hao-Yu],
Wei, S.[Shikui],
Lu, Q.M.[Qi-Ming],
Zhao, Y.[Yao],
Improving neural ordinary differential equations via knowledge
distillation,
IET-CV(18), No. 2, 2024, pp. 304-314.
DOI Link
2403
image classification, neural nets
BibRef
Delmas, J.P.[Jean-Pierre],
Abeida, H.[Habti],
Generalization of Whittle's Formula to Compound-Gaussian Processes,
SPLetters(31), 2024, pp. 746-750.
IEEE DOI
2403
Gaussian processes, Gaussian distribution, Covariance matrices,
Generators, Random processes, Estimation, Correlation,
Student's t processes
BibRef
Liu, Y.L.[Yu-Lan],
Zhou, Y.Y.[Yu-Yang],
Lin, R.R.[Rong-Rong],
The Proximal Operator of the Piece-Wise Exponential Function,
SPLetters(31), 2024, pp. 894-898.
IEEE DOI
2404
Optimization, Compressed sensing, Signal processing algorithms,
Vectors, Mathematical models, Shape, Neural networks, proximal operator
BibRef
Besson, O.[Olivier],
Stein's Approach Based MVDR Filter Modification,
SPLetters(31), 2024, pp. 924-928.
IEEE DOI
2404
Minimum Variance Distortionless Response.
Vectors, Maximum likelihood estimation, Covariance matrices,
Signal to noise ratio, Training, Minimization, Loading,
Stein unbiased risk estimation
BibRef
Narnhofer, D.[Dominik],
Habring, A.[Andreas],
Holler, M.[Martin],
Pock, T.[Thomas],
Posterior-Variance-Based Error Quantification for Inverse Problems
in Imaging,
SIIMS(17), No. 1, 2024, pp. 301-333.
DOI Link
2404
BibRef
Ambartsoumian, G.[Gaik],
Jebelli, M.J.L.[Mohammad J. Latifi],
Mishra, R.K.[Rohit K.],
Numerical Implementation of Generalized V-Line Transforms on 2D
Vector Fields and their Inversions,
SIIMS(17), No. 1, 2024, pp. 595-631.
DOI Link
2404
BibRef
Devlin, L.[Lee],
Carter, M.[Matthew],
Horridge, P.[Paul],
Green, P.L.[Peter L.],
Maskell, S.[Simon],
The No-U-Turn Sampler as a Proposal Distribution in a Sequential
Monte Carlo Sampler Without Accept/Reject,
SPLetters(31), 2024, pp. 1089-1093.
IEEE DOI
2405
Proposals, Monte Carlo methods, Kernel, Transforms, Vectors,
Bayes methods, Space exploration, Bayesian inference, sequential Monte Carlo
BibRef
Gu, Z.[Zhi],
Zhou, Z.C.[Zheng-Chun],
Adhikary, A.R.[Avik Ranjan],
Fan, P.Z.[Ping-Zhi],
Yang, Y.[Yang],
Generalized Zadoff-Chu Sequences With Low PMEPR Property,
SPLetters(31), 2024, pp. 1174-1178.
IEEE DOI
2405
OFDM, Codes, Signal processing algorithms, Symbols,
Complexity theory, Systematics, Optimization, Zadoff-Chu sequence
BibRef
Yu, H.P.[Hai-Peng],
Chang, G.B.[Guo-Bin],
Zhang, S.[Shubi],
Improved Algorithm for Efficient Computation of Slepian Functions
Over Arbitrary Regions on the Sphere,
SPLetters(31), 2024, pp. 1189-1193.
IEEE DOI
2405
Signal processing algorithms, Computational efficiency,
Software algorithms, Computational complexity,
improvement
BibRef
Zhong, S.M.[Shui-Ming],
Lyu, H.[Huan],
Lu, X.X.[Xiao-Xiang],
Wang, B.W.[Bao-Wei],
Wang, D.C.[Ding-Cheng],
A New Sufficient and Necessary Condition for Testing Linear
Separability Between Two Sets,
PAMI(46), No. 6, June 2024, pp. 4160-4173.
IEEE DOI
2405
Computational modeling, Support vector machines, Time complexity,
Testing, Training, Task analysis, Symbols, Classification, sphere model
BibRef
Wang, C.G.[Chen-Guang],
Yu, Z.[Zhouliang],
McAleer, S.[Stephen],
Yu, T.S.[Tian-Shu],
Yang, Y.[Yaodong],
ASP: Learn a Universal Neural Solver!,
PAMI(46), No. 6, June 2024, pp. 4102-4114.
IEEE DOI
2405
Training, Traveling salesman problems, Optimization,
Vehicle routing, Scalability, Adaptation models, Standards,
policy space response oracles
BibRef
Zhang, X.Y.[Xin-Yue],
Peng, L.Z.[Liang-Zu],
Xu, W.T.[Wan-Ting],
Kneip, L.[Laurent],
Accelerating Globally Optimal Consensus Maximization in Geometric
Vision,
PAMI(46), No. 6, June 2024, pp. 4280-4297.
IEEE DOI
2405
Cameras, Fitting, Computational modeling, Pose estimation,
Optimization, Branch and bound, consensus maximization, interval stabbing
BibRef
Jin, X.Y.[Xiao-Yue],
Li, H.J.[Hao-Jing],
Yu, D.X.[Deng-Xiu],
Wang, Z.[Zhen],
Li, X.L.[Xue-Long],
Topological optimization of continuous action iterated dilemma based
on finite-time strategy using DQN,
PRL(182), 2024, pp. 133-139.
Elsevier DOI
2405
Evolutionary game theory, Topological optimization,
Convergence analysis, Lyapunov function
BibRef
Lopez, C.A.[Carlos Alejandro],
Riba, J.[Jaume],
On the Convergence of Block Majorization-Minimization Algorithms on
the Grassmann Manifold,
SPLetters(31), 2024, pp. 1314-1318.
IEEE DOI
2405
Manifolds, Convergence, Signal processing algorithms, Cost function,
Signal processing, Principal component analysis, convergence
BibRef
Diao, Q.K.[Qian-Kun],
Xu, D.P.[Dong-Po],
Sun, S.N.[Shu-Ning],
Mandic, D.P.[Danilo P.],
Price's Theorem for Quaternion Variables,
SPLetters(31), 2024, pp. 1424-1428.
IEEE DOI
2405
Quaternions, Vectors, Calculus, Covariance matrices,
Random variables, Filtering algorithms, Sun, GHR calculus,
quaternion statistics
BibRef
Mulchandani, M.[Mona],
Nair, P.S.[Pramod S.],
EBMICQL: Improving Efficiency of Blockchain Miner Pools via Incremental
and Continuous Q-Learning Framework,
IJIG(24), No. 3, May 2024, pp. 2450034.
DOI Link
2406
BibRef
Deen, O.[Owen],
Waller, C.R.[Colton River],
Ward, J.P.[John Paul],
Fast and Accurate Log-Determinant Approximations,
SPLetters(31), 2024, pp. 1520-1524.
IEEE DOI
2406
Sparse matrices, Splines (mathematics), Approximation algorithms,
Indexes, Signal processing algorithms, Laplace equations, Vectors,
sparse matrices
BibRef
Gillis, N.[Nicolas],
Luce, R.[Robert],
Checking the Sufficiently Scattered Condition Using a Global
Non-Convex Optimization Software,
SPLetters(31), 2024, pp. 1610-1614.
IEEE DOI
2406
Optimization, Matrix decomposition, Vectors, Software,
Principal component analysis, Machine learning,
non-convex quadra- tic optimization
BibRef
Ziou, D.[Djemel],
Using Maximum Weighted Likelihood to Derive Lehmer and Hölder
Families of Means,
SPLetters(31), 2024, pp. 1625-1629.
IEEE DOI
2406
Probability density function, Maximum likelihood estimation,
Arithmetic, Neural networks, Harmonic analysis, Shape, weighted data
BibRef
Walden, A.T.,
Generating Different Gaussian Multivariate Processes With Identical
Graphs,
SPLetters(31), 2024, pp. 1640-1644.
IEEE DOI
2406
Signal processing algorithms, Reactive power,
Time series analysis, Eigenvalues and eigenfunctions, Vectors,
reachability matrix
BibRef
Tan, H.Y.[Hong Ye],
Mukherjee, S.[Subhadip],
Tang, J.Q.[Jun-Qi],
Schonlieb, C.B.[Carola-Bibiane],
Provably Convergent Plug-and-Play Quasi-Newton Methods,
SIIMS(17), No. 2, 2024, pp. 785-819.
DOI Link
2407
BibRef
Miao, Z.W.[Zheng-Wei],
Luo, H.[Hui],
Li, M.H.[Mei-Hui],
Zhang, J.L.[Jian-Lin],
COLAFormer: Communicating local-global features with linear
computational complexity,
PR(157), 2025, pp. 110870.
Elsevier DOI
2409
Vision transformer, Image classification,
Computational complexity, Feature clustering
BibRef
Diao, Q.K.[Qian-Kun],
Liu, J.L.[Jin-Lan],
Zhang, N.M.[Nai-Min],
Xu, D.P.[Dong-Po],
An Iterative Algorithm for Quaternion Eigenvalue Problems in Signal
Processing,
SPLetters(31), 2024, pp. 2505-2509.
IEEE DOI
2410
Quaternions, Eigenvalues and eigenfunctions,
Signal processing algorithms, Calculus, Optimization, Convergence,
quaternion projected gradient ascent
BibRef
Shi, W.T.[Wan-Ting],
Xia, Y.[Yili],
Pei, W.J.[Wen-Jiang],
Widely Linear Momentum LMS Algorithm for Second Order Noncircular
Signals and Performance Analysis,
SPLetters(31), 2024, pp. 2235-2239.
IEEE DOI
2410
widely linear momentum least mean squares.
Convergence, Vectors, Covariance matrices,
Signal processing algorithms, Steady-state, Upper bound, Standards,
widely linear momentum LMS (WLMLMS)
BibRef
Fu, Y.Z.[Yu-Zhe],
Zhou, C.C.[Chang-Chun],
Huang, T.[Tianling],
Han, E.[Eryi],
He, Y.F.[Yi-Fan],
Jiao, H.L.[Hai-Long],
SoftAct: A High-Precision Softmax Architecture for Transformers
Supporting Nonlinear Functions,
CirSysVideo(34), No. 9, September 2024, pp. 8912-8923.
IEEE DOI
2410
Hardware, Transformers, Computer architecture, Quantization (signal),
Costs, Convolution, Inference algorithms, overall efficiency
BibRef
Wang, R.[Rui],
Zhang, C.[Chuwen],
Pu, S.[Shanwen],
Gao, J.J.[Jian-Jun],
Wen, Z.[Zaiwen],
A Customized Augmented Lagrangian Method for Block-Structured Integer
Programming,
PAMI(46), No. 12, December 2024, pp. 9439-9455.
IEEE DOI
2411
Integer programming, IP networks, Convex functions, Convergence,
Programming, Machine learning algorithms, Lagrangian functions, convergence
BibRef
Xiong, H.[Hao],
Tang, Y.[Yehui],
Ye, X.Y.[Xin-Yu],
Yan, J.C.[Jun-Chi],
Circuit Design and Efficient Simulation of Quantum Inner Product and
Empirical Studies of Its Effect on Near-Term Hybrid Quantum-Classic
Machine Learning,
CVPR24(26162-26170)
IEEE DOI
2410
Computers, Pipelines, Qubit, Quantum mechanics, Machine learning,
Self-supervised learning, Complexity theory,
quantum circuits
BibRef
Hong, S.[Seongmin],
Park, I.[Inbum],
Chun, S.Y.[Se Young],
On the Robustness of Normalizing Flows for Inverse Problems in
Imaging,
ICCV23(10711-10721)
IEEE DOI
2401
BibRef
Huang, Z.Z.[Zhong-Zhan],
Liang, M.[Mingfu],
Qin, J.H.[Jing-Hui],
Zhong, S.S.[Shan-Shan],
Lin, L.[Liang],
Understanding Self-attention Mechanism via Dynamical System
Perspective,
ICCV23(1412-1422)
IEEE DOI
2401
BibRef
Wu, W.H.[Wen-Hao],
Song, Y.X.[Yu-Xin],
Sun, Z.[Zhun],
Wang, J.D.[Jing-Dong],
Xu, C.[Chang],
Ouyang, W.L.[Wan-Li],
What Can Simple Arithmetic Operations Do for Temporal Modeling?,
ICCV23(13666-13676)
IEEE DOI Code:
WWW Link.
2401
BibRef
Reddy, N.K.K.[Nareddy Kartheek Kumar],
Killedar, V.[Vinayak],
Seelamantula, C.S.[Chandra Sekhar],
Quantized Generative Models for Solving Inverse Problems,
REDLCV23(1520-1525)
IEEE DOI
2401
BibRef
Liu, X.C.[Xing-Chao],
Wu, L.[Lemeng],
Zhang, S.J.[Shu-Jian],
Gong, C.Y.[Cheng-Yue],
Ping, W.[Wei],
Liu, Q.[Qiang],
FlowGrad: Controlling the Output of Generative ODEs with Gradients,
CVPR23(24335-24344)
IEEE DOI
2309
BibRef
Dagès, T.[Thomas],
Cohen, L.D.[Laurent D.],
Bruckstein, A.M.[Alfred M.],
A model is worth tens of thousands of examples for estimation and
thousands for classification,
PR(157), 2025, pp. 110904.
Elsevier DOI
2409
BibRef
Earlier:
A Model is Worth Tens of Thousands of Examples,
SSVM23(223-235).
Springer DOI
2307
Deep learning, Model-based methods, Sample complexity
BibRef
Xue, H.[Hao],
Zeng, X.[Xia],
Lin, W.[Wang],
Yang, Z.F.[Zheng-Feng],
Peng, C.[Chao],
Zeng, Z.B.[Zhen-Bing],
An RNN-Based Framework for the MILP Problem in Robustness Verification
of Neural Networks,
ACCV22(I:571-586).
Springer DOI
2307
Mixed-Integer Linear Programming.
BibRef
Guastini, M.[Mara],
Rajkovic, M.[Marko],
Rumpf, M.[Martin],
Wirth, B.[Benedikt],
The Variational Approach to the Flow of Sobolev-Diffeomorphisms Model,
SSVM23(551-564).
Springer DOI
2307
BibRef
Shabani, S.[Shima],
Breuß, M.[Michael],
An Efficient Line Search for Sparse Reconstruction,
SSVM23(471-483).
Springer DOI
2307
Find local minimum
BibRef
Gofer, E.[Eyal],
Gilboa, G.[Guy],
Theoretical Foundations for Pseudo-inversion of Nonlinear Operators,
SSVM23(29-41).
Springer DOI
2307
BibRef
Kahl, M.[Max],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Steidl, G.[Gabriele],
Zisler, M.[Matthias],
On the Remarkable Efficiency of Smart,
SSVM23(418-430).
Springer DOI
2307
BibRef
Buskulic, N.[Nathan],
Quéau, Y.[Yvain],
Fadili, J.[Jalal],
Convergence Guarantees of Overparametrized Wide Deep Inverse Prior,
SSVM23(406-417).
Springer DOI
2307
BibRef
Wang, S.[Shida],
Fadili, J.[Jalal],
Ochs, P.[Peter],
A Quasi-Newton Primal-dual Algorithm with Line Search,
SSVM23(444-456).
Springer DOI
2307
BibRef
Toft, C.[Carl],
Bökman, G.[Georg],
Kahl, F.[Fredrik],
Azimuthal Rotational Equivariance in Spherical Convolutional Neural
Networks,
ICPR22(3808-3814)
IEEE DOI
2212
Training, Correlation, Convolution, Pipelines, Neural networks,
Harmonic analysis
BibRef
Yang, W.B.[Wen-Bin],
Wang, Z.[Zijia],
Ni, J.C.[Jia-Cheng],
Chen, Q.[Qiang],
Jia, Z.[Zhen],
A Low-Rank Tensor Bayesian Filter Framework For Multi-Modal Analysis,
ICIP22(3738-3742)
IEEE DOI
2211
Cloud computing, Tensors, Algebra, Image edge detection,
Information filters, Bayes methods, Tensor, Bayesian filter,
multi-modal edge cloud computing
BibRef
Hammoumi, A.[Adam],
Moreaud, M.[Maxime],
Jolimaitre, E.[Elsa],
Chevalier, T.[Thibaud],
Klotz, M.[Michaela],
Novikov, A.[Alexey],
Accelerating a Morphology-Preserving Adsorption Model by Deep
Learning,
ICIP22(1851-1855)
IEEE DOI
2211
Alternate numerical simulations.
Adaptation models, Adsorption, Computational modeling, Morphology,
Predictive models, CNN, gas adsorption, mathematical morphology
BibRef
An, D.S.[Dong-Sheng],
Lei, N.[Na],
Gu, X.F.[Xian-Feng],
Approximate Discrete Optimal Transport Plan with Auxiliary Measure
Method,
ECCV22(XXIII:619-635).
Springer DOI
2211
BibRef
Görlitz, A.[Andreas],
Möller, M.[Michael],
Kolb, A.[Andreas],
FL0C: Fast L0 Cut Pursuit for Estimation of Piecewise Constant
Functions,
ICIP22(3677-3681)
IEEE DOI
2211
Image segmentation, Estimation, Approximation algorithms,
Minimization, Hardware, Partitioning algorithms,
Piecewise Constant Mumford Shah
BibRef
Wang, H.Y.[Huan-Yu],
Zhang, W.[Wenhu],
Su, S.H.[Shi-Hao],
Wang, H.[Hui],
Miao, Z.W.[Zhen-Wei],
Zhan, X.[Xin],
Li, X.[Xi],
SP-Net: Slowly Progressing Dynamic Inference Networks,
ECCV22(XI:223-240).
Springer DOI
2211
BibRef
Du, S.[Shian],
Luo, Y.H.[Yi-Hong],
Chen, W.[Wei],
Xu, J.[Jian],
Zeng, D.[Delu],
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
Optimization adjoint with Moving Speed,
CVPR22(12560-12570)
IEEE DOI
2210
Training, Statistical analysis, Computational modeling,
Ordinary differential equations,
Self- semi- meta- Statistical methods
BibRef
Exarchakis, G.[Georgios],
Oubari, O.[Omar],
Lenz, G.[Gregor],
A sampling-based approach for efficient clustering in large datasets,
CVPR22(12393-12402)
IEEE DOI
2210
Clustering methods, Clustering algorithms, Approximation algorithms,
Complexity theory, Task analysis, Statistical methods
BibRef
Wang, H.Y.[Huan-Yu],
Li, S.Y.[Song-Yuan],
Su, S.H.[Shi-Hao],
Qin, Z.Q.[Ze-Qun],
Li, X.[Xi],
RDI-Net: Relational Dynamic Inference Networks,
ICCV21(4601-4610)
IEEE DOI
2203
Adaptation models, Correlation, Adaptive systems, Convolution,
Computational modeling, Aggregates, Optimization and learning methods
BibRef
Rodríguez-Diez, V.[Vladímir],
Martínez-Trinidad, J.F.[José F.],
Carrasco-Ochoa, J.A.,
Lazo-Cortés, M.S.[Manuel S.],
Olvera-López, J.A.[J. Arturo],
A Comparative Study of Two Algorithms for Computing the Shortest
Reducts: MiLIT and MinReduct,
MCPR21(57-67).
Springer DOI
2108
BibRef
Laferrière, P.[Philippe],
Laferrière, S.[Samuel],
Dahdah, S.[Steven],
Forbes, J.R.[James Richard],
Paull, L.[Liam],
Deep Koopman Representation for Control over Images (DKRCI),
CRV21(158-164)
IEEE DOI
2108
Deep learning, Linear systems, Neural networks,
Aerospace electronics, Nonlinear dynamical systems, Robots,
dynamical systems
BibRef
Anumasa, S.[Srinivas],
Srijith, P.K.,
Improving Robustness and Uncertainty Modelling in Neural Ordinary
Differential Equations,
WACV21(4052-4060)
IEEE DOI
2106
Uncertainty, Computational modeling,
Neural networks, Computer architecture,
Robustness
BibRef
Vasilescu, M.A.O.[M. Alex O],
Kim, E.[Eric],
Zeng, X.S.[Xiao S.],
CausalX: Causal eXplanations and Block Multilinear Factor Analysis,
ICPR21(10736-10743)
IEEE DOI
2105
Tree data structures, Visualization, Tensors, Algebra,
Computational modeling, Training data, Data models, causality,
image analysis
BibRef
Le, H.[Huu],
Zach, C.[Christopher],
Rosten, E.[Edward],
Woodford, O.J.[Oliver J.],
Progressive Batching for Efficient Non-linear Least Squares,
ACCV20(III:506-522).
Springer DOI
2103
BibRef
Gui, Z.,
Wang, Y.,
Cui, Z.,
Peng, D.,
Wu, J.,
Ma, Z.,
Luo, S.,
Wu, H.,
Developing Apache Spark Based Ripley's K Functions for Accelerating
Spatiotemporal Point Pattern Analysis,
ISPRS20(B4:545-552).
DOI Link
2012
BibRef
Yu, T.[Tan],
Cai, Y.F.[Yun-Feng],
Li, P.[Ping],
Toward Faster and Simpler Matrix Normalization via Rank-1 Update,
ECCV20(XIX:203-219).
Springer DOI
2011
BibRef
Chowdhury, S.[Samir],
Needham, T.[Tom],
Gromov-Wasserstein Averaging in a Riemannian Framework,
Diff-CVML20(3676-3684)
IEEE DOI
2008
Extraterrestrial measurements, Couplings,
Transmission line matrix methods, Manifolds, Task analysis, Covariance matrices
BibRef
Henriques, J.,
Ehrhardt, S.,
Albanie, S.,
Vedaldi, A.,
Small Steps and Giant Leaps: Minimal Newton Solvers for Deep Learning,
ICCV19(4762-4771)
IEEE DOI
2004
approximation theory, conjugate gradient methods,
convergence of numerical methods, differentiation, Convergence
BibRef
Li, Q.X.[Qiu-Xian],
Tian, Y.L.[You-Liang],
Rational Delegation Computing Using Information Theory and Game Theory
Approach,
MMMod20(II:669-680).
Springer DOI
2003
BibRef
Wang, Z.C.[Zhi-Chao],
Li, Q.[Qian],
Li, G.[Gang],
Xu, G.D.[Guan-Dong],
Polynomial Representation for Persistence Diagram,
CVPR19(6116-6125).
IEEE DOI
2002
BibRef
Barron, J.T.[Jonathan T.],
A General and Adaptive Robust Loss Function,
CVPR19(4326-4334).
IEEE DOI
2002
BibRef
Lichtenstein, M.[Moshe],
Pai, G.[Gautam],
Kimmel, R.[Ron],
Deep Eikonal Solvers,
SSVM19(38-50).
Springer DOI
1909
Deep learning for approximate solutions.
BibRef
Deledalle, C.A.[Charles-Alban],
Papadakis, N.[Nicolas],
Salmon, J.[Joseph],
Vaiter, S.[Samuel],
Refitting Solutions Promoted by L12 Sparse Analysis Regularizations
with Block Penalties,
SSVM19(131-143).
Springer DOI
1909
BibRef
Hertrich, J.[Johannes],
Bacák, M.[Miroslav],
Neumayer, S.[Sebastian],
Steidl, G.[Gabriele],
Minimal Lipschitz Extensions for Vector-Valued Functions on Finite
Graphs,
SSVM19(183-195).
Springer DOI
1909
BibRef
Adilkhanov, A.N.,
Pavlov, A.V.,
Taimanov, I.A.,
Discrete Analog of the Jacobi Set for Vector Fields,
CTIC19(1-11).
Springer DOI
1901
BibRef
Wu, B.C.[Bi-Chen],
Wan, A.[Alvin],
Yue, X.Y.[Xiang-Yu],
Jin, P.[Peter],
Zhao, S.C.[Si-Cheng],
Golmant, N.[Noah],
Gholaminejad, A.[Amir],
Gonzalez, J.[Joseph],
Keutzer, K.[Kurt],
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial
Convolutions,
CVPR18(9127-9135)
IEEE DOI
1812
Kernel, Computational modeling, Task analysis,
Resource description framework, Aggregates, Standards
BibRef
Tourani, S.[Siddharth],
Shekhovtsov, A.[Alexander],
Rother, C.[Carsten],
Savchynskyy, B.[Bogdan],
MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models,
ECCV18(II: 264-281).
Springer DOI
1810
Max Product Linear Programming.
BibRef
Orlowski, A.[Arkadiusz],
Chmielewski, L.J.[Leszek J.],
Ulam Spiral and Prime-Rich Polynomials,
ICCVG18(522-533).
Springer DOI
1810
BibRef
López, M.A.[Marco A.],
Marcial-Romero, J.R.[J. Raymundo],
de Ita, G.[Guillermo],
Moyao, Y.[Yolanda],
A Linear Time Algorithm for Computing #2SAT for Outerplanar 2-CNF
Formulas,
MCPR18(72-81).
Springer DOI
1807
Satisfiability problem for two Conjunctive Normal Form formulas.
BibRef
Wang, W.Q.[Wen-Qi],
Aggarwal, V.[Vaneet],
Aeron, S.[Shuchin],
Efficient Low Rank Tensor Ring Completion,
ICCV17(5698-5706)
IEEE DOI
1802
tensors, MPS representation:
Matrix Product State.
TR completion algorithm, alternating minimization algorithm,
Tensile stress
BibRef
Olsson, C.,
Carlsson, M.,
Andersson, F.,
Larsson, V.,
Non-convex Rank/Sparsity Regularization and Local Minima,
ICCV17(332-340)
IEEE DOI
1802
computational complexity, concave programming,
convex programming, gradient methods, matrix algebra, minimisation,
TV
BibRef
Vogel, C.[Christoph],
Pock, T.[Thomas],
A Primal Dual Network for Low-Level Vision Problems,
GCPR17(189-202).
Springer DOI
1711
BibRef
Heiss, T.[Teresa],
Wagner, H.[Hubert],
Streaming Algorithm for Euler Characteristic Curves of Multidimensional
Images,
CAIP17(I: 397-409).
Springer DOI
1708
Computation using data in sequence, not all at once.
BibRef
Dong, S.M.[Shu-Min],
Zhuang, X.D.[Xiao-Dong],
Yu, J.[Jun],
Wang, Y.[Ying],
Zhao, B.[Bo],
The design and analysis of adjustment factor in Gerschgorin Criterion
for Source Number Estimation,
ICIVC17(823-827)
IEEE DOI
1708
Algorithm design and analysis, Design methodology, Robustness,
Signal to noise ratio, adjustment factor, colored noise,
gerschgorin disk criterion, source number estimation.
BibRef
Chen, C.[Cheng],
Yang, C.,
Introducing an in-core hybrid LU implementation on heterogeneous
systems,
ICIVC17(1084-1089)
IEEE DOI
1708
Microwave integrated circuits, Niobium, LU factorization,
heterogeneous system, in-core
BibRef
Wielgus, A.,
Zarzycki, J.,
Efficient Schur parametrization of near-stationary stochastic
processes,
WSSIP17(1-5)
IEEE DOI
1707
Complexity theory, Covariance matrices, DH-HEMTs, Hilbert space,
Image processing, Signal processing algorithms,
Stochastic processes,
Second-order nonstationary stochastic processes,
complexity reduction, linear, Schur, parametrization
BibRef
Liang, J.W.[Jing-Wei],
Fadili, J.M.[Jalal M.],
Peyre, G.[Gabriel],
On the convergence rates of proximal splitting algorithms,
ICIP14(4146-4150)
IEEE DOI
1502
Complexity theory
BibRef
Arnold, D.G.[D. Gregory],
Sturtz, K.[Kirk],
Complexity Analysis of ATR Algorithms Based on Invariants,
CVBVS00(27).
IEEE DOI
0006
BibRef
Zucker, S.W.,
Complexity and Confusion in Computational Vision,
SCIA99(Invited Talk).
BibRef
9900
Zucker, S.W.[Steven W.],
Structural Scales in Computational Vision,
AIU96(130-141).
BibRef
9600
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Ant Colony Optimization, Bee Colony Optimization .