4.3.2.2 Color Morphology, Gray Scale Morphology

Chapter Contents (Back)
Gray Scale Morphology.

Sternberg, S.R.[Stanley R.],
Grayscale Morphology,
CVGIP(35), No. 3, 1987, pp. 333-355.
Elsevier DOI BibRef 8700
Earlier: with added A1, A3: Haralick, R.M., Zhuang, X., CVPR86(543-550). Basically an introduction to what grayscale morphology. BibRef

Heijmans, H.J.A.M.,
Theoretical Aspects of Gray-Level Morphology,
PAMI(13), No. 6, June 1991, pp. 568-582.
IEEE DOI BibRef 9106

Heijmans, H.J.A.M.,
A Note on the Umbra Transform in Gray-Scale Morphology,
PRL(14), 1993, pp. 877-881. BibRef 9300

Dougherty, E.R.,
Euclidean Gray-Scale Granulometries: Representation and Umbra Inducement,
JMIV(1), 1992, pp. 7-21. BibRef 9200

Dougherty, E.R.,
Optimal Mean-Absolute-Error Filtering of Gray-Scale Signals by the Morphological Hit-or-Miss Transform,
JMIV(4), 1994, pp. 255-271. BibRef 9400

Dougherty, E.R.,
The Dual Representation of Gray-Scale Morphological Filters,
CVPR89(172-177).
IEEE DOI BibRef 8900

Dougherty, E.R.,
Hausdorf-metric interpretation of convergence in the Matheron topology for binary mathematical morphology,
ICPR90(I: 870-875).
IEEE DOI 9006
BibRef

Zhao, D., Dougherty, E.R.,
Morphological Hit-or-Miss Transformation for Shape Recognition,
JVCIR(2), 1991, pp. 230-243. BibRef 9100

Dougherty, E.R., Zhao, D.,
Model-Based Characterization of Statistically Optimal Design for Morphological Shape Recognition Algorithms via the Hit-or-Miss Transform,
JVCIR(3), 1992, pp. 147-160. BibRef 9200

Dougherty, E.R.[Edward R.],
Optimal Mean-Square N-Observation Digital Morphological Filters: I. Optimal Binary Filters,
CVGIP(55), No. 1, January 1992, pp. 36-54.
Elsevier DOI BibRef 9201
Optimal Mean-Square N-Observation Digital Morphological Filters: II. Optimal Gray-Scale Filters,
CVGIP(55), No. 1, January 1992, pp. 55-72.
Elsevier DOI BibRef

Dougherty, E.R.[Edward R.],
Unification of Nonlinear Filtering in the Context of Binary Logical Calculus, Part II: Gray-Scale Filters,
JMIV(2), 1992, pp. 185-192.
See also Unification of Nonlinear Filtering in the Context of Binary Logical Calculus, Part I: Binary Filters. BibRef 9200

Dougherty, E.R.[Edward R.],
Application of the Hausdorff Metric in Gray-Scale Mathematical Morphology via Truncated Umbrae,
JVCIR(2), 1991, pp. 177-187. BibRef 9100

Dougherty, E.R.[Edward R.],
A Lattice-Based Minimal Gray-Scale Switching Algorithm for Obtaining the Optimal Increasing Filter from the Optimal Filter,
JMIV(21), No. 1, July 2004, pp. 43-52.
DOI Link 0409
BibRef

Takriti, S., Gader, P.D.,
Local Decomposition of Gray-Scale Morphological Templates,
JMIV(2), 1992, pp. 39-50. BibRef 9200

Hawkes, P.W.,
Manipulation of Multivalued Images in Image Algebra,
JMIV(2), 1992, pp. 83-85. BibRef 9200

Sapiro, G.[Guillermo], Kimmel, R.[Ron], Shaked, D.[Doron], Kimia, B.B.[Benjamin B.], Bruckstein, A.M.[Alfred M.],
Implementing continuous-scale morphology via curve evolution,
PR(26), No. 9, September 1993, pp. 1363-1372.
Elsevier DOI 0401
BibRef

Gader, P.D.[Paul D.],
Separable Decompositions and Approximations of Greyscale Morphological Templates,
CVGIP(53), No. 3, May 1991, pp. 288-296.
Elsevier DOI BibRef 9105

Jones, R., Svalbe, I.,
Algorithms for the Decomposition of Gray-Scale Morphological Operations,
PAMI(16), No. 6, June 1994, pp. 581-588.
IEEE DOI BibRef 9406
Earlier:
Basis decomposition of morphological operations,
ICPR92(III:264-267).
IEEE DOI 9208
BibRef

Albiol, A., Serra, J.,
Morphological Image Enlargements,
JVCIR(8), 1997, pp. 367-383. BibRef 9700

Deng, T.Q.[Ting-Quan], Heijmans, H.J.A.M.[Henk J.A.M.],
Grey-Scale Morphology Based on Fuzzy Logic,
JMIV(16), No. 2, March 2002, pp. 155-171.
DOI Link 0202
BibRef

Naegel, B.[Benoît], Passat, N.[Nicolas], Ronse, C.[Christian],
Grey-level hit-or-miss transforms--Part I: Unified theory,
PR(40), No. 2, February 2007, pp. 635-647.
Elsevier DOI 0611
BibRef
And:
Grey-level hit-or-miss transforms--part II: Application to angiographic image processing,
PR(40), No. 2, February 2007, pp. 648-658.
Elsevier DOI 0611
Morphological probing. Mathematical morphology, Hit-or-miss transform, Grey-level interval operator; Angiographic image processing BibRef

Caldairou, B.[Benoît], Naegel, B.[Benoît], Passat, N.[Nicolas],
Segmentation of Complex Images Based on Component-Trees: Methodological Tools,
ISMM09(171-180).
Springer DOI 0908
BibRef

Passat, N.[Nicolas], Naegel, B.[Benoît],
Component-Trees and Multivalued Images: Structural Properties,
JMIV(49), No. 1, May 2014, pp. 37-50.
WWW Link. 1404
BibRef
Earlier: A2, A1:
Towards Connected Filtering Based on Component-Graphs,
ISMM13(353-364).
Springer DOI 1305
BibRef
Earlier: A1, A2:
Selection of Relevant Nodes from Component-Trees in Linear Time,
DGCI11(453-464).
Springer DOI 1104
BibRef
Earlier: A2, A1:
Component-Trees and Multi-value Images: A Comparative Study,
ISMM09(261-271).
Springer DOI 0908
BibRef
And: A1, A2:
An extension of component-trees to partial orders,
ICIP09(3981-3984).
IEEE DOI 0911
BibRef

Naegel, B.[Benoit], Passat, N.[Nicolas],
Colour Image Filtering with Component-Graphs,
ICPR14(1621-1626)
IEEE DOI 1412
Arrays BibRef

Angulo, J.[Jesus],
Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis,
CVIU(107), No. 1-2, July-August 2007, pp. 56-73.
Elsevier DOI 0706
Colour mathematical morphology, Colour distance, Multivariate ordering, Colour feature extraction, Colour noise removal, Colour contrast enhancement, LSH, L*a*b*
See also Hypercomplex Mathematical Morphology. BibRef

Angulo, J.[Jesús],
Morphological PDE and Dilation/Erosion Semigroups on Length Spaces,
ISMM15(509-521).
Springer DOI 1506
BibRef

Angulo, J.[Jesús],
Geometric algebra colour image representations and derived total orderings for morphological operators: Part I: Colour quaternions,
JVCIR(21), No. 1, January 2010, pp. 33-48.
Elsevier DOI 1002
BibRef
And:
Structure Tensor of Colour Quaternion Image Representations for Invariant Feature Extraction,
CCIW09(91-10).
Springer DOI 0903
Colour mathematical morphology, Colour quaternion, Quaternion total ordering, Nonlinear colour filtering, Colour feature extraction; Colour image representation, Hypercomplex representation, Colour potential function, Quaternion complete lattice BibRef

Verdú-Monedero, R.[Rafael], Angulo, J.[Jesús], Serra, J.[Jean],
Anisotropic Morphological Filters With Spatially-Variant Structuring Elements Based on Image-Dependent Gradient Fields,
IP(20), No. 1, January 2011, pp. 200-212.
IEEE DOI 1101
BibRef
Earlier:
Spatially-Variant Anisotropic Morphological Filters Driven by Gradient Fields,
ISMM09(115-125).
Springer DOI 0908
BibRef

Verdú-Monedero, R.[Rafael], Angulo, J.[Jesús],
Spatially-Variant Directional Mathematical Morphology Operators Based on a Diffused Average Squared Gradient Field,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Meyer, F.[Fernand],
Shape Interpolation with Flattenings,
ICPR10(2094-2097).
IEEE DOI 1008
BibRef

Meyer, F.[Fernand],
Levelings and Flat Zone Morphology,
ICPR10(1570-1573).
IEEE DOI 1008
BibRef

Angulo, J.[Jesús], Meyer, F.[Fernand],
Morphological Exploration of Shape Spaces,
ISMM09(226-237).
Springer DOI 0908
BibRef

Angulo, J.[Jesús],
From Scalar-Valued Images to Hypercomplex Representations and Derived Total Orderings for Morphological Operators,
ISMM09(238-249).
Springer DOI 0908
BibRef

Urbach, E.R., Wilkinson, M.H.F.,
Efficient 2-D Grayscale Morphological Transformations With Arbitrary Flat Structuring Elements,
IP(17), No. 1, January 2008, pp. 1-8.
IEEE DOI 0712
BibRef
Earlier:
Efficient 2-D Gray-Scale Dilations and Erosions with Arbitrary Flat Structuring Elements,
ICIP06(1573-1576).
IEEE DOI 0610
BibRef

Mélange, T.[Tom], Nachtegael, M.[Mike], Sussner, P.[Peter], Kerre, E.E.[Etienne E.],
On the Decomposition of Interval-Valued Fuzzy Morphological Operators,
JMIV(36), No. 3, March 2010, pp. xx-yy.
Springer DOI 1003
BibRef
Earlier: A2, A3, A1, A4:
An Interval-Valued Fuzzy Morphological Model Based on Lukasiewicz-Operators,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Sussner, P.[Peter], Nachtegael, M.[Mike], Mélange, T.[Tom], Deschrijver, G.[Glad], Esmi, E.[Estevăo], Kerre, E.E.[Etienne E.],
Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of L-Fuzzy Mathematical Morphology,
JMIV(43), No. 1, May 2012, pp. 50-71.
WWW Link. 1204
BibRef

de Witte, V.[Valérie], Schulte, S.[Stefan], Nachtegael, M.[Mike], van der Weken, D.[Dietrich], Kerre, E.E.[Etienne E.],
Vector Morphological Operators for Colour Images,
ICIAR05(667-675).
Springer DOI 0509
BibRef

van de Gronde, J.J.[Jasper J.], Roerdink, J.B.T.M.[Jos B.T.M.],
Group-Invariant Colour Morphology Based on Frames,
IP(23), No. 3, March 2014, pp. 1276-1288.
IEEE DOI 1403
BibRef
Earlier:
Group-Invariant Frames for Colour Morphology,
ISMM13(267-278).
Springer DOI 1305
filtering theory BibRef

van de Gronde, J.J.[Jasper J.], Roerdink, J.B.T.M.[Jos B.T.M.],
Sponges for Generalized Morphology,
ISMM15(351-362).
Springer DOI 1506
BibRef

van de Gronde, J.J.[Jasper J.], Roerdink, J.B.T.M.[Jos B.T.M.],
Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields,
PRL(47), No. 1, 2014, pp. 40-49.
Elsevier DOI 1408
Mathematical morphology BibRef

Burgeth, B.[Bernhard], Kleefeld, A.[Andreas],
An approach to color-morphology based on Einstein addition and Loewner order,
PRL(47), No. 1, 2014, pp. 29-39.
Elsevier DOI 1408
BibRef
Earlier:
Morphology for Color Images via Loewner Order for Matrix Fields,
ISMM13(243-254).
Springer DOI 1305
Color space BibRef

Burgeth, B.[Bernhard], Kleefeld, A.[Andreas],
A Unified Approach to PDE-Driven Morphology for Fields of Orthogonal and Generalized Doubly-Stochastic Matrices,
ISMM17(284-295).
Springer DOI 1706
BibRef

Kleefeld, A.[Andreas], Meyer-Baese, A.[Anke], Burgeth, B.[Bernhard],
Elementary Morphology for SO(2)- and SO(3)-Orientation Fields,
ISMM15(458-469).
Springer DOI 1506

See also Adaptive Filters for Color Images: Median Filtering and Its Extensions. BibRef

González-Castro, V.[Víctor], Debayle, J.[Johan], Pinoli, J.C.[Jean-Charles],
Color Adaptive Neighborhood Mathematical Morphology and its application to pixel-level classification,
PRL(47), No. 1, 2014, pp. 50-62.
Elsevier DOI 1408
Mathematical Morphology BibRef

Lei, T.[Tao], Wang, Y.[Yi], Wang, G.H.[Guo-Hua], Fan, Y.Y.[Yang-Yu],
Multivariate mathematical morphology based on fuzzy extremum estimation,
IET-IPR(8), No. 9, September 2014, pp. 548-558.
DOI Link 1410
fuzzy set theory BibRef

Lei, T.[Tao], Fan, Y.Y.[Yang-Yu], Zhang, C.R.[Chen-Rui], Wang, X.P.[Xiao-Peng],
Vector mathematical morphological operators based on fuzzy extremum estimation,
ICIP13(3031-3034)
IEEE DOI 1402
color image processing BibRef

Kurtz, C.[Camille], Naegel, B.[Benoit], Passat, N.[Nicolas],
Connected Filtering Based on Multivalued Component-Trees,
IP(23), No. 12, December 2014, pp. 5152-5164.
IEEE DOI 1412
BibRef
Earlier:
Multivalued Component-Tree Filtering,
ICPR14(1008-1013)
IEEE DOI 1412
filtering theory. Computational efficiency BibRef

Chevallier, E.[Emmanuel], Angulo, J.[Jesús],
The Irregularity Issue of Total Orders on Metric Spaces and Its Consequences for Mathematical Morphology,
JMIV(54), No. 3, March 2016, pp. 344-357.
WWW Link. 1604
BibRef
Earlier:
Image adapted total ordering for mathematical morphology on multivariate images,
ICIP14(2943-2947)
IEEE DOI 1502
Clustering algorithms BibRef

Chevallier, E.[Emmanuel], Chevallier, A.[Augustin], Angulo, J.[Jesús],
N-ary Mathematical Morphology,
ISMM15(339-350).
Springer DOI 1506
BibRef

Chevallier, E.[Emmanuel], Kalunga, E.[Emmanuel], Angulo, J.[Jesús],
Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices,
SIIMS(10), No. 1, 2017, pp. 191-215.
DOI Link 1704
BibRef

Franchi, G.[Gianni], Angulo, J.[Jesús],
Morphological Principal Component Analysis for Hyperspectral Image Analysis,
IJGI(5), No. 6, 2016, pp. 83.
DOI Link 1608
BibRef
Earlier:
Ordering on the Probability Simplex of Endmembers for Hyperspectral Morphological Image Processing,
ISMM15(410-421).
Springer DOI 1506
BibRef
And:
Bagging Stochastic Watershed on Natural Color Image Segmentation,
ISMM15(422-433).
Springer DOI 1506
BibRef

Valle, M.E.[Marcos Eduardo], Valente, R.A.[Raul Ambrozio],
Mathematical Morphology on the Spherical CIELab Quantale with an Application in Color Image Boundary Detection,
JMIV(57), No. 2, February 2017, pp. 183-201.
WWW Link. 1702
BibRef
Earlier:
Elementary Morphological Operations on the Spherical CIELab Quantale,
ISMM15(375-386).
Springer DOI 1506
BibRef

Wang, J.P.[Jun-Ping], Liang, G.M.[Gang-Ming], Wu, Y.[Yao], Li, Y.[Yong], Hu, J.[Jing],
New colour morphological operators on hypergraph,
IET-IPR(12), No. 5, May 2018, pp. 690-695.
DOI Link 1804
BibRef

Bibiloni, P.[Pedro], González-Hidalgo, M.[Manuel], Massanet, S.[Sebastia],
Soft Color Morphology: A Fuzzy Approach for Multivariate Images,
JMIV(61), No. 3, March 2019, pp. 394-410.
Springer DOI 1903
BibRef

Zhao, L.[Lulu], Wang, J.P.[Jun-Ping], Li, Y.B.[Yan-Bo],
Colour morphological operators based on formal concept analysis,
SIViP(14), No. 1, February 2020, pp. 151-158.
WWW Link. 2001
BibRef


Sridhar, V.[Vivek], Breuß, M.[Michael],
Sampling of Non-flat Morphology for Grey Value Images,
CAIP21(II:88-97).
Springer DOI 2112
BibRef

Sridhar, V.[Vivek], Breuss, M.[Michael], Kahra, M.[Marvin],
Fast Approximation of Color Morphology,
ISVC21(II:488-499).
Springer DOI 2112
BibRef

Iwanowski, M.[Marcin],
Edge-aware Color Image Manipulation by Combination of Low-pass Linear Filter and Morphological Processing of Its Residuals,
ICCVG20(59-71).
Springer DOI 2009
BibRef

Grossiord, É.[Éloďse], Naegel, B.[Benoît], Talbot, H.[Hugues], Passat, N.[Nicolas], Najman, L.[Laurent],
Shape-Based Analysis on Component-Graphs for Multivalued Image Processing,
ISMM15(446-457).
Springer DOI 1506
BibRef

Najman, L.[Laurent], Pesquet, J.C.[Jean-Christophe], Talbot, H.[Hugues],
When Convex Analysis Meets Mathematical Morphology on Graphs,
ISMM15(473-484).
Springer DOI 1506
BibRef

Boroujerdi, A.S.[Ali Sharifi], Breuß, M.[Michael], Burgeth, B.[Bernhard], Kleefeld, A.[Andreas],
PDE-Based Color Morphology Using Matrix Fields,
SSVM15(461-473).
Springer DOI 1506
BibRef

Noguera, J.L.V.[Jose Luis Vazquez], Ayala, H.L.[Horacio Legal], Schaerer, C.E.[Christian E.], Facon, J.[Jacques],
A color morphological ordering method based on additive and subtractive spaces,
ICIP14(674-678)
IEEE DOI 1502
Additives BibRef

Deng, T.Q.[Ting-Quan], Xie, W.[Wei],
Grey-Scale Morphological Operators and Fuzzy Connected Filters,
CISP09(1-5).
IEEE DOI 0910
BibRef

Serra, J.[Jean],
The 'False Colour' Problem,
ISMM09(13-23).
Springer DOI 0908
BibRef

Montenegro, A., Calixto, E.P., Conci, A., Clua, E.,
Introducing a new metric for automatic true color images granulometry,
WSSIP08(389-392).
IEEE DOI 0806
color morphology to detect grain size. BibRef

Dokládal, P.[Petr], Dokládalová, E.[Eva],
Grey-Scale Morphology with Spatially-Variant Rectangles in Linear Time,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Tobar, M.C., Platero, C., González, P.M., Asensio, G.,
Mathematical Morphology in the HSI Colour Space,
IbPRIA07(II: 467-474).
Springer DOI 0706
BibRef

Hult, R.[Roger], Agartz, I.[Ingrid],
Segmentation of Multimodal MRI of Hippocampus Using 3D Grey-Level Morphology Combined with Artificial Neural Networks,
SCIA05(272-281).
Springer DOI 0506
BibRef
Earlier: A1, Only:
Grey-level morphology combined with an artificial neural networks aproach for multimodal segmentation of the hippocampus,
CIAP03(277-282).
IEEE DOI 0310
BibRef

Raducanu, B., Grana, M.,
A Grayscale Hit-or-miss Transform Based on Level Sets,
ICIP00(Vol II: 931-933).
IEEE DOI 0008
BibRef

Koppen, M., Nowack, C., Rosel, G.,
Pareto-Morphology for Color Image Processing,
SCIA99(Image Analysis I). BibRef 9900

Bastian, W., Petrou, M., Leng, X.,
Greyscale Morphology with a Non-Linear Structuring Element,
DSP95(366-371). BibRef 9500

Costa, W.S., Haralick, R.M.,
Predicting expected gray level statistics of opened signals,
CVPR92(554-559).
IEEE DOI 0403
The opening of a model signal with a convex, zero-height structuring element is studied empirically. BibRef

Wu, M.J.[Min-Jin],
Fuzzy morphology and image analysis,
ICPR88(I: 453-455).
IEEE DOI 8811
BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Morphology for Range and 3-D data .


Last update:Nov 26, 2024 at 16:40:19