Banarse, D.S.,
Duller, A.W.G.,
Deformation Invariant Visual Object Recognition:
Experiments with a Self-Organizing Neural Architecture,
NeurCompApp(6), No. 2, 1997, pp. 79-90.
9801
BibRef
Shih, F.Y.[Frank Y.],
Moh, J.[Jenlong],
Chang, F.C.[Fu-Chun],
A new art-based neural architecture for pattern classification and
image enhancement without prior knowledge,
PR(25), No. 5, May 1992, pp. 533-542.
Elsevier DOI
0401
BibRef
Taylor, J.G.,
Hartley, M.,
Taylor, N.,
Panchev, C.,
Kasderidis, S.,
A hierarchical attention-based neural network architecture, based on
human brain guidance, for perception, conceptualisation, action and
reasoning,
IVC(27), No. 11, 2 October 2009, pp. 1641-1657.
Elsevier DOI
0909
Dorsal and ventral vision; Object representations; Dopamine as reward;
TD learning
BibRef
Iakymchuk, T.[Taras],
Rosado-Munoz, A.[Alfredo],
Guerrero-Martinez, J.[Juan],
Bataller-Mompean, M.[Manuel],
Frances-Villora, J.[Jose],
Simplified spiking neural network architecture and STDP learning
algorithm applied to image classification,
JIVP(2015), No. 1, 2015, pp. 4.
DOI Link
1503
BibRef
Lerouge, J.,
Herault, R.,
Chatelain, C.,
Jardin, F.,
Modzelewski, R.,
IODA: An input/output deep architecture for image labeling,
PR(48), No. 9, 2015, pp. 2847-2858.
Elsevier DOI
1506
Deep learning architectures
BibRef
Chen, Y.S.[Yu-Shi],
Zhu, K.Q.[Kai-Qiang],
Zhu, L.[Lin],
He, X.[Xin],
Ghamisi, P.[Pedram],
Benediktsson, J.A.[Jón Atli],
Automatic Design of Convolutional Neural Network for Hyperspectral
Image Classification,
GeoRS(57), No. 9, September 2019, pp. 7048-7066.
IEEE DOI
1909
Feature extraction, Deep learning, Hyperspectral imaging,
Convolution, Training, Convolutional neural network (CNN),
neural architecture search (NAS)
BibRef
Jaafra, Y.[Yesmina],
Laurent, J.L.[Jean Luc],
Deruyver, A.[Aline],
Naceur, M.S.[Mohamed Saber],
Reinforcement learning for neural architecture search: A review,
IVC(89), 2019, pp. 57-66.
Elsevier DOI
1909
Reinforcement learning, Convolutional neural networks,
Neural Architecture Search, AutoML
BibRef
Sun, Y.,
Xue, B.,
Zhang, M.,
Yen, G.G.,
Lv, J.,
Automatically Designing CNN Architectures Using the Genetic Algorithm
for Image Classification,
Cyber(50), No. 9, September 2020, pp. 3840-3854.
IEEE DOI
2008
Computer architecture, Tuning, Genetic algorithms,
Evolutionary computation, Manuals, Genetics, Evolution (biology),
neural-network architecture optimization
BibRef
Dong, H.,
Zou, B.,
Zhang, L.,
Zhang, S.,
Automatic Design of CNNs via Differentiable Neural Architecture
Search for PolSAR Image Classification,
GeoRS(58), No. 9, September 2020, pp. 6362-6375.
IEEE DOI
2008
Computer architecture, Personal digital assistants,
Deep learning, Search problems, Neural networks,
polarimetric synthetic aperture radar (PolSAR) classification
BibRef
Liu, J.H.[Jia-Heng],
Zhou, S.F.[Shun-Feng],
Wu, Y.C.[Yi-Chao],
Chen, K.[Ken],
Ouyang, W.L.[Wan-Li],
Xu, D.[Dong],
Block Proposal Neural Architecture Search,
IP(30), 2021, pp. 15-25.
IEEE DOI
2011
Proposals, Computer architecture, Task analysis, DNA, Convolution,
Network architecture, Evolutionary computation,
image classification
BibRef
Jing, W.P.[Wei-Peng],
Ren, Q.L.[Quan-Lin],
Zhou, J.[Jun],
Song, H.B.[Hou-Bing],
AutoRSISC: Automatic design of neural architecture for remote sensing
image scene classification,
PRL(140), 2020, pp. 186-192.
Elsevier DOI
2012
Deep learning, High resolution remote sensing,
Network architecture search (NAS), Image classification
BibRef
Nakai, K.[Kohei],
Matsubara, T.[Takashi],
Uehara, K.[Kuniaki],
Neural Architecture Search for Convolutional Neural Networks with
Attention,
IEICE(E104-D), No. 2, February 2021, pp. 312-321.
WWW Link.
2102
BibRef
Yu, Q.[Qian],
Song, J.F.[Ji-Fei],
Song, Y.Z.[Yi-Zhe],
Chen, H.L.[Han-Lin],
Zhuo, L.[Li'an],
Zhang, B.C.[Bao-Chang],
Zheng, X.W.[Xia-Wu],
Liu, J.Z.[Jian-Zhuang],
Ji, R.R.[Rong-Rong],
Doermann, D.[David],
Guo, G.D.[Guo-Dong],
Binarized Neural Architecture Search for Efficient Object Recognition,
IJCV(129), No. 2, February 2021, pp. 501-516.
Springer DOI
2102
BibRef
Yuan, G.,
Xue, B.,
Zhang, M.,
A Graph-Based Approach to Automatic Convolutional Neural Network
Construction for Image Classification,
IVCNZ20(1-6)
IEEE DOI
2012
Neural networks, Computer architecture,
Classification algorithms, Convolutional neural networks,
neural architecture search
BibRef
Li, J.H.[Ji-Hao],
Diao, W.H.[Wen-Hui],
Sun, X.[Xian],
Feng, Y.C.[Ying-Chao],
Zhang, W.K.[Wen-Kai],
Chang, Z.H.[Zhong-Han],
Fu, K.[Kun],
Automated and Lightweight Network Design Via Random Search for Remote
Sensing Image Scene Classification,
ISPRS20(B2:1217-1224).
DOI Link
2012
BibRef
Chen, Y.C.[Yun-Chun],
Gao, C.[Chen],
Robb, E.[Esther],
Huang, J.B.[Jia-Bin],
NAS-DIP: Learning Deep Image Prior with Neural Architecture Search,
ECCV20(XVIII:442-459).
Springer DOI
2012
BibRef
Chen, H.L.[Han-Lin],
Zhang, B.C.[Bao-Chang],
Xue, S.[Song],
Gong, X.[Xuan],
Liu, H.[Hong],
Ji, R.R.[Rong-Rong],
Doermann, D.[David],
Anti-Bandit Neural Architecture Search for Model Defense,
ECCV20(XIII:70-85).
Springer DOI
2011
BibRef
Ning, X.F.[Xue-Fei],
Zheng, Y.[Yin],
Zhao, T.C.[Tian-Chen],
Wang, Y.[Yu],
Yang, H.Z.[Hua-Zhong],
A Generic Graph-based Neural Architecture Encoding Scheme for
Predictor-based NAS,
ECCV20(XIII:189-204).
Springer DOI
2011
BibRef
Hu, Y.[Yibo],
Wu, X.[Xiang],
He, R.[Ran],
TF-NAS: Rethinking Three Search Freedoms of Latency-constrained
Differentiable Neural Architecture Search,
ECCV20(XV:123-139).
Springer DOI
2011
BibRef
Xu, H.[Hang],
Wang, S.[Shaoju],
Cai, X.Y.[Xin-Yue],
Zhang, W.[Wei],
Liang, X.D.[Xiao-Dan],
Li, Z.G.[Zhen-Guo],
Curvelane-NAS:
Unifying Lane-sensitive Architecture Search and Adaptive Point Blending,
ECCV20(XV:689-704).
Springer DOI
2011
BibRef
Chu, X.X.[Xiang-Xiang],
Zhou, T.B.[Tian-Bao],
Zhang, B.[Bo],
Li, J.X.[Ji-Xiang],
Fair Darts: Eliminating Unfair Advantages in Differentiable
Architecture Search,
ECCV20(XV:465-480).
Springer DOI
2011
BibRef
Dai, X.Y.[Xi-Yang],
Chen, D.D.[Dong-Dong],
Liu, M.C.[Meng-Chen],
Chen, Y.P.[Yin-Peng],
Yuan, L.[Lu],
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search,
ECCV20(XXVII:584-600).
Springer DOI
2011
BibRef
Hu, Y.[Yutao],
Jiang, X.L.[Xiao-Long],
Liu, X.H.[Xu-Hui],
Zhang, B.C.[Bao-Chang],
Han, J.G.[Jun-Gong],
Cao, X.B.[Xian-Bin],
Doermann, D.[David],
NAS-Count: Counting-by-density with Neural Architecture Search,
ECCV20(XXII:747-766).
Springer DOI
2011
BibRef
Yuan, Q.W.[Qiong-Wen],
He, J.W.[Jing-Wei],
Yu, L.[Lei],
Zheng, G.[Gang],
AIM-Net: Bring Implicit Euler to Network Design,
ICIP20(1926-1930)
IEEE DOI
2011
Neural networks, Adaptation models, Convergence,
Mathematical model, Image resolution, Signal resolution,
image superresolution
BibRef
Howard-Jenkins, H.[Henry],
Li, Y.[Yiwen],
Prisacariu, V.A.[Victor Adrian],
Gross: Group-size Series Decomposition for Grouped Architecture Search,
ECCV20(XXVI:18-33).
Springer DOI
2011
BibRef
Hu, Y.M.[Yi-Ming],
Liang, Y.[Yuding],
Guo, Z.[Zichao],
Wan, R.[Ruosi],
Zhang, X.Y.[Xiang-Yu],
Wei, Y.[Yichen],
Gu, Q.Y.[Qing-Yi],
Sun, J.[Jian],
Angle-based Search Space Shrinking for Neural Architecture Search,
ECCV20(XIX:119-134).
Springer DOI
2011
BibRef
Chen, X.[Xin],
Duan, Y.[Yawen],
Chen, Z.[Zewei],
Xu, H.[Hang],
Chen, Z.[Zihao],
Liang, X.D.[Xiao-Dan],
Zhang, T.[Tong],
Li, Z.G.[Zhen-Guo],
Catch: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search,
ECCV20(XIX:185-202).
Springer DOI
2011
BibRef
Yu, J.H.[Jia-Hui],
Jin, P.C.[Peng-Chong],
Liu, H.X.[Han-Xiao],
Bender, G.[Gabriel],
Kindermans, P.J.[Pieter-Jan],
Tan, M.X.[Ming-Xing],
Huang, T.[Thomas],
Song, X.D.[Xiao-Dan],
Pang, R.M.[Ruo-Ming],
Le, Q.[Quoc],
Bignas: Scaling up Neural Architecture Search with Big Single-stage
Models,
ECCV20(VII:702-717).
Springer DOI
2011
BibRef
Tian, Y.[Yuan],
Wang, Q.[Qin],
Huang, Z.W.[Zhi-Wu],
Li, W.[Wen],
Dai, D.X.[Deng-Xin],
Yang, M.H.[Ming-Hao],
Wang, J.[Jun],
Fink, O.[Olga],
Off-policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search,
ECCV20(VII:175-192).
Springer DOI
2011
BibRef
Lu, Z.C.[Zhi-Chao],
Deb, K.[Kalyanmoy],
Goodman, E.[Erik],
Banzhaf, W.[Wolfgang],
Boddeti, V.N.[Vishnu Naresh],
Nsganetv2: Evolutionary Multi-objective Surrogate-assisted Neural
Architecture Search,
ECCV20(I:35-51).
Springer DOI
2011
BibRef
Bulat, A.[Adrian],
Martinez, B.[Brais],
Tzimiropoulos, G.[Georgios],
Bats: Binary Architecture Search,
ECCV20(XXIII:309-325).
Springer DOI
2011
BibRef
Tang, H.T.[Hao-Tian],
Liu, Z.J.[Zhi-Jian],
Zhao, S.Y.[Sheng-Yu],
Lin, Y.J.[Yu-Jun],
Lin, J.[Ji],
Wang, H.R.[Han-Rui],
Han, S.[Song],
Searching Efficient 3d Architectures with Sparse Point-voxel
Convolution,
ECCV20(XXVIII:685-702).
Springer DOI
2011
BibRef
Yuan, Z.H.[Zhi-Hang],
Wu, B.Z.[Bing-Zhe],
Sun, G.Y.[Guang-Yu],
Liang, Z.[Zheng],
Zhao, S.W.[Shi-Wan],
Bi, W.C.[Wei-Chen],
S2dnas: Transforming Static Cnn Model for Dynamic Inference via Neural
Architecture Search,
ECCV20(II:175-192).
Springer DOI
2011
BibRef
Liu, C.X.[Chen-Xi],
Dollár, P.[Piotr],
He, K.M.[Kai-Ming],
Girshick, R.[Ross],
Yuille, A.L.[Alan L.],
Xie, S.N.[Sai-Ning],
Are Labels Necessary for Neural Architecture Search?,
ECCV20(IV:798-813).
Springer DOI
2011
BibRef
Wen, W.[Wei],
Liu, H.X.[Han-Xiao],
Chen, Y.R.[Yi-Ran],
Li, H.[Hai],
Bender, G.[Gabriel],
Kindermans, P.J.[Pieter-Jan],
Neural Predictor for Neural Architecture Search,
ECCV20(XXIX: 660-676).
Springer DOI
2010
BibRef
Vahdat, A.,
Mallya, A.,
Liu, M.,
Kautz, J.,
UNAS: Differentiable Architecture Search Meets Reinforcement Learning,
CVPR20(11263-11272)
IEEE DOI
2008
Computer architecture, Search problems, DNA, Linear programming,
Task analysis, Estimation, Loss measurement
BibRef
Murdock, C.[Calvin],
Lucey, S.[Simon],
Dataless Model Selection With the Deep Frame Potential,
CVPR20(11254-11262)
IEEE DOI
2008
Dictionaries, Sparse representation, Robustness, Coherence,
Neural networks, Computer architecture, Machine learning
BibRef
Berman, M.[Maxim],
Pishchulin, L.[Leonid],
Xu, N.[Ning],
Blaschko, M.B.[Matthew B.],
Medioni, G.[Gérard],
AOWS: Adaptive and Optimal Network Width Search With Latency
Constraints,
CVPR20(11214-11223)
IEEE DOI
2008
Training, Computational modeling, Computer architecture,
Task analysis, Neural networks, Hardware, Measurement
BibRef
Chen, Z.S.[Zheng-Su],
Niu, J.W.[Jian-Wei],
Xie, L.X.[Ling-Xi],
Liu, X.F.[Xue-Feng],
Wei, L.H.[Long-Hui],
Tian, Q.[Qi],
Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio,
CVPR20(10655-10664)
IEEE DOI
2008
Training, Computer architecture, Neural networks,
Channel estimation, Pipelines, Computer vision, Standards
BibRef
Radosavovic, I.[Ilija],
Kosaraju, R.P.[Raj Prateek],
Girshick, R.[Ross],
He, K.[Kaiming],
Dollár, P.[Piotr],
Designing Network Design Spaces,
CVPR20(10425-10433)
IEEE DOI
2008
Computational modeling, Manuals, Tools, Sociology, Statistics,
Training, Visualization
BibRef
Zoran, D.[Daniel],
Chrzanowski, M.[Mike],
Huang, P.S.[Po-Sen],
Gowal, S.[Sven],
Mott, A.[Alex],
Kohli, P.[Pushmeet],
Towards Robust Image Classification Using Sequential Attention Models,
CVPR20(9480-9489)
IEEE DOI
2008
Augment NN with attention model.
Robustness, Computational modeling,
Adaptation models, Brain modeling, Biological system modeling, Training
BibRef
Huang, L.[Lei],
Zhao, L.[Lei],
Zhou, Y.[Yi],
Zhu, F.[Fan],
Liu, L.[Li],
Shao, L.[Ling],
An Investigation Into the Stochasticity of Batch Whitening,
CVPR20(6438-6447)
IEEE DOI
2008
Training, Principal component analysis, Covariance matrices,
Standardization, Optimization, Sociology
BibRef
Bender, G.,
Liu, H.,
Chen, B.,
Chu, G.,
Cheng, S.,
Kindermans, P.,
Le, Q.V.,
Can Weight Sharing Outperform Random Architecture Search? An
Investigation With TuNAS,
CVPR20(14311-14320)
IEEE DOI
2008
Computer architecture, Search problems, Google,
Inference algorithms, Task analysis, Training
BibRef
Kim, E.,
Kang, W.Y.,
On, K.,
Heo, Y.,
Zhang, B.,
Hypergraph Attention Networks for Multimodal Learning,
CVPR20(14569-14578)
IEEE DOI
2008
Semantics, Visualization, Task analysis, Knowledge discovery,
Message passing, Computational modeling, Biological neural networks
BibRef
Lin, R.,
Liu, W.,
Liu, Z.,
Feng, C.,
Yu, Z.,
Rehg, J.M.,
Xiong, L.,
Song, L.,
Regularizing Neural Networks via Minimizing Hyperspherical Energy,
CVPR20(6916-6925)
IEEE DOI
2008
Neurons, Biological neural networks, Training, Optimization,
Task analysis, Testing, Linear programming
BibRef
Wan, A.,
Dai, X.,
Zhang, P.,
He, Z.,
Tian, Y.,
Xie, S.,
Wu, B.,
Yu, M.,
Xu, T.,
Chen, K.,
Vajda, P.,
Gonzalez, J.E.,
FBNetV2: Differentiable Neural Architecture Search for Spatial and
Channel Dimensions,
CVPR20(12962-12971)
IEEE DOI
2008
DNA, Computer architecture, Convolution, Neural networks, Training,
Computational efficiency, Space exploration
BibRef
Mozejko, M.,
Latkowski, T.,
Treszczotko, L.,
Szafraniuk, M.,
Trojanowski, K.,
Superkernel Neural Architecture Search for Image Denoising,
NTIRE20(2002-2011)
IEEE DOI
2008
Training, Task analysis, Image denoising, Kernel, Memory management, Graphics processing units
BibRef
Zhang, L.L.,
Yang, Y.,
Jiang, Y.,
Zhu, W.,
Liu, Y.,
Fast Hardware-Aware Neural Architecture Search,
EDLCV20(2959-2967)
IEEE DOI
2008
Hardware, Computer architecture, Graphics processing units,
Hurricanes, Training, Measurement
BibRef
Gao, Y.,
Bai, H.,
Jie, Z.,
Ma, J.,
Jia, K.,
Liu, W.,
MTL-NAS: Task-Agnostic Neural Architecture Search Towards
General-Purpose Multi-Task Learning,
CVPR20(11540-11549)
IEEE DOI
2008
Task analysis, Computer architecture, Entropy, Neural networks,
Feature extraction, Semantics, Convolution
BibRef
Zhou, D.,
Zhou, X.,
Zhang, W.,
Loy, C.C.,
Yi, S.,
Zhang, X.,
Ouyang, W.,
EcoNAS: Finding Proxies for Economical Neural Architecture Search,
CVPR20(11393-11401)
IEEE DOI
2008
Training, Computer architecture, Reliability,
Graphics processing units, Acceleration, Computer vision, Measurement
BibRef
Zheng, X.,
Ji, R.,
Wang, Q.,
Ye, Q.,
Li, Z.,
Tian, Y.,
Tian, Q.,
Rethinking Performance Estimation in Neural Architecture Search,
CVPR20(11353-11362)
IEEE DOI
2008
Computer architecture, Estimation, Microprocessors, Training,
Optimization, Search problems, Learning (artificial intelligence)
BibRef
Fang, J.,
Sun, Y.,
Zhang, Q.,
Li, Y.,
Liu, W.,
Wang, X.,
Densely Connected Search Space for More Flexible Neural Architecture
Search,
CVPR20(10625-10634)
IEEE DOI
2008
Routing, Computer architecture, Tensile stress, Estimation,
Approximation algorithms, Spatial resolution, Microprocessors
BibRef
Li, Y.,
Jin, X.,
Mei, J.,
Lian, X.,
Yang, L.,
Xie, C.,
Yu, Q.,
Zhou, Y.,
Bai, S.,
Yuille, A.L.,
Neural Architecture Search for Lightweight Non-Local Networks,
CVPR20(10294-10303)
IEEE DOI
2008
Computer architecture, Neural networks, Computational modeling,
Task analysis, Graphics processing units, Mobile handsets,
Computational complexity
BibRef
Hu, S.K.[Shou-Kang],
Xie, S.R.[Si-Rui],
Zheng, H.H.[He-Hui],
Liu, C.X.[Chun-Xiao],
Shi, J.P.[Jian-Ping],
Liu, X.Y.[Xun-Ying],
Lin, D.H.[Da-Hua],
DSNAS: Direct Neural Architecture Search Without Parameter Retraining,
CVPR20(12081-12089)
IEEE DOI
2008
Task analysis, Computer architecture, Optimization, Training,
Search problems, Measurement, Machine learning
BibRef
Atzmon, M.[Matan],
Lipman, Y.[Yaron],
SAL: Sign Agnostic Learning of Shapes From Raw Data,
CVPR20(2562-2571)
IEEE DOI
2008
Surface reconstruction, Shape,
Neural networks, Interpolation, Mathematical model, Training
BibRef
Li, C.,
Peng, J.,
Yuan, L.,
Wang, G.,
Liang, X.,
Lin, L.,
Chang, X.,
Block-Wisely Supervised Neural Architecture Search With Knowledge
Distillation,
CVPR20(1986-1995)
IEEE DOI
2008
Computer architecture, Network architecture,
Knowledge engineering, Training, DNA, Convergence, Feature extraction
BibRef
Tang, Y.H.[Ye-Hui],
Wang, Y.H.[Yun-He],
Xu, Y.X.[Yi-Xing],
Chen, H.T.[Han-Ting],
Shi, B.X.[Bo-Xin],
Xu, C.[Chao],
Xu, C.J.[Chun-Jing],
Tian, Q.[Qi],
Xu, C.[Chang],
A Semi-Supervised Assessor of Neural Architectures,
CVPR20(1807-1816)
IEEE DOI
2008
Computer architecture, Training, Task analysis, Microprocessors,
Optimization, Neural networks, Feature extraction
BibRef
Li, Z.,
Xi, T.,
Deng, J.,
Zhang, G.,
Wen, S.,
He, R.,
GP-NAS: Gaussian Process Based Neural Architecture Search,
CVPR20(11930-11939)
IEEE DOI
2008
Computer architecture, Correlation, Kernel, Training, Task analysis,
Network architecture, Mutual information
BibRef
Wang, N.,
Gao, Y.,
Chen, H.,
Wang, P.,
Tian, Z.,
Shen, C.,
Zhang, Y.,
NAS-FCOS: Fast Neural Architecture Search for Object Detection,
CVPR20(11940-11948)
IEEE DOI
2008
Object detection, Computer architecture, Search problems,
Task analysis, Decoding, Feature extraction, Detectors
BibRef
He, C.,
Ye, H.,
Shen, L.,
Zhang, T.,
MiLeNAS: Efficient Neural Architecture Search via Mixed-Level
Reformulation,
CVPR20(11990-11999)
IEEE DOI
2008
Mathematical model, Training, Computer architecture,
Optimization methods, Training data, Neural networks
BibRef
Tao, Y.,
Ma, R.,
Shyu, M.,
Chen, S.,
Challenges in Energy-Efficient Deep Neural Network Training with FPGA,
LPCV20(1602-1611)
IEEE DOI
2008
Field programmable gate arrays, Computational modeling, Training,
Hardware, Neural networks, Machine learning, Graphics processing units
BibRef
Liu, P.,
Wu, B.,
Ma, H.,
Seok, M.,
MemNAS: Memory-Efficient Neural Architecture Search With Grow-Trim
Learning,
CVPR20(2105-2113)
IEEE DOI
2008
Memory management, Neural networks, Correlation,
Performance evaluation, Computational modeling
BibRef
Gao, C.,
Chen, Y.,
Liu, S.,
Tan, Z.,
Yan, S.,
AdversarialNAS: Adversarial Neural Architecture Search for GANs,
CVPR20(5679-5688)
IEEE DOI
2008
Computer architecture, Generators, Task analysis,
Convolution, Generative adversarial networks, Computer vision
BibRef
Li, G.H.[Guo-Hao],
Qian, G.C.[Guo-Cheng],
Delgadillo, I.C.[Itzel C.],
Müller, M.[Matthias],
Thabet, A.[Ali],
Ghanem, B.[Bernard],
SGAS: Sequential Greedy Architecture Search,
CVPR20(1617-1627)
IEEE DOI
2008
Neural Architecture Search.
Computer architecture, Correlation, Search problems, Task analysis,
Optimization, Computational efficiency, Microprocessors
BibRef
Chen, X.[Xin],
Xie, L.X.[Ling-Xi],
Wu, J.[Jun],
Tian, Q.[Qi],
Progressive Differentiable Architecture Search:
Bridging the Depth Gap Between Search and Evaluation,
ICCV19(1294-1303)
IEEE DOI
2004
Code, Search.
WWW Link. approximation theory, image recognition,
learning (artificial intelligence), neural net architecture,
Computational modeling
BibRef
Banerjee, S.,
Chakraborty, S.,
Deepsub: A Novel Subset Selection Framework for Training Deep
Learning Architectures,
ICIP19(1615-1619)
IEEE DOI
1910
Submodular optimization, Deep learning
BibRef
Xiong, Y.,
Mehta, R.,
Singh, V.,
Resource Constrained Neural Network Architecture Search:
Will a Submodularity Assumption Help?,
ICCV19(1901-1910)
IEEE DOI
2004
learning (artificial intelligence), neural nets, optimisation,
neural network architecture search, empirical feedback,
Heuristic algorithms
BibRef
Zhao, R.,
Luk, W.,
Efficient Structured Pruning and Architecture Searching for Group
Convolution,
NeruArch19(1961-1970)
IEEE DOI
2004
convolutional neural nets, group theory, network theory (graphs),
neural net architecture, search problems, network pruning,
efficient inference
BibRef
Li, X.[Xin],
Zhou, Y.M.[Yi-Ming],
Pan, Z.[Zheng],
Feng, J.[Jiashi],
Partial Order Pruning: For Best Speed/Accuracy Trade-Off in Neural
Architecture Search,
CVPR19(9137-9145).
IEEE DOI
2002
BibRef
Guo, M.H.[Ming-Hao],
Zhong, Z.[Zhao],
Wu, W.[Wei],
Lin, D.[Dahua],
Yan, J.J.[Jun-Jie],
IRLAS: Inverse Reinforcement Learning for Architecture Search,
CVPR19(9013-9021).
IEEE DOI
2002
search network structures that are topologically inspired by
human-designed network
BibRef
Gong, X.,
Chang, S.,
Jiang, Y.,
Wang, Z.,
AutoGAN: Neural Architecture Search for Generative Adversarial
Networks,
ICCV19(3223-3233)
IEEE DOI
2004
Code, Generative Adversarial Network.
WWW Link. image classification, image segmentation, neural nets,
neural architecture search, generative adversarial networks,
Prediction algorithms
BibRef
Yan, S.,
Fang, B.,
Zhang, F.,
Zheng, Y.,
Zeng, X.,
Zhang, M.,
Xu, H.,
HM-NAS: Efficient Neural Architecture Search via Hierarchical Masking,
NeruArch19(1942-1950)
IEEE DOI
2004
Code, Neural Netowrks.
WWW Link. learning (artificial intelligence), neural net architecture,
multilevel architecture, flexible network architectures,
Hierarchical Masking
BibRef
Wu, B.C.[Bi-Chen],
Dai, X.L.[Xiao-Liang],
Zhang, P.Z.[Pei-Zhao],
Wang, Y.H.[Yang-Han],
Sun, F.[Fei],
Wu, Y.M.[Yi-Ming],
Tian, Y.D.[Yuan-Dong],
Vajda, P.[Peter],
Jia, Y.Q.[Yang-Qing],
Keutzer, K.[Kurt],
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search,
CVPR19(10726-10734).
IEEE DOI
2002
BibRef
Cui, J.,
Chen, P.,
Li, R.,
Liu, S.,
Shen, X.,
Jia, J.,
Fast and Practical Neural Architecture Search,
ICCV19(6508-6517)
IEEE DOI
2004
learning (artificial intelligence), neural nets, FPNAS,
search process, bi-level optimization problem, design networks,
Network architecture
BibRef
Bashivan, P.[Pouya],
Tensen, M.[Mark],
Dicarlo, J.[James],
Teacher Guided Architecture Search,
ICCV19(5319-5328)
IEEE DOI
2004
convolutional neural nets,
learning (artificial intelligence), neural net architecture,
Network architecture
BibRef
Zheng, X.,
Ji, R.,
Tang, L.,
Zhang, B.,
Liu, J.,
Tian, Q.,
Multinomial Distribution Learning for Effective Neural Architecture
Search,
ICCV19(1304-1313)
IEEE DOI
2004
Code, Neural Networks.
WWW Link. graphics processing units,
learning (artificial intelligence), neural nets,
Search problems
BibRef
Zhu, H.,
An, Z.,
Yang, C.,
Xu, K.,
Zhao, E.,
Xu, Y.,
EENA: Efficient Evolution of Neural Architecture,
NeruArch19(1891-1899)
IEEE DOI
2004
learning (artificial intelligence), neural net architecture,
search problems, crossover operations, evolution process,
guidance of experience gained
BibRef
Tan, M.X.[Ming-Xing],
Chen, B.[Bo],
Pang, R.[Ruoming],
Vasudevan, V.[Vijay],
Sandler, M.[Mark],
Howard, A.[Andrew],
Le, Q.V.[Quoc V.],
MnasNet: Platform-Aware Neural Architecture Search for Mobile,
CVPR19(2815-2823).
IEEE DOI
2002
BibRef
Dong, X.Y.[Xuan-Yi],
Yang, Y.[Yi],
Searching for a Robust Neural Architecture in Four GPU Hours,
CVPR19(1761-1770).
IEEE DOI
2002
BibRef
Dong, X.Y.[Xuan-Yi],
Yang, Y.[Yi],
One-Shot Neural Architecture Search via Self-Evaluated Template
Network,
ICCV19(3680-3689)
IEEE DOI
2004
image sampling, knowledge based systems,
learning (artificial intelligence), neural net architecture,
BibRef
Rashwan, A.,
Kalra, A.,
Poupart, P.,
Matrix Nets: A New Deep Architecture for Object Detection,
NeruArch19(2025-2028)
IEEE DOI
2004
learning (artificial intelligence), neural net architecture,
object detection, Matrix Nets, deep architecture, object detection,
neural architecture
BibRef
Cheng, H.,
Zhang, T.,
Yang, Y.,
Yan, F.,
Teague, H.,
Chen, Y.,
Li, H.,
MSNet: Structural Wired Neural Architecture Search for Internet of
Things,
NeruArch19(2033-2036)
IEEE DOI
2004
convolutional neural nets, Internet of Things,
learning (artificial intelligence), mobile computing,
neural architecture search
BibRef
Chen, H.T.[Han-Ting],
Wang, Y.H.[Yun-He],
Xu, C.[Chang],
Yang, Z.H.[Zhao-Hui],
Liu, C.J.[Chuan-Jian],
Shi, B.X.[Bo-Xin],
Xu, C.J.[Chun-Jing],
Xu, C.[Chao],
Tian, Q.[Qi],
Data-Free Learning of Student Networks,
ICCV19(3513-3521)
IEEE DOI
2004
computer vision, convolutional neural nets,
learning (artificial intelligence), neural net architecture,
Knowledge engineering
BibRef
Liu, C.X.[Chen-Xi],
Zoph, B.[Barret],
Neumann, M.[Maxim],
Shlens, J.[Jonathon],
Hua, W.[Wei],
Li, L.J.[Li-Jia],
Fei-Fei, L.[Li],
Yuille, A.L.[Alan L.],
Huang, J.[Jonathan],
Murphy, K.[Kevin],
Progressive Neural Architecture Search,
ECCV18(I: 19-35).
Springer DOI
1810
New method for learning CNN
BibRef
Srinivas, S.[Suraj],
Babu, V.[Venkatesh],
Learning Neural Network Architectures using Backpropagation,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Hasegawa, R.[Ryoma],
Hotta, K.[Kazuhiro],
PLSNet: A simple network using Partial Least Squares regression for
image classification,
ICPR16(1601-1606)
IEEE DOI
1705
Convolution, Databases, Feature extraction, Image classification,
Network architecture, Principal component analysis, Training,
Convolutional Neural Network, Deep Learning, PCANet, PLSNet,
Partial Least Squares Regression, Stacked, PLS
BibRef
Espinal, A.[Andrés],
Carpio, M.[Martín],
Ornelas, M.[Manuel],
Puga, H.[Héctor],
Melín, P.[Patricia],
Sotelo-Figueroa, M.[Marco],
Developing Architectures of Spiking Neural Networks by Using
Grammatical Evolution Based on Evolutionary Strategy,
MCPR14(71-80).
Springer DOI
1407
BibRef
Elliman, D.G.[David G.],
Youssef, S.M.[Sherin M.],
Contextual Swarm-Based Multi-layered Lattices:
A New Architecture for Contextual Pattern Recognition,
DAS04(496-507).
Springer DOI
0505
BibRef
Yang, Z.,
Wang, Y.,
Chen, X.,
Shi, B.,
Xu, C.,
Xu, C.,
Tian, Q.,
Xu, C.,
CARS: Continuous Evolution for Efficient Neural Architecture Search,
CVPR20(1826-1835)
IEEE DOI
2008
Optimization, Nickel, Computer architecture, Network architecture,
Sorting, Training, Automobiles
BibRef
Chen, Y.K.[Yu-Kang],
Meng, G.F.[Gao-Feng],
Zhang, Q.[Qian],
Xiang, S.M.[Shi-Ming],
Huang, C.[Chang],
Mu, L.[Lisen],
Wang, X.G.[Xing-Gang],
RENAS: Reinforced Evolutionary Neural Architecture Search,
CVPR19(4782-4791).
IEEE DOI
2002
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks for Classification and Pattern Recognition .